201
|
Wang W, Jin Y, Zeng N, Ruan Q, Qian F. SOD2 Facilitates the Antiviral Innate Immune Response by Scavenging Reactive Oxygen Species. Viral Immunol 2017; 30:582-589. [PMID: 28574756 DOI: 10.1089/vim.2017.0043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Superoxide dismutase 2 (SOD2) is essential in radical scavenging, which balances the intracellular level of reactive oxygen species (ROS). The dysfunction of SOD2 is associated with increasing incidence of various human diseases, including cancer, neuron diseases, and myocardial defects. However, the connections between SOD2-mediated oxidative homeostasis and innate immune response remain unclear. In this study, we report that SOD2 is a crucial regulator of antiviral signaling. Depletion of SOD2 impairs RNA virus-induced type I interferon (IFN) and proinflammatory cytokine production, resulting in enhanced viral replication. Type I IFN production is highly sensitive to cellular level of ROS. SOD2 deficiency-mediated ROS accumulation potently inhibits RIG-I-like receptor (RLR)-induced innate immune responses through the regulation of nuclear factor-kappa B (NF-κB) and interferon regulatory factor-3 activation. These findings uncover a novel role for SOD2 in regulating RLR-mediated antiviral innate immune signaling.
Collapse
Affiliation(s)
- Wan Wang
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| | - Yufei Jin
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| | - Ningxiang Zeng
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| | - Qingwei Ruan
- 2 Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, Research Center of Aging and Medicine, Shanghai Medical College, Fudan University , Shanghai, China
| | - Feng Qian
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| |
Collapse
|
202
|
Autophagy Activation Alleviates Amyloid-β-Induced Oxidative Stress, Apoptosis and Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. Neurotox Res 2017; 32:351-361. [PMID: 28484969 DOI: 10.1007/s12640-017-9746-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that ensures continuous removal of damaged cell organelles and long-lived protein aggregates to maintain cellular homeostasis. Although autophagy has been implicated in amyloid-β (Aβ) production and deposition, its role in pathogenesis of Alzheimer's disease remains elusive. Thus, the present study was undertaken to assess the cytoprotective and neuroprotective potential of autophagy on Aβ-induced oxidative stress, apoptosis and neurotoxicity in human neuroblastoma SH-SY5Y cells. The treatment of Aβ1-42 impaired the cell growth and redox balance, and induced apoptosis and neurotoxicity in SH-SY5Y cells. Next, the treatment of rapamycin (RAP) significantly elevated the expression of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), sequestosome-1/p62, Beclin-1, and unc-51-like kinase-1 (ULK1) in SH-SY5Y cells. RAP-induced activation of autophagy notably alleviated the Aβ1-42-induced impairment of redox balance by decreasing the levels of pro-oxidants such as reactive oxygen species, lipid peroxidation and Ca2+ influx, and concurrently increasing the levels of antioxidant enzymes such as superoxide dismutase and catalase. The RAP-induced autophagy also ameliorated Aβ1-42-induced loss of mitochondrial membrane potential and apoptosis. Additionally, the activated autophagy provided significant neuroprotection against Aβ1-42-induced neurotoxicity by elevating the expression of neuronal markers such as synapsin-I, PSD95, NCAM, and CREB. However, 3-methyladenine treatment significantly exacerbated the neurotoxic effects of Aβ1-42. Taken together, our study demonstrated that the activation of autophagy provided possible neuroprotection against Aβ-induced cytotoxicity, oxidative stress, apoptosis, and neurotoxicity in SH-SY5Y neuronal cells.
Collapse
|
203
|
Analysis of Serum Cytokines and Single-Nucleotide Polymorphisms of SOD1, SOD2, and CAT in Erysipelas Patients. J Immunol Res 2017; 2017:2157247. [PMID: 28512644 PMCID: PMC5420430 DOI: 10.1155/2017/2157247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
Increased free radical production had been documented in group A (β-hemolytic) streptococcus infection cases. Comparing 71 erysipelas patients to 55 age-matched healthy individuals, we sought for CAT, SOD1, and SOD2 single polymorphism mutation (SNPs) interactions with erysipelas' predisposition and serum cytokine levels in the acute and recovery phases of erysipelas infection. Whereas female patients had a higher predisposition to erysipelas, male patients were prone to having a facial localization of the infection. The presence of SOD1 G7958, SOD2 T2734, and CAT C262 alleles was linked to erysipelas' predisposition. T and C alleles of SOD2 T2734C individually were linked to patients with bullous and erythematous erysipelas, respectively. G and A alleles of SOD1 G7958A individually were associated with lower limbs and higher body part localizations of the infection, respectively. Serum levels of IL-1β, CCL11, IL-2Rα, CXCL9, TRAIL, PDGF-BB, and CCL4 were associated with symptoms accompanying the infection, while IL-6, IL-9, IL-10, IL-13, IL-15, IL-17, G-CSF, and VEGF were associated with predisposition and recurrence of erysipelas. While variations of IL-1β, IL-7, IL-8, IL-17, CCL5, and HGF were associated with the SOD2 T2734C SNP, variations of PDFG-BB and CCL2 were associated with the CAT C262T SNP.
Collapse
|
204
|
Clementi ME, Pani G, Sampaolese B, Tringali G. Punicalagin reduces H 2O 2-induced cytotoxicity and apoptosis in PC12 cells by modulating the levels of reactive oxygen species. Nutr Neurosci 2017; 21:447-454. [PMID: 28393656 DOI: 10.1080/1028415x.2017.1306935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
BACKGROUND Oxidative stress has long been linked to neuronal cell death in many neurodegenerative diseases. Antioxidant conventional supplements are poorly effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Hence the use of molecules extracted from plants and fruits such as phenolics, flavonoids, and terpenoids compounds constitute a new wave of antioxidant therapies to defend against free radicals. OBJECTIVE In this study we examined the effects of punicalagin, a ellagitannin isolated from the pomegranate juice, on a rat adrenal pheochromocytoma cell line, treated with hydrogen peroxide, evaluating the viability, oxidation potential, mitochondrial function, and eventual apoptosis. METHODS This study was performed on PC12 cells pretreated with punicalagin (0.5, 1, 5, 10 e 20 µM) 24 hours before of the damage by hydrogen peroxide (H2O2). H2O2 concentration (300 µM) used in our study was determined by preliminary experiments of time course. The cell viability and ROS production were evaluated by MTS assay and cytofluorometry assays, respectively. Subsequently, the number of apoptotic-positive cells and mitochondrial transmembrane potential, were measured by flow cytometry, in the same experimental paradigm. Finally, the expression of Bax and enzymatic activity of Caspase 3, some of the principle actors of programmed cell death, were investigated by semiquantitative PCR and utilizing a colorimetric assay kit, respectively. RESULTS We found that pretreatment with punicalagin protected the cells from H2O2-induced damage. In particular, the protective effect seemed to be correlated with a control both in radical oxygen species production and in mitochondrial functions. In fact the cells treated with H2O2 showed an altered mitochondrial membrane integrity while the pretreatment with punicalagin retained both the cellular viability and the mitochondrial membrane potential similar to the control. Furthermore, the punicalagin, modulated the apoptotic cascade triggered reducing Bax gene expression and Caspase 3 activity. DISCUSSION Results of the present study demonstrated a neuroprotective effect of punicalagin on H2O2-induced PC12 cell death, including mitochondria damage and expression of apoptotic gene Bax; therefore we hypothesize a possible prevent role for this molecule in neurodegenerative diseases related to oxidative stress.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- a CNR-ICRM Istituto di"Chimica del Riconoscimento Molecolare", c/o Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giovambattista Pani
