201
|
Ashokprabhu ND, Quesada O, Alvarez YR, Henry TD. INOCA/ANOCA: Mechanisms and novel treatments. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 30:100302. [PMID: 37377840 PMCID: PMC10299803 DOI: 10.1016/j.ahjo.2023.100302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Angina or ischemia with no obstructive coronary disease (ANOCA/INOCA) is a common but under-treated condition due to poorly understood pathophysiologic mechanisms, limited diagnostic tools, and lack of proven targeted therapy. Coronary microvascular dysfunction (CMD) occurs when the microvasculature inadequately perfuses the myocardium under stress, or at rest in the case of microvascular spasm resulting in ANOCA/INOCA. Coronary functional angiography (CFA) measures endothelial independent microvascular dysfunction (coronary flow reduction <2.5) in response to adenosine and endothelial dependent microvascular dysfunction (lack of dilation and/or constriction) to acetylcholine testing as well as epicardial and microvascular spasm. Current treatment for coronary microvascular dysfunction is limited to renin-angiotensin system (RAS) inhibitors and statins as well as antianginal medications. Novel therapies targeting the underlying pathology are under development and include the coronary sinus reducer, CD34+ stem cell therapy, and novel pharmacologic agents such as sGC stimulators or endothelin-receptor blockers. We review the current understanding of pathophysiology, diagnostic tools, and novel therapies for coronary microvascular dysfunction in ANOCA/INOCA.
Collapse
Affiliation(s)
| | | | | | - Timothy D. Henry
- Corresponding author at: The Christ Hospital Health Network, 2123 Auburn Avenue, Suite 424, Cincinnati, OH 45219, USA. (T.D. Henry)
| |
Collapse
|
202
|
Abstract
Coronary microvascular disease (CMD) causes myocardial ischemia in a variety of clinical scenarios. Clinical practice guidelines support routine testing for CMD in patients with ischemia with nonobstructive coronary artery disease. Invasive testing to identify CMD requires Doppler or thermodilution measures of flow to determine the coronary flow reserve and measures of microvascular resistance. Acetylcholine coronary reactivity testing identifies concomitant endothelial dysfunction, microvascular spasm, or epicardial coronary spasm. Comprehensive testing may improve symptoms, quality of life, and patient satisfaction by establishing a diagnosis and guiding-targeted medical therapy and lifestyle measures. Beyond ischemia with nonobstructive coronary artery disease, testing for CMD may play a role in patients with acute myocardial infarction, angina following coronary revascularization, heart failure with preserved ejection fraction, Takotsubo syndrome, and after heart transplantation. Additional education and provider awareness of CMD and its role in cardiovascular disease is needed to improve patient-centered outcomes of ischemic heart disease.
Collapse
Affiliation(s)
- Nathaniel R Smilowitz
- Division of Cardiology, Department of Medicine, NYU Langone Health, NY (N.R.S.)
- Cardiology Section, Department of Medicine, Veterans Affairs New York Harbor Healthcare System, NY (N.R.S.)
| | | | - Alaide Chieffo
- Interventional Cardiology Unit, San Raffaele Hospital, Milan, Italy (A.C.)
| | - Divaka Perera
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, UK (D.P.)
- Guy's and St Thomas' Hospital, London, UK (D.P.)
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Scotland, UK (C.B.)
- The West of Scotland Heart and Lung Centre, NHS Golden Jubilee, Glasgow, Scotland, UK (C.B.)
| |
Collapse
|
203
|
Parwani P, Kang N, Safaeipour M, Mamas MA, Wei J, Gulati M, Naidu SS, Merz NB. Contemporary Diagnosis and Management of Patients with MINOCA. Curr Cardiol Rep 2023; 25:561-570. [PMID: 37067753 PMCID: PMC10188585 DOI: 10.1007/s11886-023-01874-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
PURPOSE OF REVIEW Myocardial infarction with nonobstructive coronary arteries (MINOCA) is defined as acute myocardial infarction (MI) with angiographically no obstructive coronary artery disease or stenosis ≤ 50%. MINOCA is diagnostically challenging and complex, making it difficult to manage effectively. This condition accounts for 6-8% of all MI and poses an increased risk of morbidity and mortality after diagnosis. Prompt recognition and targeted management are essential to improve outcomes and our understanding of this condition, but this process is not yet standardized. This article offers a comprehensive review of MINOCA, delving deep into its unique clinical profile, invasive and noninvasive diagnostic strategies for evaluating MINOCA in light of the lack of widespread availability for comprehensive testing, and current evidence surrounding targeted therapies for patients with MINOCA. RECENT FINDINGS MINOCA is not uncommon and requires comprehensive assessment using various imaging modalities to evaluate it further. MINOCA is a heterogenous working diagnosis that requires thoughtful approach to diagnose the underlying disease responsible for MINOCA further.
Collapse
Affiliation(s)
- Purvi Parwani
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA.
- Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Nicolas Kang
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mary Safaeipour
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Institute for Prognosis Research, University of Keele, Keele, UK
| | - Janet Wei
- Barbara Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Martha Gulati
- Barbara Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Srihari S Naidu
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - Noel Bairey Merz
- Barbara Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
204
|
Bhandiwad AR, Valenta I, Jain S, Schindler TH. PET-determined prevalence of coronary microvascular dysfunction and different types in a cardio-metabolic risk population. IJC HEART & VASCULATURE 2023; 46:101206. [PMID: 37113650 PMCID: PMC10127120 DOI: 10.1016/j.ijcha.2023.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Background The aim was to investigate the prevalence of "classical" (predominantly related to alterations in hyperemic MBFs) and "endogen" (predominantly related to alterations in resting MBF) normal coronary microvascular function (nCMF) or coronary microvascular dysfunction (CMD) in a clinical population without flow-limiting obstructive CAD. Methods We prospectively enrolled 239 symptomatic patients with normal pharmacologically-stress and rest myocardial perfusion on 13N-ammonia PET/CT. 13N-ammonia PET/CT concurrently assessed myocardial flow reserve (MFR = MBF stress/MBF rest). Normal nCMF was defined by a MFR of ≥ 2.0, while an abnormal MFR of < 2.0 signified CMD. In addition, patients were subgrouped into classical and endogen type of nCMF and CMD, respectively. Results In the whole study population, CMD was present in 54% (130/239). The classical type was more prevalent than the endogen type of CMD (65% vs 35%, p ≤ 0.008). The classical type of CMD was paralleled by a high prevalence of diabetes mellitus, metabolic syndrome, and obesity, while the endogen type of CMD was accompanied by a higher prevalence of arterial hypertension, obesity, and/or morbid obesity. Further, the classical type of nCMF was more frequently observed that the endogen type (74% vs. 26%, p ≤ 0.007). The endogen type of nCMF was related to lower heart rate and/or arterial blood pressures. Conclusions In this contemporary clinical study population, slightly more than half of symptomatic patients had CMD with predominance of the classical type. These observations emphasize the need for standardized reporting of CMD to gear individualized and/or intensified medical treatment to improve symptoms and/or clinical outcome in these patients.
Collapse
Affiliation(s)
- Anita R. Bhandiwad
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John T. Milliken Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Ines Valenta
- John T. Milliken Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Sudhir Jain
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John T. Milliken Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas H. Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John T. Milliken Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Corresponding author at: Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, 510 S. Kingshighway, Campus Box 8223, St. Louis, MO 63110, USA.
| |
Collapse
|
205
|
Rinaldi R, Princi G, La Vecchia G, Bonanni A, Chiariello GA, Candreva A, Gragnano F, Calabrò P, Crea F, Montone RA. MINOCA Associated with a Myocardial Bridge: Pathogenesis, Diagnosis and Treatment. J Clin Med 2023; 12:3799. [PMID: 37297993 PMCID: PMC10253711 DOI: 10.3390/jcm12113799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Myocardial bridging (MB) is the most frequent congenital coronary anomaly characterized by a segment of an epicardial coronary artery that passes through the myocardium. MB is an important cause of myocardial ischemia and is also emerging as a possible cause of myocardial infarction with non-obstructed coronary arteries (MINOCA). There are multiple mechanisms underlying MINOCA in patients with MB (i.e., MB-mediated increased risk of epicardial or microvascular coronary spasm, atherosclerotic plaque disruption and spontaneous coronary artery dissection). The identification of the exact pathogenetic mechanism is crucial in order to establish a patient-tailored therapy. This review provides the most up-to-date evidence regarding the pathophysiology of MINOCA in patients with MB. Moreover, it focuses on the available diagnostic tools that could be implemented at the time of coronary angiography to achieve a pathophysiologic diagnosis. Finally, it focuses on the therapeutic implications associated with the different pathogenetic mechanisms of MINOCA in patients with MB.
