201
|
Kimball AS, Webb TJ. The Roles of Radiotherapy and Immunotherapy for the Treatment of Lymphoma. MOLECULAR AND CELLULAR PHARMACOLOGY 2013; 5:27-38. [PMID: 24648864 PMCID: PMC3955882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lymphoma is rising in incidence and there is a continued need for new and novel therapeutic options. Lymphomas are extremely radiosensitive, but the majority of patients are not candidates for involved field radiation therapy. An intact immune system has a critical role in suppressing lymphomagenesis. Here we discuss the contribution of various components of the immune system in suppressing the development of lymphoma, as elucidated from mouse models. We review the nature of the immune response to lymphoma in non-immunocompromised patients. Finally, we discuss the potential role of immunomodulation, in concert with radiation therapy, as a component of future therapeutic strategies for lymphoma.
Collapse
Affiliation(s)
- Amy S Kimball
- Departments of Medicine and Microbiology and Immunology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tonya J Webb
- Departments of Medicine and Microbiology and Immunology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
202
|
Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, Alfieri A, Rothman J, Guha C. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother 2012; 61:2227-38. [PMID: 22644735 PMCID: PMC11028516 DOI: 10.1007/s00262-012-1257-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Radiation therapy (RT) is an integral part of prostate cancer treatment across all stages and risk groups. Immunotherapy using a live, attenuated, Listeria monocytogenes-based vaccines have been shown previously to be highly efficient in stimulating anti-tumor responses to impact on the growth of established tumors in different tumor models. Here, we evaluated the combination of RT and immunotherapy using Listeria monocytogenes-based vaccine (ADXS31-142) in a mouse model of prostate cancer. Mice bearing PSA-expressing TPSA23 tumor were divided to 5 groups receiving no treatment, ADXS31-142, RT (10 Gy), control Listeria vector and combination of ADXS31-142 and RT. Tumor growth curve was generated by measuring the tumor volume biweekly. Tumor tissue, spleen, and sera were harvested from each group for IFN-γ ELISpot, intracellular cytokine assay, tetramer analysis, and immunofluorescence staining. There was a significant tumor growth delay in mice that received combined ADXS31-142 and RT treatment as compared with mice of other cohorts and this combined treatment causes complete regression of their established tumors in 60 % of the mice. ELISpot and immunohistochemistry of CD8+ cytotoxic T Lymphocytes (CTL) showed a significant increase in IFN-γ production in mice with combined treatment. Tetramer analysis showed a fourfold and a greater than 16-fold increase in PSA-specific CTLs in animals receiving ADXS31-142 alone and combination treatment, respectively. A similar increase in infiltration of CTLs was observed in the tumor tissues. Combination therapy with RT and Listeria PSA vaccine causes significant tumor regression by augmenting PSA-specific immune response and it could serve as a potential treatment regimen for prostate cancer.
Collapse
Affiliation(s)
- Raquibul Hannan
- Department of Radiation Oncology, UT Southwestern Medical Center, 5801 Forest Park Rd., Dallas, TX, 75390-9183, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Heery CR, Hodge JW, Gulley JL. Combining radiation and therapeutic cancer vaccines: a synergistic approach. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The role of radiotherapy for prevention of recurrence of breast cancer is well established. Preclinical data indicate that the combination of therapeutic cancer vaccines and radiotherapy may be synergistic. Radiation can induce immunogenic cell death, or, at sublethal doses, immunogenic modulation in tumor cells, making them more amenable to T-cell-mediated death. Radiation also stimulates microenvironment effects that attract immune cells and improve their functional capacity. The capacity of radiation to induce the abscopal effect appears to be immune mediated and may be related to the other effects described. This phenomenon may indicate the capacity of radiation to induce antigen spreading, causing broader and deeper immune activation than a vaccine alone. This review discusses preclinical and clinical findings of radiation-induced immune modulation, preclinical evidence of synergy with vaccine therapy, and the rationale for clinical trials combining these treatment modalities in breast cancer.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology & Biology, National Cancer Institute, National Institutes of Health, Room 13N208, MSC-1750, 10 Center Drive, Building 10, Bethesda, MD 20892, USA
| | - James W Hodge
- Laboratory of Tumor Immunology & Biology, National Cancer Institute, National Institutes of Health, Room 13N208, MSC-1750, 10 Center Drive, Building 10, Bethesda, MD 20892, USA
| | - James L Gulley
- Laboratory of Tumor Immunology & Biology, National Cancer Institute, National Institutes of Health, Room 13N208, MSC-1750, 10 Center Drive, Building 10, Bethesda, MD 20892, USA
| |
Collapse
|
204
|
Weiss EM, Wunderlich R, Ebel N, Rubner Y, Schlücker E, Meyer-Pittroff R, Ott OJ, Fietkau R, Gaipl US, Frey B. Selected anti-tumor vaccines merit a place in multimodal tumor therapies. Front Oncol 2012; 2:132. [PMID: 23087898 PMCID: PMC3466463 DOI: 10.3389/fonc.2012.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022] Open
Abstract
Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected immune therapies.
Collapse
Affiliation(s)
- Eva-Maria Weiss
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Levy A, Chargari C, Cheminant M, Simon N, Bourgier C, Deutsch E. Radiation therapy and immunotherapy: implications for a combined cancer treatment. Crit Rev Oncol Hematol 2012; 85:278-87. [PMID: 23036459 DOI: 10.1016/j.critrevonc.2012.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/17/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023] Open
Abstract
Ionizing radiation (IR) is used as primary treatment for numerous localized cancers. Although it is usually described as an immunosuppressive modality, there are new preclinical evidences suggesting that IR could have also generated substantial changes in the tumor microenvironment, including triggering an inflammatory process. This finding implies that radiotherapy could both modulate tumor immunity and have out-of-field activity by recruiting biological effectors. There are numerous uncertainties regarding the true biological impact of radiation on tumor immunogenicity, but some preclinical studies established the proof of concept that combining IR with strategies modifying immunology could enhance antitumor effects. From these findings, clinical trials are now analyzing how immunotherapy and radiation work while given together, with promising preliminary results. This review aims at summarizing the recent developments regarding the impact of IR on tumor immunity, with focus on potential therapeutic targets.
Collapse
Affiliation(s)
- Antonin Levy
- Inserm U1030, Radiothérapie moléculaire, Université Paris XI, le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
206
|
Heat shock proteins, autoimmunity, and cancer treatment. Autoimmune Dis 2012; 2012:486069. [PMID: 23056925 PMCID: PMC3465951 DOI: 10.1155/2012/486069] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022] Open
Abstract
Heat shock proteins (HSPs) have been linked to the therapy of both cancer and inflammatory diseases, approaches that utilize contrasting immune properties of these proteins. It would appear that HSP family members Hsp60 and Hsp70, whether from external sources or induced locally during inflammation, can be processed by antigen-presenting cells and that HSP-derived epitopes then activate regulatory T cells and suppress inflammatory diseases. These effects also extend to the HSP-rich environments of cancer cells where elevated HSP concentrations may participate in the immunosuppressive tumor milieu. However, HSPs can also be important mediators of tumor immunity. Due to their molecular chaperone properties, some HSPs can bind tumor-specific peptides and deliver them deep into the antigen-processing pathways of antigen-presenting cells (APCs). In this context, HSP-based vaccines can activate tumor-specific immunity, trigger the proliferation and CTL capabilities of cancer-specific CD8+ T cells, and inhibit tumor growth. Further advances in HSP-based anticancer immunotherapy appear to involve improving the properties of the molecular chaperone vaccines by enhancing their antigen-binding properties and combating the immunosuppressive tumor milieu to permit programming of active CTL capable of penetrating the tumor milieu and specifically targeting tumor cells.