- b Istituto di Patologia Generale , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Beatrice Sampaolese
- a CNR-ICRM Istituto di"Chimica del Riconoscimento Molecolare", c/o Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giuseppe Tringali
- c Istituto di Farmacologia , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
205
|
Yui K, Tanuma N, Yamada H, Kawasaki Y. Decreased total antioxidant capacity has a larger effect size than increased oxidant levels in urine in individuals with autism spectrum disorder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9635-9644. [PMID: 28247276 DOI: 10.1007/s11356-017-8595-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Oxidant/antioxidant imbalance may contribute to the pathophysiology of autism spectrum disorder (ASD). We assayed urinary levels of oxidative stress related biomarkers, hexanoyl-lysine (HEL), total antioxidant capacity (TAOC), the DNA methylation biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG), and plasma levels of superoxide dismutase (SOD), which is major antioxidant enzyme. We examined the relationship between these four biomarkers and social responsiveness in 20 individuals with ASD and in 11 healthy controls. The sex (ASD group, 7/13 vs. control group, 4/7) and age distributions (ASD group, 10.7 ± 5.0 years vs. control group, 14.7 ± 6.3 years) were not significantly different between the groups. Social responsiveness was assessed using the social responsiveness scale (SRS). We used standardized regression coefficients to measure the effect size. The ASD group exhibited significantly lower urinary TAOC levels and significantly elevated urinary HEL levels than the control group. Urinary 8-OHdG levels and plasma SOD levels were not significantly different between the groups. The ASD group showed significantly higher SRS scores than the control group. Plasma SOD levels correlated significantly with urinary TAOC levels. Standardized regression coefficients revealed that TAOC levels had a larger effect size than HEL levels in urine. This study firstly reveals that an imbalance between urinary HEL and TAOC levels in favor of urinary TAOC levels may contribute to impaired social responsiveness in individuals with ASD. Plasma SOD levels may also affect urinary TAOC levels.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Nasoyuki Tanuma
- Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center for the Disabled, Tokyo, 183-8553, Japan
| | - Hiroshi Yamada
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yohei Kawasaki
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Science, University of Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
206
|
Resveratrol and Brain Mitochondria: a Review. Mol Neurobiol 2017; 55:2085-2101. [DOI: 10.1007/s12035-017-0448-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/24/2022]
|
207
|
Forred BJ, Daugaard DR, Titus BK, Wood RR, Floen MJ, Booze ML, Vitiello PF. Detoxification of Mitochondrial Oxidants and Apoptotic Signaling Are Facilitated by Thioredoxin-2 and Peroxiredoxin-3 during Hyperoxic Injury. PLoS One 2017; 12:e0168777. [PMID: 28045936 PMCID: PMC5207683 DOI: 10.1371/journal.pone.0168777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
Mitochondria play a fundamental role in the regulation of cell death during accumulation of oxidants. High concentrations of atmospheric oxygen (hyperoxia), used clinically to treat tissue hypoxia in premature newborns, is known to elicit oxidative stress and mitochondrial injury to pulmonary epithelial cells. A consequence of oxidative stress in mitochondria is the accumulation of peroxides which are detoxified by the dedicated mitochondrial thioredoxin system. This system is comprised of the oxidoreductase activities of peroxiredoxin-3 (Prx3), thioredoxin-2 (Trx2), and thioredoxin reductase-2 (TrxR2). The goal of this study was to understand the role of the mitochondrial thioredoxin system and mitochondrial injuries during hyperoxic exposure. Flow analysis of the redox-sensitive, mitochondrial-specific fluorophore, MitoSOX, indicated increased levels of mitochondrial oxidant formation in human adenocarcinoma cells cultured in 95% oxygen. Increased expression of Trx2 and TrxR2 in response to hyperoxia were not attributable to changes in mitochondrial mass, suggesting that hyperoxic upregulation of mitochondrial thioredoxins prevents accumulation of oxidized Prx3. Mitochondrial oxidoreductase activities were modulated through pharmacological inhibition of TrxR2 with auranofin and genetically through shRNA knockdown of Trx2 and Prx3. Diminished Trx2 and Prx3 expression was associated with accumulation of mitochondrial superoxide; however, only shRNA knockdown of Trx2 increased susceptibility to hyperoxic cell death and increased phosphorylation of apoptosis signal-regulating kinase-1 (ASK1). In conclusion, the mitochondrial thioredoxin system regulates hyperoxic-mediated death of pulmonary epithelial cells through detoxification of oxidants and regulation of redox-dependent apoptotic signaling.
Collapse
Affiliation(s)
- Benjamin J. Forred
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Darwin R. Daugaard
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Brianna K. Titus
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Ryan R. Wood
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Miranda J. Floen
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Michelle L. Booze
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Peter F. Vitiello
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
208
|
Matsuho M, Kubota R, Asayama S, Kawakami H. Lactoferrin-modified nanoparticles loaded with potent antioxidant Mn-porphyrins exhibit enhanced antioxidative activity in vitro intranasal brain delivery model. J Mater Chem B 2017; 5:1765-1771. [DOI: 10.1039/c6tb02599d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, for efficient intranasal brain delivery, we have prepared lactoferrin (Lf)-modified nanoparticles loaded with an amphiphilic Mn-porphyrin derivative, MndMImP3P (MnP) (Lf-NP-MnP).
Collapse
Affiliation(s)
- Motoyuki Matsuho
- Department of Applied Chemistry
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Riku Kubota
- Department of Applied Chemistry
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
209
|
Decreased Integrity, Content, and Increased Transcript Level of Mitochondrial DNA Are Associated with Keratoconus. PLoS One 2016; 11:e0165580. [PMID: 27783701 PMCID: PMC5081165 DOI: 10.1371/journal.pone.0165580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/16/2016] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription. One-hundred ninety-eight KC corneas and 106 normal corneas from Chinese patients were studied. Quantitative real-time PCR was used to measure the relative mtDNA content, transcript levels of mtDNA and related genes. Long-extension PCR was used to detect mtDNA damage. ROS, mitochondrial membrane potential and ATP were measured by respective assay kit, and Mito-Tracker Green was used to label the mitochondria. The relative mtDNA content of KC corneas was significantly lower than that of normal corneas (P = 9.19×10−24), possibly due to decreased expression of the mitochondrial transcription factor A (TFAM) gene (P = 3.26×10−3). In contrast, the transcript levels of mtDNA genes were significantly increased in KC corneas compared with normal corneas (NADH dehydrogenase subunit 1 [ND1]: P = 1.79×10−3; cytochrome c oxidase subunit 1 [COX1]: P = 1.54×10−3; NADH dehydrogenase subunit 1, [ND6]: P = 4.62×10−3). The latter may be the result of increased expression levels of mtDNA transcription-related genes mitochondrial RNA polymerase (POLRMT) (P = 2.55×10−4) and transcription factor B2 mitochondrial (TFB2M) (P = 7.88×10−5). KC corneas also had increased mtDNA damage (P = 3.63×10−10), higher ROS levels, and lower mitochondrial membrane potential and ATP levels compared with normal corneas. Decreased integrity, content and increased transcript level of mtDNA are associated with KC. These changes may affect the generation of ROS and play a role in the pathogenesis of KC.
