201
|
Garza JJ, Greiner SP, Bowdridge SA. Ovine vital neutrophil extracellular traps bind and impair Haemonchus contortus L3 in a breed-dependent manner. Parasite Immunol 2018; 40:e12572. [PMID: 29992577 DOI: 10.1111/pim.12572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022]
Abstract
This study aimed to characterize neutrophil response to Haemonchus contortus (Hc) in vitro using cells from parasite-resistant St. Croix (STC) and parasite-susceptible Suffolk (SUF) sheep. Neutrophils from Hc-primed and naive STC and SUF sheep were incubated with Hc larval antigen (HcLA), Hc worm antigen (HcWA) or complete media (CM). After HcLA exposure, neutrophils from STC and SUF formed extracellular traps composed of DNA. Stimulation with HcLA induced a 35-fold increase in extracellular DNA compared to CM controls. However, extracellular DNA was not found when neutrophils were cultured with HcWA. The formation of neutrophil extracellular traps (NET) in response to HcLA yields a low percentage of necrotic cells indicating a form of vital NETosis. Neutrophils from primed and naïve STC bound Hc L3 greater (93% and 68%) than SUF (78% and 45%; P < 0.001). Furthermore, STC neutrophils significantly reduced larval ATP levels compared to SUF neutrophils (0.05 μmol/L vs 0.1 μmol/L ATP, P < 0.001). These data indicate that ovine neutrophils bind, form vital NET and reduce ATP to Hc L3 in a breed and infection status-dependent manner.
Collapse
Affiliation(s)
- Javier J Garza
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| | - Scott P Greiner
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Scott A Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
202
|
Borenstein A, Fine N, Hassanpour S, Sun C, Oveisi M, Tenenbaum HC, Glogauer M. Morphological characterization of para- and proinflammatory neutrophil phenotypes using transmission electron microscopy. J Periodontal Res 2018; 53:972-982. [PMID: 30079509 DOI: 10.1111/jre.12595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Bacterial challenge is constant in the oral cavity. To contain the commensal biofilm, partly activated neutrophils are continuously recruited as part of a normal physiologic process, without exposing the host to the harmful effect of a fully active neutrophil response. This intermediate immune state has been termed para-inflammation, as opposed to the fully activated proinflammatory state in oral disease. Directly visualizing these cells and their components via transmission electron microscopy (TEM) enhances our understanding of neutrophil activation state differences in oral health and disease, as obtained from molecular studies. The aim of this study was to describe the morphology of the para-inflammatory phenotype displayed by oral neutrophils in health, and compare it to the morphology of the naïve blood neutrophil, and the proinflammatory oral neutrophils in chronic periodontitis. This morphology was characterized by differences in granule content, phagosome content and cytoplasm and nuclear changes. We also examined the morphological changes induced in naïve neutrophils, which were stimulated in vitro by bacteria, and in oral neutrophils in full tissue samples in vivo. MATERIAL AND METHODS Neutrophils were isolated from blood and saliva samples of patients with chronic periodontitis and healthy individuals. The cells were viewed under TEM and analyzed in imaging software examining granularity, cytoplasm density, euchromatin amount in the nucleus and phagosome content. A separate cohort of blood neutrophils was incubated with Streptococcus oralis and analyzed under TEM in the same manner. Gingival tissue samples were obtained from patients with chronic periodontitis and viewed under TEM, with the neutrophils present analyzed in the same manner. RESULTS The proinflammatory cells showed less granulation, lighter cytoplasm and higher amount of nuclear euchromatin. These changes were accentuated in the proinflammatory oral chronic periodontitis neutrophils compared to the para-inflammatory oral health neutrophils. The oral chronic periodontitis neutrophils also contained more phagosomes and had more phagosomes containing undigested bacteria. These changes were partially reproduced in the naïve blood cells after exposing them to S. oralis. The neutrophils in the gingival tissues displayed naïve morphology when viewed in the blood vessels and gradually showed proinflammatory morphological changes as they traveled through the connective tissue into the epithelium. CONCLUSION Oral neutrophils display morphological changes consistent with partial or full activation, corresponding to their para- or proinflammatory states. These changes can also be induced in naïve cells by incubating them with commensal bacteria. Neutrophils change their morphology towards an activated state as they travel through the gingival tissue.
Collapse
Affiliation(s)
- Alon Borenstein
- Matrix Dynamics Group, Department of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Noah Fine
- Matrix Dynamics Group, Department of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Siavash Hassanpour
- Matrix Dynamics Group, Department of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chunxiang Sun
- Matrix Dynamics Group, Department of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Morvarid Oveisi
- Matrix Dynamics Group, Department of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Division of Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Department of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Division of Research, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Dentistry, Princess Margaret Hospital, Toronto, Ontario, Canada
| |
Collapse
|
203
|
Neuropeptides SP and CGRP Diminish the Moraxella catarrhalis Outer Membrane Vesicle- (OMV-) Triggered Inflammatory Response of Human A549 Epithelial Cells and Neutrophils. Mediators Inflamm 2018; 2018:4847205. [PMID: 30174554 PMCID: PMC6098883 DOI: 10.1155/2018/4847205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) play both pro- and anti-inflammatory activities and are produced during infection and inflammation. Moraxella catarrhalis is one of the leading infectious agents responsible for inflammatory exacerbation in chronic obstructive pulmonary disease (COPD). Since the airway inflammation in COPD is connected with activation of both epithelial cells and accumulated neutrophils, in this study we determined the in vitro effects of neuropeptides on the inflammatory potential of these cells in response to M. catarrhalis outer membrane vesicle (OMV) stimulant. The various OMV-mediated proinflammatory effects were demonstrated. Next, using hBD-2-pGL4[luc2] plasmid with luciferase reporter gene, SP and CGRP were shown to inhibit the IL-1β-dependent expression of potent neutrophil chemoattractant, hBD-2 defensin, in transfected A549 epithelial cells (type II alveolar cells) upon OMV stimulation. Both neuropeptides exerted antiapoptotic activity through rescuing a significant fraction of A549 cells from OMV-induced cell death and apoptosis. Finally, CGRP caused an impairment of specific but not azurophilic granule exocytosis from neutrophils as shown by evaluation of gelatinase-associated lipocalin (NGAL) or CD66b expression and elastase release, respectively. Concluding, these findings suggest that SP and CGRP mediate the dampening of proinflammatory action triggered by M. catarrhalis OMVs towards cells engaged in lung inflammation in vitro.
Collapse
|
204
|
Hochscherf J, Pietsch M, Tieu W, Kuan K, Abell AD, Gütschow M, Niefind K. Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2' site binding inhibitor. Acta Crystallogr F Struct Biol Commun 2018; 74:480-489. [PMID: 30084397 PMCID: PMC6096481 DOI: 10.1107/s2053230x1800537x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3-thiazolidine-2,4-dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small-molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate-recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2' site is blocked that normally binds the second side chain at the C-terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N-glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Markus Pietsch
- Centre of Pharmacology, Medical Faculty, Universität zu Köln, Gleueler Str. 24, 50931 Cologne, Germany
| | - William Tieu
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Kevin Kuan
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| |
Collapse
|
205
|
Ong CWM, Fox K, Ettorre A, Elkington PT, Friedland JS. Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis. Sci Rep 2018; 8:11475. [PMID: 30065292 PMCID: PMC6068197 DOI: 10.1038/s41598-018-29659-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/11/2018] [Indexed: 01/12/2023] Open
Abstract
The importance of neutrophils in the pathology of tuberculosis (TB) has been recently established. We demonstrated that TB lesions in man are hypoxic, but how neutrophils in hypoxia influence lung tissue damage is unknown. We investigated the effect of hypoxia on neutrophil-derived enzymes and tissue destruction in TB. Human neutrophils were stimulated with M. tuberculosis (M.tb) or conditioned media from M.tb-infected monocytes (CoMTB). Neutrophil matrix metalloproteinase-8/-9 and elastase secretion were analysed by luminex array and gelatin zymography, gene expression by qPCR and cell viability by flow cytometry. Matrix destruction was investigated by confocal microscopy and functional assays and neutrophil extracellular traps (NETs) by fluorescence assay. In hypoxia, neutrophil MMP-8 secretion and gene expression were up-regulated by CoMTB. MMP-9 activity and neutrophil elastase (NE) secretion were also increased in hypoxia. Hypoxia inhibited NET formation and both neutrophil apoptosis and necrosis after direct stimulation by M.tb. Hypoxia increased TB-dependent neutrophil-mediated matrix destruction of Type I collagen, gelatin and elastin, the main structural proteins of the human lung. Dimethyloxalylglycin (DMOG), which stabilizes hypoxia-inducible factor-1α, increased neutrophil MMP-8 and -9 secretion. Hypoxia in our cellular model of TB up-regulated pathways that increase neutrophil secretion of MMPs that are implicated in matrix destruction.