Collapse
|
207
|
Kwilas AR, Donahue RN, Bernstein MB, Hodge JW. In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer. Front Oncol 2012; 2:104. [PMID: 22973551 PMCID: PMC3434425 DOI: 10.3389/fonc.2012.00104] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023] Open
Abstract
Radiation has long been the standard of care for many types of cancer. It is employed to locally eradicate tumor cells as well as alter tumor stroma with either curative or palliative intent. Radiation-induced cell damage is an immunologically active process in which danger signals are released that stimulate immune cells to phagocytose and present locally released tumor-associated antigens (TAAs). Recent studies have indicated that radiotherapy can also alter the phenotype of cancer cells that remain after treatment. These cells upregulate TAAs as well as markers, including major histocompatibility complex and costimulatory molecules, that make them much more immunostimulatory. As our understanding of the immunomodulatory effects of radiation has improved, interest in combining this type of therapy with immune-based therapies for the treatment of cancer has grown. Therapeutic cancer vaccines have been shown to initiate the dynamic process of host immune system activation, culminating in the recognition of host cancer cells as foreign. The environment created after radiotherapy can be exploited by active therapeutic cancer vaccines in order to achieve further, more robust immune system activation. This review highlights preclinical studies that have examined the alteration of the tumor microenvironment with regard to immunostimulatory molecules following different types of radiotherapy, including external beam radiation, radiolabeled monoclonal antibodies, bone-seeking radionuclides, and brachytherapy. We also emphasize how combination therapy with a cancer vaccine can exploit these changes to achieve improved therapeutic benefit. Lastly, we describe how these laboratory findings are translating into clinical benefit for patients undergoing combined radiotherapy and cancer vaccination.
Collapse
Affiliation(s)
- Anna R. Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Renee N. Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - Michael B. Bernstein
- Department of Radiation Oncology, Albert Einstein College of MedicineNew York, NY, USA
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
208
|
Ruocco MG, Pilones KA, Kawashima N, Cammer M, Huang J, Babb JS, Liu M, Formenti SC, Dustin ML, Demaria S. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J Clin Invest 2012; 122:3718-30. [PMID: 22945631 DOI: 10.1172/jci61931] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
A promising strategy for cancer immunotherapy is to disrupt key pathways regulating immune tolerance, such as cytotoxic T lymphocyte-associated protein 4 (CTLA-4). However, the determinants of response to anti-CTLA-4 mAb treatment remain incompletely understood. In murine models, anti-CTLA-4 mAbs alone fail to induce effective immune responses to poorly immunogenic tumors but are successful when combined with additional interventions, including local ionizing radiation (IR) therapy. We employed an established model based on control of a mouse carcinoma cell line to study endogenous tumor-infiltrating CD8+ T lymphocytes (TILs) following treatment with the anti-CTLA-4 mAb 9H10. Alone, 9H10 monotherapy reversed the arrest of TILs with carcinoma cells in vivo. In contrast, the combination of 9H10 and IR restored MHC class I-dependent arrest. After implantation, the carcinoma cells had reduced expression of retinoic acid early inducible-1 (RAE-1), a ligand for natural killer cell group 2D (NKG2D) receptor. We found that RAE-1 expression was induced by IR in vivo and that anti-NKG2D mAb blocked the TIL arrest induced by IR/9H10 combination therapy. These results demonstrate that anti-CTLA-4 mAb therapy induces motility of TIL and that NKG2D ligation offsets this effect to enhance TILs arrest and antitumor activity.
Collapse
Affiliation(s)
- Maria Grazia Ruocco
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Finkelstein SE, Rodriguez F, Dunn M, Farmello MJ, Smilee R, Janssen W, Kang L, Chuang T, Seigne J, Pow-Sang J, Torres-Roca JF, Heysek R, Biagoli M, Shankar R, Scott J, Antonia S, Gabrilovich D, Fishman M. Serial assessment of lymphocytes and apoptosis in the prostate during coordinated intraprostatic dendritic cell injection and radiotherapy. Immunotherapy 2012; 4:373-82. [PMID: 22512631 DOI: 10.2217/imt.12.24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local radiotherapy plus intratumoral syngeneic dendritic cell injection can mediate apoptosis/cell death and immunological tumor eradication in murine models. A novel method of coordinated intraprostatic, autologous dendritic cell injection together with radiation therapy was prospectively evaluated in five HLA-A2(+) subjects with high-risk, localized prostate cancer, using androgen suppression, 45 Gy external beam radiation therapy in 25 fractions over 5 weeks, dendritic cell injections after fractions 5, 15 and 25 and then interstitial radioactive seed placement. Serial prostate biopsies before and during treatment showed increased apoptotic cells and parenchymal distribution of CD8(+) cells. CD8(+) T-cell responses to test peptides were assessed using an enzyme-linked immunosorbent spot IFN-γ production assay, demonstrating some prostate cancer-specific protein-derived peptides associated with increased titer. In conclusion, the technique was feasible and well-tolerated and specific immune responses were observable. Future trials could further test the utility of this approach and improve on temporal coordination of intratumoral dendritic cell introduction with particular timelines of therapy-induced apoptosis.
Collapse
|
210
|
Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol 2012; 2:102. [PMID: 22937525 PMCID: PMC3426842 DOI: 10.3389/fonc.2012.00102] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock Rostock, Germany
| | | | | | | |
Collapse
|
211
|
Mason KA, Hunter NR. CpG plus radiotherapy: a review of preclinical works leading to clinical trial. Front Oncol 2012; 2:101. [PMID: 22912936 PMCID: PMC3418655 DOI: 10.3389/fonc.2012.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/28/2012] [Indexed: 02/05/2023] Open
Abstract
Studies performed three decades ago in our laboratory supported the hypothesis that radiation efficacy may be augmented by bacterial extracts that stimulate non-specific systemic antitumor immune responses. Application to the clinic was halted by unacceptable side effects and toxicities resulting from exposure to whole bacterial pathogens. Later scientific advances demonstrated that DNA isolated from bacteria was immunostimulatory and could be reproduced with synthetic oligodeoxynucleotides (ODNs), thus fueling the transition from bugs to drugs. Unmethylated CpG motifs within bacterial DNA induce activation of Toll-like receptor 9 and subsequently activate antigen-specific cellular immune responses. CpG ODNs have demonstrated favorable toxicity profiles in phase I clinical trials. We showed that this potent immunoadjuvant can be used in combination with radiation therapy to enhance local and systemic responses of several murine tumors. Studies demonstrated that enhanced tumor response is mediated in part by the host immune system. Antitumor efficacy was diminished in immunocompromised mice. Animals cured by combination of radiation and CpG ODN were resistant to subsequent tumor rechallenge. This body of work contributes to our understanding of the dynamic interplay between tumor irradiation and the host immune system and may facilitate translation to clinical trials.
Collapse
Affiliation(s)
- Kathy A Mason
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center Houston, TX, USA
| | | |
Collapse
|
212
|
Higano CS. New treatment options for patients with metastatic castration-resistant prostate cancer. Cancer Treat Rev 2012; 38:340-5. [DOI: 10.1016/j.ctrv.2011.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
213
|
[Biologic modulation of ionizing radiation by Toll-like receptors agonists: towards an increase in the therapeutic index of radiotherapy?]. Bull Cancer 2012; 99:545-50. [PMID: 22522695 DOI: 10.1684/bdc.2012.1578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toll-like receptors are ubiquitous and very well conserved throughout evolution, with important functions mediating innate and adaptative immunological mechanisms. The importance of these receptors and their agonists has been recently pointed out in immunology and cancerology, although the accurate underlying mechanisms are still under investigation. The association of agonists of these receptors with ionizing radiation has been studied in preclinical experiments with promising results. Part of these compounds is flagellin, which seems to be able to modulate the radiosensitivity of both tumors and healthy tissues.