Collapse
Affiliation(s)
- Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Princi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giulia La Vecchia
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Alfonso Chiariello
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Candreva
- Department of Cardiology, Zurich University Hospital, 8091 Zurich, Switzerland
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80133 Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80133 Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Rocco A. Montone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
206
|
Nishimiya K, Takahashi J, Oyama K, Matsumoto Y, Yasuda S, Shimokawa H. Mechanisms of Coronary Artery Spasm. Eur Cardiol 2023; 18:e39. [PMID: 37456775 PMCID: PMC10345984 DOI: 10.15420/ecr.2022.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 07/18/2023] Open
Abstract
Recent clinical trials have highlighted that percutaneous coronary intervention in patients with stable angina provides limited additional benefits on top of optimal medical therapy. This has led to much more attention being paid to coronary vasomotion abnormalities regardless of obstructive or non-obstructive arterial segments. Coronary vasomotion is regulated by multiple mechanisms that include the endothelium, vascular smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic nervous system and inflammation. Over the years, several animal models have been developed to explore the central mechanism of coronary artery spasm. This review summarises the landmark studies on the mechanisms of coronary vasospasm demonstrating the central role of Rho-kinase as a molecular switch of VSMC hypercontraction and the important role of coronary adventitial inflammation for Rho-kinase upregulation in VSMCs.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Kazuma Oyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
207
|
Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, Matsuzawa Y, Mitsutake Y, Mitani Y, Murohara T, Noda T, Node K, Noguchi T, Suzuki H, Takahashi J, Tanabe Y, Tanaka A, Tanaka N, Teragawa H, Yasu T, Yoshimura M, Asaumi Y, Godo S, Ikenaga H, Imanaka T, Ishibashi K, Ishii M, Ishihara T, Matsuura Y, Miura H, Nakano Y, Ogawa T, Shiroto T, Soejima H, Takagi R, Tanaka A, Tanaka A, Taruya A, Tsuda E, Wakabayashi K, Yokoi K, Minamino T, Nakagawa Y, Sueda S, Shimokawa H, Ogawa H. JCS/CVIT/JCC 2023 Guideline Focused Update on Diagnosis and Treatment of Vasospastic Angina (Coronary Spastic Angina) and Coronary Microvascular Dysfunction. Circ J 2023; 87:879-936. [PMID: 36908169 DOI: 10.1253/circj.cj-22-0779] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | | | - Yoshiaki Mitsutake
- Division of Cardiovascular Medicine, Kurume University School of Medicine
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Yasuhiko Tanabe
- Department of Cardiology, Niigata Prefectural Shibata Hospital
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Nobuhiro Tanaka
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takahiro Imanaka
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | | | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Ryu Takagi
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Etsuko Tsuda
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center
| | - Kohei Wakabayashi
- Division of Cardiology, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Kensuke Yokoi
- Department of Cardiovascular Medicine, Saga University
| | - Toru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Shozo Sueda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | | | | |
Collapse
|
208
|
Severino P, D'Amato A, Prosperi S, Myftari V, Colombo L, Tomarelli E, Piccialuti A, Di Pietro G, Birtolo LI, Maestrini V, Badagliacca R, Sardella G, Fedele F, Vizza CD, Mancone M. Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA): Focus on Coronary Microvascular Dysfunction and Genetic Susceptibility. J Clin Med 2023; 12:jcm12103586. [PMID: 37240691 DOI: 10.3390/jcm12103586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among the most common causes of death worldwide, ischemic heart disease (IHD) is recognized to rank first. Even if atherosclerotic disease of the epicardial arteries is known as the leading cause of IHD, the presence of myocardial infarction with non-obstructive coronary artery disease (MINOCA) is increasingly recognized. Notwithstanding the increasing interest, MINOCA remains a puzzling clinical entity that can be classified by distinguishing different underlying mechanisms, which can be divided into atherosclerotic and non-atherosclerotic. In particular, coronary microvascular dysfunction (CMD), classifiable in non-atherosclerotic mechanisms, is a leading factor for the pathophysiology and prognosis of patients with MINOCA. Genetic susceptibility may have a role in primum movens in CMD. However, few results have been obtained for understanding the genetic mechanisms underlying CMD. Future studies are essential in order to find a deeper understanding of the role of multiple genetic variants in the genesis of microcirculation dysfunction. Progress in research would allow early identification of high-risk patients and the development of pharmacological, patient-tailored strategies. The aim of this review is to revise the pathophysiology and underlying mechanisms of MINOCA, focusing on CMD and actual knowledge about genetic predisposition to it.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Andrea D'Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Lorenzo Colombo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Elisa Tomarelli
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Alice Piccialuti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Gianluca Di Pietro
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Gennaro Sardella
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| |
Collapse
|
209
|
Tersalvi G, Beltrani V, Grübler MR, Molteni A, Cristoforetti Y, Pedrazzini G, Treglia G, Biasco L. Positron Emission Tomography in Heart Failure: From Pathophysiology to Clinical Application. J Cardiovasc Dev Dis 2023; 10:220. [PMID: 37233187 PMCID: PMC10218989 DOI: 10.3390/jcdd10050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Imaging modalities are increasingly being used to evaluate the underlying pathophysiology of heart failure. Positron emission tomography (PET) is a non-invasive imaging technique that uses radioactive tracers to visualize and measure biological processes in vivo. PET imaging of the heart uses different radiopharmaceuticals to provide information on myocardial metabolism, perfusion, inflammation, fibrosis, and sympathetic nervous system activity, which are all important contributors to the development and progression of heart failure. This narrative review provides an overview of the use of PET imaging in heart failure, highlighting the different PET tracers and modalities, and discussing fields of present and future clinical application.
Collapse
Affiliation(s)
- Gregorio Tersalvi
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6850 Mendrisio, Switzerland
| | - Vittorio Beltrani
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6850 Mendrisio, Switzerland
| | - Martin R. Grübler
- Department of Cardiology, Regional Hospital Neustadt, 2700 Wiener Neustadt, Austria
- Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alessandra Molteni
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6850 Mendrisio, Switzerland
| | - Yvonne Cristoforetti
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Giovanni Pedrazzini
- Department of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Luigi Biasco
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- Division of Cardiology, Azienda Sanitaria Locale Torino 4, 10073 Ospedale di Ciriè, Italy
| |
Collapse
|
210
|
de Vos A, Jansen T, Pijls N, Damman P. Reply: Microvascular Resistance Reserve in Coronary Slow Flow Phenomenon. JACC Cardiovasc Interv 2023; 16:1119. [PMID: 37164616 DOI: 10.1016/j.jcin.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
|
211
|
Sadamatsu K, Fukumoto Y. Microvascular Resistance Reserve in Coronary Slow Flow Phenomenon. JACC Cardiovasc Interv 2023; 16:1118. [PMID: 37164615 DOI: 10.1016/j.jcin.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/12/2023]
|
212
|
Souza AC, Amelie S T, Jan P M, Filipe A M, Sanjay D, Jon H, Ron B, Sharmila D, Marcelo F DC, Florian J F, Viviany R T. Intermuscular Adiposity is Associated with Coronary Microvascular Dysfunction Independently of Body Mass Index and Modifies its Effect on Adverse Cardiovascular Outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.03.23289408. [PMID: 37205484 PMCID: PMC10187458 DOI: 10.1101/2023.05.03.23289408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background: Skeletal muscle (SM) fat infiltration, or intermuscular adipose tissue (IMAT), reflects muscle quality and is associated with inflammation, a key determinant in cardiometabolic disease. Coronary flow reserve (CFR), a marker of coronary microvascular dysfunction (CMD), is independently associated with BMI, inflammation and risk of heart failure, myocardial infarction and death. We sought to investigate the relationship between skeletal muscle quality, CMD and cardiovascular outcomes. Methods: Consecutive patients (N=669) undergoing evaluation for CAD with cardiac stress PET demonstrating normal perfusion and preserved left ventricular ejection fraction were followed over median 6 years for major adverse cardiovascular events (MACE), including death and hospitalization for myocardial infarction or heart failure. CFR was calculated as stress/rest myocardial blood flow and CMD defined as CFR<2. Subcutaneous adipose tissue (SAT), SM and IMAT areas (cm 2 ) were obtained from simultaneous PET attenuation correction CTs using semi-automated segmentation at the twelfth thoracic vertebra (T12) level. Results: Median age was 63 years, 70% were female and 46% nonwhite. Nearly half of patients were obese (46%, BMI 30-61) and BMI correlated highly with SAT and IMAT (r=0.84 and 0.71, respectively, p<0.001) and moderately with SM (r=0.52, p<0.001). Decreased SM and increased IMAT, but not BMI or SAT, remained independently associated with decreased CFR (adjusted p=0.03 and p=0.04, respectively). In adjusted analyses, both lower CFR and higher IMAT were associated with increased MACE [HR 1.78 (1.23-2.58) per -1U CFR and 1.53 (1.30-1.80) per +10 cm 2 IMAT, adjusted p=0.002 and p<0.0001, respectively], while higher SM and SAT were protective [HR 0.89 (0.81-0.97) per +10 cm 2 SM and 0.94 (0.91-0.98) per +10 cm 2 SAT, adjusted p=0.01 and 0.003, respectively]. Every 1% increase in fatty muscle fraction [IMAT/(SM+IMAT)] conferred an independent 2% increased odds of CMD [CFR<2, OR 1.02 (1.01-1.04), adjusted p=0.04] and a 7% increased risk of MACE [HR 1.07 (1.04-1.09), adjusted p<0.001]. There was a significant interaction between CFR and IMAT, not BMI, such that patients with both CMD and fatty muscle demonstrated highest MACE risk (adjusted p=0.02). Conclusion: Increased intermuscular fat is associated with CMD and adverse cardiovascular outcomes independently of BMI and conventional risk factors. The presence of CMD and skeletal muscle fat infiltration identified a novel at-risk cardiometabolic phenotype.
Collapse
|
213
|
Mailey JA, Moore JS, Brennan PF, Jing M, Awuah A, McLaughlin JAD, Nesbit MA, Moore TCB, Spence MS. Assessment of hemodynamic indices of conjunctival microvascular function in patients with coronary microvascular dysfunction. Microvasc Res 2023; 147:104480. [PMID: 36690270 DOI: 10.1016/j.mvr.2023.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Coronary microvascular dysfunction (CMD) is a cause of ischaemia with non-obstructive coronary arteries (INOCA). It is notoriously underdiagnosed due to the need for invasive microvascular function testing. We hypothesized that systemic microvascular dysfunction could be demonstrated non-invasively in the microcirculation of the bulbar conjunctiva in patients with CMD. METHODS Patients undergoing coronary angiography for the investigation of chest pain or dyspnoea, with physiologically insignificant epicardial disease (fractional flow reserve ≥0.80) were recruited. All patients underwent invasive coronary microvascular function testing. We compared a cohort of patients with evidence of CMD (IMR ≥25 or CFR <2.0); to a group of controls (IMR <25 and CFR ≥2.0). Conjunctival imaging was performed using a previously validated combination of a smartphone and slit-lamp biomicroscope. This technique allows measurement of vessel diameter and other indices of microvascular function by tracking erythrocyte motion. RESULTS A total of 111 patients were included (43 CMD and 68 controls). There were no differences in baseline demographics, co-morbidities or epicardial coronary disease severity. The mean number of vessel segments analysed per patient was 21.0 ± 12.8 (3.2 ± 3.5 arterioles and 14.8 ± 10.8 venules). In the CMD cohort, significant reductions were observed in axial/cross-sectional velocity, blood flow, wall shear rate and stress. CONCLUSION The changes in microvascular function linked to CMD can be observed non-invasively in the bulbar conjunctiva. Conjunctival vascular imaging may have utility as a non-invasive tool to both diagnose CMD and augment conventional cardiovascular risk assessment.
Collapse
Affiliation(s)
- Jonathan A Mailey
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom; Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom.
| | - Julie S Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Paul F Brennan
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Min Jing
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, United Kingdom
| | - Agnes Awuah
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - James A D McLaughlin
- Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom; Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, United Kingdom
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Tara C B Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Mark S Spence
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| |
Collapse
|
214
|
Wada S, Iwanaga Y, Nakai M, Nakao YM, Miyamoto Y, Noguchi T. Significance of coronary artery calcification for predicting major adverse cardiovascular events: results from the NADESICO study in Japan. J Cardiol 2023:S0914-5087(23)00079-5. [PMID: 37085027 DOI: 10.1016/j.jjcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND We aimed to determine the usefulness and sex differences of assessment of coronary artery calcification (CAC) with cardiovascular risk factors and major adverse cardiovascular events (MACE) in Japanese patients. METHODS In a nationwide, multicenter, prospective cohort study, 1187 patients with suspected coronary artery disease who underwent coronary computed tomography were enrolled. MACE included cardiovascular death, myocardial infarction, stroke, revascularization, and hospitalization for unstable angina, heart failure, or aortic disease. The concordance (C)-statistics were used to assess the relationships among the Suita risk score, CAC score, and incident MACE, with emphasis on sex differences. RESULTS The final analysis included 982 patients (mean age, 64.7 ± 6.6 years; 53.9 % male patients). MACE developed in 65 male and 21 female patients during a median follow-up of 1480 days. The C-statistics calculated using Suita score for MACE were 0.650, 0.633, and 0.569 in overall, male, and female patients, respectively. In overall patients, the C-statistic significantly increased in combined models of Agatston CAC scores of ≥100, 200, 300, or 400 and the Suita score. In each sex, the C-statistics significantly increased in the model that added an Agatston CAC score of ≥100 and ≥ 200 (+0.049 and + 0.057) in male patients, and ≥ 400 (+0.119) in females, respectively. CONCLUSIONS Adding assessment of Agatston CAC scores to Suita score was useful to improve the predictive ability for future MACE in Japanese patients. Agatston CAC scores of ≥100 or 200 in male and ≥ 400 in female patients in addition to Suita score improved the MACE risk prediction.