Collapse
Affiliation(s)
- Catherine W M Ong
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Katharine Fox
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
| | - Anna Ettorre
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
| | - Paul T Elkington
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK
- NIHR Biomedical Research Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jon S Friedland
- Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, UK.
| |
Collapse
|
206
|
Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018; 104:701-715. [PMID: 30044897 DOI: 10.1002/jlb.4ri0418-151r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The role of the microbiota in many diseases including cancer has gained increasing attention. Paired with this is our expanding appreciation for the heterogeneity of the neutrophil compartment regarding surface marker expression and functionality. In this review, we will discuss the influence of the microbiota on granulopoiesis and consequent activity of neutrophils in cancer. As evidence for this microbiota-neutrophil-cancer axis builds, it exposes new therapeutic targets to improve a cancer patient's outcome.
Collapse
Affiliation(s)
- Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
207
|
Attia Z, Rowe JC, Kim E, Varikuti S, Steiner HE, Zaghawa A, Hassan H, Cormet-Boyaka E, Satoskar AR, Boyaka PN. Inhibitors of elastase stimulate murine B lymphocyte differentiation into IgG- and IgA-producing cells. Eur J Immunol 2018; 48:1295-1301. [PMID: 29710424 DOI: 10.1002/eji.201747264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 04/25/2018] [Indexed: 01/11/2023]
Abstract
It is well established that dendritic cells and macrophages play a role in antigen presentation to B and T cells and in shaping B and T cell responses via cytokines they produce. We have previously reported that depletion of neutrophils improves the production of mucosal IgA after sublingual immunization with Bacillus anthracis edema toxin as adjuvant. These past studies also demonstrated that an inverse correlation exists between the number of neutrophils and production of IgA by B cells. Using specific inhibitors of elastase, we addressed whether the elastase activity of neutrophil could be the factor that interferes with production of IgA and possibly other immunoglobulin isotypes. We found that murine splenocytes and mesenteric lymph node cells cultured for 5 days in the presence of neutrophil elastase inhibitors secreted higher levels of IgG and IgA than cells cultured in the absence of inhibitors. The effect of the inhibitors was dose-dependent and was consistent with increased frequency of CD138+ cells expressing IgG or IgA. Finally, neutrophil elastase inhibitors increased transcription of mRNA for AID, IL-10, BAFF and APRIL, factors involved in B cell differentiation. These findings identify inhibitors of elastase as potential adjuvants for increasing production of antibodies.
Collapse
Affiliation(s)
- Zayed Attia
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.,Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | - John C Rowe
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Haley E Steiner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Ahmad Zaghawa
- Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | - Hany Hassan
- Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | | | - Abhay R Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
208
|
Thuma L, Carter D, Weavers H, Martin P. Drosophila immune cells extravasate from vessels to wounds using Tre1 GPCR and Rho signaling. J Cell Biol 2018; 217:3045-3056. [PMID: 29941473 PMCID: PMC6122984 DOI: 10.1083/jcb.201801013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
In contrast to vertebrates, adult Drosophila melanogaster have an open cardiovascular system. However, Thuma et al. find that in late pupation, hemolymph flows through Drosophila wing veins, providing a unique genetic and live-imaging opportunity to investigate the mechanisms driving immune cell extravasation from vessels to wounds and reveal new roles for Tre1 and Rho signaling in this process. Inflammation is pivotal to fight infection, clear debris, and orchestrate repair of injured tissues. Although Drosophila melanogaster have proven invaluable for studying extravascular recruitment of innate immune cells (hemocytes) to wounds, they have been somewhat neglected as viable models to investigate a key rate-limiting component of inflammation—that of immune cell extravasation across vessel walls—due to their open circulation. We have now identified a period during pupal development when wing hearts pulse hemolymph, including circulating hemocytes, through developing wing veins. Wounding near these vessels triggers local immune cell extravasation, enabling live imaging and correlative light-electron microscopy of these events in vivo. We show that RNAi knockdown of immune cell integrin blocks diapedesis, just as in vertebrates, and we uncover a novel role for Rho-like signaling through the GPCR Tre1, a gene previously implicated in the trans-epithelial migration of germ cells. We believe this new Drosophila model complements current murine models and provides new mechanistic insight into immune cell extravasation.
Collapse
Affiliation(s)
- Leila Thuma
- Department of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Deborah Carter
- Department of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Helen Weavers
- School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, UK .,School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Paul Martin
- Department of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK .,School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK.,School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
209
|
Shaul ME, Fridlender ZG. Cancer-related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J 2018; 285:4316-4342. [PMID: 29851227 DOI: 10.1111/febs.14524] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
In recent years, the role of neutrophils in cancer biology has been a matter of increasing interest. Many patients with advanced cancer show high levels of neutrophilia, tumor neutrophils are connected to dismal prognosis, and the neutrophil-to-lymphocyte ratio has been introduced as a significant prognostic factor for survival in many types of cancer. Neutrophils constitute an important portion of the infiltrating immune cells in the tumor microenvironment, but controversy has long surrounded the function of these cells in the context of cancer. Multiple evidences have shown that neutrophils recruited to the tumor can acquire either protumor or antitumor function. These findings have led to the identification of multiple and heterogeneous neutrophil subsets in the tumor and circulation. In addition, tumor-associated neutrophils (TANs) were shown to demonstrate functional plasticity, driven by multiple factors present in the tumor microenvironment. In this review, we examine the current knowledge on cancer-related circulating neutrophils, their source and the function of the different subtypes, both mature and immature. We then discuss the pro vs antitumor nature of TANs in cancer, their functional plasticity and the mechanisms that regulate neutrophil recruitment and polarization. Although the vast majority of the knowledge on neutrophils in cancer comes from murine studies, recent work has been done on human cancer-related neutrophils. In the final paragraphs, we expand on the current knowledge regarding the role of neutrophils in human cancer and examine the question whether cancer-related neutrophils (circulating or intratumoral) could be a new possible target for cancer immunotherapy.
Collapse
Affiliation(s)
- Merav E Shaul
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
210
|
Edmisson JS, Tian S, Armstrong CL, Vashishta A, Klaes CK, Miralda I, Jimenez-Flores E, Le J, Wang Q, Lamont RJ, Uriarte SM. Filifactor alocis modulates human neutrophil antimicrobial functional responses. Cell Microbiol 2018; 20:e12829. [PMID: 29377528 PMCID: PMC5980721 DOI: 10.1111/cmi.12829] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Abstract
Filifactor alocis is a newly appreciated pathogen in periodontal diseases. Neutrophils are the predominant innate immune cell in the gingival crevice. In this study, we examined modulation of human neutrophil antimicrobial functions by F. alocis. Both non-opsonised and serum-opsonised F. alocis were engulfed by neutrophils but were not efficiently eliminated. Challenge of neutrophils with either non-opsonised or serum-opsonised F. alocis induced a minimal intracellular as well as extracellular respiratory burst response compared to opsonised Staphylococcus aureus and fMLF, respectively. However, pretreatment or simultaneous challenge of neutrophils with F. alocis did not affect the subsequent oxidative response to a particulate stimulus, suggesting that the inability to trigger the respiratory response was only localised to F. alocis phagosomes. In addition, although neutrophils engulfed live or heat-killed F. alocis with the same efficiency, heat-killed F. alocis elicited a higher intracellular respiratory burst response compared to viable organisms, along with decreased surface expression of CD35, a marker of secretory vesicles. F. alocis phagosomes remained immature by delayed and reduced recruitment of specific and azurophil granules, respectively. These results suggest that F. alocis withstands neutrophil antimicrobial responses by preventing intracellular ROS production, along with specific and azurophil granule recruitment to the bacterial phagosome.
Collapse
Affiliation(s)
- Jacob S. Edmisson
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Shifu Tian
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cortney L. Armstrong
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Christopher K. Klaes
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Irina Miralda
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Emeri Jimenez-Flores
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Junyi Le
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Silvia M. Uriarte
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
211
|
Rosado MM, Simkó M, Mattsson MO, Pioli C. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Front Public Health 2018; 6:85. [PMID: 29632855 PMCID: PMC5879099 DOI: 10.3389/fpubh.2018.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.