Collapse
|
214
|
Harnessing oncolytic virus-mediated antitumor immunity in an infected cell vaccine. Mol Ther 2012; 20:1791-9. [PMID: 22760544 DOI: 10.1038/mt.2012.128] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSV's extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.
Collapse
|
215
|
Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin Oncol 2012; 39:323-39. [PMID: 22595055 PMCID: PMC3356994 DOI: 10.1053/j.seminoncol.2012.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic cancer vaccines are a unique treatment modality in that they initiate a dynamic process of activating the host immune system, which can then be exploited by concurrent or subsequent therapies. The addition of immunotherapy to standard-of-care cancer therapies has shown evidence of efficacy in preclinical models and in the clinical setting. This review examines the preclinical and clinical interactions between vaccine-mediated tumor-specific immune responses and local radiation, systemic chemotherapy, or select small molecule inhibitors, as well as the potential synergy between these modalities.
Collapse
Affiliation(s)
- James W Hodge
- Recombinant Vaccine Group, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
216
|
Zhang H, Liu L, Yu D, Kandimalla ER, Sun HB, Agrawal S, Guha C. An in situ autologous tumor vaccination with combined radiation therapy and TLR9 agonist therapy. PLoS One 2012; 7:e38111. [PMID: 22666458 PMCID: PMC3364192 DOI: 10.1371/journal.pone.0038111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/01/2012] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Recent studies have shown that a new generation of synthetic agonist of Toll-like receptor (TLR) 9 consisting a 3'-3'-attached structure and a dCp7-deaza-dG dinucultodie shows more potent immunostimulatory effects in both mouse and human than conventional CpG oligonucleotides. Radiation therapy (RT) provides a source of tumor antigens that are released from dying, irradiated, tumor cells without causing systemic immunosuppression. We, therefore, examined effect of combining RT with a designer synthetic agonist of TLR9 on anti-tumoral immunity, primary tumor growth retardation and metastases in a murine model of lung cancer. METHODS Grouped C57BL/6 and congenic B cell deficient mice (B(-/-)) bearing footpad 3LL tumors were treated with PBS, TLR9 agonist, control oligonucelotide, RT or the combination of RT and TLR9 agonist. Immune phenotype of splenocytes and serum IFN-γ and IL-10 levels were analyzed by FACS and ELISA, 24 h after treatment. Tumor growth, lung metastases and survival rate were monitored and tumor specific antibodies in serum and deposition in tumor tissue were measured by ELISA and immunofluorescence. RESULTS TLR9 agonist expanded and activated B cells and plasmacytoid dendritic cells in wild-type mice and natural killer DCs (NKDCs) in B cell-deficient (B(-/-)) mice bearing ectopic Lewis lung adenocarcinoma (3LL). Combined RT with TLR9 agonist treatment inhibited 3LL tumor growth in both wild type and B(-/-) mice. A strong tumor-specific humoral immune response (titer: 1/3200) with deposition of mouse IgG auto-antibodies in tumor tissue were found in wildtype mice, whereas the number of tumor infiltrating NKDCs increased in B(-/-) mice following RT+ TLR9 agonist therapy. Furthermore, mice receiving combination therapy had fewer lung metastases and a higher survival than single treatment cohorts. CONCLUSIONS Combination therapy with TLR9 agonist and RT induces systemic anti-tumoral humoral response, augments tumoral infiltration of NKDCs, reduces pulmonary metastases and improves survival in a murine model of 3LL cancer.
Collapse
Affiliation(s)
- Huagang Zhang
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Dong Yu
- Idera Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | | | - Hui Bin Sun
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Orthopedics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Sudhir Agrawal
- Idera Pharmaceuticals, Inc., Cambridge, Massachusetts, United States of America
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
217
|
Immune response to sipuleucel-T in prostate cancer. Cancers (Basel) 2012; 4:420-41. [PMID: 24213318 DOI: 10.3390/cancers4020420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients' own antigen presenting cells (APCs) to prostatic acid phosphatase (PAP) fused with granulocyte-macrophage colony stimulating factor (GM-CSF) and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The optimal timing for immunotherapy, patient selection and best sequencing with other prostate cancer therapies remain to be determined. A better understanding of immune response may help address these issues.
Collapse
|
218
|
Immune response to sipuleucel-T in prostate cancer. Cancers (Basel) 2012. [PMID: 24213318 PMCID: PMC3712699 DOI: 10.3390/cancers4040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients' own antigen presenting cells (APCs) to prostatic acid phosphatase (PAP) fused with granulocyte-macrophage colony stimulating factor (GM-CSF) and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The optimal timing for immunotherapy, patient selection and best sequencing with other prostate cancer therapies remain to be determined. A better understanding of immune response may help address these issues.
Collapse
|
219
|
Ifeadi V, Garnett-Benson C. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways. PLoS One 2012; 7:e31762. [PMID: 22389673 PMCID: PMC3289623 DOI: 10.1371/journal.pone.0031762] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/18/2012] [Indexed: 01/01/2023] Open
Abstract
Background Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. Methodology/Principal Findings The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-XL and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. Conclusions/Significance Irradiation of tumor cells can overcome Fas and TRAIL resistance that is long lasting. Overall, results of these investigations suggest that non-lethal doses of radiation can be used to make human tumors more amenable to attack by anti-tumor effector molecules and cells.