Collapse
|
210
|
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 2016; 147:1-19. [PMID: 27769868 DOI: 10.1016/j.pneurobio.2016.07.005] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
Oxidative stress reflects an imbalance between the overproduction and incorporation of free radicals and the dynamic ability of a biosystem to detoxify reactive intermediates. Free radicals produced by oxidative stress are one of the common features in several experimental models of diseases. Free radicals affect both the structure and function of neural cells, and contribute to a wide range of neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the precise mechanisms that result in the degeneration of neurons and the relevant pathological changes remain unclear, the crucial role of oxidative stress in the pathogenesis of neurodegenerative diseases is associated with several proteins (such as α-synuclein, DJ-1, Amyloid β and tau protein) and some signaling pathways (such as extracellular regulated protein kinases, phosphoinositide 3-kinase/Protein Kinase B pathway and extracellular signal-regulated kinases 1/2) that are tightly associated with the neural damage. In this review, we present evidence, gathered over the last decade, concerning a variety of pathogenic proteins, their important signaling pathways and pathogenic mechanisms associated with oxidative stress in Parkinson's disease and Alzheimer's disease. Proper control and regulation of these proteins' functions and the related signaling pathways may be a promising therapeutic approach to the patients. We also emphasizes antioxidative options, including some new neuroprotective agents that eliminate excess reactive oxygen species efficiently and have a certain therapeutic effect; however, controversy surrounds some of them in terms of the dose and length of therapy. These agents require further investigation by clinical application in patients suffering Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Sun
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science & Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
211
|
Liu MP, Liao M, Dai C, Chen JF, Yang CJ, Liu M, Chen ZG, Yao MC. Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Sci Rep 2016; 6:34245. [PMID: 27671231 PMCID: PMC5037464 DOI: 10.1038/srep34245] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
Sanguisorba officinalis L. radix is a widely used herb called DiYu (DY) in China and has an extensive range of bioactivities, including anti-cancer, anti-inflammatory, and anti-oxidative activities. However, there is little evidence to support its anti-cancer effects against colorectal cancer (CRC). The first-line chemotherapeutic agent 5-fluorouracil (5-FU) is used to treat CRC, but its efficiency is hampered by acquired drug resistance. This study found that a water extract of DY exerted anti-proliferative effects against two CRC cell lines (HCT-116 and RKO), and it sensitized CRC cells to 5-FU therapy by activating a reactive oxygen species (ROS)-mediated, mitochondria-caspase-dependent apoptotic pathway. Co-treatment of DY and 5-FU significantly elevated ROS levels, up-regulated Bax/Bcl-2 ratio and triggered mitochondrial dysfunction, followed by a release of cytochrome c and up-regulation of proteins such as cleaved-caspase-9/3 and cleaved-PARP. Additionally, the induction of autophagy may be involved in mediating synergism of DY in HCT-116 cells. Gallic acid (GA), catechinic acid (CA) and ellagic acid (EA) were identified as the potential chief constituents responsible for the synergistic effects of DY. In conclusion, co-treatment of DY, specifically GA, CA and EA, with 5-FU may be a potential alternative therapeutic strategy for CRC by enhancing an intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Meng-Ping Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Min Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Cong Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jie-Feng Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chun-Juan Yang
- College of Pharmacy, Harbin Medical University, Harbin 150081, P. R. China
| | - Ming Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zuan-Guang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
212
|
Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-β-Induced Oxidative Stress, Synaptic/Neurotransmission Dysfunction, and Neurodegeneration in Adult Rats. Mol Neurobiol 2016; 54:5815-5828. [DOI: 10.1007/s12035-016-0129-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
|
213
|
Circumventing the Crabtree Effect: A method to induce lactate consumption and increase oxidative phosphorylation in cell culture. Int J Biochem Cell Biol 2016; 79:128-138. [PMID: 27590850 DOI: 10.1016/j.biocel.2016.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Most cells grown in glucose-containing medium generate almost all their ATP via glycolysis despite abundant oxygen supply and functional mitochondria, a phenomenon known as the Crabtree effect. By contrast, most cells within the body rely on mitochondrial oxidative phosphorylation (OXPHOS) to generate the bulk of their energy supply. Thus, when utilising the accessibility of cell culture to elucidate fundamental elements of mitochondria in health and disease, it is advantageous to adopt culture conditions under which the cells have greater reliance upon OXPHOS for the supply of their energy needs. Substituting galactose for glucose in the culture medium can provide these conditions, but additional benefit can be gained from alternate in vitro models. Herein we describe culture conditions in which complete autonomous depletion of medium glucose induces a lactate-consuming phase marked by increased MitoTracker Deep Red staining intensity, increased expression of Kreb's cycle proteins, increased expression of electron transport chain subunits, and increased sensitivity to the OXPHOS inhibitor rotenone. We propose these culture conditions represent an alternate accessible model for the in vitro study of cellular processes and diseases involving the mitochondrion without limitations incurred via the Crabtree effect.
Collapse
|
214
|
Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging 2016; 48:34-47. [PMID: 27639119 DOI: 10.1016/j.neurobiolaging.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Md Mahdi Hasan-Olive
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Christine E Regnell
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liv Kleppa
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Albert Gjedde
- Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
215
|
Rahim RS, Chen M, Nourse CC, Meedeniya ACB, Crane DI. Mitochondrial changes and oxidative stress in a mouse model of Zellweger syndrome neuropathogenesis. Neuroscience 2016; 334:201-213. [PMID: 27514574 DOI: 10.1016/j.neuroscience.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
Zellweger syndrome (ZS) is a peroxisome biogenesis disorder that involves significant neuropathology, the molecular basis of which is still poorly understood. Using a mouse model of ZS with brain-restricted deficiency of the peroxisome biogenesis protein PEX13, we demonstrated an expanded and morphologically modified brain mitochondrial population. Cultured fibroblasts from PEX13-deficient mouse embryo displayed similar changes, as well as increased levels of mitochondrial superoxide and membrane depolarization; this phenotype was rescued by antioxidant treatment. Significant oxidative damage to neurons in brain was indicated by products of lipid and DNA oxidation. Similar overall changes were observed for glial cells. In toto, these findings suggest that mitochondrial oxidative stress and aberrant mitochondrial dynamics are associated with the neuropathology arising from PEX13 deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Mo Chen
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - C Cathrin Nourse
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Adrian C B Meedeniya
- Griffith Health Institute, School of Medical Science, Griffith University, Qld, Australia
| | - Denis I Crane
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia.
| |
Collapse
|
216
|
Suzuki K, Yamaguchi A, Yamanaka S, Kanzaki S, Kawashima M, Togo T, Katsuse O, Koumitsu N, Aoki N, Iseki E, Kosaka K, Yamaguchi K, Hashimoto M, Aoki I, Hirayasu Y. Accumulated α-synuclein affects the progression of GM2 gangliosidoses. Exp Neurol 2016; 284:38-49. [PMID: 27453479 DOI: 10.1016/j.expneurol.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
The accumulation of α-synuclein (ASyn) has been observed in several lysosomal storage diseases (LSDs) but it remains unclear if ASyn accumulation contributes to LSD pathology. ASyn also accumulates in the neurons of Sandhoff disease (SD) patients and SD model mice (Hexb-/- ASyn+/+ mice). SD is a lysosomal storage disorder caused by the absence of a functional β-subunit on the β-hexosaminidase A and B enzymes, which leads to the accumulation of ganglioside in the central nervous system. Here, we explored the role of accumulated ASyn in the progression of Hexb-/- mice by creating a Hexb-/- ASyn-/- double-knockout mice. Our results show that Hexb-/- ASyn-/- mice demonstrated active microglia levels and less dopaminergic neuron loss, without altering the neuronal storage of ganglioside. The autophagy and ubiquitin proteasome pathways are defective in the neurons of Hexb-/- ASyn+/+ mice. In ultrastructural physiological studies, the mitochondria structures look degenerated and dysfunctional. As a result, expression of manganese superoxide dismutase 2 are reduced, and reactive oxygen species-mediated oxidative damage in the neurons of Hexb-/- ASyn+/+ mice. Interestingly, these dysfunctions improved in Hexb-/- ASyn-/- mice. But any clinical improvement were hardly observed in Hexb-/- ASyn-/- mice. Taken together, these findings suggest that ASyn accumulation plays an important role in the pathogenesis of neuropathy in SD and other LSDs, and is therefore a target for novel therapies.
Collapse
Affiliation(s)
- Kyoko Suzuki
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| | - Akira Yamaguchi
- Department of Pathology, Yokohama City University School of Medicine, Japan.
