201
|
Deng X, Ke X, Tang Y, Luo W, Dong R, Ge D, Han L, Yang Y, Liu H, Reyila T, Liao Y. Sagittaria sagittifolia polysaccharide interferes with arachidonic acid metabolism in non-alcoholic fatty liver disease mice via Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 132:110806. [PMID: 33027743 DOI: 10.1016/j.biopha.2020.110806] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUNDS Non-alcoholic fatty liver disease (NAFLD) is currently one of the most common chronic liver diseases especially in developed countries. Modern research shows an obvious protective effect of Sagittaria sagittifolia L. (Alismataceae) on glucose and lipid metabolism disorders. Previous studies had reported that Sagittaria sagittifolia polysaccharide (SSP) has potent protective effects on drug-induced liver injury. Based on this, we speculated that Sagittaria sagittifolia polysaccharide also has protective effects on NAFLD and performed experiments to explore this more. METHODS Outstanding protective effects of SSP against NAFLD in mice was observed with Hematoxylin and Eosin (H&E) and uranium acetate-citrate stain in our prophase research. By performing bioinformatics analysis on plasma metabolic data which is obtained from ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), we found the regulatory mechanisms and key nodes behind the beneficial effect with IPA (Ingenuity Pathway Analysis) software. Immunohistochemical staining and Western blot were performed for further validation on expression variations of key proteins. RESULTS Regulatory pathways were enriched with 33 significant differential metabolites that responded to SSP treatment in plasma, and specifically, the ones related to arachidonic acid metabolism showed high participation. Moreover, the expression patterns of upstream regulators, Nrf2 and HO-1, were found to be significantly regulated upon SSP treatment. CONCLUSIONS In conclusion, our findings illustrated a novel perspective that SSP exerts preventive protection against high-fat diet-induced NAFLD by interfering with arachidonic acid metabolism via Nrf2/HO-1 signaling pathway in liver oxidative stress, providing an attractive point for the breakthrough of related natural medicine development.
Collapse
Affiliation(s)
- Xinqi Deng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiuhui Ke
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Weizao Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruijuan Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Dongyu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Li Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yajie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Hongshuang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tuerxun Reyila
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
202
|
Żychowska M, Grzybkowska A, Wiech M, Urbański R, Pilch W, Piotrowska A, Czerwińska-Ledwig O, Antosiewicz J. Exercise Training and Vitamin C Supplementation Affects Ferritin mRNA in Leukocytes without Affecting Prooxidative/Antioxidative Balance in Elderly Women. Int J Mol Sci 2020; 21:ijms21186469. [PMID: 32899447 PMCID: PMC7554744 DOI: 10.3390/ijms21186469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Physical training and antioxidant supplementation may influence iron metabolism through reduced oxidative stress and subsequent lowering of mRNA levels of genes that are easily induced by this stress, including those responsible for iron homeostasis. Fifteen elderly women participated in our 12-week experiment, involving six weeks of training without supplementation and six weeks of training supported by oral supplementation of 1000 mg of vitamin C daily. The participants were divided into two groups (n = 7 in group 1 and n = 8 in group 2). In group 1, we applied vitamin C supplementation in the first six weeks of training, while in group 2 during the remaining six weeks of training. In both phases, the health-related training occurred three times per week. Training accompanied by vitamin C supplementation did not affect prooxidative/antioxidative balance but significantly decreased ferritin heavy chain (FTH) and ferritin light chain (FTL) mRNA in leukocytes (for FTH mRNA from 2^64.24 to 2^11.06, p = 0.03 in group 1 and from 2^60.54 to 2^16.03, p = 0.01 in group 2, for FTL mRNA from 2^20.22 to 2^4.53, p = 0.01 in group 2). We concluded that vitamin C supplementation might have caused a decrease in gene expression of two important antioxidative genes (FTH, FTL) and had no effect on plasma prooxidative/antioxidative balance.
Collapse
Affiliation(s)
- Małgorzata Żychowska
- Department of Sport, Faculty of Physical Education, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
- Correspondence: (M.Ż.); (J.A.); Tel.: +48-881-555-337 (M.Ż. & J.A.)
| | - Agata Grzybkowska
- Department of Biochemistry, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Monika Wiech
- Department of Health Promotion, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Robert Urbański
- Department of Biomechanics and Sports Engineering, Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Wanda Pilch
- Department of Cosmetology, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Krakow, Poland; (W.P.); (A.P.); (O.C.-L.)
| | - Anna Piotrowska
- Department of Cosmetology, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Krakow, Poland; (W.P.); (A.P.); (O.C.-L.)
| | - Olga Czerwińska-Ledwig
- Department of Cosmetology, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Krakow, Poland; (W.P.); (A.P.); (O.C.-L.)
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Exercise Physiology, Faculty of Health, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (M.Ż.); (J.A.); Tel.: +48-881-555-337 (M.Ż. & J.A.)
| |
Collapse
|
203
|
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med 2020; 157:15-37. [PMID: 32131026 DOI: 10.1016/j.freeradbiomed.2020.02.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
According to the latest Global Burden of Disease Study data, non-communicable diseases in general and cardiovascular disease (CVD) in particular are the leading cause of premature death and reduced quality of life. Demographic shifts, unhealthy lifestyles and a higher burden of adverse environmental factors provide an explanation for these findings. The expected growing prevalence of CVD requires enhanced research efforts for identification and characterisation of novel therapeutic targets and strategies. Cardiovascular risk factors including classical (e.g. hypertension, diabetes, hypercholesterolaemia) and non-classical (e.g. environmental stress) factors induce the development of endothelial dysfunction, which is closely associated with oxidant stress and vascular inflammation and results in CVD, particularly in older adults. Most classically successful therapies for CVD display vasoprotective, antioxidant and anti-inflammatory effects, but were originally designed with other therapeutic aims. So far, only a few 'redox drugs' are in clinical use and many antioxidant strategies have not met expectations. With the present review, we summarise the actual knowledge on CVD pathomechanisms, with special emphasis on endothelial dysfunction, adverse redox signalling and oxidative stress, highlighting the preclinical and clinical evidence. In addition, we provide a brief overview of established CVD therapies and their relation to endothelial dysfunction and oxidative stress. Finally, we discuss novel strategies for redox-based CVD therapies trying to explain why, despite a clear link between endothelial dysfunction and adverse redox signalling and oxidative stress, redox- and oxidative stress-based therapies have not yet provided a breakthrough in the treatment of endothelial dysfunction and CVD.
Collapse
Affiliation(s)
- Andreas Daiber
- The Center for Cardiology, Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; The Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Stefan Chlopicki
- The Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
204
|
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 2020; 62:101096. [PMID: 32544433 DOI: 10.1016/j.arr.2020.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
As an inevitable biological process, cardiovascular aging is the greatest risk factor for cardiovascular diseases (CVDs). Sestrin 2 (Sesn2), a stress-inducible and age-related protein associated with various stress conditions, plays a pivotal role in slowing this process. It acts as an anti-aging agent, mainly through its antioxidant enzymatic activity and regulation of antioxidant signaling pathways, as well as by activating adenosine monophosphate-activated protein kinase and inhibiting mammalian target of rapamycin complex 1. In this review, we first introduce the biochemical functions of Sesn2 in the cardiovascular aging process, and describe how Sesn2 expression is regulated under various stress conditions. Next, we emphasize the role of Sesn2 signal transduction in a series of age-related CVDs, including hypertension, myocardial ischemia and reperfusion, atherosclerosis, and heart failure, as well as provide potential mechanisms for the association of Sesn2 with CVDs. Finally, we present the potential therapeutic applications of Sesn2-directed therapy and future prospects.
Collapse
Affiliation(s)
- Yunxia Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
205
|
Estévez-Lao TY, Sigle LT, Gomez SN, Hillyer JF. Nitric oxide produced by periostial hemocytes modulates the bacterial infection-induced reduction of the mosquito heart rate. J Exp Biol 2020; 223:jeb225821. [PMID: 32561636 DOI: 10.1242/jeb.225821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
The circulatory and immune systems of mosquitoes are functionally integrated. An infection induces the migration of hemocytes to the dorsal vessel, and specifically, to the regions surrounding the ostia of the heart. These periostial hemocytes phagocytose pathogens in the areas of the hemocoel that experience the highest hemolymph flow. Here, we investigated whether a bacterial infection affects cardiac rhythmicity in the African malaria mosquito, Anopheles gambiae We discovered that infection with Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, but not Micrococcus luteus, reduces the mosquito heart rate and alters the proportional directionality of heart contractions. Infection does not alter the expression of genes encoding crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F or short neuropeptide F, indicating that they do not drive the cardiac phenotype. Infection upregulates the transcription of two superoxide dismutase (SOD) genes, catalase and a glutathione peroxidase, but dramatically induces upregulation of nitric oxide synthase (NOS) in both the heart and hemocytes. Within the heart, nitric oxide synthase is produced by periostial hemocytes, and chemically inhibiting the production of nitric oxide using l-NAME reverses the infection-induced cardiac phenotype. Finally, infection induces the upregulation of two lysozyme genes in the heart and other tissues, and treating mosquitoes with lysozyme reduces the heart rate in a manner reminiscent of the infection phenotype. These data demonstrate an exciting new facet of the integration between the immune and circulatory systems of insects, whereby a hemocyte-produced factor with immune activity, namely nitric oxide, modulates heart physiology.
Collapse
Affiliation(s)
- Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Leah T Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Scherly N Gomez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
206
|
Angulo J, El Assar M, Álvarez-Bustos A, Rodríguez-Mañas L. Physical activity and exercise: Strategies to manage frailty. Redox Biol 2020; 35:101513. [PMID: 32234291 PMCID: PMC7284931 DOI: 10.1016/j.redox.2020.101513] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Frailty, a consequence of the interaction of the aging process and certain chronic diseases, compromises functional outcomes in the elderly and substantially increases their risk for developing disabilities and other adverse outcomes. Frailty follows from the combination of several impaired physiological mechanisms affecting multiple organs and systems. And, though frailty and sarcopenia are related, they are two different conditions. Thus, strategies to preserve or improve functional status should consider systemic function in addition to muscle conditioning. Physical activity/exercise is considered one of the main strategies to counteract frailty-related physical impairment in the elderly. Exercise reduces age-related oxidative damage and chronic inflammation, increases autophagy, and improves mitochondrial function, myokine profile, insulin-like growth factor-1 (IGF-1) signaling pathway, and insulin sensitivity. Exercise interventions target resistance (strength and power), aerobic, balance, and flexibility work. Each type improves different aspects of physical functioning, though they could be combined according to need and prescribed as a multicomponent intervention. Therefore, exercise intervention programs should be prescribed based on an individual's physical functioning and adapted to the ensuing response.