Collapse
Affiliation(s)
| | | | - Mats-Olof Mattsson
- AIT Austrian Institute of Technology, Center for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, ENEA, Rome, Italy
| |
Collapse
|
212
|
Sullivan GP, Davidovich PB, Sura-Trueba S, Belotcerkovskaya E, Henry CM, Clancy DM, Zinoveva A, Mametnabiev T, Garabadzhiu AV, Martin SJ. Identification of small-molecule elastase inhibitors as antagonists of IL-36 cytokine activation. FEBS Open Bio 2018; 8:751-763. [PMID: 29744290 PMCID: PMC5929933 DOI: 10.1002/2211-5463.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/25/2023] Open
Abstract
IL‐1 family cytokines act as apical initiators of inflammation in many settings and can promote the production of a battery of inflammatory cytokines, chemokines and other inflammatory mediators in diverse cell types. IL‐36α, IL‐36β and IL‐36γ, which belong to the extended IL‐1 family, have been implicated as key initiators of skin inflammation in psoriasis. IL‐36γ is highly upregulated in lesional skin from psoriatic individuals, and heritable mutations in the natural IL‐36 receptor antagonist result in a severe form of psoriasis. IL‐36 family cytokines are initially expressed as inactive precursors that require proteolytic processing for activation. The neutrophil granule‐derived protease elastase proteolytically processes and activates IL‐36α and IL‐36γ, increasing their biological activity ~ 500‐fold, and also robustly activates IL‐1α and IL‐33 through limited proteolytic processing. Consequently, inhibitors of elastase activity may have potential as anti‐inflammatory agents through antagonizing the activation of multiple IL‐1 family cytokines. Using in silico screening approaches, we have identified small‐molecule inhibitors of elastase that can antagonize activation of IL‐36γ by the latter protease. The compounds reported herein may have utility as lead compounds for the development of inhibitors of elastase‐mediated activation of IL‐36 and other IL‐1 family cytokines in inflammatory conditions, such as psoriasis.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland
| | - Pavel B Davidovich
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland.,Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | - Sylvia Sura-Trueba
- Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | | | - Conor M Henry
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland
| | - Danielle M Clancy
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland
| | - Anna Zinoveva
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland.,Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | - Tazhir Mametnabiev
- Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| | | | - Seamus J Martin
- Molecular Cell Biology Laboratory Department of Genetics The Smurfit Institute Trinity College Dublin 2 Ireland.,Cellular Biotechnology Laboratory Saint-Petersburg State Institute of Technology Russia
| |
Collapse
|
213
|
Hinder LM, Murdock BJ, Park M, Bender DE, O'Brien PD, Rumora AE, Hur J, Feldman EL. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story. Exp Neurol 2018; 305:33-43. [PMID: 29550371 DOI: 10.1016/j.expneurol.2018.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic peripheral neuropathy is the most common complication of diabetes and a source of considerable morbidity. Numerous molecular pathways are linked to neuropathic progression, but it is unclear whether these pathways are altered throughout the course of disease. Moreover, the methods by which these molecular pathways are analyzed can produce significantly different results; as such it is often unclear whether previously published pathways are viable targets for novel therapeutic approaches. In the current study we examine changes in gene expression patterns in the sciatic nerve (SCN) and dorsal root ganglia (DRG) of db/db diabetic mice at 8, 16, and 24 weeks of age using microarray analysis. Following the collection and verification of gene expression data, we utilized both self-organizing map (SOM) analysis and differentially expressed gene (DEG) analysis to detect pathways that were altered at all time points. Though there was some variability between SOM and DEG analyses, we consistently detected altered immune pathways in both the SCN and DRG over the course of disease. To support these results, we further used multiplex analysis to assess protein changes in the SCN of diabetic mice; we found that multiple immune molecules were upregulated at both early and later stages of disease. In particular, we found that matrix metalloproteinase-12 was highly upregulated in microarray and multiplex data sets suggesting it may play a role in disease progression.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
214
|
Sullivan GP, Henry CM, Clancy DM, Mametnabiev T, Belotcerkovskaya E, Davidovich P, Sura-Trueba S, Garabadzhiu AV, Martin SJ. Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases. Cell Death Dis 2018. [PMID: 29515113 PMCID: PMC5841435 DOI: 10.1038/s41419-018-0385-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sterile inflammation is initiated by molecules released from necrotic cells, called damage-associated molecular patterns (DAMPs). Members of the extended IL-1 cytokine family are important DAMPs, are typically only released through necrosis, and require limited proteolytic processing for activation. The IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, are expressed as inactive precursors and have been implicated as key initiators of psoriatic-type skin inflammation. We have recently found that IL-36 family cytokines are proteolytically processed and activated by the neutrophil granule-derived proteases, elastase, and cathepsin G. Inhibitors of IL-36 processing may therefore have utility as anti-inflammatory agents through suppressing activation of the latter cytokines. We have identified peptide-based pseudosubstrates for cathepsin G and elastase, based on optimal substrate cleavage motifs, which can antagonize activation of all three IL-36 family cytokines by the latter proteases. Human psoriatic skin plaques displayed elevated IL-36β processing activity that could be antagonized by peptide pseudosubstrates specific for cathepsin G. Thus, antagonists of neutrophil-derived proteases may have therapeutic potential for blocking activation of IL-36 family cytokines in inflammatory conditions such as psoriasis.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Conor M Henry
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Tazhir Mametnabiev
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Ekaterina Belotcerkovskaya
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Pavel Davidovich
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Sylvia Sura-Trueba
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Alexander V Garabadzhiu
- Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland. .,Cellular Biotechnology Laboratory, Saint-Petersburg Technical University, Moskovskii Prospekt, Saint Petersburg, Russia.
| |
Collapse
|
215
|
Meegan JE, Yang X, Coleman DC, Jannaway M, Yuan SY. Neutrophil-mediated vascular barrier injury: Role of neutrophil extracellular traps. Microcirculation 2018; 24. [PMID: 28120468 DOI: 10.1111/micc.12352] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Neutrophils play an essential role in host defense against infection or injury. While neutrophil activation is necessary for pathogen clearance and tissue repair, a hyperactive response can lead to tissue damage and microcirculatory disorders, a process involving complex neutrophil-endothelium cross talk. This review highlights recent research findings about neutrophil-mediated signaling and structural changes, including those induced by neutrophil extracellular traps, which ultimately lead to vascular barrier injury.
Collapse
Affiliation(s)
- Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Danielle C Coleman
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
216
|
Polarization of neutrophil granules — A characteristic of inflammatory states. Blood Cells Mol Dis 2018; 69:74. [DOI: 10.1016/j.bcmd.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/23/2017] [Indexed: 01/20/2023]
|
217
|
Anderson MC, Chaze T, Coïc YM, Injarabian L, Jonsson F, Lombion N, Selimoglu-Buet D, Souphron J, Ridley C, Vonaesch P, Baron B, Arena ET, Tinevez JY, Nigro G, Nothelfer K, Solary E, Lapierre V, Lazure T, Matondo M, Thornton D, Sansonetti PJ, Baleux F, Marteyn BS. MUB 40 Binds to Lactoferrin and Stands as a Specific Neutrophil Marker. Cell Chem Biol 2018; 25:483-493.e9. [PMID: 29478905 DOI: 10.1016/j.chembiol.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Neutrophils represent the most abundant immune cells recruited to inflamed tissues. A lack of dedicated tools has hampered their detection and study. We show that a synthesized peptide, MUB40, binds to lactoferrin, the most abundant protein stored in neutrophil-specific and tertiary granules. Lactoferrin is specifically produced by neutrophils among other leukocytes, making MUB40 a specific neutrophil marker. Naive mammalian neutrophils (human, guinea pig, mouse, rabbit) were labeled by fluorescent MUB40 conjugates (-Cy5, Dylight405). A peptidase-resistant retro-inverso MUB40 (RI-MUB40) was synthesized and its lactoferrin-binding property validated. Neutrophil lactoferrin secretion during in vitro Shigella infection was assessed with RI-MUB40-Cy5 using live cell microscopy. Systemically administered RI-MUB40-Cy5 accumulated at sites of inflammation in a mouse arthritis inflammation model in vivo and showed usefulness as a potential tool for inflammation detection using non-invasive imaging. Improving neutrophil detection with the universal and specific MUB40 marker will aid the study of broad ranges of inflammatory diseases.
Collapse
Affiliation(s)
- Mark C Anderson
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Thibault Chaze
- Institut Pasteur / CNRS USR 2000 Mass Spectrometry for Biology, Proteomics Platform, CITECH, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Yves-Marie Coïc
- Institut Pasteur, Unité de Chimie des Biomolécules, CNRS UMR 3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Louise Injarabian
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; CNRS, IBGC, Cell Energetic Metabolism, 1 rue Camille Saint Saëns CS 61390, 33077 Bordeaux Cedex, France
| | - Friederike Jonsson
- Institut Pasteur, Département d'Immunologie, 25 rue du Docteur Roux, 75024 Paris Cedex 15, France; INSERM Unité 1222, 25 rue du Dr Roux, 75015 Paris Cedex 15, France
| | - Naelle Lombion
- Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | | | - Judith Souphron
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Ridley
- University of Manchester, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, A.V. Hill Building, Manchester M13 9PT, UK
| | - Pascale Vonaesch
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Bruno Baron
- Institut Pasteur, Plate-Forme de Biophysique Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Ellen T Arena
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Jean-Yves Tinevez
- Institut Pasteur, CITECH, Imagopole, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Giulia Nigro
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Katharina Nothelfer
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Eric Solary
- Institut Gustave Roussy Inserm U1009, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Valérie Lapierre
- Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Thierry Lazure
- APHP Hôpital du Kremlin-Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mariette Matondo
- Institut Pasteur / CNRS USR 2000 Mass Spectrometry for Biology, Proteomics Platform, CITECH, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - David Thornton
- Institut Pasteur, Département d'Immunologie, 25 rue du Docteur Roux, 75024 Paris Cedex 15, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Collège de France, Paris, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, CNRS UMR 3523, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; INSERM Unité 1202, 28 rue du Dr Roux, 75724 Paris Cedex 15, France; Institut Gustave Roussy, Laboratoire de Thérapie Cellulaire, 114 rue Edouard Vaillant, 94800 Villejuif, France.
| |
Collapse
|
218
|
Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, Haridass P, Alexis NE, Jaspers I, Kesimer M. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med 2018; 197:492-501. [PMID: 29053025 PMCID: PMC5821909 DOI: 10.1164/rccm.201708-1590oc] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
RATIONALE E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. OBJECTIVES To determine the effects of e-cigarette use on the airways. METHODS Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. MEASUREMENTS AND MAIN RESULTS E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. CONCLUSIONS Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.