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University School of Medicine, Japan
| | - Seiichi Kanzaki
- Department of Pathology, Yokohama City University School of Medicine, Japan
| | - Masato Kawashima
- Department of Pathology, Yokohama City University School of Medicine, Japan
| | - Takashi Togo
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| | - Omi Katsuse
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| | - Noriko Koumitsu
- Department of Dermatology, Yokohama City University School of Medicine, Japan
| | - Naoya Aoki
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| | - Eizo Iseki
- Department of Psychiatry, Juntendo University School of Medicine, Japan
| | - Kenji Kosaka
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| | - Kayoko Yamaguchi
- Department of Pathology, Yokohama City University School of Medicine, Japan
| | | | - Ichiro Aoki
- Department of Pathology, Yokohama City University School of Medicine, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Yokohama City University School of Medicine, Japan
| |
Collapse
|
217
|
Zhong J, Xu C, Gabbay-Benziv R, Lin X, Yang P. Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy. Free Radic Biol Med 2016; 96:234-44. [PMID: 27130031 PMCID: PMC4912469 DOI: 10.1016/j.freeradbiomed.2016.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Pregestational diabetes disrupts neurulation leading to neural tube defects (NTDs). Oxidative stress resulting from reactive oxygen species (ROS) plays a central role in the induction of NTD formation in diabetic pregnancies. We aimed to determine whether mitochondrial dysfunction increases ROS production leading to oxidative stress and diabetic embryopathy. Overexpression of the mitochondrion-specific antioxidant enzyme superoxide dismutase 2 (SOD2) in a transgenic (Tg) mouse model significantly reduced maternal diabetes-induced NTDs. SOD2 overexpression abrogated maternal diabetes-induced mitochondrial dysfunction by inhibiting mitochondrial translocation of the pro-apoptotic Bcl-2 family members, reducing the number of defective mitochondria in neuroepithelial cells, and decreasing mitochondrial membrane potential. Furthermore, SOD2 overexpression blocked maternal diabetes-increased ROS production by diminishing dihydroethidium staining signals in the developing neuroepithelium, and reducing the levels of nitrotyrosine-modified proteins and lipid hydroperoxide level in neurulation stage embryos. SOD2 overexpression also abolished maternal diabetes-induced endoplasmic reticulum stress. Finally, caspase-dependent neuroepithelial cell apoptosis enhanced by oxidative stress was significantly reduced by SOD2 overexpression. Thus, our findings support the hypothesis that mitochondrial dysfunction in the developing neuroepithelium enhances ROS production, which leads to oxidative stress and endoplasmic reticulum (ER) stress. SOD2 overexpression blocks maternal diabetes-induced oxidative stress and ER stress, and reduces the incidence of NTDs in embryos exposed to maternal diabetes.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Xue Lin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
218
|
Koleck TA, Bender CM, Sereika SM, Brufsky AM, Lembersky BC, McAuliffe PF, Puhalla SL, Rastogi P, Conley YP. Polymorphisms in DNA repair and oxidative stress genes associated with pre-treatment cognitive function in breast cancer survivors: an exploratory study. SPRINGERPLUS 2016; 5:422. [PMID: 27099827 PMCID: PMC4826652 DOI: 10.1186/s40064-016-2061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this exploratory candidate gene association study was to examine relationships between polymorphisms in oxidative stress and DNA repair genes and pre-adjuvant therapy cognitive function (CF) in postmenopausal women diagnosed with early stage-breast cancer. METHODS Using a neuropsychological test battery, CF was assessed in 138 women diagnosed with breast cancer prior to initiation of adjuvant therapy and 81 age- and education-matched controls and summarized across eight composites. Participants were genotyped for 39 functional or tagging single nucleotide polymorphisms (SNPs) of select oxidative stress (CAT, GPX1, SEPP1, SOD1, and SOD2) and DNA repair (ERCC2, ERCC3, ERCC5, and PARP1) genes. Multiple linear regression was used to determine if the presence or absence of one or more minor alleles account for variability in CF composite scores. Based on regression findings from the analysis of individual SNPs, weighted multi-gene, multi-polymorphism genetic risk scores (GRSs) were calculated to evaluate the collective effect of possession of multiple protective and/or risk alleles. RESULTS Each CF composite was significantly (p < 0.05) associated with one or more oxidative stress and DNA repair gene polymorphisms evaluated either by SNP main effects and/or SNP-by-prescribed breast cancer treatment group interactions. Each computed GRS was found to be significantly (p < 0.001) related to its corresponding CF composite. All associations were positive suggesting that as overall genetic protection increases, CF composite score increases (indicating better performance). CONCLUSIONS These findings suggest that genetic variation in the oxidative stress and DNA repair pathways may play an important role in pre-adjuvant therapy CF in breast cancer survivors.
Collapse
Affiliation(s)
- Theresa A Koleck
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA 15261 USA
| | - Catherine M Bender
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA 15261 USA
| | - Susan M Sereika
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA 15261 USA ; Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA ; Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Adam M Brufsky
- Division of Hematology/Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 300 Halket Street, Pittsburgh, PA 15213 USA ; University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232 USA ; School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Barry C Lembersky
- Division of Hematology/Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 300 Halket Street, Pittsburgh, PA 15213 USA ; University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232 USA
| | - Priscilla F McAuliffe
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232 USA ; School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA ; Division of Breast Surgical Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 300 Halket Street, Pittsburgh, PA 15213 USA
| | - Shannon L Puhalla
- Division of Hematology/Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 300 Halket Street, Pittsburgh, PA 15213 USA ; School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Priya Rastogi
- Division of Hematology/Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 300 Halket Street, Pittsburgh, PA 15213 USA ; School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA 15261 USA ; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
219
|
Minjarez B, Calderón-González KG, Rustarazo MLV, Herrera-Aguirre ME, Labra-Barrios ML, Rincon-Limas DE, Del Pino MMS, Mena R, Luna-Arias JP. Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics 2016; 139:103-21. [PMID: 27012543 DOI: 10.1016/j.jprot.2016.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Alzheimer's disease is one of the leading causes of dementia in the elderly. It is considered the result of complex events involving both genetic and environmental factors. To gain further insights into this complexity, we quantitatively analyzed the proteome of cortex region of brains from patients diagnosed with Alzheimer's disease, using a bottom-up proteomics approach. We identified 721 isobaric-tagged polypeptides. From this universe, 61 were found overexpressed and 69 subexpressed in three brains with Alzheimer's disease in comparison to a normal brain. We determined that the most affected processes involving the overexpressed polypeptides corresponded to ROS and stress responses. For the subexpressed polypeptides, the main processes affected were oxidative phosphorylation, organellar acidification and cytoskeleton. We used Drosophila to validate some of the hits, particularly those non-previously described as connected with the disease, such as Sideroflexin and Phosphoglucomutase-1. We manipulated their homolog genes in Drosophila models of Aβ- and Tau-induced pathology. We found proteins that can either modify Aβ toxicity, Tau toxicity or both, suggesting specific interactions with different pathways. This approach illustrates the potential of Drosophila to validate hits after MS studies and suggest that model organisms should be included in the pipeline to identify relevant targets for Alzheimer's disease. BIOLOGICAL SIGNIFICANCE We report a set of differentially expressed proteins in three Alzheimer's disease brains in comparison to a normal brain. Our analyses allowed us to identify that the main affected pathways were ROS and stress responses, oxidative phosphorylation, organellar acidification and cytoskeleton. We validated some identified proteins using genetic models of Amyloid-β and Tau-induced pathology in Drosophila melanogaster. With this approach, Sideroflexin and Phosphoglucomutase-1 were identified as novel proteins connected with Alzheimer's disease.
Collapse
Affiliation(s)
- Benito Minjarez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Karla Grisel Calderón-González
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Ma Luz Valero Rustarazo
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Manuel M Sánchez Del Pino
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - Raul Mena
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
220
|
Menon AV, Chang J, Kim J. Mechanisms of divalent metal toxicity in affective disorders. Toxicology 2015; 339:58-72. [PMID: 26551072 DOI: 10.1016/j.tox.2015.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders.
Collapse
Affiliation(s)
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
221
|
Wolff NA, Garrick LM, Zhao L, Garrick MD, Thévenod F. Mitochondria represent another locale for the divalent metal transporter 1 (DMT1). Channels (Austin) 2015; 8:458-66. [PMID: 25483589 DOI: 10.4161/19336950.2014.956564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron's damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.
