201
|
Teixeira P, Pinto N, Henriques I, Tacão M. KPC-3-, GES-5-, and VIM-1-Producing Enterobacterales Isolated from Urban Ponds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105848. [PMID: 35627386 PMCID: PMC9141432 DOI: 10.3390/ijerph19105848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
Carbapenems are antibiotics of pivotal importance in human medicine, the efficacy of which is threatened by the increasing prevalence of carbapenem-resistant Enterobacterales (CRE). Urban ponds may be reservoirs of CRE, although this hypothesis has been poorly explored. We assessed the proportion of CRE in urban ponds over a one-year period and retrieved 23 isolates. These were submitted to BOX-PCR, PFGE, 16S rDNA sequencing, antibiotic susceptibility tests, detection of carbapenemase-encoding genes, and conjugation assays. Isolates were affiliated with Klebsiella (n = 1), Raoultella (n = 11), Citrobacter (n = 8), and Enterobacter (n = 3). Carbapenemase-encoding genes were detected in 21 isolates: blaKPC (n = 20), blaGES-5 (n = 6), and blaVIM (n = 1), with 7 isolates carrying two carbapenemase genes. Clonal isolates were collected from different ponds and in different campaigns. Citrobacter F6, Raoultella N9, and Enterobacter N10 were predicted as pathogens from whole-genome sequence analysis, which also revealed the presence of several resistance genes and mobile genetic elements. We found that blaKPC-3 was located on Tn4401b (Citrobacter F6 and Enterobacter N10) or Tn4401d (Raoultella N9). The former was part of an IncFIA-FII pBK30683-like plasmid. In addition, blaGES-5 was in a class 3 integron, either chromosomal (Raoultella N9) or plasmidic (Enterobacter N10). Our findings confirmed the role of urban ponds as reservoirs and dispersal sites for CRE.
Collapse
Affiliation(s)
- Pedro Teixeira
- CESAM (Centre for Marine and Environmental Studies), University of Aveiro, 3810-193 Aveiro, Portugal; (P.T.); (M.T.)
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno Pinto
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel Henriques
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Correspondence:
| | - Marta Tacão
- CESAM (Centre for Marine and Environmental Studies), University of Aveiro, 3810-193 Aveiro, Portugal; (P.T.); (M.T.)
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
202
|
Puangseree J, Prathan R, Srisanga S, Angkittitrakul S, Chuanchuen R. Plasmid profile analysis of Escherichia coli and Salmonella enterica isolated from pigs, pork and humans. Epidemiol Infect 2022; 150:e110. [PMID: 35535461 PMCID: PMC9214845 DOI: 10.1017/s0950268822000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the epidemiology and association of antimicrobial resistance (AMR) among Escherichia coli and Salmonella in Thailand. The E. coli (n = 1047) and Salmonella (n = 816) isolates from pigs, pork and humans were screened for 18 replicons including HI1, HI2, I1-γ, X, L/M, N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIAs, F, K and B/O using polymerase chain reaction-based replicon typing. The E. coli (n = 26) and Salmonella (n = 3) isolates carrying IncF family replicons, ESBL and/or mcr genes were determined for FAB formula. IncF represented the major type of plasmids. Sixteen and eleven Inc groups were identified in E. coli (85.3%) and Salmonella (25.7%), respectively. The predominant replicon patterns between E. coli and Salmonella were IncK-F (23.7%) and IncF (46.2%). Significant correlations (P < 0.05) were observed between plasmid-replicon type and resistance phenotype. Plasmid replicon types were significantly different among sources of isolates and sampling periods. The most common FAB types between E. coli and Salmonella were F2:A-:B- (30.8%) and S1:A-:B- (66.7%), respectively. In conclusion, various plasmids present in E. coli and Salmonella. Responsible and prudent use of antimicrobials is suggested to reduce the selective pressures that favour the spread of AMR determinants. Further studies to understand the evolution of R plasmids and their contribution to the dissemination of AMR genes are warranted.
