201
|
Henriques M, Azeredo J, Oliveira R. Candida species adhesion to oral epithelium: factors involved and experimental methodology used. Crit Rev Microbiol 2007; 32:217-26. [PMID: 17123906 DOI: 10.1080/10408410601023524] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the increasing prevalence and emergence of Non-Candida albicans Candida (NCAC) species, especially in immunosupressed patients, it is becoming urgent to deepen the current knowledge about virulence factors of these species. Adhesion of cells to epithelium is considered one of the major virulence factors of Candida species. However, relatively little is known concerning the adhesion mechanisms of NCAC species to epithelium, as well as about the factors affecting the adhesion process. This review focuses both the mechanisms that regulate the adhesion interactions and the factors involved and the description of the experimental methodology that has been used to perform the adhesion assays.
Collapse
Affiliation(s)
- Mariana Henriques
- Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
202
|
Miyakawa Y, Chibana H, Uno J, Mikami Y, Nakayama H. [Essential genes as potential targets of antifungal agents in pathogenic yeast Candida]. ACTA ACUST UNITED AC 2007; 47:269-74. [PMID: 17086158 DOI: 10.3314/jjmm.47.269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An important point in the development of an antimicrobial agent is whether its target molecules are essential for growth of the microorganism. From this viewpoint, we focused attention on essential genes as potential targets of antifungal agents in the pathogenic yeast Candida. Here we introduce recent attempts for screening, identification, and characterization of essential genes from a haploid yeast Candida glabrata, using temperature-sensitive mutants. Our experimental results suggesting the essentiality of C. albicans PHO85, the homologue of which is known as a negative regulator of the PHO system and as a non-essential gene in Saccharomyces cerevisiae are also described.
Collapse
Affiliation(s)
- Yozo Miyakawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan
| | | | | | | | | |
Collapse
|
203
|
Abstract
In recent years, the sequencing and annotation of complete genomes, together with the development of genetic and proteomic techniques to study previously intractable eukaryotic microbes, has revealed interesting new themes in the control of virulence gene expression. Families of variantly expressed genes are found adjacent to telomeres in the genomes of both pathogenic and non-pathogenic organisms. This subtelomeric DNA is normally heterochromatic and higher-order chromatin structure has now come to be recognized as an important factor controlling both the evolution and expression dynamics of these multigene families. In eukaryotic cells, higher-order chromatin structure plays a central role in many DNA processes including the control of chromosome integrity and recombination, DNA partitioning during cell division, and transcriptional control. DNA can be packaged in two distinct forms: euchromatin is relatively accessible to DNA binding proteins and generally contains active genes, while heterochromatin is densely packaged, relatively inaccessible and usually transcriptionally silent. These features of chromatin are epigenetically inherited from cell cycle to cell cycle. This review will focus on the epigenetic mechanisms used to control expression of virulence genes in medically important microbial pathogens. Examples of such control have now been reported in several evolutionarily distant species, revealing what may be a common strategy used to regulate many very different families of genes.
Collapse
Affiliation(s)
- Catherine J Merrick
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave, Building I, Rm 706, Boston, MA 02115, USA
| | | |
Collapse
|
204
|
Lyon JP, de Resende MA. Evaluation of adhesion to buccal epithelial cells in Candida species obtained from denture wearers after exposure to fluconazole. Mycoses 2007; 50:21-4. [PMID: 17302743 DOI: 10.1111/j.1439-0507.2006.01292.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to assess the adhesion ability by Candida spp. obtained from denture wearer patients with and without denture stomatitis and the possible reduction in adhesion after exposure to fluconazole. Nine C. tropicalis, five C. glabrata and two C. parapsilosis obtained from the oral cavity of patients with denture stomatitis and 11 C. tropicalis, nine C. glabrata and six C. parapsilosis obtained from the oral cavity of denture wearers with normal palatal mucosa were compared for adhesion ability to buccal epithelial cells (BEC) and reduction in adhesion after exposure to fluconazole. Candida spp. obtained from denture stomatitis patients were more adherent to BEC, and there was a reduction in adhesion after exposure to fluconazole in all the species tested. Our results demonstrated that exposure to fluconazole reduces Candida spp. adherence to BEC. These results also suggest that adhesion, even in non-albicans species, could be factors that, along with predisposing conditions related to the host, determine if an individual will develop disease or remain as a healthy carrier and confirm that fluconazole has an impact in the adherence ability in Candida spp.