Collapse
Key Words
- AIF, apoptosis-inducing factor
- BSA, bovine serum albumin
- CHO, Chinese hamster ovary
- COXII, cytochrome C oxidase subunit II
- DMT1, divalent metal transporter 1
- HEK293, human embryonic kidney cells
- IRE, iron responsive element
- Lamp1, lysosome-associated membrane protein 1
- MRB, Mitochondrial Resuspending Buffer
- OMM, outer mitochondrial membrane
- PBS, phosphate-buffered saline
- Tf, transferrin
- Tom6/Tom20, translocase of the outer mitochondrial membrane 6 kDa subunit homolog/20 kDa subunit, respectively
- VDAC1, voltage-dependent anion-selective channel protein 1
- divalent metal transporter 1 (DMT1)
- flow cytometry
- immunofluorescence microscopy
- iron transport
- mitochondrial outer membrane
Collapse
Affiliation(s)
- Natascha A Wolff
- a Institute of Physiology; Pathophysiology & Toxicology ; University of Witten/Herdecke ; Witten , Germany
| | | | | | | | | |
Collapse
|
222
|
Mitter SK, Song C, Qi X, Mao H, Rao H, Akin D, Lewin A, Grant M, Dunn W, Ding J, Bowes Rickman C, Boulton M. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 2015; 10:1989-2005. [PMID: 25484094 DOI: 10.4161/auto.36184] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ACTB, β-actin
- AMD, age-related macular degeneration
- APOE4, apolipoprotein E4
- FACS, fluorescence-activated cell sorting
- FBS, fetal bovine serum
- GFP, green fluorescent protein
- GSH, glutathione, reduced
- GSSG, glutathione, oxidized
- H2O2, hydrogen peroxide
- HFC, high fat, cholesterol-enriched diet
- LC3, microtubule-associated protein 1 light chain 3
- MMP, mitochondrial membrane potential
- MTT, 3-(4 5-dimethylthiazol-3-yl)-2, 5-diphenyl tetrazolium bromide
- ND, normal (rodent) diet
- POS, photoreceptor outer segments
- ROS, reactive oxygen species
- RPE
- RPE, retinal pigmented epithelium
- SOD2/MnSOD, superoxide dismutase 2, mitochondrial
- UPS, ubiquitin-proteasome system
- age-related macular degeneration
- aging
- autophagy
- oxidative stress
Collapse
Affiliation(s)
- Sayak K Mitter
- a Department of Ophthalmology ; Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Gonneaud A, Turgeon N, Boisvert FM, Boudreau F, Asselin C. Loss of histone deacetylase Hdac1 disrupts metabolic processes in intestinal epithelial cells. FEBS Lett 2015; 589:2776-83. [PMID: 26297832 DOI: 10.1016/j.febslet.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022]
Abstract
By using acetyl-CoA as a substrate, acetyltransferases and histone deacetylases regulate protein acetylation by adding or removing an acetyl group on lysines. Nuclear-located Hdac1 is a regulator of intestinal homeostasis. We have previously shown that Hdac1 define specific intestinal epithelial cell basal and inflammatory-dependent gene expression patterns and control cell proliferation. We show here that Hdac1 depletion in cellulo leads to increased histone acetylation after metabolic stresses, and to metabolic disturbances resulting in impaired responses to oxidative stresses, AMPK kinase activation and mitochondrial biogenesis. Thus, nuclear Hdac1 may control intestinal epithelial cell metabolism by regulating the supply of acetyl groups.
Collapse
Affiliation(s)
- Alexis Gonneaud
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Naomie Turgeon
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François-Michel Boisvert
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - François Boudreau
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Claude Asselin
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.
| |
Collapse
|
224
|
Barone E, Cenini G, Di Domenico F, Noel T, Wang C, Perluigi M, St Clair DK, Butterfield DA. Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53. J Neurosci Res 2015; 93:1728-39. [PMID: 26251011 DOI: 10.1002/jnr.23627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022]
Abstract
Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O2- to H2O2 and molecular oxygen (O2). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2(-/+) ) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53(-/-) × SOD2(-/+) and p53(-/-) × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli,", Sapienza University of Rome, Roma, Italy.,Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Providencia, Santiago, Chile
| | - Giovanna Cenini
- Department of Chemistry, University of Kentucky, Lexington, Kentucky.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli,", Sapienza University of Rome, Roma, Italy
| | - Teresa Noel
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky.,Department of Toxicology, University of Kentucky, Lexington, Kentucky
| | - Chi Wang
- Biostatistics Core, Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli,", Sapienza University of Rome, Roma, Italy
| | - Daret K St Clair
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky.,Department of Toxicology, University of Kentucky, Lexington, Kentucky
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
225
|
Fetoni AR, Paciello F, Rolesi R, Eramo SLM, Mancuso C, Troiani D, Paludetti G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic Biol Med 2015; 85:269-81. [PMID: 25936352 DOI: 10.1016/j.freeradbiomed.2015.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Abstract
Noise-induced hearing loss depends on progressive increase of reactive oxygen species and lipoperoxidative damage in conjunction with the imbalance of antioxidant defenses. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in the regulation of cellular defenses against oxidative stress, including heme oxygenase-1 (HO-1) activation. In this work we describe a link between cochlear oxidative stress damage, induced by noise exposure, and the activation of the Nrf2/HO-1 pathway. In our model, noise induces superoxide production and overexpression of the lipid peroxidation marker 4-hydroxy-nonenals (4-HNE). To face the oxidative stress, the endogenous defense system is activated as well, as shown by the slight activation of superoxide dismutases (SODs). In addition, we observed the activation of the Nrf2/HO-1 pathway after noise exposure. Nrf2 appears to promote the maintenance of cellular homeostasis under stress conditions. However, in this model the endogenous antioxidant system fails to counteract noise-induced cell damage and its activation is not effective enough in preventing cochlear damage. The herb-derived phenol rosmarinic acid (RA) attenuates noise-induced hearing loss, reducing threshold shift, and promotes hair cell survival. In fact, RA enhances the endogenous antioxidant defenses, as shown by decreased superoxide production, reduced expression of 4-HNE, and up-regulation of SODs. Interestingly, RA potentiates the Nrf2/HO-1 signaling pathway, as shown by immunohistochemical and Western blot analyses. Thus, protective effects of RA are associated with the induction/activation of the Nrf2-ARE signaling pathway in addition to RA direct scavenging capability.
Collapse
Affiliation(s)
- A R Fetoni
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - F Paciello
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - R Rolesi
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - S L M Eramo
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - C Mancuso
- Institute of Pharmacology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - D Troiani
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
226
|
Jankovic A, Korac A, Buzadzic B, Otasevic V, Stancic A, Daiber A, Korac B. Redox implications in adipose tissue (dys)function--A new look at old acquaintances. Redox Biol 2015; 6:19-32. [PMID: 26177468 PMCID: PMC4511633 DOI: 10.1016/j.redox.2015.06.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. Adipose tissue (AT) buffers nutrient excess determining overall metabolic health. Redox insight in lipid storage and adipogenesis of AT is reviewed. Redox modulation of AT as therapeutic target in obesity/syndrome X is considered.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Biljana Buzadzic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Otasevic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Andreas Daiber
- 2nd Medical Department, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Bato Korac
- University of Belgrade, Department of Physiology, Institute for Biological Research "Sinisa Stankovic", Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
227
|
The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:352723. [PMID: 26171115 PMCID: PMC4485995 DOI: 10.1155/2015/352723] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid-beta (Aβ)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Aβ plaques. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau hyperphosphorylation. Several studies have shown that the autophagic pathway in neurons is important under physiological and pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the relationship between oxidative stress, tau protein hyperphosphorylation, autophagy dysregulation, and neuronal cell death in AD remains unclear. Here, we review the latest progress in AD, with a special emphasis on oxidative stress, tau hyperphosphorylation, and autophagy. We also discuss the relationship of these three factors in AD.