Collapse
Affiliation(s)
- Jiratchaya Puangseree
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songsak Srisanga
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Rungtip Chuanchuen
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
203
|
Lee S, An JU, Woo J, Song H, Yi S, Kim WH, Lee JH, Ryu S, Cho S. Prevalence, Characteristics, and Clonal Distribution of Escherichia coli Carrying Mobilized Colistin Resistance Gene mcr-1.1 in Swine Farms and Their Differences According to Swine Production Stages. Front Microbiol 2022; 13:873856. [PMID: 35602044 PMCID: PMC9121016 DOI: 10.3389/fmicb.2022.873856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Global spread of Escherichia coli strains carrying the mobilized colistin resistance gene mcr-1.1 (MCR1-EC) poses serious threats to public health. Colistin has been generally prescribed for swine colibacillosis, having made swine farms as major reservoirs of MCR1-EC. The present study aimed to understand characteristic differences of MCR1-EC, including prevalence, antimicrobial resistance, and virulence, according to swine production stages. In addition, genetic relatedness was evaluated between MCR1-EC isolated from this study as well as pig-, human-, and chicken-derived strains published in the National Center for Biotechnology Information (NCBI), based on the multi-locus sequence types (MLSTs) and whole-genome sequences (WGS). Individual fecal samples (n = 331) were collected from asymptomatic weaning-piglets, growers, finishers, and sows from 10 farrow-to-finishing farms in South Korea between 2017 and 2019. The weighted prevalence of MCR1-EC was 11.6% (95% CI: 8.9%–15.0%, 55/331), with the highest prevalence at weaning stage. The 96.2% of MCR1-EC showed multi-drug resistance. Notably, weaning stage-derived MCR1-EC showed higher resistance rates (e.g., against extended-spectrum β-lactams or quinolones) than those from other stages. MCR1-EC with virulence advantages (e.g., intestinal/extraintestinal pathogenic E. coli or robust biofilm formation) were identified from all pig stages, accounting for nearly half of the total strains. WGS-based in-depth characterization showed that intestinal pathogenic MCR1-EC harbored multi-drug resistance and multiple virulence factors, which were highly shared between strains isolated from pigs of different stages. The clonal distribution of MCR1-EC was shared within swine farms but rarely across farms. The major clonal type of MCR1-EC from swine farms and NCBI database was ST10-A. Core genomes of MCR1-EC isolated from individuals within closed environments (same farms or human hospitals) were highly shared (genetic distance < 0.01), suggesting a high probability of clonal expansion of MCR1-EC within closed environments such as livestock husbandry. To the best of our knowledge, this is the first study to analyze the differences in the characteristics and clonal distribution of MCR1-EC according to production stages in swine farms, an important reservoir of MCR1-EC. Our results highlight the need to establish MCR1-EC control plans in swine farms based on an in-depth understanding of MCR1-EC characteristics according to swine production stages, focusing especially on the weaning stages.
Collapse
Affiliation(s)
- Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - JungHa Woo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- *Correspondence: Seongbeom Cho,
| |
Collapse
|
204
|
Valat C, Haenni M, Arnaout Y, Drapeau A, Hirchaud E, Touzain F, Boyer T, Delannoy S, Vorimore F, Fach P, Madec JY. F74 plasmids are major vectors of virulence genes in bovine NTEC2. Lett Appl Microbiol 2022; 75:355-362. [PMID: 35509148 DOI: 10.1111/lam.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Necrotoxigenic Escherichia coli 2 (NTEC2) are defined as E. coli producing the toxin known as cytotoxic necrotizing factor 2 (CNF2), a potent toxin primarily found in bovine but also in humans. NTEC2 are mostly associated with bovine, and cnf2 is known to be carried by pVir-like plasmids. In this study, we looked for NTEC2 in a collection of E. coli collected between 2011 and 2018 in French bovine. Thirty-two isolates, collected from both sick (n=19) and healthy (n=13) animals, were identified and characterized using whole-genome sequencing. One F74 plasmid of this bacterial collection was long-read sequenced: its size was 138 121 bp and it carried the cnf2, F17cA-eG, cdtB, iutA, iucC, and ompP virulence factors (VFs), but no resistance gene. A large variety of genetic backgrounds was observed, but all cnf2-carrying plasmids belonged to the IncF family, and most of them (78.1%) were of the F74 group. Similar F74 plasmids were also reported from bovine in the United Kingdom and USA, as identified in the publically available databases. Consequently, these F74 plasmids, which are widely disseminated among E. coli from cattle in the French territory, are vectors of virulence determinants that largely went unnoticed until now.