Collapse
Affiliation(s)
- Shinichi Wada
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshitaka Iwanaga
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Cardiology, Sakurabashi Watanabe Hospital, Osaka, Japan.
| | - Michikazu Nakai
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoko M Nakao
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiro Miyamoto
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Teruo Noguchi
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
215
|
Appelman Y, Dahdal J. No resistance to wireless measurements in INOCA patients? EUROINTERVENTION 2023; 18:e1302-e1303. [PMID: 37025090 PMCID: PMC10068853 DOI: 10.4244/eij-e-23-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Yolande Appelman
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit (VU), Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jorge Dahdal
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit (VU), Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| |
Collapse
|
216
|
Teragawa H, Oshita C, Uchimura Y. Japanese Herbal Medicine (Kampo) as a Possible Treatment for Ischemia With Non-obstructive Coronary Artery Disease. Cureus 2023; 15:e38239. [PMID: 37122974 PMCID: PMC10145691 DOI: 10.7759/cureus.38239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/02/2023] Open
Abstract
Patients presenting with the syndrome of symptoms and signs suggesting ischemic heart disease but found to have no obstructed coronary arteries (INOCA) are increasingly recognized. Although there are non-invasive tests for the diagnosis of INOCA, such as transthoracic Doppler echocardiography, positron emission tomography, and cardiac magnetic resonance imaging to evaluate increased blood flow with adenosine and other agents, the diagnosis of INOCA by coronary angiography with the coronary spasm provocation test and coronary microvascular function evaluation using pressure wires has become the gold standard, but it is not well established in the treatment of INOCA. Despite the lack of objection to lifestyle modification and the use of coronary dilators, mainly calcium-channel blockers, for conditions involving epicardial coronary artery spasm, there is no entirely effective long-term treatment for microvascular spasm or coronary microvascular dysfunction. Although some combinations of drugs have been empirically administered in certain cases, it is difficult to conclude that they are sufficiently effective. Recently, it has been reported that some Japanese herbal medicines (Kampo) have been effective in the treatment of INOCA. In order to increase the knowledge on the treatment of INOCA, this review focuses on the effects of Japanese herbal medicine on INOCA and its presumed mechanisms and problems.
Collapse
Affiliation(s)
- Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Hiroshima, JPN
| | - Chikage Oshita
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Hiroshima, JPN
| | - Yuko Uchimura
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Hiroshima, JPN
| |
Collapse
|
217
|
Montisci R, Marchetti MF, Ruscazio M, Biddau M, Secchi S, Zedda N, Casula R, Tuveri F, Kerkhof PLM, Meloni L, Tona F. Non-invasive coronary flow velocity reserve assessment predicts adverse outcome in women with unstable angina without obstructive coronary artery stenosis. J Public Health Res 2023; 12:22799036231181716. [PMID: 37333028 PMCID: PMC10264896 DOI: 10.1177/22799036231181716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background Evaluation of coronary flow velocity reserve (CFVR) is the physiological approach to assess the severity of coronary stenosis and microvascular dysfunction. Impaired CFVR occurs frequently in women with suspected or known coronary artery disease. The aim of this study was to assess the role of CFVR to predict long-term cardiovascular event rate in women with unstable angina (UA) without obstructive coronary artery stenosis. Methods CFVR in left anterior descending coronary artery was assessed by adenosine transthoracic echocardiograhy in 161 women admitted at our Department with UA and without obstructive coronary artery disease. Results During a mean FU of 32.5 ± 19.6 months, 53 cardiac events occurred: 6 nonfatal acute myocardial infarction, 22 UA, 7 coronary revascularization by percutaneous transluminal coronary angioplasty, 1 coronary bypass surgery, 3 ischemic stroke, and 8 episodes of congestive heart failure with preserved ejection fraction and 6 cardiac deaths. Using a ROC curve analysis, CFVR 2.14 was the best predictor of cardiac events and was considered as abnormal CFVR. Abnormal CFVR was associated with lower cardiac event-free survival (30 vs 80%, p < 0.0001). During FU, 70% of women with reduced CFVR had cardiac events whereas only 20% with normal CFVR (p = 0.0001). At multivariate Cox analysis, smoke habitus (p = 0.003), metabolic syndrome (p = 0.01), and CFVR (p < 0.0001) were significantly associated with cardiac events at FU. Conclusion Noninvasive CFVR provides an independent predictor of cardiovascular prognosis information in women with UA without obstructive coronary artery disease whereas, impaired CFVR seems to be associated with higher CV events at FU.
Collapse
Affiliation(s)
- Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Maria Francesca Marchetti
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Massimo Ruscazio
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Mattia Biddau
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Sara Secchi
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Norma Zedda
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Roberto Casula
- Department of Cardiothoracic Surgery, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Francesca Tuveri
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Peter LM Kerkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VUmc, Amsterdam, The Netherlands
| | - Luigi Meloni
- Clinical Cardiology, AOU Cagliari, Department of Clinical Sciences and Public Health, University of Cagliari, Italy
| | - Francesco Tona
- Division of Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
218
|
Hwang D, Park SH, Koo BK. Ischemia With Nonobstructive Coronary Artery Disease: Concept, Assessment, and Management. JACC. ASIA 2023; 3:169-184. [PMID: 37181394 PMCID: PMC10167523 DOI: 10.1016/j.jacasi.2023.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 05/16/2023]
Abstract
In daily clinical practice, physicians often encounter patients with angina or those with evidence of myocardial ischemia from noninvasive tests but not having obstructive coronary artery disease. This type of ischemic heart disease is referred to as ischemia with nonobstructive coronary arteries (INOCA). INOCA patients often suffer from recurrent chest pain without adequate management and are associated with poor clinical outcomes. There are several endotypes of INOCA, and each endotype should be treated based on its specific underlying mechanism. Therefore, identifying INOCA and discriminating its underlying mechanisms are important issues and of clinical interest. Invasive physiologic assessment is the first step in the diagnosis of INOCA and discriminating the underlying mechanism; additional provocation tests help physicians identify the vasospastic component in INOCA patients. Comprehensive information acquired from these invasive tests can provide a template for mechanism-specific management for patients with INOCA.
Collapse
Affiliation(s)
- Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Sang-Hyeon Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
219
|
Godo S, Takahashi J, Shiroto T, Yasuda S, Shimokawa H. Coronary Microvascular Spasm: Clinical Presentation and Diagnosis. Eur Cardiol 2023; 18:e07. [PMID: 37377449 PMCID: PMC10291603 DOI: 10.15420/ecr.2022.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 06/29/2023] Open
Abstract
Professor Maseri pioneered the research and treatment of coronary vasomotion abnormalities represented by coronary vasospasm and coronary microvascular dysfunction (CMD). These mechanisms can cause myocardial ischaemia even in the absence of obstructive coronary artery disease, and have been appreciated as an important aetiology and therapeutic target with major clinical implications in patients with ischaemia with non-obstructive coronary artery disease (INOCA). Coronary microvascular spasm is one of the key mechanisms responsible for myocardial ischaemia in patients with INOCA. Comprehensive assessment of coronary vasomotor reactivity by invasive functional coronary angiography or interventional diagnostic procedure is recommended to identify the underlying mechanisms of myocardial ischaemia and to tailor the best treatment and management based on the endotype of INOCA. This review highlights the pioneering works of Professor Maseri and contemporary research on coronary vasospasm and CMD with reference to endothelial dysfunction, Rho-kinase activation and inflammation.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of MedicineSendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of MedicineSendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of MedicineSendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of MedicineSendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of MedicineSendai, Japan
- Graduate School, International University of Health and WelfareNarita, Japan
| |
Collapse
|
220
|
Servito M, Gill I, Durbin J, Ghasemlou N, Popov AF, Stephen CD, El-Diasty M. Management of Coronary Artery Disease in CADASIL Patients: Review of Current Literature. Medicina (B Aires) 2023; 59:medicina59030586. [PMID: 36984587 PMCID: PMC10059795 DOI: 10.3390/medicina59030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common heritable form of vascular dementia in adults. It is well-established that CADASIL results in neurocognitive dysfunction and mood disturbance. There is also cumulative evidence that CADASIL patients are more susceptible to ischemic heart disease. The aim of this study is to review the current literature regarding the incidence of coronary artery disease in CADASIL patients with a focus on the various management options and the clinical challenges associated with each of these treatment strategies. We conducted a literature search using Cochrane, MEDLINE, and EMBASE for papers that reported the occurrence of coronary artery disease in patients with CADASIL. We supplemented the search with a manual search in Google Scholar. Only case reports, case series, and original articles were included. The search resulted in six reports indicating the association between coronary artery disease and CADASIL and its management. Evidence suggests that extracranial manifestations of CADASIL may include coronary artery disease, presenting as a more extensive burden of disease in younger patients. Surgical and percutaneous revascularization strategies are feasible, but the incidence of peri-procedural stroke remains significant and should be weighed against the potential benefit derived from either of these strategies. A multidisciplinary approach to therapy, with perspectives from neurologists, cardiologists, and cardiac surgeons, is needed to provide the appropriate treatment to the CADASIL patient with severe coronary artery disease. Future studies should be directed toward the development of targeted therapies that may help with the early detection and prevention of disease progress in these patients.
Collapse
Affiliation(s)
- Maria Servito
- Department of Cardiac Surgery, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Isha Gill
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Joshua Durbin
- Division of Cardiology, Department of Medicine, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Nader Ghasemlou
- Department of Anaesthesiology, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Aron-Frederik Popov
- Department of Cardiothoracic Surgery, Helios Clinic, 53721 Siegburg, Germany
- Correspondence:
| | - Christopher D. Stephen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad El-Diasty
- Division of Cardiac Surgery, Department of Surgery, Queen’s University, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
221
|
Woudstra J, Vink CEM, Schipaanboord DJM, Eringa EC, den Ruijter HM, Feenstra RGT, Boerhout CKM, Beijk MAM, de Waard GA, Ong P, Seitz A, Sechtem U, Piek JJ, van de Hoef TP, Appelman Y. Meta-analysis and systematic review of coronary vasospasm in ANOCA patients: Prevalence, clinical features and prognosis. Front Cardiovasc Med 2023; 10:1129159. [PMID: 36993994 PMCID: PMC10041338 DOI: 10.3389/fcvm.2023.1129159] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Background Coronary artery spasm (CAS), encompassing epicardial and microvascular spasm, is increasingly recognized as cause of angina in patients with non-obstructive coronary artery disease (ANOCA). However, various spasm provocation testing protocols and diagnostic criteria are used, making diagnosis and characterization of these patients difficult and interpretation of study results cumbersome. This review provides a structured overview of the prevalence, characterization and prognosis of CAS worldwide in men and women. Methods A systematic review identifying studies describing ANOCA patients with CAS was performed. Multiple outcomes (prevalence, clinical features, and prognosis) were assessed. Data, except for prognosis were pooled and analysed using random effects meta-analysis models. Results Twenty-five publications (N = 14.554) were included (58.2 years; 44.2% women). Percentages of epicardial constriction to define epicardial spasm ranged from >50% to >90%. Epicardial spasm was prevalent in 43% (range 16-73%), with a higher prevalence in Asian vs. Western World population (52% vs. 33%, p = 0.014). Microvascular spasm was prevalent in 25% (range 7-39%). Men were more likely to have epicardial spasm (61%), women were more likely to have microvascular spasm (64%). Recurrent angina is frequently reported during follow-up ranging from 10 to 53%. Conclusion CAS is highly prevalent in ANOCA patients, where men more often have epicardial spasm, women more often have microvascular spasm. A higher prevalence of epicardial spasm is demonstrated in the Asian population compared to the Western World. The prevalence of CAS is high, emphasizing the use of unambiguous study protocols and diagnostic criteria and highlights the importance of routine evaluation of CAS in men and women with ANOCA. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=272100.