Collapse
Affiliation(s)
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
220
|
Murshid A, Gong J, Stevenson MA, Calderwood SK. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 2012; 10:1553-68. [PMID: 22043955 DOI: 10.1586/erv.11.124] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular chaperone-peptide complexes extracted from tumors (heat shock protein [HSP] vaccines) have been intensively studied in the preceding two decades, proving to be safe and effective in treating a number of malignant diseases. They offer personalized therapy and target a cross-section of antigens expressed in patients' tumors. Future advances may rely on understanding the molecular underpinnings of this approach to immunotherapy. One property common to HSP vaccines is the ability to stimulate antigen uptake by scavenger receptors on the antigen-presenting cell surface and trigger T-lymphocyte activation. HSPs can also induce signaling through Toll-Like receptors in a range of immune cells and this may mediate the effectiveness of vaccines.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
221
|
Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, Moch H, Knuth A, von Boehmer L, van den Broek M. γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 2011; 6:e28217. [PMID: 22140550 PMCID: PMC3226680 DOI: 10.1371/journal.pone.0028217] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/03/2011] [Indexed: 12/28/2022] Open
Abstract
Background γ-radiation is an effective treatment for cancer. There is evidence that radiotherapy supports tumor-specific immunity. It was described that irradiation induces de novo protein synthesis and enhances antigen presentation, we therefore investigated whether γ-radiation results in increased expression of cancer-testis (CT) antigens and MHC-I, thus allowing efficient immunological control. This is relevant because the expression of CT-antigens and MHC-I on tumor cells is often heterogeneous. We found that the changes induced by γ-radiation promote the immunological recognition of the tumor, which is illustrated by the increased infiltration by lymphocytes after radiotherapy. Methods/Findings We compared the expression of CT-antigens and MHC-I in various cancer cell lines and fresh biopsies before and after in vitro irradiation (20 Gy). Furthermore, we compared paired biopsies that were taken before and after radiotherapy from sarcoma patients. To investigate whether the changed expression of CT-antigens and MHC-I is specific for γ-radiation or is part of a generalized stress response, we analyzed the effect of hypoxia, hyperthermia and genotoxic stress on the expression of CT-antigens and MHC-I. In vitro irradiation of cancer cell lines and of fresh tumor biopsies induced a higher or de novo expression of different CT-antigens and a higher expression of MHC-I in a time- and dose-dependent fashion. Importantly, we show that irradiation of cancer cells enhances their recognition by tumor-specific CD8+ T cells. The analysis of paired biopsies taken from a cohort of sarcoma patients before and after radiotherapy confirmed our findings and, in addition showed that irradiation resulted in higher infiltration by lymphocytes. Other forms of stress did not have an impact on the expression of CT-antigens or MHC-I. Conclusions Our findings suggest that γ-radiation promotes the immunological recognition of the tumor. We therefore propose that combining radiotherapy with treatments that support tumor specific immunity may result in increased therapeutic efficacy.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Beata Bode
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Kuno Lehmann
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Knuth
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Lotta von Boehmer
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
222
|
Lo TCT, Hsu FM, Chang CA, Cheng JCH. Branched α-(1,4) glucans from Lentinula edodes (L10) in combination with radiation enhance cytotoxic effect on human lung adenocarcinoma through the Toll-like receptor 4 mediated induction of THP-1 differentiation/activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11997-12005. [PMID: 21978170 DOI: 10.1021/jf202457r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work investigated the role of structure in the binding of polysaccharides from 10 regionally different strains of Lentinula edodes to Toll-like receptor 4 (TLR-4) on monocytes (THP-1) and the potential effect of this interaction on tumor cell viability. Principal component analysis and multiple linear regression identified arabinose, glucose 1 → 4 linkage, and molecular weights about 2700 and 534 kDa as the significant determinant factors associated with TLR-4 binding activity. The branched α-(1,4)-glucan (L10) had the strongest ability to bind to TLR-4 and induce THP-1 cell differentiation. L10 induction of the THP-1 cell differentiation, superoxide production, and cytokine production followed the TLR-4/MyD88/IKK/NFκB pathway. Coculture of irradiated human lung adenocarcinoma A549 cells with L10-activated THP-1 cells resulted in significantly decreased percentage of viable A549 cells from 66 to 37% (p = 0.018), increased levels of superoxide, interleukin-8, and RANTES, and decreased levels of angiogenin and vascular endothelial growth factor. The results indicate that L10-activated monocytes have the potential to boost the antitumor immune response and antitumor activity of radiotherapy.
Collapse
Affiliation(s)
- Tiffany Chien-Ting Lo
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
223
|
Jeon YH, Lee HW, Lee YL, Kim JE, Hwang MH, Jeong SY, Lee SW, Ahn BC, Ha JH, Lee J. Combined E7-dendritic cell-based immunotherapy and human sodium/iodide symporter radioiodine gene therapy with monitoring of antitumor effects by bioluminescent imaging in a mouse model of uterine cervical cancer. Cancer Biother Radiopharm 2011; 26:671-9. [PMID: 22091632 DOI: 10.1089/cbr.2011.1081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Using a uterine cervical cancer cell line expressing human papillomavirus (HPV) 16 E7 antigen and bioluminescent imaging (BLI), we evaluated the therapeutic potential of combined immunotherapy using transfected dendritic cells (DC-E7) and human sodium/iodide symporter (hNIS) radioiodine gene therapy in a xenograft animal cancer model. Dendritic cells expressing either E7 antigen (DC-E7) or no-insert (DC-no insert) were made for immunization materials, and murine uterine cervical cancer cell line coexpressing E7, firefly luciferase, hNIS, and EGFP genes (TC-1/FNG) were prepared for the animal tumor model. C57BL/6 mice were divided into five therapy groups (phosphate-buffered saline [PBS], DC-no insert, DC-E7, I-131, and DC-E7+I-131 groups). Single therapy with either DC-E7 or I-131 induced greater retardation in tumor growth compared with PBS or DC-no insert groups, and it resulted in some tumor-free mice (DC-E7 and I-131 groups, 40% and 20%, respectively). Combination therapy with DC-E7 and I-131 dramatically inhibited tumor growth, thus causing complete disappearance of tumors in all mice, and these effects were further confirmed by BLI in vivo. In conclusion, complete disappearance of the tumor was achieved with combined DC-E7 vaccination and hNIS radioiodine gene therapy in a mouse model with E7-expressing uterine cervical cancer, and serial BLIs successfully demonstrated antitumor effects in vivo.
Collapse
Affiliation(s)
- Yong Hyun Jeon
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Conventional external-beam radiation therapy is dedicated to the treatment of localized disease, whereas radioimmunotherapy represents an innovative tool for the treatment of local or diffuse tumors. Radioimmunotherapy involves the administration of radiolabeled monoclonal antibodies that are directed specifically against tumor-associated antigens or against the tumor microenvironment. Although many tumor-associated antigens have been identified as possible targets for radioimmunotherapy of patients with hematological or solid tumors, clinical success has so far been achieved mostly with radiolabeled antibodies against CD20 ((131)I-tositumomab and (90)Y-ibritumomab tiuxetan) for the treatment of lymphoma. In this Review, we provide an update on the current challenges aimed to improve the efficacy of radioimmunotherapy and discuss the main radiobiological issues associated with clinical radioimmunotherapy.
Collapse
|
225
|
In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 2011; 119:355-63. [PMID: 22045986 DOI: 10.1182/blood-2011-05-355222] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have developed and previously reported on a therapeutic vaccination strategy for indolent B-cell lymphoma that combines local radiation to enhance tumor immunogenicity with the injection into the tumor of a TLR9 agonist. As a result, antitumor CD8(+) T cells are induced, and systemic tumor regression was documented. Because the vaccination occurs in situ, there is no need to manufacture a vaccine product. We have now explored this strategy in a second disease: mycosis fungoides (MF). We treated 15 patients. Clinical responses were assessed at the distant, untreated sites as a measure of systemic antitumor activity. Five clinically meaningful responses were observed. The procedure was well tolerated and adverse effects consisted mostly of mild and transient injection site or flu-like symptoms. The immunized sites showed a significant reduction of CD25(+), Foxp3(+) T cells that could be either MF cells or tissue regulatory T cells and a similar reduction in S100(+), CD1a(+) dendritic cells. There was a trend toward greater reduction of CD25(+) T cells and skin dendritic cells in clinical responders versus nonresponders. Our in situ vaccination strategy is feasible also in MF and the clinical responses that occurred in a subset of patients warrant further study with modifications to augment these therapeutic effects. This study is registered at www.clinicaltrials.gov as NCT00226993.
Collapse
|
226
|
Reissfelder C, Timke C, Schmitz-Winnenthal H, Rahbari NN, Koch M, Klug F, Roeder F, Edler L, Debus J, Büchler MW, Beckhove P, Huber PE, Weitz J. A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer. BMC Cancer 2011; 11:419. [PMID: 21961577 PMCID: PMC3195202 DOI: 10.1186/1471-2407-11-419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Insufficient migration and activation of tumor specific effector T cells in the tumor is one of the main reasons for inadequate host anti-tumor immune response. External radiation seems to induce inflammation and activate the immune response. This phase I/II clinical trial aims to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with colorectal liver metastases. METHODS/DESIGN This is an investigator-initiated, prospective randomised, 4-armed, controlled Phase I/II trial. Patients undergoing elective hepatic resection due to colorectal cancer liver metastasis will be enrolled in the study. Patients will receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation targeted to their liver metastasis. Radiation will be applied by external beam radiotherapy using a 6 MV linear accelerator (Linac) with intensity modulated radiotherapy (IMRT) technique two days prior to surgical resection. All patients admitted to the Department of General-, Visceral-, and Transplantion Surgery, University of Heidelberg for elective hepatic resection are consecutively screened for eligibility into this trial, and written informed consent is obtained before inclusion. The primary objective is to assess the effect of active local external beam radiation dose on, tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include radiogenic treatment toxicity, postoperative morbidity and mortality, local tumor control and recurrence patterns, survival and quality of life. Furthermore, frequencies of systemic tumor reactive T cells in blood and bone marrow will be correlated with clinical outcome. DISCUSSION This is a randomized controlled patient blinded trial to assess the safety and efficiency of low dose radiotherapy on metastasis infiltrating T cells and thus potentially enhance the antitumor immune response. TRIAL REGISTRATION ClinicalTrials.gov: NCT01191632.