Collapse
|
228
|
Pfister JA, D'Mello SR. Insights into the regulation of neuronal viability by nucleophosmin/B23. Exp Biol Med (Maywood) 2015; 240:774-86. [PMID: 25908633 DOI: 10.1177/1535370215579168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The vastness of the neuronal network that constitutes the human brain proves challenging when trying to understand its complexity. Furthermore, due to the senescent state they enter into upon maturation, neurons lack the ability to regenerate in the face of insult, injury or death. Consequently, their excessive death can be detrimental to the proper functioning of the brain. Therefore, elucidating the mechanisms regulating neuronal survival is, while challenging, of great importance as the incidence of neurological disease is becoming more prevalent in today's society. Nucleophosmin/B23 (NPM) is an abundant and ubiquitously expressed protein that regulates vital cellular processes such as ribosome biogenesis, cell proliferation and genomic stability. As a result, it is necessary for proper embryonic development, but has also been implicated in many cancers. While highly studied in the context of proliferative cells, there is a lack of understanding NPM's role in post-mitotic neurons. By exploring its role in healthy neurons as well as its function in the regulation of cell death and neurodegeneration, there can be a better understanding of how these diseases initiate and progress. Owing to what is thus far known about its function in the cell, NPM could be an attractive therapeutic target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason A Pfister
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
229
|
Oxidative Stress during the Progression of β-Amyloid Pathology in the Neocortex of the Tg2576 Mouse Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:967203. [PMID: 25973140 PMCID: PMC4418010 DOI: 10.1155/2015/967203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/05/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by β-amyloid (Aβ) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aβ pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aβ peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aβ accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aβ oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes.
Collapse
|
230
|
Rauniyar N, Subramanian K, Lavallée-Adam M, Martínez-Bartolomé S, Balch WE, Yates JR. Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann-Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis. Mol Cell Proteomics 2015; 14:1734-49. [PMID: 25873482 DOI: 10.1074/mcp.m114.045609] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼ 15-20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1(I1061T) primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1(I1061T) cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1(I1061T) fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions.
Collapse
Affiliation(s)
| | - Kanagaraj Subramanian
- §Department of Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California-92037
| | | | | | - William E Balch
- §Department of Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California-92037.
| | | |
Collapse
|
231
|
Squadrone S, Brizio P, Mancini C, Pozzi E, Cavalieri S, Abete MC, Brusco A. Blood metal levels and related antioxidant enzyme activities in patients with ataxia telangiectasia. Neurobiol Dis 2015; 81:162-7. [PMID: 25882094 DOI: 10.1016/j.nbd.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022] Open
Abstract
Transition metals are cofactors for a wide range of vital enzymes and are directly or indirectly involved in the response against reactive oxygen species (ROS), which can damage cellular components. Their altered homeostasis has been studied in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), but no data are available on rarer conditions. We aimed at studying the role of essential trace elements in ataxia telangiectasia (A-T), a rare form of pediatric autosomal recessive cerebellar ataxia with altered antioxidant response. We found an increased level of copper (Cu, p=0.0002) and a reduced level of zinc (Zn, p=0.0002) in the blood of patients (n. 16) compared to controls, using inductively coupled plasma mass spectrometry (ICP-MS). Other trace elements involved in the oxidative stress response, such as manganese (Mn) and selenium (Se), were unaltered. Cu/Zn-dependent superoxide dismutase (SOD1) was shown to have a 30% reduction in gene expression and 40% reduction in enzyme activity upon analysis of lymphoblastoid cell lines of patients (Student's t-test, p=0.0075). We also found a 30% reduction of Mn-SOD (SOD2; Student's t-test, p=0.02), probably due to a feedback regulatory loop between the two enzymes. The expression of antioxidant enzymes, such as erythrocyte glutathione peroxidase (GPX1), and SOD2 was unaltered, whereas catalase (CAT) was increased in A-T cells, both at the mRNA level and in terms of enzyme activity (~25%). Enhanced CAT expression can be attributed to the high ROS status, which induces CAT transcription. These results suggest that alterations in essential trace elements and their related enzymes may play a role in the pathogenesis of A-T, although we cannot conclude if altered homeostasis is a direct effect of A-T mutated genes (ATM). Altered homeostasis of trace elements may be more prevalent in neurodegenerative diseases than previously thought, and it may represent both a biomarker and a generic therapeutic target for different disorders with the common theme of altered antioxidant enzyme responses associated with an unbalance of metals.
Collapse
Affiliation(s)
- Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy.
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino 10126, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino 10126, Italy
| |
Collapse
|
232
|
Sanchez D, Bajo-Grañeras R, Del Caño-Espinel M, Garcia-Centeno R, Garcia-Mateo N, Pascua-Maestro R, Ganfornina MD. Aging without Apolipoprotein D: Molecular and cellular modifications in the hippocampus and cortex. Exp Gerontol 2015; 67:19-47. [PMID: 25868396 DOI: 10.1016/j.exger.2015.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023]
Abstract
A detailed knowledge of the mechanisms underlying brain aging is fundamental to understand its functional decline and the baseline upon which brain pathologies superimpose. Endogenous protective mechanisms must contribute to the adaptability and plasticity still present in the healthy aged brain. Apolipoprotein D (ApoD) is one of the few genes with a consistent and evolutionarily conserved up-regulation in the aged brain. ApoD protecting roles upon stress or injury are well known, but a study of the effects of ApoD expression in the normal aging process is still missing. Using an ApoD-knockout mouse we analyze the effects of ApoD on factors contributing to the functional maintenance of the aged brain. We focused our cellular and molecular analyses in the cortex and hippocampus at an age representing the onset of senescence where mortality risks are below 25%, avoiding bias towards long-lived animals. Lack of ApoD causes a prematurely aged brain without altering lifespan. Age-dependent hyperkinesia and memory deficits are accompanied by differential molecular effects in the cortex and hippocampus. Transcriptome analyses reveal distinct effects of ApoD loss on the molecular age-dependent patterns of the cortex and hippocampus, with different cell-type contributions to age-regulated gene expression. Markers of glial reactivity, proteostasis, and oxidative and inflammatory damage reveal early signs of aging and enhanced brain deterioration in the ApoD-knockout brain. The lack of ApoD results in an age-enhanced significant reduction in neuronal calcium-dependent functionality markers and signs of early reduction of neuronal numbers in the cortex, thus impinging upon parameters clearly differentiating neurodegenerative conditions from healthy brain aging. Our data support the hypothesis that the physiological increased brain expression of ApoD represents a homeostatic anti-aging mechanism.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Raquel Bajo-Grañeras
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Manuela Del Caño-Espinel
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Rosa Garcia-Centeno
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Nadia Garcia-Mateo
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain.
| |
Collapse
|
233
|
Thiopurines induce oxidative stress in T-lymphocytes: a proteomic approach. Mediators Inflamm 2015; 2015:434825. [PMID: 25873760 PMCID: PMC4385670 DOI: 10.1155/2015/434825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023] Open
Abstract
Thiopurines are extensively used immunosuppressants for the treatment of inflammatory bowel disease (IBD). The polymorphism of thiopurine S-methyltransferase (TPMT) influences thiopurine metabolism and therapy outcome. We used a TPMT knockdown (kd) model of human Jurkat T-lymphocytes cells to study the effects of treatment with 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) on proteome and phosphoproteome. We identified thirteen proteins with altered expression and nine proteins with altered phosphorylation signals. Three proteins (THIO, TXD17, and GSTM3) with putative functions in cellular oxidative stress responses were altered by 6-TG treatment and another protein PRDX3 was differentially phosphorylated in TPMT kd cells. Furthermore, reactive oxygen species (ROS) assay results were consistent with a significant induction of oxidative stress by both TPMT knockdown and thiopurine treatments. Immunoblot analyses showed treatment altered expression of key antioxidant enzymes (i.e., SOD2 and catalase) in both wt and kd groups, while SOD1 was downregulated by 6-TG treatment and TPMT knockdown. Collectively, increased oxidative stress might be a mechanism involved in thiopurine induced cytotoxicity and adverse effects (i.e., hepatotoxicity) and an antioxidant cotherapy might help to combat this. Results highlight the significance of oxidative stress in thiopurines' actions and could have important implications for the treatment of IBD patients.
Collapse
|
234
|
The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos. Differentiation 2015; 89:51-69. [PMID: 25771346 DOI: 10.1016/j.diff.2015.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 12/18/2022]
Abstract
The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease.
Collapse
|
235
|
Potential therapeutic role of L-carnitine in skeletal muscle oxidative stress and atrophy conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:646171. [PMID: 25838869 PMCID: PMC4369953 DOI: 10.1155/2015/646171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/23/2015] [Indexed: 12/03/2022]
Abstract
The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrial β-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhance β-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. This in vitro study aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging.