Collapse
Affiliation(s)
- Janneke Woudstra
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Caitlin E M Vink
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diantha J M Schipaanboord
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rutger G T Feenstra
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Coen K M Boerhout
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Marcel A M Beijk
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Guus A de Waard
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Peter Ong
- Department of Cardiology, Robert Bosch Hospital, Stuttgart, Germany
| | - Andreas Seitz
- Department of Cardiology, Robert Bosch Hospital, Stuttgart, Germany
| | - Udo Sechtem
- Department of Cardiology, Robert Bosch Hospital, Stuttgart, Germany
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Tim P van de Hoef
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Yolande Appelman
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
222
|
Almeida AG. Ischemia with non-obstructive coronary disease as detected by myocardial scintigraphy: A benign or malignant prognosis? Rev Port Cardiol 2023:S0870-2551(23)00128-2. [PMID: 36893837 DOI: 10.1016/j.repc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Ana G Almeida
- Cardiology, Heart and Vessels Department, Faculty of Medicine of Lisbon University, CCUL, University Hospital Santa Maria, CHULN, Lisbon, Portugal.
| |
Collapse
|
223
|
Ghetti G, Chietera F, Donati F, Bendandi F, Minnucci M, Bruno AG, Orzalkiewicz M, Nardi E, Palmerini T, Saia F, Marrozzini C, Galié N, Taglieri N. Coronary ectasia in different scenarios, primarily in myocardial infarction with nonobstructive coronary artery disease. J Cardiovasc Med (Hagerstown) 2023; 24:167-171. [PMID: 36753724 DOI: 10.2459/jcm.0000000000001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AIMS Several causes have been reported for coronary artery ectasia (CAE), mostly atherosclerosis and tunica media abnormalities. The main aim of the present study was to investigate if CAE extension differs in distinct clinical settings. METHODS Three hundred and forty-one patients with diagnosis of CAE were identified among 9659 coronary angiographies and divided into four groups according to the patient's admission diagnosis: stable or unstable angina (S-UA), myocardial infarction (MI), aortic disease, aortic valvular disease (AVD). S-UA and MI were subgrouped according to the presence of obstructive coronary artery disease (OCAD). Multivariable logistic regression was used to investigate the relationship between clinical diagnosis and CAE extension as expressed by Markis classification and number of coronary vessels affected by CAE. RESULTS No significant differences in CAE extension were found among the four groups, in terms of vessels affected by CAE (P = 0.37) or Markis class (P = 0.33). CAE was not related to the extension of OCAD as assessed by the Gensini score, which was higher in MI and S-UA groups (P < 0.01). However, when ischemic patients were sub-divided on the basis of the presence of OCAD, MI without obstructive coronary artery disease (MINOCA) was associated with a higher extension of CAE in terms of Markis class 1 (OR 5.08, 95% CI 1.61-16.04; P < 0.01). CONCLUSION The extension of CAE is comparable in patients referred to coronary angiography for different clinical scenarios, including S-UA, MI, aortic disease, and AVD; however, patients with MINOCA were associated with a higher extension of CAE.Graphical abstract: Difference in coronary artery ectasia extension in terms of Markis class severity, respectively, stratified by clinical presentation and obstructive coronary artery disease presence, http://links.lww.com/JCM/A519.
Collapse
Affiliation(s)
- Gabriele Ghetti
- Department of Cardiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico S Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Ling H, Fu S, Xu M, Wang B, Li Y, Li B, Wang Q, Liu X, Zhang X, Li A, Liu M. Global trend and future landscape of coronary microcirculation: A bibliometric and visualized analysis from 1990 to 2021. Heliyon 2023; 9:e14894. [PMID: 37077691 PMCID: PMC10106919 DOI: 10.1016/j.heliyon.2023.e14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Background Coronary microcirculation has a fundamental role in the regulation of coronary blood flow in response to cardiac requirements, which has aroused wide concerns in basic science and clinical cardiovascular research. We aimed to analyze coronary microcirculation-associated literatures over 30 years and provide insightful information on the evolutionary path, frontier research hotspots, and future developmental trends. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer was used to perform co-occurrence analyses for countries, institutions, authors, and keywords and to generate visualized collaboration maps. CiteSpace was used to visualize the knowledge map derived from reference co-citation analysis, burst references, and keywords detection. Results This analysis was performed based on 11,702 publications including 9981 articles and 1721 reviews. The United States and Harvard University ranked at the top among all the countries and institutions. The majority of articles were published in Circulation, and it also was the most co-cited journal. Thematic hotspots and frontiers were focused on coronary microvascular dysfunction, magnetic resonance imaging, fractional flow reserve, STEMI, and heart failure. Additionally, keywords burst and co-occurrence cluster analysis showed that management, microvascular dysfunction, microvascular obstruction, prognostic value, outcomes, and guidelines were current knowledge gaps and future directions. Conclusions Coronary microcirculation presented a research hotspot relevant wide spectrum of cardiovascular diseases. Definite diagnostics and prognostics are particularly valued. The protection of cardiovascular events that influence clinical outcomes should be an insightful concern in the future. Multidisciplinary collaborations will provide significant advances for the development of coronary microcirculation.
Collapse
|
225
|
Wang B, Gao Y, Zhao Y, Xu C, Zhao S, Li H, Zhang Y, Xu Y. The spectrum of angiography-derived IMR according to morphological and physiological coronary stenosis in patients with suspected myocardial ischemia. Clin Cardiol 2023; 46:502-511. [PMID: 36855931 DOI: 10.1002/clc.23999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Coronary microvascular dysfunction is crucial in determining myocardial ischemia; however, the relationship between epicardial coronary diameter stenosis (DS) and the index of microcirculatory resistance (IMR) remains unclear. We sought to explore the distribution of coronary angiography-derived IMR (angio-IMR) in patients with suspected myocardial ischemia. METHODS The study included 480 patients with suspected myocardial ischemia, all of whom underwent coronary angiography. According to the severity of coronary DS, patients were divided into three groups: mild (DS < 50%), intermediate (DS 50%-70%), and severe (DS > 70%). Angio-IMR and fractional flow reserve (FFR) were calculated based on coronary angiography images through the principle of computational flow and pressure simulation. RESULTS Of the 480 patients, the mean age was 67.23 ± 9.44 years, with 55.4% male. There were 193 (40.2%) patients in the mild group, 189 (39.4%) patients in the intermediate group, and 98 (20.4%) patients in the severe group. The average angio-IMR of the mild group was 30.8 ± 14.9, which was significantly higher than those of the intermediate group (26.7 ± 13.0) and the severe group (17.9 ± 8.4) (p < .001). In the correlation analysis, angio-IMR was negatively correlated with DS (rho = -0.331, p = .001) and positively correlated with angio-FFR (rho = 0.483, p < .001). By multivariate logistic regression analysis, angio-FFR ≤ 0.8 (odds ratio, 0.184; 95% confidence interval, 0.106-0.321) was the only independent predictor of coronary microvascular dysfunction. CONCLUSION In patients with suspected myocardial ischemia, coronary microcirculation is significantly associated with morphological and physiological coronary stenosis. (ClinicalTrials.gov: NCT05435898).
Collapse
Affiliation(s)
- Bo Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Gao
- Department of Cardiology, North Station Hospital of Jing'an District, Shanghai, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
226
|
Hausvater A, Schlamp F, Smilowitz NR. A Multi-Biomarker Approach to Understanding Coronary Microvascular Dysfunction: Making Sense of a Complex Disease. JACC. ADVANCES 2023; 2:100282. [PMID: 38938302 PMCID: PMC11198315 DOI: 10.1016/j.jacadv.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Anaïs Hausvater
- Leon H. Charney Division of Cardiology, Department of Medicine, Sarah Ross Soter Center for Women’s Cardiovascular Research, NYU Grossman School of Medicine, New York, New York, USA
| | - Florencia Schlamp
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Nathaniel R. Smilowitz
- Leon H. Charney Division of Cardiology, Department of Medicine, Sarah Ross Soter Center for Women’s Cardiovascular Research, NYU Grossman School of Medicine, New York, New York, USA
- Section of Cardiology, Department of Medicine, VA NY Harbor Health Care System, New York, New York, USA
| |
Collapse
|
227
|
Zhang Z, Chen Y, Wang Q, Xie L, Shan Y, Yang N, Wu W. Influence of fasting plasma glucose-lowering rate on BNP levels in type 2 diabetes mellitus patients with coronary microcirculation dysfunction. Hormones (Athens) 2023; 22:33-43. [PMID: 36369625 DOI: 10.1007/s42000-022-00404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
AIM The aim was to analyze the influence of fasting plasma glucose-lowering rate (FPGLR) on plasma BNP levels in type 2 diabetes mellitus (T2DM) patients with coronary microcirculation dysfunction (CMD) and to determine the optimal FPGLR for these patients. METHODS A total of 170 T2DM patients who received intensive glucose-lowering therapy during hospitalization in the First Affiliated Hospital of Harbin Medical University were enrolled. Ninety-two patients with CMD and 78 patients without CMD were assigned to a study and a control group, respectively. The study group was stratified as S1 (4.1 ~ 6.0 mmol·L-1·day-1), S2 (2.1 ~ 4.0 mmol·L-1·day-1), and S3 (≤ 2.0 mmol·L-1·day-1) by different FPGLR, and the same in the control group (C1, C2, and C3). The plasma BNP levels with the same FPGLR were compared between the study and the control group, and patients with a different FPGLR in the study group were also compared. RESULTS In the study and the control group, the BNP level in S1 was significantly higher than that in C1 (87 vs. 12 pg/ml, P < 0.001), although there was no significant difference between S2 and C2, S3 and C3. In the study group, the BNP level in S1 was significantly higher than that in S2 (87 vs. 22 pg/ml, P < 0.001) and S3 (87 vs. 15 pg/ml, P < 0.001), but there was no significant difference between S2 and S3. CONCLUSION Rapid intensive glucose-lowering may lead to increased plasma BNP levels in T2DM patients with CMD. Optimal FPGLR for these patients was determined to be no more than 4.0 mmol·L-1·day-1.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Endocrinology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Yangwen Chen
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Qian Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lingli Xie
- Department of Endocrinology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Yongyan Shan
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Ning Yang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Weihua Wu
- Department of Endocrinology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
228
|
Crooijmans C, Jansen TPJ, Konst RE, Woudstra J, Appelman Y, den Ruijter HM, Onland-Moret NC, Meeder JG, de Vos AMJ, Paradies V, Woudstra P, Sjauw KD, van 't Hof A, Meuwissen M, Winkler P, Boersma E, van de Hoef TP, Maas AHEM, Dimitriu-Leen AC, van Royen N, Elias-Smale SE, Damman P. Design and rationale of the NetherLands registry of invasive Coronary vasomotor Function Testing (NL-CFT). Int J Cardiol 2023; 379:1-8. [PMID: 36863419 DOI: 10.1016/j.ijcard.2023.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Angina without angiographic evidence of obstructive coronary artery disease (ANOCA) is a highly prevalent condition with insufficient pathophysiological knowledge and lack of evidence-based medical therapies. This affects ANOCA patients prognosis, their healthcare utilization and quality of life. In current guidelines, performing a coronary function test (CFT) is recommended to identify a specific vasomotor dysfunction endotype. The NetherLands registry of invasive Coronary vasomotor Function testing (NL-CFT) has been designed to collect data on ANOCA patients undergoing CFT in the Netherlands. METHODS The NL-CFT is a web-based, prospective, observational registry including all consecutive ANOCA patients undergoing clinically indicated CFT in participating centers throughout the Netherlands. Data on medical history, procedural data and (patient reported) outcomes are gathered. The implementation of a common CFT protocol in all participating hospitals promotes an equal diagnostic strategy and ensures representation of the entire ANOCA population. A CFT is performed after ruling out obstructive coronary artery disease. It comprises of both acetylcholine vasoreactivity testing as well as bolus thermodilution assessment of microvascular function. Optionally, continuous thermodilution or Doppler flow measurements can be performed. Participating centers can perform research using own data, or pooled data will be made available upon specific request via a secure digital research environment, after approval of a steering committee. CONCLUSION NL-CFT will be an important registry by enabling both observational and registry based (randomized) clinical trials in ANOCA patients undergoing CFT.