Collapse
Affiliation(s)
- Boris Reidel
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Giorgia Radicioni
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Phillip W. Clapp
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amina A. Ford
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Sabri Abdelwahab
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Meghan E. Rebuli
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Neil E. Alexis
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
219
|
Serum matrix metalloproteinase-8, tissue inhibitor of metalloproteinase and myeloperoxidase in ischemic stroke. Atherosclerosis 2018; 271:9-14. [PMID: 29453088 DOI: 10.1016/j.atherosclerosis.2018.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Matrix metalloproteinase (MMP)-8 and myeloperoxidase (MPO) may contribute to cerebral damage in acute ischemic stroke. We tested the hypothesis that levels of MPO, MMP-8 and the ratio between MMP-8 and its regulator, tissue inhibitor of metalloproteinase (TIMP-1), are increased in acute ischemic stroke and its etiologic subgroups and they correlate with stroke severity. METHODS In a cross-sectional case-control study, serum concentrations of MMP-8, MPO and TIMP-1 were assessed within 24 h after admission in 470 first-ever ischemic stroke patients and 809 age- and sex-matched controls, randomly selected from the population. Odds ratios (OR) per decade of log transformed dependent variables were calculated and adjusted for age, sex and vascular risk factors. RESULTS Levels of MMP-8 (OR 4.9; 95% CI 3.4-7.2), MMP-8/TIMP-1 ratio (3.0; 2.2-4.1) and MPO (6.6; 4.0-11.0) were independently associated with ischemic stroke. MMP-8 levels differed between etiologic stroke subgroups (p = 0.019, ANOVA), with higher levels in cardioembolic stroke and stroke due to large vessel disease, and lower levels in microangiopathic stroke. MMP-8, MMP-8/TIMP-1 ratio and MPO (p < 0.001) concentrations showed positive associations with stroke severity independent of stroke etiology. CONCLUSIONS Concentrations of serum neutrophil markers are increased after ischemic stroke and associate with stroke severity and etiology. The value of these biomarkers in diagnostics and prognostics is worth being evaluated.
Collapse
|
220
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
221
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
222
|
Yue X, Huan P, Hu Y, Liu B. Integrated transcriptomic and proteomic analyses reveal potential mechanisms linking thermal stress and depressed disease resistance in the turbot Scophthalmus maximus. Sci Rep 2018; 8:1896. [PMID: 29382883 PMCID: PMC5790011 DOI: 10.1038/s41598-018-20065-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
Abstract
A worldwide increase in the reports of diseases affecting marine organisms has paralleled the climate warming over the past few decades. In this study, we applied omics to explore the mechanisms underlying thermo-linked epizootics, by comparing both the transcriptome- and proteome-wide response of turbots to a mimic pathogen (poly I:C) between high temperature and low temperature using a time-course approach. Our results showed that myeloperoxidase (MPO) and insulin were differentially expressed transcripts shared by all five time-points post poly I:C-injection between high and low temperature and also had a consistent expression trend as differentially expressed proteins at 24 h post injection. Combined with other data, it was suggested that the elevated temperature enhanced neutrophil-mediated immunity and the resultant MPO-mediated oxidative stress, which lasted for at least 5 days. The contents of malondialdehyde and protein carbonyls, markers of oxidative damage for lipids and proteins, respectively, were compared between different temperature groups, and the results further implied the emergence of oxidative damage under high temperature. It was also suggested that metabolism disorder likely occur considering the sustained expression changes of insulin. Hence, prolonged MPO-mediated oxidative stress and metabolic disorder might be involved in the thermo-linked epizootic.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Yonghua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
223
|
Doerner J, Chalmers SA, Friedman A, Putterman C. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light. Exp Dermatol 2018; 25:969-976. [PMID: 27305603 DOI: 10.1111/exd.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The cytokine TNF-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are involved in cell survival and cytokine production. The TWEAK/Fn14 pathway plays a role in the pathogenesis of spontaneous cutaneous lesions in the MRL/lpr lupus strain; however, the role of TWEAK/Fn14 in disease induced by ultraviolet B (UVB) irradiation has not been explored. MRL/lpr Fn14 knockout (KO) was compared to MRL/lpr Fn14 wild-type (WT) mice following exposure to UVB. We found that irradiated MRL/lpr KO mice had significantly attenuated cutaneous disease when compared to their WT counterparts. There were also fewer infiltrating immune cells (CD3+ , IBA-1+ and NGAL+ ) in the UVB-exposed skin of MRL/lpr Fn14KO mice, as compared to Fn14WT. Furthermore, we identified several macrophage-derived proinflammatory chemokines with elevated expression in MRL/lpr mice after UV exposure. Depletion of macrophages, using a CSF-1R inhibitor, was found to be protective against the development of skin lesions after UVB exposure. In combination with the phenotype of the MRL/lpr Fn14KO mice, these findings indicate a critical role for Fn14 and recruited macrophages in UVB-triggered cutaneous lupus. Our data strongly suggest that TWEAK/Fn14 signalling is important in the pathogenesis of UVB-induced cutaneous disease manifestations in the MRL/lpr model of lupus and further support this pathway as a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
224
|
Meyle E, Stroh P, GüNther F, Hoppy-Tichy T, Wagner C, HäNsch GM. Destruction of Bacterial Biofilms by Polymorphonuclear Neutrophils: Relative contribution of Phagocytosis, DNA Release, and Degranulation. Int J Artif Organs 2018; 33:608-20. [DOI: 10.1177/039139881003300906] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 12/13/2022]
Abstract
Bacteria organized in biofilms are a common cause of relapsing or persistent infections, and the ultimate cause of implant-associated osteomyelitis. In these patients, biofilms of staphylococci are prevalent. Bacteria organized as biofilms are relatively resistant towards antibiotics and biocides, and it is also assumed that they may escape host defense mechanisms. In this context, we have studied how polymorphonuclear neutrophils (PMN), the “first line of defense” against bacterial infection, interact with biofilms generated in vitro. We found that PMN recognize biofilms and activate defense-associated reactions, including phagocytosis, degranulation of lactoferrin and elastase, and DNA release as well. Destruction of biofilms ensues, showing that biofilms are not inherently protected against the attack by phagocytic cells.