Collapse
Affiliation(s)
- Charlotte Valat
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Youssef Arnaout
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Edouard Hirchaud
- Unité Génétique Virale et Biosécurité, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Fabrice Touzain
- Unité Génétique Virale et Biosécurité, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Théophile Boyer
- Unité Epidémiologie et appui à la surveillance, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Sabine Delannoy
- Unité COLiPATH / Plateforme d'identification et de typage des agents pathogènes (IdentyPath) du laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire (ANSES), Maisons-Alfort, France
| | - Fabien Vorimore
- Unité COLiPATH / Plateforme d'identification et de typage des agents pathogènes (IdentyPath) du laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité COLiPATH / Plateforme d'identification et de typage des agents pathogènes (IdentyPath) du laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire (ANSES), Maisons-Alfort, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| |
Collapse
|
205
|
Zhao X, Li W, Hou S, Wang Y, Wang S, Gao J, Zhang R, Jiang S, Zhu Y. Epidemiological investigation on drug resistance of Salmonella isolates from duck breeding farms in Shandong Province and surrounding areas, China. Poult Sci 2022; 101:101961. [PMID: 35687959 PMCID: PMC9190056 DOI: 10.1016/j.psj.2022.101961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Xinyuan Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Wei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanjun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shuyang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Jing Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
206
|
Yao M, Zhu Q, Zou J, Shenkutie AM, Hu S, Qu J, He Z, Leung PHM. Genomic Characterization of a Uropathogenic Escherichia coli ST405 Isolate Harboring bla CTX-M-15-Encoding IncFIA-FIB Plasmid, bla CTX-M-24-Encoding IncI1 Plasmid, and Phage-Like Plasmid. Front Microbiol 2022; 13:845045. [PMID: 35479623 PMCID: PMC9037040 DOI: 10.3389/fmicb.2022.845045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli sequence type 405 is an emerging antibiotic-resistant clonal group associated with the global dissemination of extended-spectrum β-lactamase-producing E. coli. In this study, we report the genome assembly and characterization of a uropathogenic E. coli ST405 strain, SZESBLEC201, based on long and short reads obtained from the Nanopore and Illumina sequencing platforms, respectively. Whole-genome sequencing revealed that SZESBLEC201 harbors a 5,020,403 bp chromosome and three plasmids, namely, pSZESBLEC201-1, pSZESBLEC201-2, and pSZESBLEC201-3. pSZESBLEC201-1 (111,621 bp) belongs to the IncFIA-FIB type and harbors bla CTX-M-15. However, this plasmid does not harbor conjugative transfer-associated genes, rendering pSZESBLEC201-1 unable to be conjugatively transferred. pSZESBLEC201-2 (95,138 bp) is a phage-like plasmid that shows a strong genome synteny with Escherichia phage P1 but with the absence of mobile genetic elements and some regulatory genes. pSZESBLEC201-3 (92,865 bp) belongs to the IncI1 type and carries bla CTX-M-24. In contrast to pSZESBLEC201-1, pSZESBLEC201-3 retains its full active conjugation machinery and can be transferred via conjugation. The genetic features of the genome show that the SZESBLEC201 has a unique virulence pattern compared with genetically similar strains found in the same country (China). The plasmid backbones exhibit a high degree of similarity to those of geographically distant isolates, highlighting the global spread of bla CTX-M genes and the genome plasticity of this clonal group. The coexistence of two bla CTX-M variants in the same strain increases the risk of the emergence of new bla CTX-M variants. Further studies on phage-like plasmids are necessary to provide insights into their biological activities and clinical significance.