Collapse
Affiliation(s)
- C Crooijmans
- Dept. of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - T P J Jansen
- Dept. of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - R E Konst
- Dept. of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - J Woudstra
- Dept. of Cardiology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Y Appelman
- Dept. of Cardiology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - H M den Ruijter
- Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - N C Onland-Moret
- Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J G Meeder
- Dept. of Cardiology, Viecuri Medical Center, Venlo, the Netherlands
| | - A M J de Vos
- Dept. of Cardiology, Catharina Hospital, Eindhoven, the Netherlands
| | - V Paradies
- Dept. of Cardiology, Maasstad Hospital, Rotterdam, the Netherlands
| | - P Woudstra
- Dept. of Cardiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - K D Sjauw
- Dept. of Cardiology, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - A van 't Hof
- Dept. of Cardiology, MUMC, Maastricht, the Netherlands; Dept. of Cardiology, Zuyderland, Heerlen, the Netherlands; CArdiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - M Meuwissen
- Dept. of Cardiology, Amphia Hospital, Breda, the Netherlands
| | - P Winkler
- Dept. of Cardiology, Zuyderland, Heerlen, the Netherlands
| | - E Boersma
- Dept. of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - T P van de Hoef
- Laboratory of Experimental Cardiology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A H E M Maas
- Dept. of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | | | - N van Royen
- Dept. of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | | | - P Damman
- Dept. of Cardiology, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
229
|
Semerdzhieva NE, Denchev SV. Positive Stress Electrocardiography in Patients With Non-obstructive Coronary Disease. Cureus 2023; 15:e35549. [PMID: 37007366 PMCID: PMC10058447 DOI: 10.7759/cureus.35549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction The episodes of myocardial ischemia in patients with non-obstructive coronary disease are extremely variable in provoking factors and presentation. Purpose We investigated the significance of coronary blood flow velocity and epicardial diameter as correlates of a positive electrocardiographic exercise stress test (ExECG) in hospitalized patients with unstable angina and non-obstructive coronary artery disease. Methods The study was a single-center cohort retrospective. ExECG was performed and analyzed in a group of 79 patients with non-obstructive coronary disease (coronary stenoses < 50%). Thirty-one percent of the patients (n=25) were diagnosed with slow coronary flow phenomenon, SCFP; 40.5% (n=32) - patients with hypertensive disease, left ventricular hypertrophy (LVH), and slow epicardial flow; 27.8% (n=22) with hypertension, left ventricular hypertrophy and normal coronary flow. The patients were hospitalized in University Hospital "Alexandrovska," Sofia in the period 2006-2008. Results The frequency of positive ExECG is increased as a trend was associated with smaller epicardial diameters and pronounced delay in epicardial coronary flow. In the subgroup with SCFP, the risk for a positive ExECG test was determined by slower coronary flow (36.5±7.7 frames vs. 30.3±4.4 frames, p=0.044) and borderline significant by epicardial lumen diameters (3.3±0.8 mm vs. 4.1±1.0 mm, p=0.051) and greater myocardial mass (92.8±12.6 g/m2 vs. 82.9±8.6 g/m2, p=0.054). In cases of left ventricular hypertrophy, which included both patients with the normal and slow epicardial flow, there were no statistically significant correlates of an abnormal exercise stress ECG test. Conclusions In patients with non-obstructive coronary atherosclerosis and predominantly slow epicardial coronary flow, the provoking of ischemia at an electrocardiographic exercise stress test is associated with the lower epicardial flow velocity at rest and with the smaller epicardial diameter. In SCFP, the risk for an abnormal stress test is determined by slower coronary flow, smaller epicardial lumen diameter, and greater myocardial mass. The presence and size of the plaque burden are not associated with a greater risk of a positive ExECG in these patients.
Collapse
|
230
|
Initial single-center experience of a standardized protocol for invasive assessment of ischemia and no obstructive coronary artery disease. Rev Port Cardiol 2023; 42:455-465. [PMID: 36828182 DOI: 10.1016/j.repc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/23/2022] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Coronary vasomotion disorders (CVDs), including microvascular angina (MVA) and vasospastic angina (VSA), account for significant morbidity among patients with non-obstructive coronary artery disease (NOCAD). However, protocols for CVD assessment in clinical practice are seldom standardized and may be difficult to implement. PURPOSE To assess the safety and feasibility of a comprehensive coronary function test (CFT) protocol for assessment of CVD and the prevalence of different phenotypes of CVD in patients with angina and NOCAD (ANOCA). METHODS Patients with persistent angina referred for invasive coronary angiogram and found to have NOCAD were prospectively recruited and underwent a CFT. Functional parameters (fractional flow reserve, coronary flow reserve and index of myocardial resistance) and coronary vasoreactivity were assessed in all patients. RESULTS Of the 20 patients included, the mean age was 63±13 years and 50% were females. Most patients had persistent typical angina and evidence of ischemia in noninvasive tests (75%). The CFT was successfully performed in all subjects without serious complications. Isolated MVA was found in 25%, isolated VSA in 40%, both MVA and VSA in 10% and noncardiac chest pain in 25% of patients. Antianginal therapy was modified after the results of CFT in 70% of patients. CONCLUSION A coronary function test was feasible and safe in a cohort of patients with ANOCA. CVD were prevalent in this selected group of patients, and some presented mixed CVD phenotypes. CFT may provide a definitive diagnosis in patients with persistent angina and prompt the stratification of pharmacological therapy.
Collapse
|
231
|
Boden WE, Marzilli M, Crea F, Mancini GBJ, Weintraub WS, Taqueti VR, Pepine CJ, Escaned J, Al-Lamee R, Gowdak LHW, Berry C, Kaski JC. Evolving Management Paradigm for Stable Ischemic Heart Disease Patients: JACC Review Topic of the Week. J Am Coll Cardiol 2023; 81:505-514. [PMID: 36725179 PMCID: PMC10561495 DOI: 10.1016/j.jacc.2022.08.814] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
Management of stable coronary artery disease (CAD) has been based on the assumption that flow-limiting atherosclerotic obstructions are the proximate cause of angina and myocardial ischemia in most patients and represent an important target for revascularization. However, the role of revascularization in reducing long-term cardiac events in these patients has been limited mainly to those with left main disease, 3-vessel disease with diabetes, or decreased ejection fraction. Mounting evidence indicates that nonepicardial coronary causes of angina and ischemia, including coronary microvascular dysfunction, vasospastic disorders, and derangements of myocardial metabolism, are more prevalent than flow-limiting stenoses, raising concerns that many important causes other than epicardial CAD are neither considered nor probed diagnostically. There is a need for a more inclusive management paradigm that uncouples the singular association between epicardial CAD and revascularization and better aligns diagnostic approaches that tailor treatment to the underlying mechanisms and precipitants of angina and ischemia in contemporary clinical practice.
Collapse
Affiliation(s)
- William E Boden
- VA Boston Healthcare System, Boston, Massachusetts, USA; Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | - Filippo Crea
- Department of Cardiology, Catholic University, Rome, Italy
| | - G B John Mancini
- Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - William S Weintraub
- MedStar Health Research Institute, Georgetown University, Washington, DC, USA
| | - Viviany R Taqueti
- Division of Cardiovascular Medicine and Imaging, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida School of Medicine, Gainesville, Florida, USA
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University, Madrid, Spain
| | | | | | - Colin Berry
- University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| |
Collapse
|
232
|
Assisi E, Libener E, Grossgasteiger S, Mur C, Resnyak S. Clinical case report of a professional triathlete with positive exercise stress test but negative coronary angiography. J Sports Med Phys Fitness 2023; 63:379-383. [PMID: 35816148 DOI: 10.23736/s0022-4707.22.14184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article describes the clinical case of a master athlete, practising triathlon, who came to our Sports Medicine Center to be eligible for competitive sport. The subject, who had a family history of ischemic heart disease, presented a significant lowering of the ST segment in the inferolateral leads on the maximal cycle ergometer exercise test. Inducible myocardial ischemia emerged from the second level investigations. However, it was not confirmed by two coronary angiographies, the second performed after 9 years. The subject remained asymptomatic for the entire duration of the follow-up and in excellent clinical conditions, having never shown adverse events of cardiovascular nature.