Collapse
Affiliation(s)
- Juliana Pereira Lyon
- Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | |
Collapse
|
205
|
Mayser P, Wenzel M, Krämer HJ, Kindler BLJ, Spiteller P, Haase G. Production of indole pigments byCandida glabrata. Med Mycol 2007; 45:519-24. [PMID: 17710621 DOI: 10.1080/13693780701411557] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
When provided as the sole nitrogen source tryptophan induces the production of several indole alkaloids, e.g., pityriacitrin, malasseziaindole, pityriaanhydride and pityriarubin with proven biological activity in the lipophilic yeast Malassezia furfur. So far these pigments seem to have been unique and only produced by highly specialized basidiomycetal yeasts of the genus Malassezia. Having surprisingly observed a brown pigmented Candida glabrata isolate as a contaminant on such a pigment inducing culture plate, we systematically analyzed whether this ascomycetal yeast can also synthesize the respective pigments. Therefore, 30 Candida glabrata strains, including the ex-type strain CBS 138, were cultured for 2 weeks on a pigment-inducing medium containing L-tryptophan. This culture medium along with the resultant biomass was then extracted with ethyl acetate. The extracted pigments were separated into six fractions by column chromatography. Each of these fractions was subjected to thin-layer chromatography (TLC) on silica gel and yielded identical pigment bands comparable to those observed with M. furfur. In the case of strain CBS 138, the individual TLC zones were further purified by HPLC and structural analysis of the pure metabolites was performed by mass spectrometry and proton nuclear magnetic resonance ((1)H-NMR), thereby proving the presence of pityriacitrin, malassezia indole, pityriaanhydride and pityriarubin C. Since lineage divergence of Basidiomycota and Ascomycota occurred approximately 600 million years ago, our findings demonstrate that the complex underlying biochemical pathway has not been exclusively evolved in the highly adapted basidiomycetes yeast M. furfur, but instead seems to be rather fundamental and archaic. Therefore, further investigations on the potential biological properties and the genetic regulation of these metabolites are needed to elucidate their hitherto unknown functions.
Collapse
Affiliation(s)
- Peter Mayser
- Zentrum für Dermatologie und Andrologie, Justus Liebig Universität, Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
206
|
Alderton AJ, Burr I, Mühlschlegel FA, Tuite MF. Zeocin resistance as a dominant selective marker for transformation and targeted gene deletions in Candida glabrata. Mycoses 2006; 49:445-51. [PMID: 17022759 DOI: 10.1111/j.1439-0507.2006.01271.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many of the genetic tools used to generate gene knockouts in Candida glabrata exploit auxotrophic markers but this is not suitable for use with clinical strains. Antibiotic resistance markers, however, allow one to target genes to be deleted without any prior genetic manipulation of clinical isolates. Such antibiotic selection markers have been widely reported for the manipulation of Saccharomyces cerevisiae. However, very few antibiotic resistance markers have been shown to be useful in C. glabrata. Here, we report the use of Zeocin resistance (ZeoR), encoded by the ble gene from Streptoalloteichus hindustanus, as a new positive selection marker for the genetic manipulation of C. glabrata including clinical strains that we show are significantly more sensitive to Zeocin than to G418. The potential of the ZeoR marker for targeted gene disruption in C. glabrata was confirmed by constructing deletions of the ADE2 in both a laboratory and a clinical strain of C. glabrata, using both short (90 bp) and long (400 bp) homology cassettes.
Collapse
Affiliation(s)
- Alex J Alderton
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | |
Collapse
|
207
|
Mentel M, Spírek M, Jørck-Ramberg D, Piskur J. Transfer of genetic material between pathogenic and food-borne yeasts. Appl Environ Microbiol 2006; 72:5122-5. [PMID: 16820520 PMCID: PMC1489358 DOI: 10.1128/aem.00293-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 04/26/2006] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic yeast species are asexual and therefore not involved in intra- or interspecies mating. However, high-frequency transfer of plasmid DNA was observed when pathogenic and food-borne yeasts were grown together. This property could play a crucial role in the spread of virulence and drug resistance factors among yeasts.