Collapse
Affiliation(s)
- Eva Meyle
- Institute of Immunology, University of Heidelberg, Heidelberg - Germany
- Institute of Pharmacy, University of Heidelberg, Heidelberg - Germany
| | - Petra Stroh
- Institute of Immunology, University of Heidelberg, Heidelberg - Germany
| | - Frank GüNther
- Institute of Immunology, University of Heidelberg, Heidelberg - Germany
| | | | - Christof Wagner
- Department of Trauma Surgery and Orthopedic Surgery, BG Trauma Clinic Ludwigshafen, Ludwigshafen - Germany
| | | |
Collapse
|
225
|
Boff D, Oliveira VLS, Queiroz Junior CM, Silva TA, Allegretti M, Verri WA, Proost P, Teixeira MM, Amaral FA. CXCR2 is critical for bacterial control and development of joint damage and pain in Staphylococcus aureus-induced septic arthritis in mouse. Eur J Immunol 2018; 48:454-463. [PMID: 29168180 DOI: 10.1002/eji.201747198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is the main pathogen associated with septic arthritis. Upon infection, neutrophils are quickly recruited to the joint by different chemoattractants, especially CXCR1/2 binding chemokines. Although their excessive accumulation is associated with intense pain and permanent articular damage, neutrophils have an important function in controlling bacterial burden. This work aimed to study the role of CXCR2 in the control of infection, hypernociception and tissue damage in S. aureus-induced septic arthritis in mice. The kinetics of neutrophil recruitment correlated with the bacterial load recovered from inflamed joint after intra-articular injection of S. aureus. Treatment of mice from the start of infection with the non-competitive antagonist of CXCR1/2, DF2156A, reduced neutrophil accumulation, cytokine production in the tissue, joint hypernociception and articular damage. However, early DF2156A treatment increased the bacterial load locally. CXCR2 was important for neutrophil activation and clearance of bacteria in vitro and in vivo. Start of treatment with DF2156A 3 days after infection prevented increase in bacterial load and reduced the hypernociception in the following days, but did not improve tissue damage. In conclusion, treatment with DF2156A seems be effective in controlling tissue inflammation and dysfunction but its effects are highly dependent on the timing of the treatment start.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil.,Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian L S Oliveira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil
| | - Celso M Queiroz Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Waldiceu A Verri
- Department of Pathological Sciences, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Brazil
| |
Collapse
|
226
|
Lisowska-Myjak B, Skarżyńska E, Wilczyńska P, Jakimiuk A. Correlation between the concentrations of lactoferrin and neutrophil gelatinase-associated lipocalin in meconium. Biometals 2017; 31:123-129. [PMID: 29285663 PMCID: PMC5778183 DOI: 10.1007/s10534-017-0073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/16/2017] [Indexed: 01/15/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) and lactoferrin (Lf) are among the key components of the innate immune system due to their ability to bind iron with high affinity and thus control inflammation. The aim of this study was to test the use of NGAL and LF measurements in meconium for the assessment of the intrauterine homeostasis. NGAL and Lf concentrations were measured using ELISA kits in all serial meconium portions (n = 81) collected from 20 healthy neonates. Mean ± SD meconium concentration of Lf was 45.07 ± 78.53 µg/g and more than 1000-fold higher compared with that of NGAL at 1.93 ± 2.46 ng/g. The correlation between the two proteins (r = 0.83, p < 0.0001) was found only for portions with Lf concentrations > 25 μg/g. High variability of NGAL and Lf concentrations in meconium and their correlations prove their key role as biomarkers of the fetal condition in utero. NGAL and Lf measured in meconium are candidate biomarkers for fetal iron status.
Collapse
Affiliation(s)
- Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Ewa Skarżyńska
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland
| | - Paulina Wilczyńska
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland
| | - Artur Jakimiuk
- Clinical Department of Obstetrics, Female Diseases and Gynecological Oncology, Central Clinical Hospital of the Ministry of the Interior, Warsaw, Poland
| |
Collapse
|
227
|
Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol 2017; 35:19-28. [PMID: 29254756 DOI: 10.1016/j.smim.2017.12.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
Neutrophils and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) share origin and many morphological and phenotypic features. However, they have different biological role. Neutrophils are one of the major mechanisms of protection against invading pathogens, whereas PMN-MDSC have immune suppressive activity and restrict immune responses in cancer, chronic infectious disease, trauma, sepsis, and many other pathological conditions. Although in healthy adult individuals, PMN-MDSC are not or barely detectable, in patients with cancer and many other diseases they accumulate at various degree and co-exist with neutrophils. Recent advances allow for better distinction of these cells and better understanding of their biological role. Accumulating evidence indicates PMN-MDSC as pathologically activated neutrophils, with important role in regulation of immune responses. In this review, we provide an overview on the definition and characterization of PMN-MDSC and neutrophils, their pathological significance in a variety of diseases, and their interaction with other stromal components.
Collapse
|
228
|
Quintela-Carvalho G, Luz NF, Celes FS, Zanette DL, Andrade D, Menezes D, Tavares NM, Brodskyn CI, Prates DB, Gonçalves MS, de Oliveira CI, Almeida RP, Bozza MT, Andrade BB, Borges VM. Heme Drives Oxidative Stress-Associated Cell Death in Human Neutrophils Infected with Leishmania infantum. Front Immunol 2017; 8:1620. [PMID: 29218050 PMCID: PMC5703736 DOI: 10.3389/fimmu.2017.01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 11/25/2022] Open
Abstract
Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with Leishmania infantum, an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies. We noted a positive correlation between serum concentrations of heme with heme oxygenase-1 (HO-1) and lactate deydrogenase, as well as, a negative correlation between heme values and peripheral blood neutrophils counts. Moreover, in vitro infection with L. infantum in the presence of heme enhanced parasite burden in neutrophils, while increasing the production of reactive oxygen species and release of neutrophilic enzymes. Additional experiments demonstrated that treatment of infected neutrophils with ferrous iron (Fe+2), a key component of the heme molecule, resulted in increased parasite survival without affecting neutrophil activation status. Furthermore, stimulation of infected neutrophils with heme triggered substantial increases in HO-1 mRNA expression as well as in superoxide dismutase-1 enzymatic activity. Heme, but not Fe+2, induced oxidative stress-associated cell death. These findings indicate that heme promotes intracellular L. infantum survival via activation of neutrophil function and oxidative stress. This study opens new perspectives for the understanding of immunopathogenic mechanisms involving neutrophils in VL.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Santa Inês, Brazil
| | - Nívea F Luz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Fabiana S Celes
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Dalila L Zanette
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Daniela Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diego Menezes
- Instituto de Tecnologia e Pesquisa (ITP), Aracaju, Brazil
| | - Natália M Tavares
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Claudia I Brodskyn
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Deboraci B Prates
- Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Marilda S Gonçalves
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Roque P Almeida
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe (UFS), Aracaju, Brazil
| | - Marcelo T Bozza
- Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno B Andrade
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Valeria M Borges
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
229
|
Stojkov D, Amini P, Oberson K, Sokollik C, Duppenthaler A, Simon HU, Yousefi S. ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation. J Cell Biol 2017; 216:4073-4090. [PMID: 29150539 PMCID: PMC5716265 DOI: 10.1083/jcb.201611168] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/27/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Neutrophils can release their genomic DNA as extracellular traps (NETs), which ensnare bacteria and limit their replication. Stojkov et al. find that modulation of cytoskeletal dynamics by reactive oxygen species and glutathionylation controls the degranulation and release of mitochondrial DNA required for NET formation. The antimicrobial defense activity of neutrophils partly depends on their ability to form neutrophil extracellular traps (NETs), but the underlying mechanism controlling NET formation remains unclear. We demonstrate that inhibiting cytoskeletal dynamics with pharmacological agents or by genetic manipulation prevents the degranulation of neutrophils and mitochondrial DNA release required for NET formation. Wiskott-Aldrich syndrome protein–deficient neutrophils are unable to polymerize actin and exhibit a block in both degranulation and DNA release. Similarly, neutrophils with a genetic defect in NADPH oxidase fail to induce either actin and tubulin polymerization or NET formation on activation. Moreover, neutrophils deficient in glutaredoxin 1 (Grx1), an enzyme required for deglutathionylation of actin and tubulin, are unable to polymerize either cytoskeletal network and fail to degranulate or release DNA. Collectively, cytoskeletal dynamics are achieved as a balance between reactive oxygen species–regulated effects on polymerization and glutathionylation on the one hand and the Grx1-mediated deglutathionylation that is required for NET formation on the other.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Poorya Amini
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Christiane Sokollik
- Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland
| | - Andrea Duppenthaler
- Unit of Pediatric Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
230
|
Regli IB, Passelli K, Hurrell BP, Tacchini-Cottier F. Survival Mechanisms Used by Some Leishmania Species to Escape Neutrophil Killing. Front Immunol 2017; 8:1558. [PMID: 29250059 PMCID: PMC5715327 DOI: 10.3389/fimmu.2017.01558] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood. Upon microbial infection, they are massively and rapidly recruited from the circulation to sites of infection where they efficiently kill pathogens. To this end, neutrophils possess a variety of weapons that can be mobilized and become effective within hours following infection. However, several microbes including some Leishmania spp. have evolved a variety of mechanisms to escape neutrophil killing using these cells as a basis to better invade the host. In addition, neutrophils are also present in unhealing cutaneous lesions where their role remains to be defined. Here, we will review recent progress in the field and discuss the different strategies applied by some Leishmania parasites to escape from being killed by neutrophils and as recently described for Leishmania mexicana, even replicate within these cells. Subversion of neutrophil killing functions by Leishmania is a strategy that allows parasite spreading in the host with a consequent deleterious impact, transforming the primary protective role of neutrophils into a deleterious one.