Collapse
Affiliation(s)
- Mianzhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zou
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Abebe Mekuria Shenkutie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.,Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
207
|
Belotindos LP, Tsunoda R, Villanueva MA, Nakajima C, Mingala CN, Suzuki Y. Characterisation of plasmids harbouring qnrA1, qnrS1, and qnrB4 in E. coli isolated in the Philippines from food-producing animals and their products. J Glob Antimicrob Resist 2022; 30:38-46. [PMID: 35447382 DOI: 10.1016/j.jgar.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Determinants showing plasmid-mediated quinolone resistance, which usually leads to antimicrobial ineffectiveness, have become an emerging clinical problem. In our previous study in the Philippines, a high prevalence of Qnr determinants was found in clinical samples and food-producing animals and their food products. However, no qnr-carrying plasmids have been investigated in animals or animal-derived foods. Hence, in the present, we aimed to characterise qnr-carrying plasmids in Escherichia coli isolated from the food supply chain. METHODS Plasmids from 44 qnr-positive isolates were assigned to incompatibility groups by PCR-based replicon typing, and the presence of β-lactamase-encoding genes were investigated by PCR. Localisation of qnr in plasmids was determined by S1-PFGE and Southern blot hybridisation. The transferability of qnr-carrying plasmids was examined by conjugation analysis. RESULTS Overall, 77.3% (95%CI = 62.2 - 88.5) of the isolates harbouring qnr determinants were positive for seven plasmid types, and 56.8% concurrently harboured blaTEM-1. Plasmid IncFrepB was prevalent (65.9%, 95%CI = 50.1 - 79.5) among qnr determinants. Localisation of qnr determinants in IncFrepB and transferability of plasmids was further confirmed. CONCLUSIONS The current study proved that qnr in E. coli isolated from food-producing animals and their food products could spread via plasmid IncFrepB upon selective pressure with quinolones or other antimicrobials. Therefore, to curb the emergence and spread of qnr-harbouring bacteria in the Philippines, prudent use of antimicrobials in animal production and stricter hygiene and food handling are recommended.
Collapse
Affiliation(s)
- Lawrence P Belotindos
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan; Biosafety and Environment Section, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija 3120, Philippines.
| | - Risa Tsunoda
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan.
| | - Marvin A Villanueva
- Biosafety and Environment Section, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija 3120, Philippines.
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0021, Japan.
| | - Claro N Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija 3120, Philippines.
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
208
|
Ramos CP, Kamei CYI, Viegas FM, de Melo Barbieri J, Cunha JLR, Hounmanou YMG, Coura FM, Santana JA, Lobato FCF, Bojesen AM, Silva ROS. Fecal Shedding of Multidrug Resistant Escherichia coli Isolates in Dogs Fed with Raw Meat-Based Diets in Brazil. Antibiotics (Basel) 2022; 11:antibiotics11040534. [PMID: 35453285 PMCID: PMC9029118 DOI: 10.3390/antibiotics11040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
The practice of feeding dogs raw meat-based diets (RMBDs) is growing in several countries, and the risks associated with the ingestion of pathogenic and antimicrobial-resistant Escherichia coli in dogs fed these diets are largely unknown. We characterized E. coli strains isolated from dogs fed either an RMBD or a conventional dry feed, according to the phylogroup, virulence genes, and antimicrobial susceptibility profiles of the bacteria. Two hundred and sixteen E. coli strains were isolated. Dogs fed RMBDs shed E. coli strains from the phylogroup E more frequently and were positive for the E. coli heat-stable enterotoxin 1-encoding gene. Isolates from RMBD-fed dogs were also frequently positive for multidrug-resistant E. coli isolates including extended-spectrum beta-lactamase (ESBL) producers. Whole-genome sequencing of seven ESBL-producing E. coli strains revealed that they predominantly harbored blaCTX-M-55, and two strains were also positive for the colistin-resistant gene mcr-1. These results suggest that feeding an RMBD can affect the dog’s microbiota, change the frequency of certain phylogroups, and increase the shedding of diarrheagenic E. coli. Also, feeding an RMBD seemed to be linked with the fecal shedding of multidrug-resistant E. coli, including the spread of strains harboring mobilizable colistin resistance and ESBL genes. This finding is of concern for both animal and human health.