Collapse
Affiliation(s)
- Elio Assisi
- Department of Sports Medicine, Healthcare Company of South Tyrol, Bolzano, Italy -
| | - Elettra Libener
- Department of Sports Medicine, Healthcare Company of South Tyrol, Bolzano, Italy
| | | | - Christine Mur
- Department of Sports Medicine, Healthcare Company of South Tyrol, Bolzano, Italy
| | - Stefan Resnyak
- Department of Sports Medicine, Healthcare Company of South Tyrol, Bolzano, Italy
| |
Collapse
|
233
|
A teenage boy with acute myocarditis and reversible microvascular angina: A case report. J Cardiol Cases 2023. [DOI: 10.1016/j.jccase.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
|
234
|
Sueda S, Sakaue T. Sex-related differences in coronary vasomotor disorders: Comparisons between Western and Japanese populations. J Cardiol 2023; 81:161-167. [PMID: 35534347 DOI: 10.1016/j.jjcc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Sex-related differences in the prevalence of cardiac disorders have been elucidated beyond races. Angina/ischemia with nonobstructive coronary artery disease (AINOCA) is often observed in females. Coronary microvascular dysfunction (CMD) and coronary epicardial spasm (CES) are the principal cause of AINOCA. The clinical outcomes of Western patients with CMD were less satisfactory than expected, while the prognosis of Japanese patients with CES treated with medications including calcium channel blockers was favorable. However, the incidence and clinical features of coronary spasm endotypes were different between Western and Japanese populations. Furthermore, sex-related differences in the clinical manifestations and outcomes of patients with different spasm endotypes remain uncertain beyond race. In this article, we will review the sex differences in Japanese AINOCA patients with coronary vasomotor disorders, including CMD and CES, and compare them with those of Western patients.
Collapse
Affiliation(s)
- Shozo Sueda
- Department of Cardiology, Ehime Prefectural Niihama Hospital, Niihama City, Ehime Prefecture, Japan.
| | - Tomoki Sakaue
- Department of Cardiology, Yawatahama City General Hospital, Yawatahama City, Ehime Prefecture, Japan
| |
Collapse
|
235
|
Di Carli MF. Clinical Value of Positron Emission Tomography Myocardial Perfusion Imaging and Blood Flow Quantification. Cardiol Clin 2023; 41:185-195. [PMID: 37003676 DOI: 10.1016/j.ccl.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Myocardial blood flow (MBF) and flow reserve (MFR) measurements by PET/computed tomography provide incremental diagnostic and prognostic information over traditional quantification of ischemia and scar by myocardial perfusion imaging. A normal stress MBF and MFR (>2.0) have a very high negative predictive value for excluding high-risk obstructive coronary artery disease (CAD). These flow measurements are also used for surveillance of coronary allograft vasculopathy after heart transplantation. A global normal MFR (>2.0) identifies patients at lower clinical risk, whereas a severely reduced MFR (<1.5) identifies patients at high risk for adverse events, even among patients without regional perfusion abnormalities.
Collapse
|
236
|
Abstract
Myocardial infarction with nonobstructive coronary arteries (MINOCA) is an important subtype of myocardial infarction (MI) that occurs in approximately 6-8% of patients with spontaneous MI who are referred for coronary angiography. MINOCA disproportionately affects women, but men are also affected. Pathogenesis is more variable than in MI with obstructive coronary artery disease (MI-CAD). Dominant mechanisms include atherosclerosis, thrombosis, and coronary artery spasm. Management of MINOCA varies based on the underlying mechanism of infarction. Therefore, systematic approaches to diagnosis are recommended. The combination of invasive coronary angiography, multivessel intracoronary imaging, provocative testing for coronary spasm, and cardiac magnetic resonance imaging provides the greatest diagnostic yield. Current clinical practice guidelines for the secondary prevention of MI are based largely on data from patients with MI-CAD. Thus, optimal medications after MINOCA are uncertain. Clinical trials focused on the treatment of patients with MINOCA are urgently needed to define optimal care.
Collapse
Affiliation(s)
- H R Reynolds
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA;
| | - N R Smilowitz
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
237
|
Effect of Proprietary Chinese Medicine on Coronary Microvascular Dysfunction in Patients with Microvascular Angina: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9242752. [PMID: 36733846 PMCID: PMC9889144 DOI: 10.1155/2023/9242752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
Background Microvascular angina (MVA) has received increasing attention and interest in recent years, but there are still some shortcomings in the diagnosis and treatments at current stage. In recent years, several studies have confirmed the efficacy of proprietary Chinese medicines (PCMs) in improving MVA symptoms; however, there is no systematic review and meta-analysis to comprehensively assess the efficacy of PCMs in this area. Objective Investigating the clinical efficacy of proprietary Chinese medicines for treating MVA and coronary microvascular function. Methods We looked up articles from January 1, 2012, to the present from eight databases. Then, we screened the literature and followed the 2019 version 2 of Cochrane risk of bias tool for systematic review. The Stata/SE 15.0 software was used for the meta-analysis. Results There are 21 studies, including 1,641 patients who were included in this review. According to the results, the combination of PCMs and conventional MVA treatment was able to further enhance clinical efficacy [RR = 1.28, 95% CI (1.20, 1.36), p < 0.001], prolong the time of duration on the treadmill exercise testing (TET) [SMD = 1.49, 95% CI (0.63, 2.36), p = 0.001] and improve levels of NO [SMD = -1.77 95% CI (-2.11, -1.43), p < 0.001]. At the same time, PCMs could also decrease the microvascular resistance index (IMR) [SMD = -1.79, 95% CI (-2.58, -1.00), p < 0.001)], serum level of hs-CRP [SMD = -1.21, 95% CI (-1.84, -0.58), p < 0.001] and ET-1 [SMD = -1.77 95% CI (-2.11, -1.43), p < 0.001]. Regards to medication safety, a total of 27 adverse events occurred, including 10 cases in the intervention group and 17 cases in the control group. Conclusion The study suggests that the combination of PCMs and conventional MVA treatment enhances clinical efficacy and could better improve coronary microvascular function. In the future, we expect more high-quality, randomized, double-blind clinical studies to validate the safety, and efficacy of PCMs to provide valuable evidence-based medicine (EBM) for the treatment of MVA with PCMs.
Collapse
|
238
|
Ma P, Liu J, Hu Y, Chen L, Liang H, Zhou X, Shang Y, Wang J. Stress CMR T1-mapping technique for assessment of coronary microvascular dysfunction in a rabbit model of type II diabetes mellitus: Validation against histopathologic changes. Front Cardiovasc Med 2023; 9:1066332. [PMID: 36741851 PMCID: PMC9895118 DOI: 10.3389/fcvm.2022.1066332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Background Coronary microvascular dysfunction (CMD) is an early character of type 2 diabetes mellitus (T2DM), and is indicative of adverse events. The present study aimed to validate the performance of the stress T1 mapping technique on cardiac magnetic resonance (CMR) for identifying CMD from a histopathologic perspective and to establish the time course of CMD-related parameters in a rabbit model of T2DM. Methods New Zealand white rabbits (n = 30) were randomly divided into a control (n = 8), T2DM 5-week (n = 6), T2DM 10-week (n = 9), and T2DM 15-week (n = 7) groups. The CMR protocol included rest and adenosine triphosphate (ATP) stress T1-mapping imaging using the 5b(20b)3b-modified look-locker inversion-recovery (MOLLI) schema to quantify stress T1 response (stress ΔT1), and first-pass perfusion CMR to quantify myocardial perfusion reserve index (MPRI). After the CMR imaging, myocardial tissue was subjected to hematoxylin-eosin staining to evaluate pathological changes, Masson trichrome staining to measure collagen volume fraction (CVF), and CD31 staining to measure microvascular density (MVD). The associations between CMR parameters and pathological findings were determined using Pearson correlation analysis. Results The stress ΔT1 values were 6.21 ± 0.59%, 4.88 ± 0.49%, 3.80 ± 0.40%, and 3.06 ± 0.54% in the control, T2DM 5-week, 10-week, and 15-week groups, respectively (p < 0.001) and were progressively weakened with longer duration of T2DM. Furthermore, a significant correlation was demonstrated between the stress ΔT1 vs. CVF and MVD (r = -0.562 and 0.886, respectively; p < 0.001). Conclusion The stress T1 response correlated well with the histopathologic measures in T2DM rabbits, indicating that it may serve as a sensitive CMD-related indicator in early T2DM.
Collapse
Affiliation(s)
- Peisong Ma
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China,Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Yurou Hu
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Hongqin Liang
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China,*Correspondence: Yongning Shang,
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Third Military Medical University, Chongqing, China,Jian Wang,
| |
Collapse
|
239
|
Schindler TH, Fearon WF, Pelletier-Galarneau M, Ambrosio G, Sechtem U, Ruddy TD, Patel KK, Bhatt DL, Bateman TM, Gewirtz H, Shirani J, Knuuti J, Gropler RJ, Chareonthaitawee P, Slart RHJA, Windecker S, Kaufmann PA, Abraham MR, Taqueti VR, Ford TJ, Camici PG, Schelbert HR, Dilsizian V. PET for Detection and Reporting Coronary Microvascular Dysfunction: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc Imaging 2023; 16:536-548. [PMID: 36881418 DOI: 10.1016/j.jcmg.2022.12.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 02/11/2023]
Abstract
Angina pectoris and dyspnea in patients with normal or nonobstructive coronary vessels remains a diagnostic challenge. Invasive coronary angiography may identify up to 60% of patients with nonobstructive coronary artery disease (CAD), of whom nearly two-thirds may, in fact, have coronary microvascular dysfunction (CMD) that may account for their symptoms. Positron emission tomography (PET) determined absolute quantitative myocardial blood flow (MBF) at rest and during hyperemic vasodilation with subsequent derivation of myocardial flow reserve (MFR) affords the noninvasive detection and delineation of CMD. Individualized or intensified medical therapies with nitrates, calcium-channel blockers, statins, angiotensin-converting enzyme inhibitors, angiotensin II type 1-receptor blockers, beta-blockers, ivabradine, or ranolazine may improve symptoms, quality of life, and outcome in these patients. Standardized diagnosis and reporting criteria for ischemic symptoms caused by CMD are critical for optimized and individualized treatment decisions in such patients. In this respect, it was proposed by the cardiovascular council leadership of the Society of Nuclear Medicine and Molecular Imaging to convene thoughtful leaders from around the world to serve as an independent expert panel to develop standardized diagnosis, nomenclature and nosology, and cardiac PET reporting criteria for CMD. This consensus document aims to provide an overview of the pathophysiology and clinical evidence of CMD, its invasive and noninvasive assessment, standardization of PET-determined MBFs and MFR into "classical" (predominantly related to hyperemic MBFs) and "endogen" (predominantly related to resting MBF) normal coronary microvascular function or CMD that may be critical for diagnosis of microvascular angina, subsequent patient care, and outcome of clinical CMD trials.