Collapse
Affiliation(s)
- Christoph Reissfelder
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
The field of radiation oncology has evolved, especially in the past 20 years. Advances in technology, particularly in computing power, software, and imaging, have fueled contributions to cancer care. It is currently fashionable to say that many of these advances have only served to increase costs of care without clear evidence of benefit, and certainly, efforts to evaluate the value of radiation oncology treatments are needed. However, it is undeniable that the future of radiation oncology depends on discovering such advances and to demonstrate that these increase the therapeutic index of treatment. Across the global radiation oncology community, investigations are proceeding in which innovative means are being used to achieve this goal. We review some of these novel methods to improve the therapeutic index of radiation therapy.
Collapse
|
228
|
Moravan MJ, Olschowka JA, Williams JP, O'Banion MK. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat Res 2011; 176:459-73. [PMID: 21787181 DOI: 10.1667/rr2587.1] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is commonly employed to treat cancers of the head and neck and is increasingly used to treat other central nervous system (CNS) disorders. Exceeding the radiation tolerance of normal CNS tissues can result in sequelae contributing to patient morbidity and mortality. Animal studies and clinical experience suggest that neuroinflammation plays a role in the etiology of these effects; however, detailed characterization of this response has been lacking. Therefore, a dose-time investigation of the neuroinflammatory response after single-dose cranial irradiation was performed using C57BL/6 mice. Consistent with previous reports, cranial irradiation resulted in multiphasic inflammatory changes exemplified by increased transcript levels of inflammatory cytokines, along with glial and endothelial cell activation. Cranial irradiation also resulted in acute infiltration of neutrophils and a delayed increase in T cells, MHC II-positive cells, and CD11c-positive cells seen first at 1 month with doses ≥ 15 Gy. CD11c-positive cells were found almost exclusively in white matter and expressed MHC II, suggesting a "mature" dendritic cell phenotype that remained elevated out to 1 year postirradiation. Our results indicate that cranial irradiation leads to persistent neuroinflammatory changes in the C57BL/6 mouse brain that includes unique immunomodulatory cell populations.
Collapse
Affiliation(s)
- Michael J Moravan
- Department of Neurobiology and Anatomy and, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | |
Collapse
|
229
|
Sabel MS. Cryoablation as a Replacement for Surgical Resection in Early Stage Breast Cancer. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-011-0044-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
230
|
Sartor O. Potential synergistic implications for stromal-targeted radiopharmaceuticals in bone-metastatic prostate cancer. Asian J Androl 2011; 13:366-8. [PMID: 21499278 DOI: 10.1038/aja.2011.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic heterogeneity and chemotherapy-resistant 'stem cells' represent two of the most pressing issues in devising new strategies for the treatment of advanced prostate cancer. Though curative strategies have long been present for men with localized disease, metastatic prostate cancer is currently incurable. Though substantial improvements in outcomes are now possible through the utilization of newly approved therapies, novel combinations are clearly needed. Herein we describe potentially synergistic interactions between bone stromal-targeted radiopharmaceuticals and other therapies for treatment of bone-metastatic prostate cancer. Radiation has long been known to synergize with cytotoxic chemotherapies and recent data also suggest the possibility of synergy when combining radiation and immune-based strategies. Combination therapies will be required to substantially improve survival for men with castrate-resistant metastatic prostate cancer and we hypothesize that bone-targeted radiopharmaceuticals will play an important role in this process.
Collapse
Affiliation(s)
- Oliver Sartor
- Department of Medicine, Tulane Medical School, New Orleans, LA 70115, USA.
| |
Collapse
|
231
|
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies.
Collapse
|
232
|
Ohkubo Y, Iwakawa M, Seino KI, Nakawatari M, Wada H, Kamijuku H, Nakamura E, Nakano T, Imai T. Combining carbon ion radiotherapy and local injection of α-galactosylceramide-pulsed dendritic cells inhibits lung metastases in an in vivo murine model. Int J Radiat Oncol Biol Phys 2010; 78:1524-31. [PMID: 20932671 DOI: 10.1016/j.ijrobp.2010.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/30/2010] [Accepted: 06/18/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. METHODS AND MATERIALS Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, α-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. RESULTS The mice with no treatment (control) presented with 168 ± 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 ± 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. CONCLUSIONS The combination of carbon ion radiotherapy with the injection of α-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.
Collapse
Affiliation(s)
- Yu Ohkubo
- RadGenomics Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Finley DS, Pouliot F, Chin AI, Shuch B, Pantuck AJ, Belldegrun AS, Dekernion JB. Immunological therapy in urological malignancy: novel combination strategies. Int J Urol 2010; 18:94-101. [PMID: 21073543 DOI: 10.1111/j.1442-2042.2010.02664.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
At present, immunotherapy in urological malignancy is experiencing a renaissance, particularly with the emergence of a host of innovative cancer vaccines. Herein, we will review promising immunotherapeutic approaches and evaluate the data supporting their inclusion in novel combination strategies.
Collapse
Affiliation(s)
- David S Finley
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90024, USA.
| | | | | | | | | | | | | |
Collapse
|
234
|
Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin Dev Immunol 2010; 2010:504979. [PMID: 20936106 PMCID: PMC2948909 DOI: 10.1155/2010/504979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/13/2010] [Indexed: 12/19/2022]
Abstract
We reviewed the clinical results of a dendritic cell-based phase II clinical vaccine trial in stage IV melanoma and analyzed a patient subgroup treated with standard therapies after stopping vaccination. From 2003 to 2009, 24 metastatic melanoma patients were treated with mature dendritic cells pulsed with autologous tumor lysate and keyhole limpet hemocyanin and low-dose interleukin-2. Overall response (OR) to vaccination was 37.5% with a clinical benefit of 54.1%. All 14 responders showed delayed type hypersensitivity positivity. Median overall survival (OS) was 15 months (95% CI, 8–33). Eleven patients underwent other treatments (3 surgery, 2 biotherapy, 2 radiotherapy, 2 chemotherapy, and 4 biochemotherapy) after stopping vaccination. Of these, 2 patients had a complete response and 5 a partial response, with an OR of 63.6%. Median OS was 34 months (range 16–61). Our results suggest that therapeutic DC vaccination could favor clinical response in patients after more than one line of therapy.