Collapse
Affiliation(s)
- Carolina Pantuzza Ramos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Carolina Yumi Iceri Kamei
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Flávia Mello Viegas
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Jonata de Melo Barbieri
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - João Luís Reis Cunha
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Fernanda Morcatti Coura
- Departamento de Ciências Agrárias, Instituto Federal de Minas Gerais (IFMG), Bambuí 38900-000, Brazil;
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Francisco Carlos Faria Lobato
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Rodrigo Otávio Silveira Silva
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
- Correspondence:
| |
Collapse
|
209
|
Li F, Cheng P, Li X, Liu R, Liu H, Zhang X. Molecular Epidemiology and Colistin-Resistant Mechanism of mcr-Positive and mcr-Negative Escherichia coli Isolated From Animal in Sichuan Province, China. Front Microbiol 2022; 13:818548. [PMID: 35422787 PMCID: PMC9002323 DOI: 10.3389/fmicb.2022.818548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Colistin is the last line of defense for the treatment of multidrug-resistant gram-negative bacterial infections. However, colistin resistance is gradually increasing worldwide, with resistance commonly regulated by two-component system and mcr gene. Thus, this study aimed to investigate molecular epidemiology and colistin-resistant mechanism of mcr-positive and mcr-negative Escherichia coli isolates from animal in Sichuan Province, China. In this study, a total of 101 colistin-resistant E. coli strains were isolated from 300 fecal samples in six farms in Sichuan Province. PCR was used to detect mcr gene (mcr-1 to mcr-9). The prevalence of mcr-1 in colistin-resistant E. coli was 53.47% (54/101), and the prevalence of mcr-3 in colistin-resistant E. coli was 10.89% (11/101). The colistin-resistant E. coli and mcr-1–positive E. coli showed extensive antimicrobial resistance profiles. For follow-up experiments, we used 30 mcr-negative and 30 mcr-1–positive colistin-resistant E. coli isolates and E. coli K-12 MG1655 model strain. Multi-locus sequence typing (MLST) of 30 strains carrying mcr-1 as detected by PCR identified revealed six strains (20%) of ST10 and three strains (10%) of each ST206, ST48, and ST155 and either two (for ST542 and 2539) or just one for all other types. The conjugation experiment and plasmid replicon type analysis suggest that mcr-1 was more likely to be horizontally transferred and primarily localized on IncX4-type and IncI2-type plasmid. The ST diversity of the mcr-1 indicated a scattered and non-clonal spreading in mcr-1–positive E. coli. Twenty-eight mcr-negative colistin-resistant E. coli isolates carried diverse amino acid alterations in PmrA, PmrB, PhoP, PhoQ, and MgrB, whereas no mutation was found in the remaining isolates. The finding showed the high prevalence of colistin resistance in livestock farm environments in Sichuan Province, China. Our study demonstrates that colistin resistance is related to chromosomal point mutations including the two-component systems PhoP/PhoQ, PmrA/PmrB, and their regulators MgrB. These point mutations may confer colistin resistance in mcr-negative E. coli. These findings help in gaining insight of chromosomal-encoded colistin resistance in E. coli.