Collapse
Affiliation(s)
- Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine-Cardiovascular, Washington University in St Louis School of Medicine, St Louis, Missouri, USA.
| | - William F Fearon
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; VA Palo Alto Health Care System, Palo Alto, California, USA
| | | | - Giuseppe Ambrosio
- University of Perugia School of Medicine Ospedale S. Maria della Misericordia Perugia, Italy
| | - Udo Sechtem
- Cardiologicum Stuttgart, Stuttgart, Baden-Wuerttemberg, Germany
| | | | - Krishna K Patel
- Icahn School of Medicine at Mount Sinai, Zena, New York, New York, USA; Michael A. Wiener Cardiovascular Institute, New York, New York, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, USA
| | - Timothy M Bateman
- Saint-Lukes Health System and the Mid-America Heart Institute, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Henry Gewirtz
- Cardiac Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamshid Shirani
- Cardiology, St Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Juhani Knuuti
- Heart Center, Turku University Hospital, Turku, Finland
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine-Cardiovascular, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | | | - Riemer H J A Slart
- Medical Imaging Center, Departments of Radiology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephan Windecker
- Department of Cardiology, Inselspital, University of Bern, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Maria R Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, University of California, San Francisco, California, USA
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Departments of Radiology and Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Thomas J Ford
- The University of Newcastle, Faculty of Medicine, Newcastle, Australia
| | - Paolo G Camici
- San Raffaele Hospital, Milan Italy; Vita Salute University, Milan, Italy
| | - Heinrich R Schelbert
- Department of Molecular Imaging and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
240
|
Liu Q, Li Q, Wan X, Xu M, Pan J, Zhang Y, Li M, Zhang M. The value of myocardial work in the estimation of left ventricular systolic function in patients with coronary microvascular disease: A study based on adenosine stress echocardiography. Front Cardiovasc Med 2023; 10:1119785. [PMID: 37113699 PMCID: PMC10126338 DOI: 10.3389/fcvm.2023.1119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background Coronary microvascular dysfunction (CMD) is associated with increased cardiovascular events in patients with angina with non-obstructive coronary (ANOCA), especially heart failure. Conventional echocardiography is difficult to identify early alterations in cardiac function due to CMD. Methods We recruited 78 ANOCA patients. All patients underwent conventional echocardiography examination, adenosine stress echocardiography and examination of coronary flow reserve (CFR) by transthoracic echocardiography. Based on the CFR results, patients were divided into the CMD group (CFR < 2.5) and the non-CMD group (CFVR ≥ 2.5). Demographic data, conventional echocardiographic parameters, two-dimensional speckle-tracking echocardiography (2D-STE) parameters and myocardial work (MW) were compared between the two groups at rest and at stress. Logistic regression was used to analyze the factors associated with CMD. Results There was no significant difference in conventional echocardiography parameters, 2D-STE related indices or MW at rest between the two groups. Global work index (GWI), global contractive work (GCW), and global work efficiency (GWE) were lower in the CMD group than in the non-CMD group at stress (p = 0.040, 0.044, <0.001, respectively), but global waste work (GWW) and peak strain dispersion (PSD) were higher (both p < 0.001). GWI and GCW were associated with systolic blood pressure, diastolic blood pressure, product of heart rate and blood pressure, GLS and coronary flow velocity. While GWW was mainly correlated with PSD, GWE was correlated with PSD and GLS. In the non-CMD group, the responses to adenosine was mainly manifested as an increase in GWI, GCW and GWE (p = 0.001, 0.001, 0.009, respectively) and a decrease in PSD and GWW (p = 0.001, 0.015, respectively). In the CMD group, the response to adenosine was mainly manifested as an increase in GWW and a decrease in GWE (p = 0.002, and 0.006, respectively). In the multivariate regression analysis, we found that ΔGWW (difference in GWW before vs. after adenosine stress) and ΔPSD (difference in PSD before vs. after adenosine stress) were independent factors associated with CMD. The ROC curves showed that the composite prediction model consisting of ΔGWW and ΔPSD had excellent diagnostic value for CMD (area under the curve = 0.913). Conclusion In the present study, we found that CMD caused deterioration of myocardial work in ANOCA patients under adenosine stress, and that increased cardiac contraction asynchrony and wasted work may be the main changes caused by CMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Zhang
- Correspondence: Yu Zhang Mengmeng Li Mei Zhang
| | - Mengmeng Li
- Correspondence: Yu Zhang Mengmeng Li Mei Zhang
| | - Mei Zhang
- Correspondence: Yu Zhang Mengmeng Li Mei Zhang
| |
Collapse
|
241
|
Zhu H, Wang H, Zhu X, Chen Q, Fang X, Xu X, Ping Y, Gao B, Tong G, Ding Y, Chen T, Huang J. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther 2023; 40:76-101. [PMID: 36279093 DOI: 10.1007/s12325-022-02343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
Coronary microvascular dysfunction (CMD) refers to a group of disorders affecting the structure and function of coronary microcirculation and is associated with an increased risk of major adverse cardiovascular events. At present, great progress has been made in the diagnosis of CMD, but there is no specific treatment for it because of the complexity of CMD pathogenesis. Vascular dysfunction is one of the important causes of CMD, but previous reviews mostly considered microvascular dysfunction as a whole abnormality so the obtained conclusions are skewed. The coronary microvascular function is co-regulated by multiple mechanisms, and the mechanisms by which microvessels of different luminal diameters are regulated vary. The main purpose of this review is to revisit the mechanisms by which coronary microvessels at different diameters regulate coronary microcirculation through integrated sequential activation and briefly discuss the pathogenesis, diagnosis, and treatment progress of CMD from this perspective.
Collapse
Affiliation(s)
- Houyong Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Hanxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyu Zhu
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaojiang Fang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaoqun Xu
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yan Ping
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Beibei Gao
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Guoxin Tong
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Ding
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Tielong Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
242
|
Pruthi S, Siddiqui E, Smilowitz NR. Beyond Coronary Artery Disease: Assessing the Microcirculation. Interv Cardiol Clin 2023; 12:119-129. [PMID: 36372455 PMCID: PMC10019932 DOI: 10.1016/j.iccl.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ischemic heart disease (IHD) affects more than 20 million adults in the United States. Although classically attributed to atherosclerosis of the epicardial coronary arteries, nearly half of patients with stable angina and IHD who undergo invasive coronary angiography do not have obstructive epicardial coronary artery disease. Ischemia with nonobstructive coronary arteries is frequently caused by microvascular angina with underlying coronary microvascular dysfunction (CMD). Greater understanding the pathophysiology, diagnosis, and treatment of CMD holds promise to improve clinical outcomes of patients with ischemic heart disease.
Collapse
Affiliation(s)
- Sonal Pruthi
- Division of Cardiology, Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Emaad Siddiqui
- Division of Cardiology, Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Nathaniel R Smilowitz
- Division of Cardiology, Department of Medicine, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA; Cardiology Section, Department of Medicine, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, NY 10010, USA; The Leon H. Charney Division of Cardiology, NYU Langone Health, NYU School of Medicine, 423 East 23rd Street, 12-West, New York, NY 10010, USA.
| |
Collapse
|
243
|
Bland A, Chuah E, Meere W, Ford TJ. Targeted Therapies for Microvascular Disease. Interv Cardiol Clin 2023; 12:131-139. [PMID: 36372457 DOI: 10.1016/j.iccl.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a common cause of ischemia but no obstructive coronary artery disease that results in an inability of the coronary microvasculature to meet myocardial oxygen demand. CMD is challenging to diagnose and manage due to a lack of mechanistic research and targeted therapy. Recent evidence suggests we can improved patient outcomes by stratifying antianginal therapies according to the diagnosis revealed by invasive assessment of the coronary microcirculation. This review article appraises the evidence for management of CMD, which includes treatment of cardiovascular risk, antianginal therapy and therapy for atherosclerosis.
Collapse
Affiliation(s)
- Adam Bland
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Eunice Chuah
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - William Meere
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Thomas J Ford
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia; University of Glasgow, ICAMS, G12 8QQ Glasgow, UK.
| |
Collapse
|
244
|
Dutta U, Sinha A, Demir OM, Ellis H, Rahman H, Perera D. Coronary Slow Flow Is Not Diagnostic of Microvascular Dysfunction in Patients With Angina and Unobstructed Coronary Arteries. J Am Heart Assoc 2022; 12:e027664. [PMID: 36565193 PMCID: PMC9973578 DOI: 10.1161/jaha.122.027664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Guidelines recommend that coronary slow flow phenomenon (CSFP), defined as corrected thrombolysis in myocardial infarction frame count (CTFC) >$$ > $$27, can diagnose coronary microvascular dysfunction (CMD) in patients with angina and nonobstructed coronary arteries. CSFP has also historically been regarded as a sign of coronary endothelial dysfunction (CED). We sought to validate the utility of CTFC, as a binary classifier of CSFP and as a continuous variable, to diagnose CMD and CED. Methods and Results Patients with angina and nonobstructed coronary arteries had simultaneous coronary pressure and flow velocity measured using a dual sensor-tipped guidewire during rest, adenosine-mediated hyperemia, and intracoronary acetylcholine infusion. CMD was defined as the inability to augment coronary blood flow in response to adenosine (coronary flow reserve <2.5) and CED in response to acetylcholine (acetylcholine flow reserve ≤1.5); 152 patients underwent assessment using adenosine, of whom 82 underwent further acetylcholine testing. Forty-six patients (30%) had CSFP, associated with lower flow velocity and higher microvascular resistance as compared with controls (16.5±$$ \pm $$6.9 versus 20.2±$$ \pm $$6.9 cm/s; P=0.001 and 6.26±$$ \pm $$1.83 versus 5.36±$$ \pm $$1.83 mm Hg/cm/s; P=0.009, respectively). However, as a diagnostic test, CSFP had poor sensitivity and specificity for both CMD (26.7% and 65.2%) and CED (21.1% and 56.0%). Furthermore, on receiver operating characteristics analyses, CTFC could not predict CMD or CED (area under the curve, 0.41 [95% CI, 0.32%-0.50%] and 0.36 [95% CI, 0.23%-0.49%], respectively). Conclusions In patients with angina and nonobstructed coronary arteries, CSFP and CTFC are not diagnostic of CMD or CED. Guidelines supporting the use of CTFC in the diagnosis of CMD should be revisited.
Collapse
Affiliation(s)
- Utkarsh Dutta
- School of Cardiovascular Medicine and SciencesBritish Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King’s College LondonLondonUK
| | - Aish Sinha
- School of Cardiovascular Medicine and SciencesBritish Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King’s College LondonLondonUK
| | - Ozan M. Demir
- School of Cardiovascular Medicine and SciencesBritish Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King’s College LondonLondonUK
| | - Howard Ellis
- School of Cardiovascular Medicine and SciencesBritish Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King’s College LondonLondonUK
| | - Haseeb Rahman
- School of Cardiovascular Medicine and SciencesBritish Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King’s College LondonLondonUK
| | - Divaka Perera
- School of Cardiovascular Medicine and SciencesBritish Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, King’s College LondonLondonUK
| |
Collapse
|
245
|
Perera D, Berry C, Hoole SP, Sinha A, Rahman H, Morris PD, Kharbanda RK, Petraco R, Channon K. Invasive coronary physiology in patients with angina and non-obstructive coronary artery disease: a consensus document from the coronary microvascular dysfunction workstream of the British Heart Foundation/National Institute for Health Research Partnership. Heart 2022; 109:88-95. [PMID: 35318254 PMCID: PMC9811089 DOI: 10.1136/heartjnl-2021-320718] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Nearly half of all patients with angina have non-obstructive coronary artery disease (ANOCA); this is an umbrella term comprising heterogeneous vascular disorders, each with disparate pathophysiology and prognosis. Approximately two-thirds of patients with ANOCA have coronary microvascular disease (CMD). CMD can be secondary to architectural changes within the microcirculation or secondary to vasomotor dysfunction. An inability of the coronary vasculature to augment blood flow in response to heightened myocardial demand is defined as an impaired coronary flow reserve (CFR), which can be measured non-invasively, using imaging, or invasively during cardiac catheterisation. Impaired CFR is associated with myocardial ischaemia and adverse cardiovascular outcomes.The CMD workstream is part of the cardiovascular partnership between the British Heart Foundation and The National Institute for Health Research in the UK and comprises specialist cardiac centres with expertise in coronary physiology assessment. This document outlines the two main modalities (thermodilution and Doppler techniques) for estimation of coronary flow, vasomotor testing using acetylcholine, and outlines a standard operating procedure that could be considered for adoption by national networks. Accurate and timely disease characterisation of patients with ANOCA will enable clinicians to tailor therapy according to their patients' coronary physiology. This has been shown to improve patients' quality of life and may lead to improved cardiovascular outcomes in the long term.