Collapse
|
235
|
Ho-Pun-Cheung A, Assenat E, Bascoul-Mollevi C, Bibeau F, Boissière-Michot F, Thezenas S, Cellier D, Azria D, Rouanet P, Senesse P, Ychou M, Lopez-Crapez E. A large-scale candidate gene approach identifies SNPs in SOD2 and IL13 as predictive markers of response to preoperative chemoradiation in rectal cancer. THE PHARMACOGENOMICS JOURNAL 2010; 11:437-43. [PMID: 20644561 DOI: 10.1038/tpj.2010.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neoadjuvant radiochemotherapy followed by total mesorectal excision is now the standard treatment for locally advanced rectal cancer. However, tumor response to chemoradiation varies widely among individuals and cannot be determined before the final pathologic evaluation. The aim of this study was to identify germline genetic markers that could predict sensitivity or resistance to preoperative radiochemotherapy (RT-CT) in rectal cancer. We evaluated the predictive value of 128 single-nucleotide polymorphisms (SNPs) in 71 patients preoperatively treated by RT-CT. The selected SNPs were distributed over 76 genes that are involved in various cellular processes such as DNA repair, apoptosis, proliferation or immune response. The SNPs superoxide dismutase 2 (SOD2) rs4880 (P=0.005) and interleukin-13 (IL13) rs1800925 (P=0.0008) were significantly associated with tumor response to chemoradiation. These results reinforce the idea of using germline polymorphisms for personalized treatment.
Collapse
Affiliation(s)
- A Ho-Pun-Cheung
- Department of Biology, Val d'Aurelle Cancer Institute, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Jeon YH, Choi Y, Lee J, Kim CW, Chung JK. CpG Oligodeoxynucleotides Enhance the Activities of CD8+ Cytotoxic T-Lymphocytes Generated by Combined hMUC1 Vaccination and hNIS Radioiodine Gene Therapy. Nucl Med Mol Imaging 2010; 44:199-206. [PMID: 24899950 DOI: 10.1007/s13139-010-0039-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/14/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The authors evaluated whether the cytotoxicity of CD8+CTLs generated by combined hMUC1 vaccination and hNIS radioiodine gene therapy was enhanced in the presence of CpG in an established tumor model. METHODS CMNF cells (CT26 cells expressing hMUC1, hNIS and Firefly luciferase) were transplanted into BALB/c mice. Four and 10 days later, tumor-bearing mice were immunized intramuscularly with pcDNA3.1 or pcDNA-hMUC1 or pcDNA-hMUC1+CpG, and subsequently administered PBS or (131)I [five groups (seven mice/group): referred to as the pcDNA3.1+PBS, phMUC1+PBS, pcDNA3.1+(131)I, phMUC1+(131)I, and phMUC1+(131)I+CpG groups]. The number of CD8+IFNr+ T cells of splenocytes as well as the number of CD8+IFNr+ T cells of splenocytes re-stimulated with CD11c+ cells was determined using FACS analysis. The activities of cytotoxic T cells (CTLs) from splenocytes were investigated. RESULTS Marked tumor growth inhibition was observed in the phMUC1+(131)I and phMUC1+(131)I+CpG groups, but not in the other three single therapy groups. Particularly the number of CD8+IFN-γ+ T cells of splenocytes was more increased in the phMUC1+(131)I+CpG group than in the phMUC1+(131)I group. The number of CD8+IFN-γ+ T cells of splenocytes stimulated with CD11c+ cells was the most enhanced in the phMUC1+(131)I+CpG group among the five groups. Concurrently, the activities of hMUC1-associated CTLs obtained from splenocytes in the phMUC1+(131)I+CpG group were significantly greater than in the other four groups (pcDNA+PBS, phMUC1+PBS, pcDNA+(131)I, phMUC1+(131)I, and phMUC1+(131)I+CpG, 16 ± 2%, 20 ± 1%, 30 ± 2%, 60 ± 2%, and 87 ± 2%, respectively, P < 0.01). CONCLUSION Our data suggest that adjuvant CpG ODNs can increase the killing activities of CTLs generated by combined hMUC1 DNA vaccination and hNIS radioiodine gene therapy.
Collapse
Affiliation(s)
- Yong Hyun Jeon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744 Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea ; Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea ; Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yun Choi
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chul Woo Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea ; Department of Pathology, Tumor Immunity Medical Research Center and Cancer Research Institute, Seoul National University, College of Medicine, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-799 Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744 Korea ; Tumor Immunity Medical Research Center, Seoul National University College of Medicine, Seoul, Korea ; Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
237
|
Abstract
During the past decade, new insights into the mechanisms by which T-cell activation and proliferation are regulated have led to the identification of checkpoint proteins that either up- or down-modulate T-cell reactivity. In the presence of active malignancy, pathophysiologic inhibition of T-cell activity may predominate over stimulation. A number of antibodies have been generated that can block inhibitory checkpoint proteins or promote the activity of activating molecules. In murine models, their use alone or with a vaccine strategy has resulted in regression of poorly immunogenic tumors and cures of established tumors. The prototypical immune regulatory antibodies are those directed against cytotoxic T-lymphocyte antigen-4, a molecule present on activated T cells. In this review, the preclinical rationale and clinical experience with 2 anticytotoxic T-lymphocyte antigen-4 antibodies are extensively discussed, demonstrating that abrogation of an immune inhibitory molecule can result in significant regression of tumors and long-lasting responses. The unique kinetics of antitumor response and the characteristic immune-related side effects of ipilimumab are also discussed. This clinical efficacy of this promising antitumor agent has been evaluated in 2 randomized phase III trials, whose results are eagerly awaited. Programmed death (PD)-1 is another immune inhibitory molecule against which an abrogating human antibody has been prepared. Initial preclinical testing with anti-PD-1 and anti-PD-L1 has shown encouraging results. Stimulatory molecules such as CD40, 41-BB, and OX-40 are also targets for antibody binding and activation, not blockade, and early dose ranging trials with antibodies against all 3 have shown that they can mediate regression of tumors, albeit with their own spectrum of side effects that are different from those that occur with abrogation of immune inhibition.
Collapse
Affiliation(s)
- Jedd D. Wolchok
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Arvin S. Yang
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
238
|
Simmons O, Magee M, Nemunaitis J. Current vaccine updates for lung cancer. Expert Rev Vaccines 2010; 9:323-35. [PMID: 20218860 DOI: 10.1586/erv.10.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Current treatments for lung cancer are far from optimal. Several immunotherapeutic strategies involving vaccines incorporating different tumor-associated antigens to induce immune responses against tumors are being tested in clinical trials internationally. Although small, benefits have indeed been observed from the early studies of these vaccines, and the future is looking brighter for lung cancer patients as a handful of these immunotherapies reach Phase III trials. In addition, optimizing the induced immune response by these vaccines has become a priority, and a number of techniques are being considered, including addition of adjuvants and combining vaccines, which affect synergy based on their mechanism of action. This review is an update on the current vaccines in production, the benefits observed from their most recent studies, and the upcoming plans for improvements in these immunotherapies.
Collapse
|
239
|
Kargiotis O, Geka A, Rao JS, Kyritsis AP. Effects of irradiation on tumor cell survival, invasion and angiogenesis. J Neurooncol 2010; 100:323-38. [PMID: 20449629 DOI: 10.1007/s11060-010-0199-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/13/2010] [Indexed: 12/19/2022]
Abstract
Ionizing irradiation is a widely applied therapeutic method for the majority of solid malignant neoplasms, including brain tumors where, depending on localization, this might often be the only feasible primary intervention.Without doubt, it has been proved to be a fundamental tool available in the battlefield against cancer, offering a clear survival benefit in most cases. However, numerous studies have associated tumor irradiation with enhanced aggressive phenotype of the remaining cancer cells. A cell population manages to survive after the exposure, either because it receives sublethal doses and/or because it successfully utilizes the repair mechanisms. The biology of irradiated cells is altered leading to up-regulation of genes that favor cell survival, invasion and angiogenesis. In addition, hypoxia within the tumor mass limits the cytotoxicity of irradiation, whereas irradiation itself may worsen hypoxic conditions, which also contribute to the generation of resistant cells. Activation of cell surface receptors, such as the epidermal growth factor receptor, utilization of signaling pathways, and over-expression of cytokines, proteases and growth factors, for example the matrix metalloproteinases and vascular endothelial growth factor, protect tumor and non-tumor cells from apoptosis, increase their ability to invade to adjacent or distant areas, and trigger angiogenesis. This review will try to unfold the various molecular events and interactions that control tumor cell survival, invasion and angiogenesis and which are elicited or influenced by irradiation of the tumor mass, and to emphasize the importance of combining irradiation therapy with molecular targeting.