Collapse
Affiliation(s)
- Javier Angulo
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariam El Assar
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | | | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
207
|
Scott MC, Hogwood AC, Fralin RC, Weggen JB, Zúñiga TM, Garten RS. Low sleep efficiency does not impact upper or lower limb vascular function in young adults. Exp Physiol 2020; 105:1373-1383. [PMID: 32495341 DOI: 10.1113/ep088658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022]
Abstract
NEW FINDINGS What is the central question of this study? We sought to investigate whether young adults reporting low sleep quality possessed lower vascular function and altered autonomic nervous system modulation when compared with young adults reporting high sleep quality. What is the main finding and its importance? The study revealed that in young adults reporting low sleep quality, neither vascular nor autonomic function was significantly different when compared with young adults reporting high sleep quality. These findings suggest that young adults are either not substantially impacted by or can adequately adapt to the negative consequences commonly associated with poor sleep. ABSTRACT The aim of the study was to investigate whether young adults reporting low sleep quality also possessed lower vascular function, potentially stemming from altered autonomic nervous system modulation, when compared with young adults reporting high sleep quality. Thirty-one healthy young adults (age 24 ± 4 years) underwent a 7 night sleep assessment (Actigraph GT3X accelerometer). After the sleep assessment, subjects meeting specific criteria were separated into high (HSE; ≥85%; n = 11; eight men and three women) and low (LSE; <80%; n = 11; nine men and two women) sleep efficiency groups. Peripheral vascular function was assessed in the upper and lower limb, using the flow-mediated dilatation technique in the arm (brachial artery) and leg (superficial femoral artery). Heart rate variability was evaluated during 5 min of rest and used frequency parameters reflective of parasympathetic and/or sympathetic nervous system modulation (high- and low-frequency parameters). By experimental design, significant differences in sleep quality between groups were reported, with the LSE group exhibiting a longer time awake after sleep onset, higher number of awakenings and longer average time per awakening when compared with the HSE group. Despite these differences in sleep quality, no significant differences in upper and lower limb vascular function and heart rate variability measures were revealed when comparing the LSE and HSE groups. Additionally, in all subjects (n = 31), no correlations between sleep efficiency and vascular function/autonomic modulation were revealed. This study revealed that low sleep quality does not impact upper or lower limb vascular function or autonomic nervous system modulation in young adults.
Collapse
Affiliation(s)
- Matthew C Scott
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Richard C Fralin
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Tiffany M Zúñiga
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
208
|
Seo DH, Lee YH, Suh YJ, Ahn SH, Hong S, Choi YJ, Huh BW, Park SW, Lee E, Kim SH. Low muscle mass is associated with carotid atherosclerosis in patients with type 2 diabetes. Atherosclerosis 2020; 305:19-25. [PMID: 32593855 DOI: 10.1016/j.atherosclerosis.2020.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Sarcopenia leads to metabolic and vascular abnormalities. However, little is known regarding the independent relationship between skeletal muscle mass and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). This study aimed to evaluate the association between skeletal muscle mass and carotid atherosclerosis in men and women with T2DM. METHODS In this cross-sectional study, a total of 8202 patients with T2DM were recruited from the Seoul Metabolic Syndrome cohort. Skeletal muscle mass was estimated using bioimpedance analysis, while skeletal muscle mass index (SMI, %) was defined as total skeletal muscle mass (kg)/body weight (kg) × 100. Both carotid arteries were examined by B-mode ultrasound. Carotid atherosclerosis was defined by having a carotid plaque or mean carotid intima-media thickness (IMT) ≥1.1 mm. RESULTS Among the entire population, 4299 (52.4%) subjects had carotid atherosclerosis. The prevalence of carotid atherosclerosis increased with decreasing SMI quartiles for both sexes. The odds ratios for carotid atherosclerosis were 2.33 (95% confidence interval [CI], 1.17-4.63) and 2.24 (95% CI, 1.06-4.741) in the lowest versus highest SMI quartile in men and women, respectively, after the adjustment for clinical risk factors. In men, the risk of atherosclerosis increased linearly with decreasing SMI quartiles (p for trend = 0.036). CONCLUSIONS Low skeletal muscle mass was independently associated with the presence of carotid atherosclerosis in men and women with T2DM.
Collapse
Affiliation(s)
- Da Hea Seo
- Department of Endocrinology and Metabolism, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seongbin Hong
- Department of Endocrinology and Metabolism, Inha University School of Medicine, Incheon, Republic of Korea
| | | | | | - Seok Won Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjig Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Hun Kim
- Department of Endocrinology and Metabolism, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
209
|
Sertedaki E, Veroutis D, Zagouri F, Galyfos G, Filis K, Papalambros A, Aggeli K, Tsioli P, Charalambous G, Zografos G, Sigala F. Carotid Disease and Ageing: A Literature Review on the Pathogenesis of Vascular Senescence in Older Subjects. Curr Gerontol Geriatr Res 2020; 2020:8601762. [PMID: 32582337 PMCID: PMC7306882 DOI: 10.1155/2020/8601762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a natural process that affects all systems of the human organism, leading to its inability to adapt to environmental changes. Advancing age has been correlated with various pathological conditions, especially cardiovascular and cerebrovascular diseases. Carotid artery (CA) is mainly affected by age-induced functional and morphological alterations causing atheromatous disease. The evolvement of biomedical sciences has allowed the elucidation of many aspects of this condition. Symptomatic carotid disease (CD) derives from critical luminar stenosis or eruption of an atheromatous plaque due to structural modifications of the vessels, such as carotid intima-media thickening. At a histologic level, the aforementioned changes are mediated by elastin fragmentation, collagen deposition, immune cell infiltration, and accumulation of cytokines and vasoconstrictors. Underlying mechanisms include chronic inflammation and oxidative stress, dysregulation of cellular homeostatic systems, and senescence. Thus, there is an imbalance in components of the vessel wall, which fails to counteract exterior stress stimuli. Consequently, arterial relaxation is impaired and atherosclerotic lesions progress. This is a review of current evidence regarding the relationship of aging with vascular senescence and CD. A deeper understanding of these mechanisms can contribute to the production of efficient prevention methods and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eleni Sertedaki
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Flora Zagouri
- Clinical Therapeutics Department, Alexandra General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Galyfos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Konstadinos Filis
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Papalambros
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Panagiota Tsioli
- First Department of Pathology, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Charalambous
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - George Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, Hippocration General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
210
|
Relationship between the 10-Year Risk for Atherosclerotic Cardiovascular Disease and the Dietary Inflammatory Index among Korean Adults Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES). BIOMED RESEARCH INTERNATIONAL 2020; 2020:8196798. [PMID: 32596379 PMCID: PMC7273429 DOI: 10.1155/2020/8196798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Worldwide, atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of death and are considered a major public health concern. Exposure to repeated inflammation may contribute to the development of ASCVD, and diet plays a vital role in inflammation. In this study, we explored the correlation between the dietary inflammatory index (DII) and the 10-year ASCVD risk in Korean adults. We used multistage, stratified sampling to analyze a representative sample of Korean adults aged 40-64 years from the 7th Korea National Health and Nutrition Examination Survey data. Logistic regression was carried out to evaluate the association between 10-year high risk for ASCVD and dietary variables including DII. Participants were separated by quartiles, from Q1 to Q4, according to DII scores. Participants in the Q1 group had the lowest DII scores indicating a more anti-inflammatory diet. Participants in the Q4 group had the highest DII scores indicating more proinflammatory diets. Estimated risk of ASCVD results was categorized into the low-risk (less than 7.5% risk) and high-risk (greater than 7.5% risk) groups. In men, participants in the Q3 group had a risk for ASCVD of 1.20 times higher than the Q1 group participants and participants in the Q4 group had a risk of 1.34 times higher than the participants in the Q1 group. In women, ASCVD risk was not significantly associated with DII scores. These results provide systematically analyzed evidence for dietary interventions in ASCVD prevention efforts, especially in men.
Collapse
|
211
|
Iyer KS, Dayal S. Modulators of platelet function in aging. Platelets 2020; 31:474-482. [PMID: 31524038 PMCID: PMC7141765 DOI: 10.1080/09537104.2019.1665641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
Abstract
Platelets are small, anucleated effector cells that play an important role in linking the hemostatic and inflammatory processes in the body. Platelet function is known to be altered under various inflammatory conditions including aging. A gain in platelet function during aging can increase the risk of thrombotic events, such as stroke and acute myocardial infarction. Anti-platelet therapy is designed to reduce risk of serious cerebrovascular and cardiovascular events, but the adverse consequences of therapy, such as risk for bleeding increases with aging as well. Age-associated comorbidities such as obesity, diabetes, and hyperlipidemia also contribute to increased platelet activity and thus can enhance the risk of thrombosis. Therefore, identification of unique mechanisms of platelet dysfunction in aging and in age-associated comorbidities is warranted to design novel antiplatelet drugs. This review outlines some of the current areas of research on aging-related mechanisms of platelet hyperactivity and addresses the clinical urgency for designing anti-platelet therapies toward novel molecular targets in the aging population.