Collapse
Affiliation(s)
- Ivo B Regli
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Katiuska Passelli
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
231
|
Kim YY, Lee S, Kim MJ, Kang BC, Dhakal H, Choi YA, Park PH, Choi H, Shin TY, Choi HG, Kwon TK, Khang D, Kim SH. Tyrosol attenuates lipopolysaccharide-induced acute lung injury by inhibiting the inflammatory response and maintaining the alveolar capillary barrier. Food Chem Toxicol 2017; 109:526-533. [DOI: 10.1016/j.fct.2017.09.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023]
|
232
|
Donati K, Sépult C, Rocks N, Blacher S, Gérard C, Noel A, Cataldo D. Neutrophil-Derived Interleukin 16 in Premetastatic Lungs Promotes Breast Tumor Cell Seeding. CANCER GROWTH AND METASTASIS 2017; 10:1179064417738513. [PMID: 29123422 PMCID: PMC5661667 DOI: 10.1177/1179064417738513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/04/2017] [Indexed: 12/29/2022]
Abstract
The premetastatic niche in distant organs prior to metastatic cell arrival emerged as an important step in the metastatic cascade. However, molecular mechanisms underlying this process are still poorly understood. In particular, whether neutrophil recruitment at a premetastatic stage promotes or inhibits metastatic cell seeding has to be clarified. We aimed at unraveling how neutrophil infiltration in lung parenchyma induced by the distant primary tumor influences the establishment of lung metastasis. Elevated neutrophil counts and IL-16 levels were found in premetastatic lungs in a syngenic mouse model using 4T1 tumor cells. 4T1 cell-derived soluble factors stimulated IL-16 secretion by neutrophils. The functional contribution of IL-16 is supported by metastasis burden reduction in lungs observed on instillation of an IL-16 neutralizing antibody. Moreover, IL-16 promotes in vitro 4T1 cell adhesiveness, invasiveness, and migration. In conclusion, at a premetastatic stage, neutrophil-derived IL-16 favors tumor cell engraftment in lung parenchyma.
Collapse
Affiliation(s)
- Kim Donati
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
- Laboratory of Pneumology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Christelle Sépult
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
- Laboratory of Pneumology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Natacha Rocks
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
- Laboratory of Pneumology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Catherine Gérard
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
- Laboratory of Pneumology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
- Laboratory of Pneumology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| |
Collapse
|
233
|
Saberi H, Keshavarzi B, Shirpoor A, Gharalari FH, Rasmi Y. Rescue effects of ginger extract on dose dependent radiation-induced histological and biochemical changes in the kidneys of male Wistar rats. Biomed Pharmacother 2017; 94:569-576. [PMID: 28780473 DOI: 10.1016/j.biopha.2017.07.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 11/17/2022] Open
Abstract
Radiation is an essential modality in the management of cancer therapy, but its acute and chronic side effects on the normal organs limit the helpfulness of radiotherapy. The deleterious effects of radiation begin with oxidative stress and inflammatory reaction to radiolytic hydrolysis and formation of free radicals. The aim of the current study was to investigate the effect of dose dependent whole body radiation exposure on histological and biochemical alterations in rat kidney. It was also planned to find out whether ginger extract mitigated the deleterious effects of different doses of radiation in rat kidney. Male Wistar rats were exposed to three doses (2, 4, and 8Gy) of γ- ray with or without a 10day pretreatment with ginger extract. After 10days of whole body γ- ray exposure, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant increase in 8-OHdG, CRP, cystatin C (in 8Gy), plasma urea and creatinine levels, as well as a significant decrease in total antioxidant capacity of radiation groups compared to those of the control group. Ginger extract administration once daily for 10 consecutive days before exposure to 2-4-8Gy radiotherapy, which ameliorated histological and biochemical alterations in kidneys of the rats entirely or partially compared to those in the ethanol group rats. These findings indicate that whole body exposure to radiation induces kidney damage through oxidative DNA damage and inflammatory reactions, and that these effects can be alleviated using ginger pretreatment as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Hassan Saberi
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnaz Keshavarzi
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
234
|
Niemiec MJ, Grumaz C, Ermert D, Desel C, Shankar M, Lopes JP, Mills IG, Stevens P, Sohn K, Urban CF. Dual transcriptome of the immediate neutrophil and Candida albicans interplay. BMC Genomics 2017; 18:696. [PMID: 28874114 PMCID: PMC5585943 DOI: 10.1186/s12864-017-4097-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022] Open
Abstract
Background Neutrophils are traditionally considered transcriptionally inactive. Compared to other immune cells, little is known about their transcriptional profile during interaction with pathogens. Methods We analyzed the meta-transcriptome of the neutrophil-Candida albicans interplay and the transcriptome of C. albicans challenged with neutrophil extracellular traps (NETs) by RNA-Seq, considering yeast and hypha individually in each approach. Results The neutrophil response to C. albicans yeast and hyphae was dominated by a morphotype-independent core response. However, 11 % of all differentially expressed genes were regulated in a specific manner when neutrophils encountered the hyphal form of C. albicans. While involving genes for transcriptional regulators, receptors, and cytokines, the neutrophil core response lacked typical antimicrobial effectors genes. Genes of the NOD-like receptor pathway, including NLRP3, were enriched. Neutrophil- and NET-provoked responses in C. albicans differed. At the same time, the Candida transcriptome upon neutrophil encounter and upon NET challenge included genes from various metabolic processes and indicate a mutual role of the regulators Tup1p, Efg1p, Hap43p, and Cap1p. Upon challenge with neutrophils and NETs, the overall Candida response was partially morphotype-specific. Yet again, actual oppositional regulation in yeasts and hyphae was only detected for the arginine metabolism in neutrophil-infecting C. albicans. Conclusions Taken together, our study provides a comprehensive and quantitative transcript profile of the neutrophil–C. albicans interaction. By considering the two major appearances of both, neutrophils and C. albicans, our study reveals yet undescribed insights into this medically relevant encounter. Hence, our findings will facilitate future research and potentially inspire novel therapy developments. Electronic supplementary material The online version of this article (10.1186/s12864-017-4097-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria J Niemiec
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.,Present Address: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany & Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Christian Grumaz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - David Ermert
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.,Present Address: Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Christiane Desel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Present Address: The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Madhu Shankar
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - José Pedro Lopes
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Ian G Mills
- Prostate Cancer Research Group, Center of Molecular Medicine Norway (NCMM), Oslo, Norway.,Department of Molecular Oncology, Institute of Cancer Research, Radium Hospital, Oslo, Norway.,PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Philip Stevens
- University of Stuttgart IGVP, Stuttgart, Germany.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Constantin F Urban
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.
| |
Collapse
|
235
|
Donadieu J, Beaupain B, Fenneteau O, Bellanné-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol 2017; 179:557-574. [PMID: 28875503 DOI: 10.1111/bjh.14887] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review focuses on the classification, diagnosis and natural history of congenital neutropenia (CN). CN encompasses a number of genetic disorders with chronic neutropenia and, for some, affecting other organ systems, such as the pancreas, central nervous system, heart, bone and skin. To date, 24 distinct genes have been associated with CN. The number of genes involved makes gene screening difficult. This can be solved by next-generation sequencing (NGS) of targeted gene panels. One of the major complications of CN is spontaneous leukaemia, which is preceded by clonal somatic evolution, and can be screened by a targeted NGS panel focused on somatic events.
Collapse
Affiliation(s)
- Jean Donadieu
- Service d'Hémato Oncologie Pédiatrique, Registre des neutropénies congénitales, AP-HP Hopital Trousseau, Paris, France
| | - Blandine Beaupain
- Service d'Hémato Oncologie Pédiatrique, Registre des neutropénies congénitales, AP-HP Hopital Trousseau, Paris, France
| | - Odile Fenneteau
- Laboratoire d'Hématologie, AP-HP Hôpital S Robert Debré, Paris, France
| | | |
Collapse
|
236
|
Loke I, Østergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M. Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions. Mol Cell Proteomics 2017; 16:1507-1527. [PMID: 28630087 PMCID: PMC5546201 DOI: 10.1074/mcp.m116.066746] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
Human neutrophil elastase (HNE) is an important N-glycosylated serine protease in the innate immune system, but the structure and immune-modulating functions of HNE N-glycosylation remain undescribed. Herein, LC-MS/MS-based glycan, glycopeptide and glycoprotein profiling were utilized to first determine the heterogeneous N-glycosylation of HNE purified from neutrophil lysates and then from isolated neutrophil granules of healthy individuals. The spatiotemporal expression of HNE during neutrophil activation and the biological importance of its N-glycosylation were also investigated using immunoblotting, cell surface capture, native MS, receptor interaction, protease inhibition, and bacteria growth assays. Site-specific HNE glycoprofiling demonstrated that unusual paucimannosidic N-glycans, particularly Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ, predominantly occupied Asn124 and Asn173. The equally unusual core fucosylated monoantenna complex-type N-sialoglycans also decorated these two fully occupied sites. In contrast, the mostly unoccupied Asn88 carried nonfucosylated paucimannosidic N-glycans probably resulting from low glycosylation site solvent accessibility. Asn185 was not glycosylated. Subcellular- and site-specific glycoprofiling showed highly uniform N-glycosylation of HNE residing in distinct neutrophil compartments. Stimulation-induced cell surface mobilization demonstrated a spatiotemporal regulation, but not cell surface-specific glycosylation signatures, of HNE in activated human neutrophils. The three glycosylation sites of HNE were located distal to the active site indicating glycan functions other than interference with HNE enzyme activity. Functionally, the paucimannosidic HNE glycoforms displayed preferential binding to human mannose binding lectin compared with the HNE sialoglycoforms, suggesting a glycoform-dependent involvement of HNE in complement activation. The heavily N-glycosylated HNE protease inhibitor, α1-antitrypsin, displayed concentration-dependent complex formation and preferred glycoform-glycoform interactions with HNE. Finally, both enzymatically active HNE and isolated HNE N-glycans demonstrated low micromolar concentration-dependent growth inhibition of clinically-relevant Pseudomonas aeruginosa, suggesting some bacteriostatic activity is conferred by the HNE N-glycans. Taken together, these observations support that the unusual HNE N-glycosylation, here reported for the first time, is involved in modulating multiple immune functions central to inflammation and infection.