Collapse
Affiliation(s)
- Marek Mentel
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
208
|
Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 2006; 61:704-22. [PMID: 16803598 DOI: 10.1111/j.1365-2958.2006.05235.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Candida glabrata emerged in the last decade as a common cause of mucosal and invasive fungal infection, in large part due to its intrinsic or acquired resistance to azole antifungals such as fluconazole. In C. glabrata clinical isolates, the predominant mechanism behind azole resistance is upregulated expression of multidrug transporter genes CDR1 and PDH1. We previously reported that azole-resistant mutants (MIC >or= 64 microg ml(-1)) of strain 66032 (MIC = 16 microg ml(-1)) similarly show coordinate CDR1-PDH1 upregulation, and in one of these (F15) a putative gain-of-function mutation was identified in the single homologue of Saccharomyces cerevisiae transcription factors Pdr1-Pdr3. Here we show that disruption of C. glabrata PDR1 conferred equivalent fluconazole hypersensitivity (MIC = 2 microg ml(-1)) to both F15 and 66032 and eliminated both constitutive and fluconazole-induced CDR1-PDH1 expression. Reintroduction of wild-type or F15 PDR1 fully reversed these effects; together these results demonstrate a role for this gene in both acquired and intrinsic azole resistance. CDR1 disruption had a partial effect, reducing fluconazole trailing in both strains while restoring wild-type susceptibility (MIC = 16 microg ml(-1)) to F15. In an azole-resistant clinical isolate, PDR1 disruption reduced azole MICs eight- to 64-fold with no effect on sensitivity to other antifungals. To extend this analysis, C. glabrata microarrays were generated and used to analyse genome-wide expression in F15 relative to its parent. Homologues of 10 S. cerevisiae genes previously shown to be Pdr1-Pdr3 targets were upregulated (YOR1, RTA1, RSB1, RPN4, YLR346c and YMR102c along with CDR1, PDH1 and PDR1 itself) or downregulated (PDR12); roles for these genes include small molecule transport and transcriptional regulation. However, expression of 99 additional genes was specifically altered in C. glabrata F15; their roles include transport (e.g. QDR2, YBT1), lipid metabolism (ATF2, ARE1), cell stress (HSP12, CTA1), DNA repair (YIM1, MEC3) and cell wall function (MKC7, MNT3). These azole resistance-associated changes could affect C. glabrata tissue-specific virulence; in support of this, we detected differences in F15 oxidant, alcohol and weak acid sensitivities. C. glabrata provides a promising model for studying the genetic basis of multidrug resistance and its impact on virulence.
Collapse
Affiliation(s)
- John-Paul Vermitsky
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
209
|
Abstract
Yeast cells possess a remarkable capacity to adhere to abiotic surfaces, cells and tissues. These adhesion properties are of medical and industrial relevance. Pathogenic yeasts such as Candida albicans and Candida glabrata adhere to medical devices and form drug-resistant biofilms. In contrast, cell-cell adhesion (flocculation) is a desirable property of industrial Saccharomyces cerevisiae strains that allows the easy separation of cells from the fermentation product. Adhesion is conferred by a class of special cell wall proteins, called adhesins. Cells carry several different adhesins, each allowing adhesion to specific substrates. Several signalling cascades including the Ras/cAMP/PKA and MAP kinase (MAPK)-dependent filamentous growth pathways tightly control synthesis of the different adhesins. Together, these pathways trigger adhesion in response to stress, nutrient limitation or small molecules produced by the host, such as auxin in plants or NAD in mammals. In addition, adhesins are subject to subtelomeric epigenetic switching, resulting in stochastic expression patterns. Internal tandem repeats within adhesin genes trigger recombination events and the formation of novel adhesins, thereby offering fungi an endless reservoir of adhesion properties. These aspects of fungal adhesion exemplify the impressive phenotypic plasticity of yeasts, allowing them to adapt quickly to stressful environments and exploit new opportunities.
Collapse
Affiliation(s)
- Kevin J Verstrepen
- Harvard University Bauer Center for Genomics Research, 7 Divinity Avenue, Room 104, Cambridge, MA 02138, USA.
| | | |
Collapse
|
210
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
211
|
Abstract
In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.
Collapse
Affiliation(s)
- Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, The Netherlands.
| | | | | |
Collapse
|