Collapse
Affiliation(s)
- Odysseas Kargiotis
- Neurosurgical Research Institute, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
240
|
Choi Y, Jeon YH, Paik JH, Ko J, Choi DH, Chung JK, Kim CW. In Vivo Scintigraphic Imaging of Antitumor Effects by Combined Radioiodine Therapy and Human Sodium Iodide Symporter Gene Immunotherapy. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yun Choi
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Hyun Jeon
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Ho Paik
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jinkyung Ko
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Han Choi
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - June Key Chung
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chul Woo Kim
- From the Departments of Pathology, Tumor Biology, and Nuclear Medicine; Tumor Immunity Medical Research Centre; and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
241
|
Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH. Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 2010; 77:12-9. [PMID: 20304669 DOI: 10.1016/j.critrevonc.2010.02.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/10/2010] [Accepted: 02/05/2010] [Indexed: 12/11/2022] Open
Abstract
Emerging data suggests that host immune cells with a suppressive phenotype represent a significant hurdle to successful therapy for metastatic cancer. Among the suppressor cells, T regulatory cells (Treg) and myeloid-derived suppressor cells (MDSC) are significantly increased in hosts with advanced malignancies. MDSC mediate the suppression of the tumor antigen-specific T cell response through the induction of T cell anergy and the development of Treg in tumor-bearing mice. These results provide robust evidence of an in vivo immunoregulatory function of MDSC in the establishment of tumor antigen-specific tolerance and the development of Treg in tumor-bearing hosts. To achieve effective anti-tumor immunity, tumor-induced immunosuppression must be reversed. Our preliminary results indicate that c-kit ligand (stem cell factor) expressed by tumor cells may be required for MDSC accumulation in tumor-bearing mice, and that blocking the c-kit ligand/c-kit receptor interaction can prevent the development of Treg and reverse immune tolerance induced by MDSC. Since c-kit can be readily inhibited by several small molecule inhibitors including imatinib, sunitinib and dasatinib, targeting immune suppressing cells can be readily accomplished in the clinic.
Collapse
Affiliation(s)
- Johnny Kao
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY 10029, United States.
| | | | | | | | | | | |
Collapse
|
242
|
Tevz G, Kranjc S, Cemazar M, Kamensek U, Coer A, Krzan M, Vidic S, Pavlin D, Sersa G. Controlled systemic release of interleukin-12 after gene electrotransfer to muscle for cancer gene therapy alone or in combination with ionizing radiation in murine sarcomas. J Gene Med 2010; 11:1125-37. [PMID: 19777440 DOI: 10.1002/jgm.1403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The present study aimed to evaluate the antitumor effectiveness of systemic interleukin (IL)-12 gene therapy in murine sarcoma models, and to evaluate its interaction with the irradiation of tumors and metastases. To avoid toxic side-effects of IL-12 gene therapy, the objective was to achieve the controlled release of IL-12 after intramuscular gene electrotransfer. METHODS Gene electrotransfer of the plasmid pORF-mIL12 was performed into the tibialis cranialis in A/J and C57BL/6 mice. Systemic release of the IL-12 was monitored in the serum of mice after carrying out two sets of intramuscular IL-12 gene electrotransfer of two different doses of plasmid DNA. The antitumor effectiveness of IL-12 gene electrotransfer alone or in combination with local tumor or lung irradiation with X-rays, was evaluated on subcutaneous SA-1 and LPB tumors, as well as on lung metastases. RESULTS A synergistic antitumor effect of intramuscular gene electrotransfer combined with local tumor irradiation was observed as a result of the systemic distribution of IL-12. The gene electrotransfer resulted in up to 28% of complete responses of tumors. In combination with local tumor irradiation, the curability was increased by up to 100%. The same effect was observed for lung metastases, where a potentiating factor of 1.3-fold was determined. The amount of circulating IL-12 was controlled by the number of repeats of gene electrotransfer and by the amount of the injected plasmid. CONCLUSIONS The present study demonstrates the feasibility of treatment by IL-12 gene electrotransfer combined with local tumor or lung metastases irradiation on sarcoma tumors for translation into the clinical setting.
Collapse
Affiliation(s)
- Gregor Tevz
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Jeon YH, Choi Y, Kim CW, Kim YH, Youn H, Lee J, Chung JK. Human sodium/iodide symporter-mediated radioiodine gene therapy enhances the killing activities of CTLs in a mouse tumor model. Mol Cancer Ther 2010; 9:126-33. [PMID: 20053774 DOI: 10.1158/1535-7163.mct-09-0540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined whether human sodium/iodide symporter (hNIS) radioiodine gene therapy can modulate the phenotype of cancer cells and enhance the killing activities of CTLs in a mouse tumor model. Various doses of I-131 (75, 300, 600, 1,200, and 2,400 microCi/5 mL) were incubated with hNIS-expressing colon cancer (CT26/hNIS) and parental cells (CT26), and numbers of MHC class I and Fas-expressing cells were determined by fluorescence-activated cell sorting (FACS). In addition, CT26/hNIS or CT26 tumor-bearing mice were treated with 1,200 microCi of I-131, and percentages of MHC class I and Fas-expressing tumor cells were determined by FACS. The levels of tumor-infiltrating CD8+IFNgamma+ and CD11c+CD86+ cells and CTL killing activities were measured in CT26/hNIS tumor-bearing mice (treated with PBS or 1,200 microCi of I-131) by FACS and lactate dehydrogenase assay, respectively. MHC class I and Fas gene expressions were markedly upregulated in CT26/hNIS cells, but not in CT26 cells, in an I-131 dose-dependent manner. The level of MHC class I and Fas-expressing cancer cell were 4.5-fold and 2.1-fold higher in CT26/hNIS tumors than in CT26 tumors, respectively (P < 0.01). Interestingly, numbers of tumor-infiltrating CD8+IFNgamma+ cells and CD11c+CD86+ cells were 5-fold and 2.5-fold higher in I-131-treated tumors than in PBS tumors, respectively (P < 0.001). Furthermore, CTL assays showed significantly more specific tumor cell lysis in I-131 tumors than in PBS tumors (P < 0.01). Our findings suggest that hNIS radioiodine gene therapy can generate tumor-associated immunity in tumor microenvironments and enhance the killing activities of CTLs.
Collapse
Affiliation(s)
- Yong Hyun Jeon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
244
|
Avogadri F, Yuan J, Yang A, Schaer D, Wolchok JD. Modulation of CTLA-4 and GITR for cancer immunotherapy. Curr Top Microbiol Immunol 2010; 344:211-44. [PMID: 20563707 DOI: 10.1007/82_2010_49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rational manipulation of antigen-specific T cells to reignite a tumor-specific immune response in cancer patients is a challenge for cancer immunotherapy. Targeting coinhibitory and costimulatory T cell receptors with specific antibodies in cancer patients is an emerging approach to T cell manipulation, namely "immune modulation." Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor family receptor (GITR) are potential targets for immune modulation through anti-CTLA-4 blocking antibodies and anti-GITR agonistic antibodies, respectively. In this review, we first discuss preclinical findings key to the understanding of the mechanisms of action of these immunomodulatory antibodies and the preclinical evidence of antitumor activity which preceded translation into the clinic. We next describe the outcomes and immune related adverse effects associated with anti-CTLA-4 based clinical trials with particular emphasis on specific biomarkers used to elucidate the mechanisms of tumor immunity in patients. The experience with anti-CTLA-4 therapy and the durable clinical benefit observed provide proof of principle to effective antitumor immune modulation and the promise of future clinical immune modulatory antibodies.