Collapse
Affiliation(s)
- Krishna S Iyer
- Department of Internal Medicine, University of Iowa , Iowa city, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa , Iowa city, USA
| |
Collapse
|
212
|
Potential Protective Effect of Dietary Intake of Non- α-Tocopherols on Cellular Aging Markers Mediated by Tumor Necrosis Factor- α in Prediabetes: A Cross-Sectional Study of Chinese Adults. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7396801. [PMID: 32509152 PMCID: PMC7245674 DOI: 10.1155/2020/7396801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
It remains unknown how different glucose tolerance status affects the relationships between dietary intake of different tocopherol isoforms (α-, β-, γ-, and δ-tocopherol) and cellular aging, oxidative stress, and inflammatory markers. The authors conducted a cross-sectional study among 582 Chinese adults with different glucose tolerance status to explore the association between dietary intake of different tocopherol isoforms and cellular aging, oxidative stress, and inflammatory markers. The inverse correlations between non-α-tocopherols and tumor necrosis factor-alpha (TNF-α) varied substantially across different glucose tolerance status, with the strongest observed in prediabetes (r = −0.33 for β-/γ-tocopherol, r = −0.37 for δ-tocopherol, p < 0.01), followed by normal glucose tolerance (NGT). While such correlations were abolished in established diabetes. Furthermore, within prediabetes, the strongest inverse correlations between non-α-tocopherols and TNF-α were observed in impaired fasting glucose (IFG) (r = −0.42 for β-/γ-tocopherol, r = −0.55 for δ-tocopherol, p < 0.01), while such correlations were significantly attenuated in individuals with impaired glucose tolerance (IGT) and IFG+IGT. And mediation model analysis displayed that TNF-α mediated the protective effect of non-α-tocopherols on leukocyte telomere length and mitochondrial DNA copy number, which was uniquely observed in prediabetes, while such mediation effect was statistically nonsignificant in NGT and established diabetes. In conclusion, our findings indicate that dietary intake of non-α-tocopherols might protect against cellular aging markers mediated by TNF-α in prediabetes. Individuals with prediabetes, especially for IFG, might benefit from increasing dietary intake of non-α-tocopherol in alleviating inflammation and cellular aging, which might provide a new dietary avenue for delaying diabetes onset.
Collapse
|
213
|
The Detection of 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine in Circulating Cell-Free DNA: A Step Towards Longitudinal Monitoring of Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:125-138. [DOI: 10.1007/978-3-030-41283-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
214
|
Zheng Z, Wang M, Cheng C, Liu D, Wu L, Zhu J, Qian X. Ginsenoside Rb1 reduces H2O2‑induced HUVEC dysfunction by stimulating the sirtuin‑1/AMP‑activated protein kinase pathway. Mol Med Rep 2020; 22:247-256. [PMID: 32377712 PMCID: PMC7248484 DOI: 10.3892/mmr.2020.11096] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Endothelial dysfunction and senescence are closely associated with cardiovascular diseases including atherosclerosis and hypertension. Ginsenoside Rb1 (Rb1), the major active constituent of ginseng, has been investigated intensively because of its anti-obesity and anti-inflammatory effects. In a previous study, hydrogen peroxide (H2O2) was applied to induce human umbilical vein endothelial cell (HUVEC) aging. It was demonstrated that Sirtuin-1 (SIRT1) was activated by Rb1 to protect HUVECs from H2O2-induced senescence. However, the mechanisms are not fully understood. The present study examined the role of AMP-activated protein kinase (AMPK), an energy sensor of cellular metabolism, in the signaling pathway of SIRT1 during H2O2-stimulated HUVEC aging. It was identified that Rb1 restored the H2O2-induced reduction of SIRT1 expression, which was consistent with our previous study, together with the activation of AMPK phosphorylation. Using compound C, an AMPK inhibitor, the role of AMPK in the protective effect of Rb1 against H2O2-induced HUVEC senescence was examined. It was identified that the induction of phosphorylated AMPK by Rb1 markedly increased endothelial nitric oxide synthase expression and nitric oxide production, and suppressed PAI-1 expression, which were abrogated in HUVECs pretreated with compound C. Further experiments demonstrated that nicotinamide, a SIRT1 inhibitor, downregulated the phosphorylation of AMPK and reduced the protective effects of Rb1 against H2O2-induced endothelial aging. Taken together, these results provide new insights into the possible molecular mechanisms by which Rb1 protects against H2O2-induced HUVEC senescence via the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Zhenda Zheng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Min Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Cailian Cheng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jieming Zhu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
215
|
Franconi F, Campesi I, Romani A. Is Extra Virgin Olive Oil an Ally for Women's and Men's Cardiovascular Health? Cardiovasc Ther 2020; 2020:6719301. [PMID: 32454893 PMCID: PMC7212338 DOI: 10.1155/2020/6719301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Noncommunicable diseases are long-lasting and slowly progressive and are the leading causes of death and disability. They include cardiovascular diseases (CVD) and diabetes mellitus (DM) that are rising worldwide, with CVD being the leading cause of death in developed countries. Thus, there is a need to find new preventive and therapeutic approaches. Polyphenols seem to have cardioprotective properties; among them, polyphenols and/or minor polar compounds of extra virgin olive oil (EVOO) are attracting special interest. In consideration of numerous sex differences present in CVD and DM, in this narrative review, we applied "gender glasses." Globally, it emerges that olive oil and its derivatives exert some anti-inflammatory and antioxidant effects, modulate glucose metabolism, and ameliorate endothelial dysfunction. However, as in prescription drugs, also in this case there is an important gender bias because the majority of the preclinical studies are performed on male animals, and the sex of donors of cells is not often known; thus a sex/gender bias characterizes preclinical research. There are numerous clinical studies that seem to suggest the benefits of EVOO and its derivatives in CVD; however, these studies have numerous limitations, presenting also a considerable heterogeneity across the interventions. Among limitations, one of the most relevant in the era of personalized medicine, is the non-attention versus women that are few and, also when they are enrolled, sex analysis is lacking. Therefore, in our opinion, it is time to perform more long, extensive and lessheterogeneous trials enrolling both women and men.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
| | - Ilaria Campesi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
- Dipartimento di Scienze Biomediche, Università Degli Studi di Sassari, 07100 Sassari, Italy
| | - Annalisa Romani
- Laboratorio PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis), DiSIA Università Degli Studi di Firenze, 50019 Florence, Italy
- Laboratorio di Qualità Delle Merci e Affidabilità di Prodotto, Università Degli Studi di Firenze, 59100 Florence, Italy
| |
Collapse
|
216
|
Oliveira-Dantas FF, Brasileiro-Santos MDS, Thomas SG, Silva AS, Silva DC, Browne RAV, Farias-Junior LF, Costa EC, Santos ADC. Short-Term Resistance Training Improves Cardiac Autonomic Modulation and Blood Pressure in Hypertensive Older Women: A Randomized Controlled Trial. J Strength Cond Res 2020; 34:37-45. [PMID: 31877119 DOI: 10.1519/jsc.0000000000003182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oliveira-Dantas, FF, Brasileiro-Santos, MdS, Thomas, SG, Silva, AS, Silva, DC, Browne, RAV, Farias-Junior, LF, Costa, EC, and Santos, AdC. Short-term resistance training improves cardiac autonomic modulation and blood pressure in hypertensive older women: a randomized controlled trial. J Strength Cond Res 34(1): 37-45, 2020-This randomized controlled trial investigated the efficacy of short-term resistance training (RT) on cardiac autonomic modulation and peripheral hemodynamic parameters in hypertensive older women. Twenty-five hypertensive older women who were insufficiently active (64.7 ± 4.7 years) participated in this study. Subjects were randomly allocated to a 10-week RT program (2 d·wk in the first 5 weeks; 3 d·wk in the last 5 weeks) or a nonexercise control group. Linear reverse periodization was used for the RT program. Cardiac autonomic modulation, mean blood pressure (MBP), peripheral vascular resistance (PVR), and resting heart rate (RHR) were measured before and after 10 weeks. The RT group reduced cardiac sympathetic modulation (0V%; B = -6.6; 95% confidence interval [CI]: -12.9 to -0.2; p = 0.045; Cohen's d = 0.88) and showed a trend for increased parasympathetic modulation (2V%; B = 12.5; 95% CI: 0-25; p = 0.050; Cohen's d = 0.87) compared with the control group. The RT group reduced MBP (B = -8.5 mm Hg; 95% CI: -13.6 to -3.4; p = 0.001; Cohen's d = 1.27), PVR (B = -14.1 units; 95% CI: -19.9 to -8.4; p < 0.001; Cohen's d = 1.86), and RHR (B = -8.8 b·min; 95% CI: -14.3 to -3.3; p = 0.002; Cohen's d = 1.20) compared with the control group. In the RT group, the changes in 2V% patterns and low-frequency components showed a correlation with changes in MBP (r = -0.60; p = 0.032) and RHR (r = 0.75; p = 0.0003). In conclusion, 10 weeks of RT improved cardiac autonomic modulation and reduced MBP and PVR in hypertensive older women. These results reinforce the importance of RT for this population.
Collapse
Affiliation(s)
- Filipe F Oliveira-Dantas
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Maria do Socorro Brasileiro-Santos
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Scott G Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Alexandre S Silva
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil
| | - Douglas C Silva
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil
| | - Rodrigo A V Browne
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luiz F Farias-Junior
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Eduardo C Costa
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Amilton da Cruz Santos
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| |
Collapse
|
217
|
Huang H, Liu X, Chen D, Lu Y, Li J, Du F, Zhang C, Lu L. Melatonin prevents endothelial dysfunction in SLE by activating the nuclear receptor retinoic acid-related orphan receptor-α. Int Immunopharmacol 2020; 83:106365. [PMID: 32172204 DOI: 10.1016/j.intimp.2020.106365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). A substantial proportion of patients with SLE display accelerated endothelial dysfunction, which precedes cardiovascular disease. Melatonin and its nuclear receptor retinoid-related orphan receptor alpha (RORα) have been reported to have some protective effects on the development of atherosclerosis. However, the function of melatonin in SLE-induced endothelial dysfunction and the role that RORα plays are still unknown. In this study, we found that RORα protein expression was decreased in aortas of lupus-prone mice and in human umbilical vein endothelial cells (HUVECs) cultured with medium containing sera of patients with SLE. Melatonin-treated HUVECs showed a decrease of pro-inflammatory mRNAs [interleukin-1beta (IL-1β), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)] under the stimulation of SLE medium. Melatonin increased nitric oxide and antioxidant mRNAs (SOD1, GPX1, and CAT) and downregulated reactive oxygen species (ROS) level in HUVECs, which may subsequently delay endothelial senescence and promote HUVEC proliferation and repair after injury. Melatonin inhibited SLE medium-induced RAW264.7 macrophage migration. HUVECs pretreated with melatonin expressed less adhesion-related proteins (ICAM-1 and VCAM-1); as a result, these cells adhered to fewer peripheral blood monocytes. In addition, we also showed that the protective effects of melatonin on endothelial cells were largely diminished when RORα was knockdown in HUVECs. In conclusion, by targeting the nuclear receptor RORα, melatonin preserves normal functions of endothelium in SLE by its anti-inflammatory, antioxidant, and anti-senescence effects. RORα may have the potential to become a prophylactic or therapeutic target in preventing endothelial dysfunction and atherosclerotic cardiovascular disease in patients with SLE.