Collapse
|
236
|
Inconsistency between manganese superoxide dismutase expression and its activity involved in the degeneration of recognition function induced by chronic aluminum overloading in mice. Hum Exp Toxicol 2015; 35:63-8. [DOI: 10.1177/0960327115577522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese (Mn) superoxide dismutase (SOD) is mainly located in mitochondrial matrix and is responsible for scavenging about 80% free radicals from oxidative and phospharylative process in mitochondria. It was reported that the insufficiency of Mn SOD expression or activity was connected to the development of neurodegenerative diseases. In this article, we investigated the time course related to the changes of Mn SOD expression and its activity from mouse brain as well as the recognition dysfunction in chronic aluminum (Al) overloading mice. Aluminum gluconate solution (equal to Al 400 mg/kg) was given to mice once a day, 6 days per week for 12 weeks via intragastric gavage. The learning and memory function, malondialdehyde (MDA) level as well as expression and activity of Mn SOD in cortex were determined. It was found that function of passive learning and memory and spatial recognition decreased, MDA level and Mn SOD expression increased during the period of chronic Al loading, but the Mn SOD activity rose from the 4th week and then decreased from the 8th week in cortex in Al overloading mice compared with the control. The results indicated that the inconsistency between Mn SOD expression and its activity might contribute to the development of recognition dysfunction induced by chronic Al overload.
Collapse
|
237
|
Liu L, Peritore C, Ginsberg J, Shih J, Arun S, Donmez G. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease. Behav Brain Res 2015; 281:215-21. [DOI: 10.1016/j.bbr.2014.12.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/04/2023]
|
238
|
Han XD, Zhou ZW, Yang W, Ye HC, Xu YZ, Huang YF, Zhang T, Zhou SF. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1063-102. [PMID: 25733819 PMCID: PMC4342182 DOI: 10.2147/dddt.s76336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of death worldwide and remains a major life-threatening factor in humans. Apoptosis has been implicated in the pathogenesis of IHD. The Chinese herbal formula Huo Luo Xiao Ling Dan (HLXLD), one of the commonly used Chinese herbal formulas, consists of Salviae miltiorrhizae, Angelica sinensis, Gummi olibanum, and Commiphora myrrha, with a wide spectrum of pharmacological activity. However, the mechanism of action and molecular targets of HLXLD in the treatment of IHD are unclear. This study aimed to computationally predict the molecular interactions between the major active components of HLXLD and key regulators of apoptosis and then examine the effect of HLXLD on coronary artery ligation-induced acute myocardial ischemia in rats. The molecular interactions between the major active components of HLXLD, including ferulic acid, ligustilide, succinic acid, vanillic acid, tanshinone IIA, tanshinone IIB, danshensu, salvianolic acid A, salvianolic acid C, protocatechuic aldehyde, and β-boswellic acid and human protein molecules including B cell lymphoma-extra large (Bcl-xl), B cell lymphoma 2 antagonist/killer 1 (Bak1), B cell lymphoma 2 (Bcl-2), procaspase 3, and caspase 9 with regard to hydrogen bond formation, charge interaction, and π-π stacking using Discovery Studio(®) program 3.1. The 12 HLXLD components were predicted by ADMET (absorption, distribution, metabolism, excretion and toxicity) Predictor to have favorable pharmacokinetic and low hepatotoxicity profiles. The acute myocardial ischemia was established by surgical ligation of the left anterior descending coronary artery. The rats were divided into a sham operative group, a model group, a positive control group treated with 0.2 mg/kg isosorbide mononitrate, and groups treated with 2.7, 5.4, or 10.8 g/kg HLXLD. The results showed that administration of HLXLD increased mean arterial pressure, left ventricular systolic pressure, heart rate, and maximal rate of rise/descent of left ventricular pressure levels. Administration of HLXLD significantly ameliorated coronary artery ligation-induced tissue damage in the left ventricle, with restored arrangement of myocardial fibers and recovered myoplasm in rats. Furthermore, HLXLD markedly increased the expression level of Bcl-2 but decreased the level of cleaved caspase 3. Taken together, administration of HLXLD attenuated acute myocardial ischemia-induced damage in cardiomyocytes and inhibited apoptotic death of cardiomyocytes, thereby exerting a cardioprotective effect in rats with IHD. These findings suggest that HLXLD may represent a promising herbal formula for the treatment of cardiovascular disease by counteracting apoptotic cell death via multiple active compounds. More studies are warranted to fully elucidate the mechanisms of action, identify the therapeutic targets, and validate the efficacy and safety of HLXLD in the treatment of IHD.
Collapse
Affiliation(s)
- Xiang-Dong Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Guizhou Medical University, Guiyang, People's Republic of China ; Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, People's Republic of China
| | - Wei Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hang-Cheng Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying-Zi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yun-Feng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
239
|
Abstract
Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.
Collapse
|
240
|
Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 2015; 88:66-72. [PMID: 25576182 DOI: 10.1016/j.neuint.2014.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
Abstract
Oxidative and nitrosative stress (ONS) contributes to the pathogenesis of most brain maladies, and the magnitude of ONS is related to the ability of cellular antioxidants to neutralize the accumulating reactive oxygen and nitrogen species (ROS/RNS). While the major ROS/RNS scavengers and regenerators of bio-oxidized molecules, superoxide dysmutases (SODs), glutathione (GSH), thioredoxin (Trx) and peroxiredoxin (Prx), are distributed in all cellular compartments. This review specifically focuses on the role of the systems operating in mitochondria. There is a growing consensus that the mitochondrial SOD isoform - SOD2 and GSH are critical for the cellular antioxidant defense. Variable changes of the expression or activities of one or more of the mitochondrial antioxidant systems have been documented in the brains derived from human patients and/or in animal models of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), cerebral ischemia, toxic brain cell damage associated with overexposure to mercury or excitotoxins, or hepatic encephalopathy. In many cases, ambiguity of the responses of the different antioxidant systems in one and the same disease needs to be more conclusively evaluated before the balance of the changes is viewed as beneficial or detrimental. Modulation of the mitochondrial antioxidant systems may in the future become a target of antioxidant therapy.