Collapse
Affiliation(s)
- Ian Loke
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ole Østergaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels H H Heegaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
237
|
Ramadass M, Catz SD. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation. Immunol Rev 2017; 273:249-65. [PMID: 27558339 DOI: 10.1111/imr.12452] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
238
|
Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, Guo M, Deng G. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264.7 cells and acute lung injury. Oncotarget 2017; 8:68153-68164. [PMID: 28978105 PMCID: PMC5620245 DOI: 10.18632/oncotarget.19249] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening inflammatory disease owing to the lack of specific and effective therapies. Oridonin (Ori) is an active diterpenoid isolated from Rabdosiarubescens (R.rubescens) that has been shown to possess a broadspectrum pharmacological properties including anti-inflammatory, antitumour, antioxidative and neuroregulatory effects. However, its potential protective mechanism in ALI is not well characterized. In this study, we demonstrated that Ori reduces the mortality of mice with ALI induced by a high dose of lipopolysaccharide (LPS), which suggests that Ori has a protective effect on LPS induced ALI. Next, our results confirmed that Ori improves LPS-induced localized pulmonary pathology and decreased the concentration of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum. Nuclear factor-kappa B (NF-κB) is capable of regulating the transcription of pro-inflammatory factors. Interestingly, our results showed that Ori inhibits the expression of TLR4/MyD88 and phosphorylation of NF-κB p65 in lung tissues. To confirm this, we further validated the possible regulatory anti-inflammatory mechanisms of Ori in vitro. LPS-induced RAW264.7 cells, which are widely used as an inflammation model to evaluate the potential protective effect of drugs in vitro, were chosen for this study. Similar results were observed, that is, pre-treatment with Ori, markedly inhibited the nuclear translocation and phosphorylation of NF-κB p65 induced by LPS and subsequently decreased the release of pro-inflammatory cytokines that were increased by LPS. Overall, these results demonstrated that Ori exerts a therapeutic effect on ALI by inhibiting the release of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, through the TLR4/MyD88/NF-κB axis.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
239
|
Map3k8 controls granulocyte colony-stimulating factor production and neutrophil precursor proliferation in lipopolysaccharide-induced emergency granulopoiesis. Sci Rep 2017; 7:5010. [PMID: 28694430 PMCID: PMC5503936 DOI: 10.1038/s41598-017-04538-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/17/2017] [Indexed: 01/15/2023] Open
Abstract
Map3k8 has been proposed as a useful target for the treatment of inflammatory diseases. We show here that during lipopolysaccharide-induced emergency granulopoiesis, Map3k8 deficiency strongly impairs the increase in circulating mature (Ly6GhighCD11b+) and immature (Ly6GlowCD11b+) neutrophils. After chimaeric bone marrow (BM) transplantation into recipient Map3k8−/− mice, lipopolysaccharide treatment did not increase circulating Ly6GhighCD11b+ cells and strongly decreased circulating Ly6GlowCD11b+ cells. Lipopolysaccharide-treated Map3k8−/− mice showed decreased production of granulocyte colony-stimulating factor (G-CSF), a key factor in neutrophil expansion, and a Map3k8 inhibitor blocked lipopolysaccharide-mediated G-CSF expression in endothelial cell lines. Ly6GlowCD11b+ BM cells from lipopolysaccharide-treated Map3k8−/− mice displayed impaired expression of CCAAT-enhancer-binding protein β, which depends on G-CSF for expression and is crucial for cell cycle acceleration in this life-threatening condition. Accordingly, lipopolysaccharide-treated Map3k8−/− mice showed decreased Ly6GlowCD11b+ BM cell proliferation, as evidenced by a decrease in the percentage of the most immature precursors, which have the highest proliferation capacity among this cell population. Thus, Map3k8 expression by non-haematopoietic tissue is required for lipopolysaccharide-induced emergency granulopoiesis. The novel observation that inhibition of Map3k8 activity decreases neutrophilia during life-threatening systemic infection suggests a possible risk in the proposed use of Map3k8 blockade as an anti-inflammatory therapy.
Collapse
|
240
|
Peptoanaerobacter stomatis Primes Human Neutrophils and Induces Granule Exocytosis. Infect Immun 2017; 85:IAI.01043-16. [PMID: 28438978 DOI: 10.1128/iai.01043-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Peptoanaerobacter stomatis is a newly appreciated taxon associated with periodontal diseases; however, little is known about the organism's pathogenic potential or its interaction with the host immune response. Neutrophils are the most abundant innate immune cell present in the gingival tissue and function to constrain the oral microbial challenge. However, some periodontal pathogens have developed strategies to evade phagocytosis and killing by neutrophils. Therefore, to begin to understand the role of P. stomatis in periodontitis, we studied its interactions with human neutrophils. Our data showed that after 30 min of incubation, neutrophils failed to engulf P. stomatis efficiently; however, when P. stomatis was internalized, it was promptly eradicated. P. stomatis challenge induced a robust intracellular respiratory burst; however, this response did not contribute to bacterial killing. Minimal superoxide release was observed by direct bacterial challenge; however, P. stomatis significantly increased N-formyl-methionyl-leucyl phenylalanine (fMLF)-stimulated superoxide release to an extent similar to that of cells primed with tumor necrosis factor alpha (TNF-α). When neutrophils were challenged with P. stomatis, 52% of the bacterium-containing phagosomes were enriched for the specific granule marker lactoferrin and 82% with the azurophil granule marker elastase. P. stomatis challenge stimulated exocytosis of the four neutrophil granule subtypes. Moreover, P. stomatis susceptibility to extracellular killing could be attributed to the exocytosis of antimicrobial components present in neutrophil granules. Priming neutrophils for an enhanced respiratory burst together with promoting granule content release could contribute to the chronic inflammation and tissue destruction that characterize periodontal diseases.
Collapse
|
241
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
242
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
243
|
Pechous RD. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Front Cell Infect Microbiol 2017; 7:160. [PMID: 28507954 PMCID: PMC5410563 DOI: 10.3389/fcimb.2017.00160] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS) aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.
Collapse
Affiliation(s)
- Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
244
|
Zhang R, Ai X, Duan Y, Xue M, He W, Wang C, Xu T, Xu M, Liu B, Li C, Wang Z, Zhang R, Wang G, Tian S, Liu H. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed Pharmacother 2017; 89:660-672. [DOI: 10.1016/j.biopha.2017.02.081] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/23/2023] Open
|
245
|
Clancy DM, Henry CM, Sullivan GP, Martin SJ. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J 2017; 284:1712-1725. [PMID: 28374518 DOI: 10.1111/febs.14075] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
Abstract
Activated neutrophils can undergo a mode of regulated cell death, called NETosis, that results in the extrusion of chromatin into the extracellular space, thereby acting as extracellular traps for microorganisms. Neutrophil-derived extracellular traps (NETs) are comprised of DNA decorated with histones, antimicrobial proteins and neutrophil granule proteases, such as elastase and cathepsin G (Cat G). NET-associated factors are thought to enhance the antimicrobial properties of these structures and localisation of antimicrobial molecules on NETs may serve to increase their local concentration. Because neutrophil-derived proteases have been implicated in the processing and activation of several members of the extended interleukin (IL)-1 family, we wondered whether neutrophil NETs could also serve as platforms for the activation of proinflammatory cytokines. Here, we show that neutrophil NETs potently processed and activated IL-1α as well as IL-36 subfamily cytokines through NET-associated Cat G and elastase. Thus, in addition to their role as antimicrobial traps, NETs can also act as local sites of cytokine processing and activation.