Collapse
Affiliation(s)
- Huijing Huang
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuesong Liu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ultrasound, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dandan Chen
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yikang Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Du
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunyan Zhang
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Liangjing Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
218
|
Ortega MA, Romero B, Asúnsolo Á, Martínez-Vivero C, Sainz F, Bravo C, De León-Luis J, Álvarez-Mon M, Buján J, García-Honduvilla N. Pregnancy-associated venous insufficiency course with placental and systemic oxidative stress. J Cell Mol Med 2020; 24:4157-4170. [PMID: 32141705 PMCID: PMC7171392 DOI: 10.1111/jcmm.15077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
The development of lower extremity venous insufficiency (VI) during pregnancy has been associated with placental damage. VI is associated with increased oxidative stress in venous wall. We have investigated potential disturbance/dysregulation of the production of reactive oxygen species (ROS) in placenta and its eventual systemic effects through the measurement of malondialdehyde (MDA) plasma levels in women with VI. A total of 62 women with VI and 52 healthy controls (HCs) were studied. Levels of nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), 2 (NOX2), inducible nitric oxide synthase (iNOS), endothelial (eNOS), poly(ADP-ribose) polymerase PARP (PARP) and ERK were measured in placental tissue with immunohistochemistry and RT-qPCR. Plasma and placental levels of MDA were determined by colorimetry at the two study times of 32 weeks of gestation and post-partum. Protein and gene expression levels of NOX1, NOX2, iNOS, PARP and ERK were significantly increased in placentas of VI. eNOS activity was low in both study groups, and there were no significant differences in gene or protein expression levels. Women with VI showed a significant elevation of plasma MDA levels at 32 weeks of gestation, and these levels remained elevated at 32 weeks post-partum. The MDA levels were significantly higher in placentas of women with VI. Placental damage that was found in the women with VI was characterized by overexpression of oxidative stress markers NOX1, NOX2, and iNOS, as well as PARP and ERK. Pregnant women with VI showed systemic increases in oxidative stress markers such as plasma MDA levels. The foetuses of women with VI had a significant decrease in their venous pH as compared to those from HC women. The situation of oxidative stress and cellular damage created in the placenta is in coexpression with the production of a pH acidification.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Beatriz Romero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Ángel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Clara Martínez-Vivero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Felipe Sainz
- Angiology and Vascular Surgery Unit, Central University Hospital of Defense-UAH, Madrid, Spain
| | - Coral Bravo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Service of Gynecology and Obstetrics, Central University Hospital of Defense-UAH, Madrid, Spain
| | - Juan De León-Luis
- Service of Gynecology and Obstetrics, Section of Fetal Maternal Medicine, University Hospital Gregorio Marañón, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain.,Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| |
Collapse
|
219
|
l-Theanine attenuates liver aging by inhibiting advanced glycation end products in d-galactose-induced rats and reversing an imbalance of oxidative stress and inflammation. Exp Gerontol 2020; 131:110823. [DOI: 10.1016/j.exger.2019.110823] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/07/2019] [Accepted: 12/29/2019] [Indexed: 12/31/2022]
|
220
|
Du L, Wang L, Wang B, Wang J, Hao M, Chen YB, Li XZ, Li Y, Jiang YF, Li CC, Yang H, Gu XK, Yin XX, Lu Q. A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling. Acta Pharmacol Sin 2020; 41:358-372. [PMID: 31645661 PMCID: PMC7470857 DOI: 10.1038/s41401-019-0297-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) deposition following reactive oxygen species (ROS) overproduction has a key role in diabetic nephropathy (DN), thus, antioxidant therapy is considered as a promising strategy for treating DN. Here, we investigated the therapeutic effects of AB38b, a novel synthetic α, β-unsaturated ketone compound, on the oxidative stress (OS) and ECM accumulation in type 2 diabetes mice, and tried to clarify the mechanisms underlying the effects in high glucose (HG, 30 mM)-treated mouse glomerular mesangial cells (GMCs). Type 2 diabetes model was established in mice with high-fat diet feeding combined with streptozocin intraperitoneal administration. The diabetic mice were then treated with AB38b (10, 20, 40 mg· kg-1· d-1, ig) or a positive control drug resveratrol (40 mg· kg-1· d-1, ig) for 8 weeks. We showed that administration of AB38b or resveratrol prevented the increases in malondialdehyde level, lactate dehydrogenase release, and laminin and type IV collagen deposition in the diabetic kidney. Simultaneously, AB38b or resveratrol markedly lowered the level of Keap1, accompanied by evident activation of Nrf2 signaling in the diabetic kidney. The underlying mechanisms of antioxidant effect of AB38b were explored in HG-treated mouse GMCs. AB38b (2.5-10 μM) or resveratrol (10 μM) significantly alleviated OS and ECM accumulation in HG-treated GMCs. Furthermore, AB38b or resveratrol treatment effectively activated Nrf2 signaling by inhibiting Keap1 expression without affecting the interaction between Keap1 and Nrf2. Besides, AB38b treatment effectively suppressed the ubiquitination of Nrf2. Taken together, this study demonstrates that AB38b ameliorates experimental DN through antioxidation and modulation of Keap1/Nrf2 signaling pathway.
Collapse
|
221
|
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: Systematic review. Free Radic Biol Med 2020; 149:51-63. [PMID: 31550529 DOI: 10.1016/j.freeradbiomed.2019.09.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Oxidative stress (OS) has been previously linked to the aging process, as have some diseases and geriatric syndromes as frailty and sarcopenia. The aim of the present study was to perform a systematic review on oxidative stress activity and extreme longevity in humans. METHODS We conducted a systematic literature review following the PRISMA guidelines. Observational studies assessing OS-biomarkers and/or antioxidants in long-lived individuals (97 years old or over) comparing them to those of one or more age groups, (at least one of which from comprising elderly subjects) were considered for inclusion. A narrative synthesis was planned. Quality of selected studies was assessed using the Newcastle-Ottawa quality assessment scale (NOS). RESULTS After screening and eligibility phases, 12 articles were finally selected, with 646 long-lived participants and 1052 controls, 447 adults (20-60 years old) and 605 elderly individuals (over 60 years old). The average score on NOS scale of studies was 4,8 out of 9. Centenarians showed significantly less (p<0,05) oxidative damage to lipids in different samples, lower levels of oxidized proteins in plasma and lower superoxide anion levels in neutrophils than elderly groups. Centenarian presented significantly lower superoxide dismutase and higher glutathione reductase activities, higher levels of vitamins A and E, lower of coenzyme Q10, and lower susceptibility to lipid peroxidation than elderly controls. CONCLUSION Based on studies of medium-low quality, available evidence suggests that long-lived individuals display less oxidative damage, particularly lower plasma lipid peroxidation biomarkers, than controls. More studies with better experimental designs are needed.
Collapse
Affiliation(s)
- Ángel Belenguer-Varea
- Division of Geriatrics, Hospital Universitario de La Ribera (Alzira, Valencia, Spain), School of Doctorate, Universidad Católica de Valencia, San Vicente Martir, Valencia, Spain.
| | - Francisco José Tarazona-Santabalbina
- Division of Geriatrics, Hospital Universitario de La Ribera (Alzira, Valencia, Spain), School of Doctorate, Universidad Católica de Valencia, San Vicente Martir, CIBERFES, Valencia, Spain
| | - Juan Antonio Avellana-Zaragoza
- Division of Geriatrics, Hospital Universitario de La Ribera (Alzira, Valencia, Spain), School of Doctorate, Universidad Católica de Valencia, San Vicente Martir, Valencia, Spain
| | - Marta Martínez-Reig
- Division of Geriatrics, Hospital Universitario de La Ribera, Alzira, Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
222
|
Dzeletovic B, Aleksic N, Radak D, Stratimirovic D, Djukic L, Stojic D. Effect of Aging and Carotid Atherosclerosis on Multifractality of Dental Pulp Blood Flow Oscillations. J Endod 2020; 46:358-363. [PMID: 32035639 DOI: 10.1016/j.joen.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Age-related changes of dental pulp tissue and atherosclerosis of carotid arteries as its feeding arteries could influence the functionality of pulpal circulation. The objective of our study was to evaluate the effect of aging (physiological process) and carotid bifurcation atherosclerosis (pathologic process) on the pulpal microcirculatory system using multifractal analysis of the laser Doppler flowmetry signal. METHODS Three groups of 10 subjects were enrolled in the study: the young group (healthy subjects, 20-25 years), the middle-aged group (healthy subjects, 50-60 years), and the clinical group (subjects with carotid bifurcation atherosclerosis, 50-60 years). Pulpal blood flow (PBF) signals recorded by laser Doppler flowmetry were assessed by multifractal analysis that estimates Hölder exponents of the signal. PBF levels, the average mean values, and the range of Hölder exponents were obtained. RESULTS PBF levels were significantly higher in the young group compared with the middle-aged and clinical groups, and the difference between the middle-aged and clinical groups was not statistically significant. The range of the Hölder exponents was narrower in the middle-aged and clinical groups than in the young group and narrower in the clinical group than in the middle-aged group. The average mean value of Hölder exponents was significantly higher in the young group than in the middle-aged and clinical groups, whereas there was no significant difference between the middle-aged and clinical groups. CONCLUSIONS Our study investigating the multifractality of the PBF signal showed that the aging process and carotid atherosclerosis could affect the complex structure of PBF oscillations and contribute to a better understanding of pulpal hemodynamics.