Collapse
Affiliation(s)
- Divaka Perera
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Colin Berry
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- Cardiology, Golden Jubilee National Hospital, Clydebank, UK
| | | | - Aish Sinha
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Haseeb Rahman
- British Heart Foundation Centre of Excellence and National Institute for Health Research Biomedical Research Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Paul D Morris
- Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | | | - Ricardo Petraco
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Keith Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
246
|
Abstract
Vasospastic angina is a well-established cause of chest pain that is caused by coronary artery spasm. It can be clinically diagnosed during a spontaneous episode by documenting nitrate-responsive rest angina with associated transient ischaemic ECG changes but more often requires provocative coronary spasm testing with acetylcholine during coronary angiography. Vasospastic angina may result in recurrent episodes of angina (including nocturnal angina), which can progress on to major adverse cardiac events. Calcium channel blockers are first-line therapy for this condition, given their anti-anginal and cardioprotective benefits. Despite an established diagnostic and therapeutic management pathway for vasospastic angina, this diagnosis is often overlooked in patients presenting with chest pain. Thus, there is need for increased clinical awareness of vasospastic angina to improve outcomes in affected patients.
Collapse
Affiliation(s)
- John F Beltrame
- Discipline of Medicine, The University of Adelaide Adelaide Medical School, Adelaide, South Australia, Australia .,Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, Australia.,Basil Hetzel Institute, Adelaide, South Australia, Australia
| |
Collapse
|
247
|
Yamazaki T, Saito Y, Yamashita D, Kitahara H, Kobayashi Y. Validation of pressure-bounded coronary flow reserve using invasive coronary physiologic assessment. Heart Vessels 2022; 38:626-633. [PMID: 36484813 DOI: 10.1007/s00380-022-02215-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Coronary flow reserve (CFR) represents entire coronary compensatory capacity. While CFR assessment is recommended to identify patients at an increased risk of cardiovascular events and coronary microvascular dysfunction, invasive CFR measurement is often technically challenging. Although not well validated yet, pressure-bounded CFR (pbCFR) has been proposed as a simple surrogate to estimate impaired CFR. In this study, we evaluated coronary physiological characteristics of low pbCFR using detailed invasive assessment. Invasive physiological assessment including resting ratio of distal coronary pressure to aortic pressure (Pd/Pa), fractional flow reserve (FFR), resting and hyperemic mean transit time, index of microcirculatory resistance (IMR), CFR, resistive reserve ratio, and microvascular resistance reserve (MRR) was performed in 107 patients in the left anterior descending coronary artery. pbCFR was calculated only with resting Pd/Pa and FFR. Patients were divided into low pbCFR and non-low pbCFR groups. Of 107 patients, 50 (46.7%) had low pbCFR. FFR (0.90 ± 0.05 vs. 0.83 ± 0.05, p < 0.001), hyperemic mean transit time (0.27 ± 0.17 vs. 0.21 ± 0.12, p = 0.04), and IMR (20.4 ± 13.2 vs. 15.0 ± 9.1, p = 0.01) were significantly higher in the low pbCFR group than their counterpart. While directly measured CFR did not differ significantly (4.4 ± 2.3 vs. 5.1 ± 2.8, p = 0.18), MRR was lower in the low pbCFR group (5.4 ± 3.0 vs. 6.8 ± 3.8, p = 0.047). The rates of CFR < 2.0 and IMR ≥ 25 were not significantly different between the 2 groups. In conclusion, although CFR did not differ significantly, IMR and MRR were impaired in patients with low pbCFR, suggesting pbCFR as a potential surrogate of coronary microvascular function in clinical practice.
Collapse
Affiliation(s)
- Tatsuro Yamazaki
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan.
| | - Daichi Yamashita
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| |
Collapse
|
248
|
Suda A, Takahashi J, Schwidder M, Ong P, Ang D, Berry C, Camici PG, Crea F, Carlos Kaski J, Pepine C, Rimoldi O, Sechtem U, Yasuda S, Beltrame JF, Noel Bairey Merz C, Shimokawa H, on behalf of the Coronary Vasomotor Disorders International Study COVADIS Group. Prognostic association of plasma NT-proBNP levels in patients with microvascular angina -A report from the international cohort study by COVADIS. IJC HEART & VASCULATURE 2022; 43:101139. [PMID: 36338319 PMCID: PMC9626381 DOI: 10.1016/j.ijcha.2022.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
BackgroudThe aim of this study was to assess the prognostic association of plasma levels of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) with clinical outcomes of patients with microvascular angina (MVA). Methods In this international prospective cohort study of MVA by the Coronary Vasomotor Disorders International Study (COVADIS) group, we examined the association between plasma NT-proBNP levels and the incidence of major adverse cardiovascular events (MACE), including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and hospitalization due to heart failure or unstable angina. Results We examined a total of 226 MVA patients (M/F 66/160, 61.9 ± 10.2 [SD] yrs.) with both plasma NT-proBNP levels and echocardiography data available at the time of enrolment. The median level of NT-proBNP level was 94 pg/ml, while mean left ventricular ejection fraction was 69.2 ± 10.9 % and E/e' 10.7 ± 5.2. During follow-up period of a median of 365 days (IQR 365-482), 29 MACEs occurred. Receiver-operating characteristics curve analysis identified plasma NT-proBNP level of 78 pg/ml as the optimal cut-off value. Multivariable logistic regression analysis revealed that plasma NT-proBNP level ≥ 78 pg/ml significantly correlated with the incidence of MACE (odds ratio (OR) [95 % confidence interval (CI)] 3.11[1.14-8.49], P = 0.001). Accordingly, Kaplan-Meier survival analysis showed a significantly worse prognosis in the group with NT-proBNP ≥ 78 (log-rank test, P < 0.03). Finally, a significant positive correlation was observed between plasma NT-proBNP levels and E/e' (R = 0.445, P < 0.0001). Conclusions These results indicate that plasma NT-proBNP levels may represent a novel prognostic biomarker for MVA patients.
Collapse
Affiliation(s)
- Akira Suda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maike Schwidder
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Peter Ong
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Daniel Ang
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Paolo G. Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| | - Filippo Crea
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Juan Carlos Kaski
- Cardiovascular and Cell Sciences Res Institute, St George’s, University of London, UK
| | - Carl Pepine
- Division of Cardiovascular Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Ornella Rimoldi
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Udo Sechtem
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - John F. Beltrame
- The Discipline of Medicine, University of Adelaide, Basil Hetzel Institute, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- International University of Health and Welfare, Narita, Japan
| | - on behalf of the Coronary Vasomotor Disorders International Study COVADIS Group
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
- Vita Salute University and San Raffaele Hospital, Milan, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Cardiovascular and Cell Sciences Res Institute, St George’s, University of London, UK
- Division of Cardiovascular Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy
- The Discipline of Medicine, University of Adelaide, Basil Hetzel Institute, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- International University of Health and Welfare, Narita, Japan
| |
Collapse
|
249
|
Ang DTY, Berry C, Kaski JC. Phenotype-based management of coronary microvascular dysfunction. J Nucl Cardiol 2022; 29:3332-3340. [PMID: 35672569 PMCID: PMC9834338 DOI: 10.1007/s12350-022-03000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023]
Abstract
40-70% of patients undergoing invasive coronary angiography with signs and symptoms of ischemia are found to have no obstructive coronary artery disease (INOCA). When this heterogeneous group undergo coronary function testing, approximately two-thirds have demonstrable coronary microvascular dysfunction (CMD), which is independently associated with adverse prognosis. There are four distinct phenotypes, or subgroups, each with unique pathophysiological mechanisms and responses to therapies. The clinical phenotypes are microvascular angina, vasospastic angina, mixed (microvascular and vasospastic), and non-cardiac symptoms (reclassification as non-INOCA). The Coronary Vasomotor Disorders International Study Group (COVADIS) have proposed standardized criteria for diagnosis. There is growing awareness of these conditions among clinicians and within guidelines. Testing for CMD can be done using invasive or non-invasive modalities. The CorMicA study advocates the concept of 'functional angiography' to guide stratified medical therapy. Therapies broadly fall into two categories: those that modulate cardiovascular risk and those to alleviate angina. Management should be tailored to the individual, with periodic reassessment for efficacy. Phenotype-based management is a worthy endeavor for both patients and clinicians, aligning with the concept of 'precision medicine' to improve prognosis, symptom burden, and quality of life. Here, we present a contemporary approach to the phenotype-based management of patients with INOCA.
Collapse
Affiliation(s)
- Daniel Tze Yee Ang
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Juan-Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, United Kingdom
| |
Collapse
|
250
|
Divakaran S, Caron JP, Zhou W, Hainer J, Bibbo CF, Skali H, Taqueti VR, Dorbala S, Blankstein R, Groarke JD, Nohria A, Di Carli MF. Coronary vasomotor dysfunction portends worse outcomes in patients with breast cancer. J Nucl Cardiol 2022; 29:3072-3081. [PMID: 34820770 PMCID: PMC9126993 DOI: 10.1007/s12350-021-02825-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Impaired MFR in the absence of flow-limiting CAD is associated with adverse events. Cardiovascular disease is an important cause of morbidity and mortality in patients with breast cancer. We sought to test the utility of MFR to predict outcomes in a cohort of patients with breast cancer. METHODS We retrospectively studied consecutive patients with breast cancer or breast cancer survivors who underwent cardiac stress PET imaging from 2006 to 2017 at Brigham and Women's Hospital. Patients with a history of clinically overt CAD, LVEF < 45%, or abnormal myocardial perfusion were excluded. Subjects were followed from time of PET to the occurrence of a first major adverse cardiovascular event (MACE) and all-cause death. RESULTS The final cohort included 87 patients (median age 69.0 years, 98.9% female, mean MFR 2.05). Over a median follow-up of 7.6 years after PET, the lowest MFR tertile was associated with higher cumulative incidence of MACE (adjusted subdistribution hazard ratio 4.91; 95% CI 1.68-14.38; p = 0.004) when compared with the highest MFR tertile. CONCLUSIONS In patients with breast cancer, coronary vasomotor dysfunction was associated with incident cardiovascular events. MFR may have potential as a risk stratification biomarker among patients with/survivors of breast cancer.
Collapse
Affiliation(s)
- Sanjay Divakaran
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse P Caron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wunan Zhou
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
| | - Jon Hainer
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
| | - Courtney F Bibbo
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
| | - Hicham Skali
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
| | - Sharmila Dorbala
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
| | - Ron Blankstein
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Groarke
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anju Nohria
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, ASB-L1 037C, Boston, MA, 02115, USA.
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|