Collapse
Affiliation(s)
- Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Conor M Henry
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
246
|
Mark Welch DB, Jauch A, Langowski J, Olins AL, Olins DE. Transcriptomes reflect the phenotypes of undifferentiated, granulocyte and macrophage forms of HL-60/S4 cells. Nucleus 2017; 8:222-237. [PMID: 28152343 DOI: 10.1080/19491034.2017.1285989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To understand the chromatin changes underlying differential gene expression during induced differentiation of human leukemic HL-60/S4 cells, we conducted RNA-Seq analysis on quadruplicate cultures of undifferentiated, granulocytic- and macrophage-differentiated cell forms. More than half of mapped genes exhibited altered transcript levels in the differentiated cell forms. In general, more genes showed increased mRNA levels in the granulocytic form and in the macrophage form, than showed decreased levels. The majority of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in genes that exhibited differential transcript levels after either RA or TPA treatment. Changes in transcript levels for groups of genes with characteristic protein phenotypes, such as genes encoding cytoplasmic granular proteins, nuclear envelope and cytoskeletal proteins, cell adhesion proteins, and proteins involved in the cell cycle and apoptosis illustrate the profound differences among the various cell states. In addition to the transcriptome analyses, companion karyotyping by M-FISH of undifferentiated HL-60/S4 cells revealed a plethora of chromosome alterations, compared with normal human cells. The present mRNA profiling provides important information related to nuclear shape changes (e.g., granulocyte lobulation), deformability of the nuclear envelope and linkage between the nuclear envelope and cytoskeleton during induced myeloid chromatin differentiation.
Collapse
Affiliation(s)
- David B Mark Welch
- a Josephine Bay Paul Center for Comparative Molecular Biology and Evolution , Marine Biological Laboratory , Woods Hole , MA , USA
| | - Anna Jauch
- b Institute of Human Genetics, University of Heidelberg , Heidelberg , Germany
| | - Jörg Langowski
- c Division Biophysics of Macromolecules, B040 , German Cancer Research Center (DKFZ), TP3 , Heidelberg , Germany
| | - Ada L Olins
- d University of New England, College of Pharmacy , Department of Pharmaceutical Sciences , Portland , ME , USA
| | - Donald E Olins
- d University of New England, College of Pharmacy , Department of Pharmaceutical Sciences , Portland , ME , USA
| |
Collapse
|
247
|
Gough P, Ganesan S, Datta SK. IL-20 Signaling in Activated Human Neutrophils Inhibits Neutrophil Migration and Function. THE JOURNAL OF IMMUNOLOGY 2017; 198:4373-4382. [PMID: 28424238 DOI: 10.4049/jimmunol.1700253] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 12/23/2022]
Abstract
Neutrophils possess multiple antimicrobial mechanisms that are critical for protection of the host against infection with extracellular microbes, such as the bacterial pathogen Staphylococcus aureus Recruitment and activation of neutrophils at sites of infection are driven by cytokine and chemokine signals that directly target neutrophils via specific cell surface receptors. The IL-20 subfamily of cytokines has been reported to act at epithelial sites and contribute to psoriasis, wound healing, and anti-inflammatory effects during S. aureus infection. However, the ability of these cytokines to directly affect neutrophil function remains incompletely understood. In this article, we show that human neutrophils altered their expression of IL-20R chains upon migration and activation in vivo and in vitro. Such activation of neutrophils under conditions mimicking infection with S. aureus conferred responsiveness to IL-20 that manifested as modification of actin polymerization and inhibition of a broad range of actin-dependent functions, including phagocytosis, granule exocytosis, and migration. Consistent with the previously described homeostatic and anti-inflammatory properties of IL-20 on epithelial cells, the current study provides evidence that IL-20 directly targets and inhibits key inflammatory functions of neutrophils during infection with S. aureus.
Collapse
Affiliation(s)
- Portia Gough
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sundar Ganesan
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
248
|
Arafat SN, Robert MC, Abud T, Spurr-Michaud S, Amparo F, Dohlman CH, Dana R, Gipson IK. Elevated Neutrophil Elastase in Tears of Ocular Graft-Versus-Host Disease Patients. Am J Ophthalmol 2017; 176:46-52. [PMID: 28073648 DOI: 10.1016/j.ajo.2016.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the levels of neutrophil elastase (NE), matrix metalloproteinases (MMPs), and myeloperoxidase (MPO) in tear washes of patients with ocular graft-vs-host disease (oGVHD). DESIGN Case-control study. METHODS Based on established criteria, oGVHD patients (n = 14; 28 eyes) and age-/sex-matched healthy controls (n = 14; 28 eyes) were enrolled. Tear washes were collected and analyzed for NE using a single-analyte enzyme-linked immunosorbent assay (ELISA). MMPs (1, 2, 3, 7, 8, 9, 12), MPO, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 were analyzed using multianalyte bead-based ELISA assays. Total MMP activity was measured using a fluorimetric assay. Correlation studies were performed between NE, MMP-8, MMP-9, and MPO within study groups. RESULTS NE, MMP-8, MMP-9, and MPO levels were elevated in oGVHD tears when compared with controls (P < .0001). NE was the most elevated analyte. MMP activity was higher and TIMP-1 levels were lower in oGVHD than in control (P < .0001). In oGVHD, NE significantly correlated with MMP-8 (r = 0.92), MMP-9 (r = 0.90), and MPO (r = 0.79) (P < .0001). MMP-8 correlated with MMP-9 (r = 0.96, P < .0001), and MPO (r = 0.60, P = .001). MMP-9 correlated with MPO (r = 0.55, P = .002). In controls, NE, MMP-9, and MPO significantly correlated with each other (P < .0001). CONCLUSIONS The marked increase in NE in oGVHD tears that correlated strongly with elevated MMP-8, MMP-9, and MPO suggests a common neutrophilic source and provides evidence of neutrophil activity on the ocular surface of oGVHD patients.
Collapse
Affiliation(s)
- Samer N Arafat
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Marie-Claude Robert
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Tulio Abud
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of Sao Paulo-UNIFESP, Sao Paulo, Brazil
| | - Sandra Spurr-Michaud
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Francisco Amparo
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Claes H Dohlman
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Ilene K Gipson
- Schepens Eye Research Institute-Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
249
|
Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud'ina G, Chernyak B, Pinegin B. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol 2017; 96:254-265. [PMID: 28325500 DOI: 10.1016/j.ejcb.2017.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 12/23/2022] Open
Abstract
Activation of neutrophils is accompanied by the oxidative burst, exocytosis of various granule types (degranulation) and a delay in spontaneous apoptosis. The major source of reactive oxygen species (ROS) in human neutrophils is NADPH oxidase (NOX2), however, other sources of ROS also exist. Although the function of ROS is mainly defensive, they can also play a regulatory role in cell signaling. However, the contribution of various sources of ROS in these processes is not clear. We investigated a possible role of mitochondria-derived ROS (mtROS) in the regulation of neutrophil activation induced by chemoattractant fMLP in vitro. Using the mitochondria-targeted antioxidant SkQ1, we demonstrated that mtROS are implicated in the oxidative burst caused by NOX2 activation as well as in the exocytosis of primary (azurophil) and secondary (specific) granules. Scavenging of mtROS with SkQ1 slightly accelerated spontaneous apoptosis and significantly stimulated apoptosis of fMLP-activated neutrophils. These data indicate that mtROS play a critical role in signal transduction that mediates the major neutrophil functional responses in the process of activation.
Collapse
Affiliation(s)
- Nina Vorobjeva
- Department Immunology, Biology Faculty; Lomonosov Moscow State University, 119998 Moscow, Russia; Institute of Immunology, FMBA, Kashirskoe Shosse 24/2, 115478, Moscow, Russia.
| | - Anastasia Prikhodko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan Galkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga Pletjushkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Galina Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Boris Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Boris Pinegin
- Institute of Immunology, FMBA, Kashirskoe Shosse 24/2, 115478, Moscow, Russia
| |
Collapse
|
250
|
Xu Z, Yin W, Zhang Y, Qi X, Chen Y, Xie X, Zhang C. Comparative evaluation of leukocyte- and platelet-rich plasma and pure platelet-rich plasma for cartilage regeneration. Sci Rep 2017; 7:43301. [PMID: 28265109 PMCID: PMC5339695 DOI: 10.1038/srep43301] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Platelet-rich plasma (PRP) has gained growing popularity in the treatment of articular cartilage lesions in the last decade. However, the potential harmful effects of leukocytes in PRP on cartilage regeneration have seldom been studied in vitro, and not at all in vivo yet. The objective of the present study is to compare the effects of leukocyte- and platelet-rich plasma (L-PRP) and pure platelet-rich plasma (P-PRP) on cartilage repair and NF-κB pathway, in order to explore the mechanism underlying the function of leukocytes in PRP in cartilage regeneration. The constituent analysis showed that P-PRP had significantly lower concentrations of leukocytes and pro-inflammatory cytokines compared with L-PRP. In addition, cell proliferation and differentiation assays indicated P-PRP promoted growth and chondrogenesis of rabbit bone marrow mesenchymal stem cells (rBMSC) significantly compared with L-PRP. Despite similarity in macroscopic appearance, the implantation of P-PRP combining rBMSC in vivo yielded better cartilage repair results than the L-PRP group based on histological examination. Importantly, the therapeutic effects of PRP on cartilage regeneration could be enhanced by removing leukocytes to avoid the activation of the NF-κB pathway. Thus, PRP without concentrated leukocytes may be more suitable for the treatment of articular cartilage lesions.
Collapse
Affiliation(s)
- Zhengliang Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenjing Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuelei Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin Qi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuetao Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|