Collapse
Affiliation(s)
- Bojan Dzeletovic
- DentalNet Research Group, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| | - Nikola Aleksic
- Vascular Surgery Clinic, "Dedinje" Cardiovascular Institute, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djordje Radak
- Vascular Surgery Clinic, "Dedinje" Cardiovascular Institute, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djordje Stratimirovic
- Department of Biophysics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Djukic
- Department of Dental Pharmacology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragica Stojic
- Department of Dental Pharmacology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
223
|
Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model. Biomaterials 2020; 238:119828. [PMID: 32045781 PMCID: PMC7185815 DOI: 10.1016/j.biomaterials.2020.119828] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 01/15/2023]
Abstract
Magnesium (Mg)-based biometal attracts clinical applications due to its biodegradability and beneficial biological effects on tissue regeneration, especially in orthopaedics, yet the underlying anabolic mechanisms in relevant clinical disorders are lacking. The present study investigated the effect of magnesium (Mg) and vitamin C (VC) supplementation for preventing steroid-associated osteonecrosis (SAON) in a rat experimental model. In SAON rats, 50 mg/kg Mg, or 100 mg/kg VC, or combination, or water control was orally supplemented daily for 2 or 6 weeks respectively. Osteonecrosis was evaluated by histology. Serum Mg, VC, and bone turnover markers were measured. Microfil-perfused samples prepared for angiography and trabecular architecture were evaluated by micro-CT. Primary bone marrow cells were isolated from each group to evaluate their potentials in osteoblastogenesis and osteoclastogenesis. The mechanisms were tested in vitro. Histological evaluation showed SAON lesions in steroid treated groups. Mg and VC supplementation synergistically reduced the apoptosis of osteocytes and osteoclast number, and increased osteoblast surface. VC supplementation significantly increased the bone formation marker PINP, and the combination significantly decreased the bone resorption marker CTX. TNFα expression and oxidative injury were decreased in bone marrow in Mg/VC/combination group. Mg significantly increased the blood perfusion in proximal tibia and decreased the leakage particles in distal tibia 2 weeks after SAON induction. VC significantly elevated the osteoblast differentiation potential of marrow cells and improved the trabecular architecture. The combination supplementation significantly inhibited osteoclast differentiation potential of marrow cells. In vitro study showed promoting osteoblast differentiation effect of VC, and anti-inflammation and promoting angiogenesis effect of Mg with underlying mechanisms. Mg and VC supplementation could synergistically alleviate SAON in rats, indicating great translational potentials of metallic minerals for preventing SAON.
Collapse
|
224
|
Abstract
BACKGROUND Chronic inflammation may lead to cochlear damage, and the only longitudinal study that examined biomarkers of systemic inflammation and risk of hearing loss found an association with a single biomarker in individuals <60 years of age. The purpose of our study was to determine whether plasma inflammatory markers are associated with incident hearing loss in two large prospective cohorts, Nurses' Health Studies (NHS) I and II. METHODS We examined the independent associations between plasma levels of markers of systemic inflammation (C-reactive protein [CRP], interleukin-6 [IL-6], and soluble tumor necrosis factor receptor 2 [TNFR-2]) and self-reported hearing loss. The participants in NHS I (n = 6194 women) were 42 to 69 years of age at the start of the analysis in 1990, while the participants in NHS II (n = 2885 women) were 32 to 53 years in 1995. After excluding women with self-reported hearing loss before the time of blood-draw, incident cases of hearing loss were defined as those women who reported hearing loss on questionnaires administered in 2012 in NHS I and 2009 or 2013 in NHS II. The primary outcome was hearing loss that was reported as moderate or worse in severity, pooled across the NHS I and NHS II cohorts. We also examined the pooled multivariable-adjusted hazard ratios for mild or worse hearing loss. Cox proportional hazards regression was used to adjust for potential confounders. RESULTS At baseline, women ranged from 42 to 69 years of age in NHS I and 32 to 53 years of age in NHS II. Among the NHS I and II women with measured plasma CRP, there were 628 incident cases of moderate or worse hearing loss during 100,277 person-years of follow-up. There was no significant association between the plasma levels of any of the three inflammatory markers and incident moderate or worse hearing loss (multivariable-adjusted pooled p trend for CRP = 0.33; p trend IL-6 = 0.54; p trend TNFR-2 = 0.70). There was also no significant relation between inflammatory marker levels and mild or worse hearing loss. While there was no significant effect modification by age for CRP or IL-6 in NHS I, there was a statistically significant higher risk of moderate or worse hearing loss (p interaction = 0.02) as well as mild or worse hearing loss (p interaction = 0.004) in women ≥60 years of age who had higher plasma TNFR-2 levels. CONCLUSIONS Overall, there was no significant association between plasma markers of inflammation and risk of hearing loss.
Collapse
|
225
|
SOD2 ameliorates pulmonary hypertension in a murine model of sleep apnea via suppressing expression of NLRP3 in CD11b + cells. Respir Res 2020; 21:9. [PMID: 31915037 PMCID: PMC6951024 DOI: 10.1186/s12931-019-1270-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background High prevalence of obstructive sleep apnea (OSA) in the pulmonary hypertension (PH) population suggests that chronic intermittent hypoxia (CIH) is an important pathogenic factor of PH. However, the exact mechanism of CIH induced PH is not clear. One of the molecules that plays a key role in regulating pulmonary artery function under hypoxic conditions is superoxide dismutase 2 (SOD2). Methods Our study utilized heterozygous SOD2−/+ mice firstly in CIH model to explore the exact role of SOD2 in CIH causing PH. Expression of SOD2 was analyzed in CIH model. Echocardiography and pulmonary hypertension were measured in wild type (WT) and SOD2−/+ mice under normal air or CIH condition. Hematoxylin–Eosin (H&E) staining and masson staining were carried out to evaluate pulmonary vascular muscularization and remodeling. Micro-PET scanning of in vivo 99mTc-labelled- MAG3-anti-CD11b was applied to assess CD11b in quantification and localization. Level of nod-like receptor pyrin domain containing 3 (NLRP3) was analyzed by real time PCR and immunohistochemistry (IHC). Results Results showed that SOD2 was down-regulated in OSA/CIH model. Deficiency of SOD2 aggravated CIH induced pulmonary hypertension and pulmonary vascular hypertrophy. CD11b+ cells, especially monocytic myeloid cell line-Ly6C+Ly6G− cells, were increased in the lung, bone marrow and the blood under CIH condition, and down-regulated SOD2 activated NLRP3 in CD11b+ cells. SOD2-deficient-CD11b+ myeloid cells promoted the apoptosis resistance and over-proliferation of human pulmonary artery smooth muscle cells (PASMCs) via up-regulating NLRP3. Conclusion CIH induced down-regulating of SOD2 increased pulmonary hypertension and vascular muscularization. It could be one of the mechanism of CIH leading to PH.
Collapse
|
226
|
Ballak DB, Brunt VE, Sapinsley ZJ, Ziemba BP, Richey JJ, Zigler MC, Johnson LC, Gioscia‐Ryan RA, Culp‐Hill R, Eisenmesser EZ, D'Alessandro A, Dinarello CA, Seals DR. Short-term interleukin-37 treatment improves vascular endothelial function, endurance exercise capacity, and whole-body glucose metabolism in old mice. Aging Cell 2020; 19:e13074. [PMID: 31755162 PMCID: PMC6974720 DOI: 10.1111/acel.13074] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022] Open
Abstract
Aging is associated with vascular endothelial dysfunction, reduced exercise tolerance, and impaired whole-body glucose metabolism. Interleukin-37 (IL-37), an anti-inflammatory cytokine of the interleukin-1 family, exerts salutary physiological effects in young mice independent of its inflammation-suppressing properties. Here, we assess the efficacy of IL-37 treatment for improving physiological function in older age. Old mice (26-28 months) received daily intraperitoneal injections of recombinant human IL-37 (recIL-37; 1 µg/200 ml PBS) or vehicle (200 ml PBS) for 10-14 days. Vascular endothelial function (ex vivo carotid artery dilation to increasing doses of acetylcholine, ACh) was enhanced in recIL-37 vs. vehicle-treated mice via increased nitric oxide (NO) bioavailability (all p < .05); this effect was accompanied by enhanced ACh-stimulated NO production and reduced levels of reactive oxygen species in endothelial cells cultured with plasma from IL-37-treated animals (p < .05 vs. vehicle plasma). RecIL-37 treatment increased endurance exercise capacity by 2.4-fold, which was accompanied by a 2.9-fold increase in the phosphorylated AMP-activated kinase (AMPK) to AMPK ratio (i.e., AMPK activation) in quadriceps muscle. RecIL-37 treatment also improved whole-body insulin sensitivity and glucose tolerance (p < .05 vs. vehicle). Improvements in physiological function occurred without significant changes in plasma, aortic, and skeletal muscle pro-inflammatory proteins (under resting conditions), whereas pro-/anti-inflammatory IL-6 was greater in recIL-37-treated animals. Plasma metabolomics analysis revealed that recIL-37 treatment altered metabolites related to pathways involved in NO synthesis (e.g., increased L-arginine and citrulline/arginine ratio) and fatty acid metabolism (e.g., increased pantothenol and free fatty acids). Our findings provide experimental support for IL-37 therapy as a novel strategy to improve diverse physiological functions in old age.
Collapse
Affiliation(s)
- Dov B. Ballak
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
- Department of MedicineUniversity of Colorado DenverAuroraCOUSA
| | - Vienna E. Brunt
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | | | - Brian P. Ziemba
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - James J. Richey
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Melanie C. Zigler
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Lawrence C. Johnson
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | | | | | | | | | - Charles A. Dinarello
- Department of MedicineUniversity of Colorado DenverAuroraCOUSA
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Douglas R. Seals
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| |
Collapse
|
227
|
Exercise training augments Sirt1-signaling and attenuates cardiac inflammation in D-galactose induced-aging rats. Aging (Albany NY) 2019; 10:4166-4174. [PMID: 30582744 PMCID: PMC6326662 DOI: 10.18632/aging.101714] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023]
Abstract
Exercise is known to be beneficial in controlling aging associated disorders however, the consequence of long-term exercise on cardiac health among aging population is not much clear. In this study the protective effect of exercise on aging associated cardiac disorders was determined using a D-galactose-induced aging model. Eight weeks old Sprague Dawley rats were given intraperitoneal injection of 150 mL/kg D-galactose. Swimming exercise was provided in warm water for 60 min/day for five days per week. Hematoxylin and eosin staining of cardiac tissue sections revealed cardiomyocyte disarrangements in the aging rat hearts but long-term exercise training showed improvements in the cardiac histology. Exercise training also enhanced the expression levels of proteins such as SIRT1, PGC-1α and AMPKα1 that are associated with energy homeostasis and further suppressed aging associated inflammatory cytokines. Our results show that long-term exercise training potentially enhances SIRT1 associated anti-aging signaling and provide cardio-protection against aging.