Collapse
Affiliation(s)
- Joanna Ruszkiewicz
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
241
|
SIRT3 Attenuates MPTP-Induced Nigrostriatal Degeneration Via Enhancing Mitochondrial Antioxidant Capacity. Neurochem Res 2015; 40:600-8. [DOI: 10.1007/s11064-014-1507-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/23/2022]
|
242
|
Oeckl P, Steinacker P, Feneberg E, Otto M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:757-68. [PMID: 25526887 DOI: 10.1016/j.bbapap.2014.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a spectrum of rare neurodegenerative diseases with an estimated prevalence of 15-22 cases per 100,000 persons including the behavioral variant of frontotemporal dementia (bvFTD), progressive non-fluent aphasia (PNFA), semantic dementia (SD), FTD with motor neuron disease (FTD-MND), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). The pathogenesis of the diseases is still unclear and clinical diagnosis of FTLD is hampered by overlapping symptoms within the FTLD subtypes and with other neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Intracellular protein aggregates in the brain are a major hallmark of FTLD and implicate alterations in protein metabolism or function in the disease's pathogenesis. Cerebrospinal fluid (CSF) which surrounds the brain can be used to study changes in neurodegenerative diseases and to identify disease-related mechanisms or neurochemical biomarkers for diagnosis. In the present review, we will give an overview of the current literature on proteomic studies in CSF of FTLD patients. Reports of targeted and unbiased proteomic approaches are included and the results are discussed in regard of their informative value about disease pathology and the suitability to be used as diagnostic biomarkers. Finally, we will give some future perspectives on CSF proteomics and a list of candidate biomarkers which might be interesting for validation in further studies. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Emily Feneberg
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
243
|
Sun S, Chen X, Gao Y, Liu Z, Zhai Q, Xiong L, Cai M, Wang Q. Mn-SOD Upregulation by Electroacupuncture Attenuates Ischemic Oxidative Damage via CB1R-Mediated STAT3 Phosphorylation. Mol Neurobiol 2014; 53:331-343. [DOI: 10.1007/s12035-014-8971-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 01/20/2023]
|
244
|
Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RLM, Dragunow M. A role for human brain pericytes in neuroinflammation. J Neuroinflammation 2014; 11:104. [PMID: 24920309 PMCID: PMC4105169 DOI: 10.1186/1742-2094-11-104] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/19/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue. METHODS Primary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β. RESULTS Early passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more. CONCLUSIONS Adult human brain cells are sensitive to cytokine challenge. As expected 'classical' brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
245
|
PACAP38 suppresses cortical damage in mice with traumatic brain injury by enhancing antioxidant activity. J Mol Neurosci 2014; 54:370-9. [PMID: 24907941 DOI: 10.1007/s12031-014-0309-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
The production of reactive oxygen species (ROS) and the resulting oxidative stress in mice in response to a controlled cortical impact (CCI) are typical exacerbating factors associated with traumatic brain injury (TBI). Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) is a multifunctional peptide that has been shown to exhibit neuroprotective effects in response to a diverse range of injuries to neuronal cells. We recently reported that PACAP38 might regulate oxidative stress in mice. The aim of the present study was to determine whether PACAP38 exerts neuroprotective effects by regulating oxidative stress in mice with TBI. Reactive oxidative metabolites (ROMs) and biological antioxidant potential (BAP) were measured in male C57Bl/6 mice before and 3, 4, and 24 h after CCI. PACAP38 was administered intravenously immediately following CCI, and immunostaining for the oxidative stress indicator nitrotyrosine (NT), and for neuronal death as an indicator of the area affected by TBI, was measured 24 h later. Western blot experiments to determine antioxidant activity [as indicated by superoxide dismutase-2 (SOD-2) and glutathione peroxidase 1 (GPx-1)] in the neocortical region were also performed 3 h post-CCI. Results showed that plasma BAP and ROM levels were dramatically increased 3 h after CCI. PACAP38 suppressed the extent of TBI and NT-positive regions 24 h after CCI, and increased SOD-2 and GPx-1 levels in both hemispheres. Taken together, these results suggest that increasing antioxidant might be involving in the neuroprotective effect of PACAP38 in mice subjected to a CCI.
Collapse
|
246
|
Yamato M, Ishimatsu A, Yamanaka Y, Mine T, Yamada K. Tempol intake improves inflammatory status in aged mice. J Clin Biochem Nutr 2014; 55:11-4. [PMID: 25120275 PMCID: PMC4078072 DOI: 10.3164/jcbn.14-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/20/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is associated with both healthy aging and age-related disease states. In connection with oxidative stress, immunity is also a major component as a result of the chronic, low-grade inflammation associated with the development of tissue aging. Here we show that long-term treatment with the antioxidant tempol extends life-span in mice. Tempol-treated mice exhibited a reduction in mortality at 20 months. Tempol drinking did not have any effect on body weight, amount of visceral adipose tissue, or plasma biochemical parameters in aged mice. Body temperature of aged control mice (which drank only water) was significantly lower than young mice, but this reduction of body temperature was partially restored in aged mice which drank tempol. Plasma thiobarbituric acid-reactive substances and C-reactive protein were significantly increased in the control aged mice compared with young mice, but levels of both were normalized by tempol drinking. One of the endogenous antioxidants, ascorbic acid, was significantly increased in the plasma of mice which consumed tempol. The proportion of CD4 lymphocytes in the blood of aged tempol-treated mice was partially increased in comparison to aged control mice. These results suggest that the reduction of mortality by tempol is due to amelioration of chronic inflammation and improved function of the immune system through antioxidant effects.
Collapse
Affiliation(s)
- Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayumi Ishimatsu
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuuki Yamanaka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takara Mine
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan ; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
247
|
Do metals that translocate to the brain exacerbate traumatic brain injury? Med Hypotheses 2014; 82:558-62. [DOI: 10.1016/j.mehy.2014.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/22/2014] [Accepted: 02/08/2014] [Indexed: 11/19/2022]
|
248
|
S-Nitrosylation in Alzheimer's disease. Mol Neurobiol 2014; 51:268-80. [DOI: 10.1007/s12035-014-8672-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
|
249
|
Briones TL, Darwish H. Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state. Neuroscience 2014; 262:143-55. [PMID: 24412233 PMCID: PMC4103183 DOI: 10.1016/j.neuroscience.2013.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 01/01/2023]
Abstract
In the present study we examined whether vitamin D supplementation can reduce age-related tau hyperphosphorylation and cognitive impairment by enhancing brain energy homeostasis and protein phosphatase 2A (PP2A) activity, and modulating the redox state. Male F344 rats aged 20 months (aged) and 6 months (young) were randomly assigned to either vitamin D supplementation or no supplementation (control). Rats were housed in pairs and the supplementation group (n=10 young and n=10 aged) received subcutaneous injections of vitamin D (1, α25-dihydroxyvitamin D3) for 21 days. Control animals (n=10 young and n=10 aged) received equal volume of normal saline and behavioral testing in the water maze started on day 14 after the initiation of vitamin D supplementation. Tau phosphorylation, markers of brain energy metabolism (ADP/ATP ratio and adenosine monophosphate-activated protein kinase) and redox state (levels of reactive oxygen species, activity of superoxide dismutase, and glutathione levels) as well as PP2A activity were measured in hippocampal tissues. Our results extended previous findings that: (1) tau phosphorylation significantly increased during aging; (2) markers of brain energy metabolism and redox state are significantly decreased in aging; and (3) aged rats demonstrated significant learning and memory impairment. More importantly, we found that age-related changes in brain energy metabolism, redox state, and cognitive function were attenuated by vitamin D supplementation. No significant differences were seen in tau hyperphosphorylation, markers of energy metabolism and redox state in the young animal groups. Our data suggest that vitamin D ameliorated the age-related tau hyperphosphorylation and cognitive decline by enhancing brain energy metabolism, redox state, and PP2A activity making it a potentially useful therapeutic option to alleviate the effects of aging.
Collapse
Affiliation(s)
- T L Briones
- Department of Adult Health, Wayne State University, Detroit, MI 48202, United States.
| | - H Darwish
- Hariri School of Nursing, American University of Beirut, Lebanon
| |
Collapse
|
250
|
Edhager AV, Stenbroen V, Nielsen NS, Bross P, Olsen RKJ, Gregersen N, Palmfeldt J. Proteomic investigation of cultivated fibroblasts from patients with mitochondrial short-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2014; 111:360-368. [PMID: 24485985 DOI: 10.1016/j.ymgme.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/23/2022]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a rare inherited autosomal recessive disorder with not yet well established mechanisms of disease. In the present study, the mitochondrial proteome of five symptomatic patients homozygous for missense variations in the SCAD gene ACADS was investigated in an extensive large-scale proteomic study to map protein perturbations linked to the disease. Fibroblast cultures of patient cells homozygous for either c.319C>T/p.Arg107Cys (n=2) or c.1138C>T/p.Arg380Trp (n=3) in ACADS, and healthy controls (normal human dermal fibroblasts), were studied. The mitochondrial proteome derived from these cultures was analyzed by label free proteomics using high mass accuracy nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS). More than 300 mitochondrial proteins were identified and quantified. Thirteen proteins had significant alteration in protein levels in patients carrying variation c.319C>T in ACADS compared to controls and they belonged to various pathways, such as the antioxidant system and amino acid metabolism. Twenty-two proteins were found significantly altered in patients carrying variation c.1138C>T which included proteins associated with fatty acid β-oxidation, amino acid metabolism and protein quality control system. Three proteins were found significantly regulated in both patient groups: adenylate kinase 4 (AK4), nucleoside diphosphate kinase A (NME1) and aldehyde dehydrogenase family 4 member A1 (ALDH4A1). Proteins AK4 and NME1 deserve further investigation because of their involvement in energy reprogramming, cell survival and proliferation with relevance for SCAD deficiency and related metabolic disorders.
Collapse
Affiliation(s)
- Anders V Edhager
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Vibeke Stenbroen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nadia Sukusu Nielsen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|