Collapse
|
245
|
Sabel MS, Su G, Griffith KA, Chang AE. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol 2009; 17:1187-93. [PMID: 20033323 DOI: 10.1245/s10434-009-0846-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cryoablation has garnered significant interest as a treatment for solid tumors including breast cancer for both its local effects and potential in stimulating an antitumor immune response. We sought to examine the impact that variances in technique might have on the immune response and examine the mechanism by which cryoablation may stimulate an antitumor immune response. MATERIALS AND METHODS Balb/c mice with established 4T1 mammary carcinomas were treated by cryoablation at either a high rate of freeze or low rate of freeze, or by surgical excision, after spontaneous metastases occurred. Tumor-draining lymph nodes (TDLN) were excised at 1 week for EliSPOT assay and immunophenotyping. Mice were followed after treatment for enumeration of pulmonary metastases and survival. RESULTS Compared with surgical excision, cryoablation using a high freeze rate resulted in a significant increase in tumor-specific T cells in the TDLN, a reduction in pulmonary metastases, and improved survival. However, cryoablation using a low freeze rate resulted in an increase in regulatory T cells, a significant increase in pulmonary metastases, and decreased survival. CONCLUSIONS Cryoablation of breast cancer in mice can generate a tumor-specific immune response that can eradicate systemic micrometastases and improve outcome compared with surgical excision; however, the technique used to freeze the tissue may alter the immune response from stimulatory to suppressive.
Collapse
Affiliation(s)
- Michael S Sabel
- Division of Surgical Oncology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
246
|
Hahn S, Nesslinger NJ, Drapala RJ, Bowden M, Rennie PS, Pai HH, Ludgate C, Nelson BH. Castration induces autoantibody and T cell responses that correlate with inferior outcomes in an androgen-dependent murine tumor model. Int J Cancer 2009; 125:2871-8. [DOI: 10.1002/ijc.24673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
247
|
He J, Yin Y, Luster TA, Watkins L, Thorpe PE. Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 2009; 15:6871-80. [PMID: 19887482 DOI: 10.1158/1078-0432.ccr-09-1499] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The vascular targeting antibody bavituximab is being combined with chemotherapy in clinical trials in cancer patients. Bavituximab targets the membrane phospholipid, phosphatidylserine, complexed with beta2-glycoprotein I. Phosphatidylserine is normally intracellular but becomes exposed on the luminal surface of vascular endothelium in tumors. Phosphatidylserine exposure on tumor vessels is increased by chemotherapy and irradiation. Here, we determined whether treatment with the murine equivalent of bavituximab, 2aG4, combined with irradiation can suppress tumor growth in a rat model of glioblastoma. EXPERIMENTAL DESIGN F98 glioma cells were injected into the brains of syngeneic rats where they grow initially as a solid tumor and then infiltrate throughout the brain. Rats with established tumors were treated with 10 Gy whole brain irradiation and 2aG4. RESULTS Combination treatment doubled the median survival time of the rats, and 13% of animals were rendered disease free. Neither treatment given individually was as effective. We identified two mechanisms. First, irradiation induced phosphatidylserine exposure on tumor blood vessels and enhanced antibody-mediated destruction of tumor vasculature by monocytes/macrophages. Second, the antibody treatment induced immunity to F98 tumor cells, which are normally weakly immunogenic. Surviving rats were immune to rechallenge with F98 tumor cells. In vitro, 2aG4 enhanced the ability of dendritic cells (DCs) to generate F98-specific cytotoxic T cells. Phosphatidylserine exposure, which is induced on tumor cells by irradiation, likely suppresses tumor antigen presentation, and 2aG4 blocks this tolerogenic effect. CONCLUSION Bavituximab combined with radiotherapy holds promise as a vascular targeting and immune enhancement strategy for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Jin He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | |
Collapse
|
248
|
Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 2009; 15:5379-88. [PMID: 19706802 DOI: 10.1158/1078-0432.ccr-09-0265] [Citation(s) in RCA: 1295] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This study tested the hypothesis that the type of dose fractionation regimen determines the ability of radiotherapy to synergize with anti-CTLA-4 antibody. EXPERIMENTAL DESIGN TSA mouse breast carcinoma cells were injected s.c. into syngeneic mice at two separate sites, defined as a "primary" site that was irradiated and a "secondary" site outside the radiotherapy field. When both tumors were palpable, mice were randomly assigned to eight groups receiving no radiotherapy or three distinct regimens of radiotherapy (20 Gy x 1, 8 Gy x 3, or 6 Gy x 5 fractions in consecutive days) in combination or not with 9H10 monoclonal antibody against CTLA-4. Mice were followed for tumor growth/regression. Similar experiments were conducted in the MCA38 mouse colon carcinoma model. RESULTS In either of the two models tested, treatment with 9H10 alone had no detectable effect. Each of the radiotherapy regimens caused comparable growth delay of the primary tumors but had no effect on the secondary tumors outside the radiation field. Conversely, the combination of 9H10 and either fractionated radiotherapy regimens achieved enhanced tumor response at the primary site (P < 0.0001). Moreover, an abscopal effect, defined as a significant growth inhibition of the tumor outside the field, occurred only in mice treated with the combination of 9H10 and fractionated radiotherapy (P < 0.01). The frequency of CD8+ T cells showing tumor-specific IFN-gamma production was proportional to the inhibition of the secondary tumor. CONCLUSIONS Fractionated but not single-dose radiotherapy induces an abscopal effect when in combination with anti-CTLA-4 antibody in two preclinical carcinoma models.
Collapse
Affiliation(s)
- M Zahidunnabi Dewan
- Department of Pathology, New York University School of Medicine and New York University Langone Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Whole-cell tumor vaccines have been investigated for more than 20 years for their efficacy in both preclinical models and in clinical trials in humans. There are clear advantages of whole-cell/polyepitope vaccination over those types of immunotherapy that target specific epitopes. Multiple and unknown antigens may be targeted to both the innate and adaptive immune system, and this may be further augmented by genetic modification of the vaccine cells to provide cytokines and costimulation. In this review, we give an overview of the field including the preclinical and clinical advances using unmodified and modified tumor-cell vaccines.
Collapse
Affiliation(s)
- John Copier
- Division of Cellular and Molecular Medicine, Department of Oncology, St. George's University of London, London, UK
| | | |
Collapse
|
250
|
Abstract
Radiotherapy is generally used to treat a localised target that includes cancer. Increasingly, evidence indicates that radiotherapy recruits biological effectors outside the treatment field and has systemic effects. We discuss the implications of such effects and the role of the immune system in standard cytotoxic treatments. Because the effects of chemotherapy and radiotherapy are sensed by the immune system, their combination with immunotherapy presents a new therapeutic opportunity. Radiotherapy directly interferes with the primary tumour and possibly reverses some immunosuppressive barriers within the tumour microenvironment-ideally, recovering the role of the primary tumour as an immunogenic hub. Local radiation also triggers systemic effects that can be used in combination with immunotherapy to induce responses outside the radiation field.
Collapse
Affiliation(s)
- Silvia C Formenti
- Department of Radiation Oncology, NYU Langone Medical Center and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|