Collapse
|
228
|
Farooq MA, Gaertner S, Amoura L, Niazi ZR, Park SH, Qureshi AW, Oak MH, Toti F, Schini-Kerth VB, Auger C. Intake of omega-3 formulation EPA:DHA 6:1 by old rats for 2 weeks improved endothelium-dependent relaxations and normalized the expression level of ACE/AT1R/NADPH oxidase and the formation of ROS in the mesenteric artery. Biochem Pharmacol 2019; 173:113749. [PMID: 31830469 DOI: 10.1016/j.bcp.2019.113749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 01/21/2023]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to protect the cardiovascular system, in part, by stimulating the endothelial formation of nitric oxide (NO). EPA:DHA 6:1 has been identified as a potent omega 3 PUFA formulation to induce endothelium-dependent vasorelaxation and activation of endothelial NO synthase (eNOS). This study examined whether intake of EPA:DHA 6:1 (500 mg/kg/day) for 2 weeks improves an established endothelial dysfunction in old rats (20 months old), and, if so, the underlying mechanism was subsequently determined. In the main mesenteric artery rings, an endothelial dysfunction characterized by a blunted NO component, an abolished endothelium-dependent hyperpolarization component, and increased endothelium-dependent contractile responses (EDCFs) are observed in old rats compared to young rats. Age-related endothelial dysfunction was associated with increased vascular formation of reactive oxygen species (ROS) and expression of eNOS, components of the local angiotensin system, senescence markers, and cyclooxygenase-2 (COX-2), and the downregulation of COX-1. The EPA:DHA 6:1 treatment improved the NO-mediated relaxation, reduced the EDCF-dependent contractile response and the vascular formation of ROS, and normalized the expression level of all target proteins in the old arterial wall. Thus, the present findings indicate that a 2-week intake of EPA:DHA 6:1 by old rats restored endothelium-dependent NO-mediated relaxations, most likely, by preventing the upregulation of the local angiotensin system and the subsequent formation of ROS.
Collapse
Affiliation(s)
- Muhammad A Farooq
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Sébastien Gaertner
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Hôpitaux Universitaire de Strasbourg (HUS), Service des Maladies Vasculaires - Hypertension Artérielle, 67000 Strasbourg, France
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Zahid R Niazi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Abdul W Qureshi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France; Hôpitaux Universitaire de Strasbourg (HUS), Service des Maladies Vasculaires - Hypertension Artérielle, 67000 Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67000 Strasbourg, France.
| |
Collapse
|
229
|
Gao J, Huang T, Li J, Guo X, Xiao H, Gu J, Tang J, Cai W, Li D. Beneficial Effects of n-3 Polyunsaturated Fatty Acids on Offspring's Pancreas of Gestational Diabetes Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13269-13281. [PMID: 31725275 DOI: 10.1021/acs.jafc.9b05739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We studied the long-term influence of gestational diabetes mellitus (GDM) on the pancreas of offspring and the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on offspring's pancreas. GDM offspring were divided into three groups: GDM offspring, n-3 PUFA-adequate-GDM offspring, and n-3 PUFA-deficient GDM offspring. All healthy and GDM offspring were fed up to 11 months old. The pancreas of GDM offspring exhibited fatty infiltration at 11 months old, whereas n-3 PUFA improved the pancreatic fatty infiltration. n-3 PUFA lowered the pancreatic oxidative stress and inflammation. Surprisingly, n-3 PUFA postponed pancreatic telomere shortening of GDM offspring at old age. Nontargeted metabolomics showed that many metabolites were altered in the pancreas of GDM offspring at old age, including l-valine, ceramide, acylcarnitines, tocotrienol, cholesteryl acetate, and biotin. n-3 PUFA modulated some altered metabolites and metabolic pathways. Therefore, GDM caused the long-term effects on offspring's pancreas, whereas n-3 PUFA played a beneficial role.
Collapse
Affiliation(s)
- Jinlong Gao
- Department of Food Science and Nutrition , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Tao Huang
- Department of Epidemiology and Biostatistics , Peking University , 5 Yiheyuan Road , Beijing 100871 , China
| | - Jiaomei Li
- Institute of Nutrition and Health , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Xiaofei Guo
- Institute of Nutrition and Health , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Hailong Xiao
- Department of Food Inspection , Hangzhou Institute for Food and Drug Control , 198 Yonghua Street , Hangzhou 310022 , China
| | - Jiaojiao Gu
- School of Nursing , Zhejiang Chinese Medical University , 548 Binwen Road , Hangzhou 310053 , China
| | - Jun Tang
- Department of Food Science and Nutrition , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Wenwen Cai
- Department of Food Science and Nutrition , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Duo Li
- Department of Food Science and Nutrition , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
- Institute of Nutrition and Health , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| |
Collapse
|
230
|
Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, Wan Z, Guo L, Liu H, Xu B, Sun Y, Yang S, Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med 2019; 145:357-373. [PMID: 31614179 DOI: 10.1016/j.freeradbiomed.2019.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Yan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
231
|
Marchese NA, Occhieppo VB, Basmadjian OM, Casarsa BS, Baiardi G, Bregonzio C. Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. Eur J Neurosci 2019; 51:1026-1041. [PMID: 31646669 DOI: 10.1111/ejn.14605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Amphetamine-induced neuroadaptations involve vascular damage, neuroinflammation, a hypo-functioning prefrontal cortex (PFC), and cognitive alterations. Brain angiotensin II, through angiotensin type 1 receptor (AT1 -R), mediates oxidative/inflammatory responses, promoting endothelial dysfunction, neuronal oxidative damage and glial reactivity. The present work aims to unmask the role of AT1 -R in the development of amphetamine-induced changes over glial and vascular components within PFC and hippocampus. Attention deficit was evaluated as a behavioral neuroadaptation induced by amphetamine. Brain microvessels were isolated to further evaluate vascular alterations after amphetamine exposure. Male Wistar rats were administered with AT1 -R antagonist, candesartan, followed by repeated amphetamine. After one week drug-off period, animals received a saline or amphetamine challenge and were evaluated in behavioral tests. Afterward, their brains were processed for cresyl violet staining, CD11b (microglia marker), GFAP (astrocyte marker) or von Willebrand factor (vascular marker) immunohistochemistry, and oxidative/cellular stress determinations in brain microvessels. Statistical analysis was performed by using factorial ANOVA followed by Bonferroni or Tukey tests. Repeated amphetamine administration increased astroglial and microglial markers immunoreactivity, increased apoptotic cells, and promoted vascular network rearrangement at the PFC concomitantly with an attention deficit. Although the amphetamine challenge improved the attentional performance, it triggers detrimental effects probably because of the exacerbated malondialdehyde levels and increased heat shock protein 70 expression in microvessels. All observed amphetamine-induced alterations were prevented by the AT1 -R blockade. Our results support the AT1 -R involvement in the development of oxidative/inflammatory conditions triggered by amphetamine exposure, affecting cortical areas and increasing vascular susceptibility to future challenges.
Collapse
Affiliation(s)
- Natalia Andrea Marchese
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Belén Occhieppo
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Osvaldo Martin Basmadjian
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Brenda Solange Casarsa
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Departamento de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
232
|
Nediani C, Ruzzolini J, Romani A, Calorini L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants (Basel) 2019; 8:E578. [PMID: 31766676 PMCID: PMC6943788 DOI: 10.3390/antiox8120578] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Growing scientific literature data suggest that the intake of natural bioactive compounds plays a critical role in preventing or reducing the occurrence of human chronic non-communicable diseases (NCDs). Oleuropein, the main phenolic component of Olea europaea L., has attracted scientific attention for its several health beneficial properties such as antioxidant, anti-inflammatory, cardio- and neuro-protective, and anti-cancer. This article is a narrative review focused on the current literature concerning the effect of oleuropein in NCDs, such as neuro- and cardiovascular diseases, diabetes mellitus, chronic kidney diseases, and cancer, by its putative antioxidant and anti-inflammatory activity, but also for its other peculiar actions such as an autophagy inducer and amyloid fibril growth inhibitor and, finally, for its anti-cancer effect. Despite the increasing number of published studies, looking at the beneficial effects of oleuropein, there is limited clinical evidence focused on the benefits of this polyphenol as a nutraceutical product in humans, and many problems are still to be resolved about its bioavailability, bioaccessibility, and dosage. Thus, future clinical randomized trials are needed to establish the relation between the beneficial effects and the mechanisms of action occurring in the human body in response to the intake of oleuropein.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
- Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education (DENOTHE), University of Florence, Piazza di San Marco 4, 50121 Florence, Italy
| |
Collapse
|
233
|
John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, Umeshappa CS, Kendrick DJ, Kim T, Fauzi FM, Visser F, Fedak PWM, Wulff H, Braun AP. SKA-31, an activator of Ca 2+-activated K + channels, improves cardiovascular function in aging. Pharmacol Res 2019; 151:104539. [PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
Collapse
Affiliation(s)
- Cini Mathew John
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Rayan Khaddaj Mallat
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Grace George
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Vikrant Singh
- Dept. of Pharmacology, University of California, Davis, USA
| | - Jeannine D Turnbull
- Dept. of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Channakeshava S Umeshappa
- Dept. of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Taeyeob Kim
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Fazlin M Fauzi
- Dept. of Pharmacology and Chemistry, Universiti Teknologi MARA, Malaysia
| | - Frank Visser
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Heike Wulff
- Dept. of Pharmacology, University of California, Davis, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
234
|
Yu J, Sun H, Shang F, Wu H, Shi H, Ren L, He Y, Zhang M, Peng H. Association Between Glucose Metabolism And Vascular Aging In Chinese Adults: A Cross-Sectional Analysis In The Tianning Cohort Study. Clin Interv Aging 2019; 14:1937-1946. [PMID: 31806949 PMCID: PMC6842737 DOI: 10.2147/cia.s223690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Aim Fasting glucose has been associated with vascular aging, but the association between HbA1c and vascular aging has been limitedly studied in Chinese and other ethnic populations. We aimed to examine this association in a large sample of Chinese adults. Methods In the Tianning Cohort (N=5142), fasting glucose, HbA1c, carotid-femoral pulse wave velocity (cfPWV), and pulse pressure (PP) were measured. Vascular aging was defined as having the highest quartile level of cfPWV or PP. We applied quantile regression models to examine the association between glucose metabolism and vascular aging. Results The median cfPWV was significantly increased as increasing quintiles of fasting glucose (β=0.14, P<0.001) and HbA1c (β=0.07, P=0.0056), respectively. Per 1-mmol/L increment of fasting glucose was significantly associated with a higher risk of having vascular aging defined by cfPWV (OR=1.05, P=0.022), PP (OR=1.06, P=0.048), or either (OR=1.08, P=0.002). Similarly, per 1% increment of HbA1c was significantly associated with a higher risk of having vascular aging defined by cfPWV (OR=1.06, P=0.044), PP (OR=1.10, P=0.012), or either (OR=1.12, P=0.042). Conclusion Glucose metabolism was significantly and positively associated with vascular aging in Chinese adults, but the causality is uncertain.
Collapse
Affiliation(s)
- Jia Yu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Hongyan Sun
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Fei Shang
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Haishu Wu
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Hongfei Shi
- Center for Disease Prevention and Control of Tianning District, Changzhou, People's Republic of China
| | - Liyun Ren
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yan He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
235
|
Kim GD. SIRT1-Mediated Protective Effect of Aralia elata (Miq.) Seem against High-Glucose-Induced Senescence in Human Umbilical Vein Endothelial Cells. Nutrients 2019; 11:nu11112625. [PMID: 31684006 PMCID: PMC6893469 DOI: 10.3390/nu11112625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Aralia elata (Miq.) Seem (AS) is widely been for treating many diseases, enhancing energy, and boosting immunity; however, its protective effects against high-glucose (HG)-triggered endothelial dysfunction and the potential underlying mechanisms have not been investigated. In this study, we determined the effect of AS on senescence in human umbilical vein endothelial cells (HUVECs) and elucidated the mechanisms underlying its anti-aging effects. The senescence model of endothelial cells (ECs) was established by culturing HUVECs in media containing HG (30 mM). We found that the proportion of senescent (senescence-associated β-galactosidase+) cells in the HG group was significantly higher than that in the control group; however, this increase was suppressed by AS treatment. Moreover, cell cycle analysis revealed that AS (20 μg/mL) significantly recovered HG-induced cell cycle arrest in ECs, and Western blot revealed that AS prevented HG-induced decreases in silent information regulator 1 (SIRT1) level and endothelial nitric oxide synthase (eNOS) phosphorylation. These results show that AS delayed HG-induced senescence in ECs by modulation of the SIRT1/5′ AMP-activated protein kinase and AKT/eNOS pathways.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea.
| |
Collapse
|
236
|
Li X, An J, Li H, Qiu X, Wei Y, Shang Y. The methyl-triclosan induced caspase-dependent mitochondrial apoptosis in HepG2 cells mediated through oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109391. [PMID: 31272020 DOI: 10.1016/j.ecoenv.2019.109391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 05/06/2023]
Abstract
Methyl-triclosan (MTCS) is a dominant transformation product of triclosan (TCS), which has been widely used as an effective antimicrobial ingredient with increasing concentrations in the environment. MTCS shows higher persistence in environment than its parent chemical TCS. The toxic effects of MTCS and toxicological mechanism are not well understood up to now. This study investigated the cytotoxic effects of MTCS in HepG2 cells in terms of cell viability, apoptosis induction, ROS production, GSH/GSSG levels, Mitochondrial Membrane Potential (MMP) reduction, LDH release, glucose uptake and ATP production. Moreover, the related gene transcripts were measured with RT-qPCR assay. Cytotoxic experiments in HepG2 cells revealed that MTCS exposure at micromol per liter levels had toxic effects as evidenced by decreased cell survival, elevated cell apoptosis, reduced MMP and increased LDH release. These toxic effects were associated with increased ROS production and reduced GSH/GSSG ratio. Meanwhile, elevated glucose uptake and ATP production indicated that MTCS induced membrane damages resulted not from a typical mitochondrial uncoupler, but from oxidative stress. Analysis of gene transcripts showed that MTCS exposure induced mRNA expressions alterations associated with oxidative stress response, energy production, cell cycle regulation and cell apoptosis. In general, the caspase-dependent mitochondrial apoptosis pathway might play a role in MTCS induced cytotoxicity in HepG2 cells.
Collapse
Affiliation(s)
- Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
237
|
Berenji Ardestani S, Matchkov VV, Eftedal I, Pedersen M. A Single Simulated Heliox Dive Modifies Endothelial Function in the Vascular Wall of ApoE Knockout Male Rats More Than Females. Front Physiol 2019; 10:1342. [PMID: 31695628 PMCID: PMC6817487 DOI: 10.3389/fphys.2019.01342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction The number of divers is rising every year, including an increasing number of aging persons with impaired endothelial function and concomitant atherosclerosis. While diving is an independent modulator of endothelial function, little is known about how diving affects already impaired endothelium. In this study, we questioned whether diving exposure leads to further damage of an already impaired endothelium. Methods A total of 5 male and 5 female ApoE knockout (KO) rats were exposed to simulated diving to an absolute pressure of 600 kPa in heliox gas (80% helium, 20% oxygen) for 1 h in a dry pressure chamber. 10 ApoE KO rats (5 males, 5 females) and 8 male Sprague-Dawley rats served as controls. Endothelial function was examined in vitro by isometric myography of pulmonary and mesenteric arteries. Lipid peroxidation in blood plasma, heart and lung tissue was used as measures of oxidative stress. Expression and phosphorylation of endothelial NO synthase were quantified by Western blot. Results and Conclusion A single simulated dive was found to induce endothelial dysfunction in the pulmonary arteries of ApoE KO rats, and this was more profound in male than female rats. Endothelial dysfunction in males was associated with changing in production or bioavailability of NO; while in female pulmonary arteries an imbalance in prostanoid signaling was observed. No effect of diving was found on mesenteric arteries from rats of either sex. Our findings suggest that changes in endothelial dysfunction were specific for pulmonary circulation. In future, human translation of these findings may suggest caution for divers who are elderly or have prior reduced endothelial function.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| |
Collapse
|
238
|
Piccirillo F, Carpenito M, Verolino G, Chello C, Nusca A, Lusini M, Spadaccio C, Nappi F, Di Sciascio G, Nenna A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mech Ageing Dev 2019; 184:111161. [PMID: 31647940 DOI: 10.1016/j.mad.2019.111161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Aging results in functional and structural changes in the cardiovascular system, translating into a progressive increase of mechanical vessel stiffness, due to a combination of changes in micro-RNA expression patterns, autophagy, arterial calcification, smooth muscle cell migration and proliferation. The two pivotal mechanisms of aging-related endothelial dysfunction are oxidative stress and inflammation, even in the absence of clinical disease. A comprehensive understanding of the aging process is emerging as a primary concern in literature, as vascular aging has recently become a target for prevention and treatment of cardiovascular disease. Change of life-style, diet, antioxidant regimens, anti-inflammatory treatments, senolytic drugs counteract the pro-aging pathways or target senescent cells modulating their detrimental effects. Such therapies aim to reduce the ineluctable burden of age and contrast aging-associated cardiovascular dysfunction. This narrative review intends to summarize the macrovascular and microvascular changes related with aging, as a better understanding of the pathways leading to arterial aging may contribute to design new mechanism-based therapeutic approaches to attenuate the features of vascular senescence and its clinical impact on the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | - Camilla Chello
- Dermatology, Università "La Sapienza" di Roma, Rome, Italy
| | | | - Mario Lusini
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Nappi
- Cardiac surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | | | - Antonio Nenna
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
239
|
Bruch GE, Fernandes LF, Bassi BL, Alves MTR, Pereira IO, Frézard F, Massensini AR. Liposomes for drug delivery in stroke. Brain Res Bull 2019; 152:246-256. [DOI: 10.1016/j.brainresbull.2019.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022]
|
240
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
241
|
Yang Y, Tian T, Wang Y, Li Z, Xing K, Tian G. SIRT6 protects vascular endothelial cells from angiotensin II-induced apoptosis and oxidative stress by promoting the activation of Nrf2/ARE signaling. Eur J Pharmacol 2019; 859:172516. [DOI: 10.1016/j.ejphar.2019.172516] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
242
|
Angulo J, El Assar M, Sevilleja-Ortiz A, Fernández A, Sánchez-Ferrer A, Romero-Otero J, Martínez-Salamanca JI, La Fuente JM, Rodríguez-Mañas L. Short-term pharmacological activation of Nrf2 ameliorates vascular dysfunction in aged rats and in pathological human vasculature. A potential target for therapeutic intervention. Redox Biol 2019; 26:101271. [PMID: 31302408 PMCID: PMC6626891 DOI: 10.1016/j.redox.2019.101271] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress contributes to endothelial dysfunction, a key step in cardiovascular disease development. Ageing-related vascular dysfunction involves defective antioxidant response. Nuclear factor erythroid 2-like-2 (Nrf2), orchestrates cellular response to oxidative stress. We evaluated the impact of Nrf2-activation on endothelium-dependent and H2O2-mediated vasodilations in: aorta (RA), mesenteric artery (RMA), coronary artery (RCA) and corpus cavernosum (RCC) from ageing rats and in human penile arteries (HPRA) and corpus cavernosum (HCC) from erectile dysfunction (ED) patients. Relaxant responses were evaluated in organ chambers and wire myographs. Nrf2 content and heme oxygenase-1 (HO-1) were determined by ELISA. Superoxide and Nrf2 were detected by immunofluorescence. Pharmacological activation of Nrf2 with sulforaphane (SFN) improved NO- and endothelium-derived hyperpolarizing factor-mediated endothelium-dependent vasodilation and H2O2-induced relaxation in vascular beds from aging rats. SFN-induced effects were associated with increased Nrf2 (RMA, RCA) and reduced superoxide detection in RCA. Improvement of vascular function was confirmed in HPRA and HCC from ED patients and mimicked by another Nrf2 activator, oltipraz. Nrf2 increase and superoxide reduction together with HO-1 increase by Nrf2 activation was evidenced in HCC from ED patients. PDE5 inhibitor-induced relaxations of HPRA and HCC from ED patients were enhanced by SFN. Nrf2 short-term pharmacological activation attenuates age-related impairment of endothelium-dependent and reactive oxygen species (ROS)-induced vasodilation in different rat and human vascular territories by upregulation of Nrf2-related signaling and decreased oxidative stress. In ED patients target tissues, Nrf2 potentiates the functional effect of ED conventional pharmacological therapy suggesting potential therapeutic implication.
Collapse
Affiliation(s)
- Javier Angulo
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariam El Assar
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Alejandro Sevilleja-Ortiz
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Ramón y Cajal, Madrid, Spain
| | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Ramón y Cajal, Madrid, Spain
| | - Alberto Sánchez-Ferrer
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | | | | | | | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|
243
|
Yang Y, Wang A, Yuan X, Zhao Q, Liu X, Chen S, Wang X, Wang Y, Wu S, Wang Y. Association between healthy vascular aging and the risk of the first stroke in a community-based Chinese cohort. Aging (Albany NY) 2019; 11:5807-5816. [PMID: 31422381 PMCID: PMC6710043 DOI: 10.18632/aging.102170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
In this study we tested whether vascular aging is associated with the risk of first stroke in the Kailuan cohort, a community-based Chinese cohort. For participants aged ≥ 50 years, healthy vascular aging (HVA) was defined as an absence of hypertension and a brachial-ankle pulse wave velocity < the mean + 2 standard deviations, which was determined from a reference sample of healthy participants aged < 30 years. The primary outcome was first stroke (ischemic or hemorrhagic). In total, 11,474 participants were enrolled. The prevalence of HVA decreased from 36.0% in participants aged 50-59 years to 4.7% in those aged ≥ 70 years. During a median follow-up of 3.3 years, the incidence of first stroke was 0.5% in the HVA group but was 2.6% in the Non-HVA group. After adjusting for confounding variables, HVA was associated with a 0.32-fold lower risk of first stroke compared to the Non-HVA group (95% confidence interval, 0.18-0.56; p < 0.001). It thus appears that HVA reduced the risk of first stroke in a community-based Chinese population. This suggests that evaluation of vascular aging as part of public health screening may be useful for stroke risk assessment.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Quanhui Zhao
- Graduate School, North China University of Science and Technology, Tangshan, China.,Department of Cardiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Xiaoxue Liu
- Department of Cardiology, Tangshan People's Hospital, North China University of Science and Technology, Tangshan, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Xiuyan Wang
- Department of Geriatric disease, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
244
|
Bachi ALL, Barros MP, Vieira RP, Rocha GA, de Andrade PBM, Victorino AB, Ramos LR, Gravina CF, Lopes JD, Vaisberg M, Maranhão RC. Combined Exercise Training Performed by Elderly Women Reduces Redox Indexes and Proinflammatory Cytokines Related to Atherogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6469213. [PMID: 31482005 PMCID: PMC6701434 DOI: 10.1155/2019/6469213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/12/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular benefits for the general population of combined aerobic-resistance exercise training are well-known, but the impact of this exercise training modality on the plasma lipid, inflammatory, and antioxidant status in elderly women that are exposed to a great risk of developing ischemic cardio- and cerebrovascular diseases has not been well investigated. So, we aimed to evaluate the plasma lipids, oxidative stress, and inflammatory cytokines in 27 elderly women (TRAINED group, 69.1 ± 8.1 yrs) that were performing moderate intensity combined aerobic-resistance exercise training (3 times/week for at least 18 months) and in 27 sedentary elderly women (SED group, 72.0 ± 6.4 yrs), not submitted to exercise training for at least 5 yrs. Our results showed that BMI was lower in the TRAINED group than in the SED group (25.1 ± 3.2 vs. 28.7 ± 5.1, p < 0.05). The TRAINED group had lower glycemia (92 ± 3 vs. 118 ± 12, p < 0.05), glycated hemoglobin (5.9 ± 0.1 vs. 6.4 ± 0.2, p < 0.05), and triglycerides (98 (75-122) vs. 139 (109-214), p < 0.01); equal total cholesterol (199 (175-230) vs. 194 (165-220)), LDL-cholesterol (108 (83-133) vs. 109 (98-136)), and non-HDL-cholesterol (54 (30-74) vs. 62 (26-80)); and also higher HDL-cholesterol (64 (52-77) vs. 52 (44-63), p < 0.01) and LDL-C/oxLDL ratio (13378 ± 2570 vs. 11639 ± 3113, p < 0.05) compared to the SED group. Proinflammatory cytokines as IL-1β (11.31 ± 2.4 vs. 28.01 ± 4.7, p < 0.05), IL-6 (26.25 ± 7.4 vs. 49.41 ± 17.8, p < 0.05), and TNF-α (25.72 ± 2.8 vs. 51.73 ± 4.2, p < 0.05) were lower in the TRAINED group than in the SED group. The TRAINED group had lower total peroxides (26.3 ± 7.4 vs. 49.0 ± 17.8, p < 0.05) and oxidized LDL (1551 ± 50.33 vs. 1773 ± 74, p < 0.02) and higher total antioxidant capacity (26.25 ± 7.4 vs. 49.41 ± 17.8, p < 0.001) compared to the SED group. In conclusion, in TRAINED women, BMI was lower, plasma lipid profile was better, plasma oxidative stress was diminished, and there was less expression of proinflammatory interleukins than in SED, suggesting that combined aerobic-resistance exercise training may promote the protection against the complications of ischemic cardio- and cerebrovascular disease in elderly women.
Collapse
Affiliation(s)
- André L. L. Bachi
- Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
| | - Marcelo P. Barros
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rodolfo P. Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
- Post-graduation Program in Bioengineering, Brasil University, São Paulo, Brazil
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, São Paulo, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, Brazil
| | - Gislene A. Rocha
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
| | - Paula B. M. de Andrade
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Angélica B. Victorino
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Luiz R. Ramos
- Department of Preventive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - José D. Lopes
- Department of Microbiology and Immunology, Federal University of São Paulo, São Paulo, Brazil
| | - Mauro Vaisberg
- Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Raul C. Maranhão
- Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
245
|
Lyu Z, Ji X, Chen G, An B. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int Immunopharmacol 2019; 72:348-357. [DOI: 10.1016/j.intimp.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
|
246
|
Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1810-1821. [PMID: 31109451 DOI: 10.1016/j.bbadis.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
247
|
Gliemann L, Hellsten Y. The exercise timing hypothesis: can exercise training compensate for the reduction in blood vessel function after menopause if timed right? J Physiol 2019; 597:4915-4925. [DOI: 10.1113/jp277056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- L. Gliemann
- Department of Nutrition, Exercise and SportsUniversity of Copenhagen Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and SportsUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
248
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
249
|
Cooke CLM, Davidge ST. Advanced maternal age and the impact on maternal and offspring cardiovascular health. Am J Physiol Heart Circ Physiol 2019; 317:H387-H394. [PMID: 31199185 DOI: 10.1152/ajpheart.00045.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Delaying pregnancy, which is on the rise, may increase the risk of cardiovascular disease in both women and their children. The physiological mechanisms that lead to these effects are not fully understood but may involve inadequate adaptations of the maternal cardiovascular system to pregnancy. Indeed, there is abundant evidence in the literature that a fetus developing in a suboptimal in utero environment (such as in pregnancies complicated by fetal growth restriction, preterm birth, and/or preeclampsia) is at an increased risk of cardiovascular disease in adulthood, the developmental origins of health and disease theory. Although women of advanced age are at a significantly increased risk of pregnancy complications, there is limited information as to whether advanced maternal age constitutes an added stressor on the prenatal environment of the fetus, and whether or not this is secondary to impaired cardiovascular function during pregnancy. This review summarizes the current literature available on the impact of advanced maternal age on cardiovascular adaptations to pregnancy and the role of maternal age on long-term health risks for both the mother and offspring.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, Alberta, Canada
| |
Collapse
|
250
|
Hua L, Wu N, Zhao R, He X, Liu Q, Li X, He Z, Yu L, Yan N. Sphingomyelin Synthase 2 Promotes Endothelial Dysfunction by Inducing Endoplasmic Reticulum Stress. Int J Mol Sci 2019; 20:ijms20122861. [PMID: 31212751 PMCID: PMC6627305 DOI: 10.3390/ijms20122861] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Endothelial dysfunction (ED) is an important contributor to atherosclerotic cardiovascular disease. Our previous study demonstrated that sphingomyelin synthase 2 (SMS2) promotes ED. Moreover, endoplasmic reticulum (ER) stress can lead to ED. However, whether there is a correlation between SMS2 and ER stress is unclear. To examine their correlation and determine the detailed mechanism of this process, we constructed a human umbilical vein endothelial cell (HUVEC) model with SMS2 overexpression. These cells were treated with 4-PBA or simvastatin and with LiCl and salinomycin alone. The results showed that SMS2 can promote the phosphorylation of lipoprotein receptor-related protein 6 (LRP6) and activate the Wnt/β-catenin pathway and that activation or inhibition of the Wnt/β-catenin pathway can induce or block ER stress, respectively. However, inhibition of ER stress by 4-PBA can decrease ER stress and ED. Furthermore, when the biosynthesis of cholesterol is inhibited by simvastatin, the reduction in intracellular cholesterol coincides with a decrease in ER stress and ED. Collectively, our results demonstrate that SMS2 can activate the Wnt/β-catenin pathway and promote intracellular cholesterol accumulation, both of which can contribute to the induction of ER stress and finally lead to ED.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Ruilin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Xiatian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Lehan Yu
- School of Basic Medical Experiments Center, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|