Collapse
Affiliation(s)
- Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
210
|
Zhang W, Zhang T, Wang C, Liang G, Lu Q, Wen G, Guo Y, Cheng Y, Wang Z, Shao H, Luo Q. Prevalence of colistin resistance gene mcr-1 in Escherichia coli isolated from chickens in central China, 2014 to 2019. J Glob Antimicrob Resist 2022; 29:241-246. [DOI: 10.1016/j.jgar.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022] Open
|
211
|
Martínez-Álvarez S, Sanz S, Olarte C, Hidalgo-Sanz R, Carvalho I, Fernández-Fernández R, Campaña-Burguet A, Latorre-Fernández J, Zarazaga M, Torres C. Antimicrobial Resistance in Escherichia coli from the Broiler Farm Environment, with Detection of SHV-12-Producing Isolates. Antibiotics (Basel) 2022; 11:antibiotics11040444. [PMID: 35453196 PMCID: PMC9024766 DOI: 10.3390/antibiotics11040444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance is an important One Health challenge that encompasses the human, animal, and environmental fields. A total of 111 Escherichia coli isolates previously recovered from manure (n = 57) and indoor air (n = 54) samples from a broiler farm were analyzed to determine their phenotypes and genotypes of antimicrobial resistance and integron characterization; in addition, plasmid replicon analysis and molecular typing were performed in extended-spectrum-beta-lactamase (ESBL) producer isolates. A multidrug-resistance phenotype was detected in 46.8% of the isolates, and the highest rates of resistance were found for ampicillin, trimethoprim−sulfamethoxazole, and tetracycline (>40%); moreover, 15 isolates (13.5%) showed susceptibility to all tested antibiotics. None of the isolates showed imipenem and/or cefoxitin resistance. Twenty-three of the one hundred and eleven E. coli isolates (20.7%) were ESBL producers and carried the blaSHV-12 gene; one of these isolates was recovered from the air, and the remaining 22 were from manure samples. Most of ESBL-positive isolates carried the cmlA (n = 23), tet(A) (n = 19), and aac(6′)-Ib-cr (n = 11) genes. The following genetic lineages were identified among the ESBL-producing isolates (sequence type-phylogroup-clonotype): ST770-E-CH116−552 (n = 12), ST117-B2-CH45−97 (n = 4), ST68-E-CH26−382/49 (n = 3), ST68-E-CH26−49 (n = 1), and ST10992-A/B1-CH11−23/41/580 (n = 4); the latter two were detected for the first time in the poultry sector. At least two plasmid replicon types were detected in the ESBL-producing E. coli isolates, with IncF, IncF1B, IncK, and IncHI1 being the most frequently found. The following antimicrobial resistance genes were identified among the non-ESBL-producing isolates (number of isolates): blaTEM (58), aac(6′)-Ib-cr (6), qnrS (2), aac(3)-II (2), cmlA (6), tet(A)/tet(B) (22), and sul1/2/3 (51). Four different gene-cassette arrays were detected in the variable region of class 1 (dfrA1-aadA1, dfrA12-aadA2, and dfrA12-orf-aadA2-cmlA) and class 2 integrons (sat2-aadA1-orfX). This work reveals the worrying presence of antimicrobial-resistant E. coli in the broiler farm environment, with ESBL-producing isolates of SHV-12 type being extensively disseminated.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Susana Sanz
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Carmen Olarte
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Raquel Hidalgo-Sanz
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Isabel Carvalho
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
- Department of Veterinary Sciences, University of Trás-os-Montes-and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rosa Fernández-Fernández
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Allelen Campaña-Burguet
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Javier Latorre-Fernández
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Myriam Zarazaga
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Carmen Torres
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
- Correspondence:
| |
Collapse
|
212
|
Zhu Y, Fan Y, Cao X, Lu R, Chu S, Ding A. Regulation of Carbapenemase Gene Conjugation in Escherichia coli Clinical Isolates. Microb Drug Resist 2022; 28:551-558. [PMID: 35319308 DOI: 10.1089/mdr.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The purpose of this study is to raise awareness of the hazards of carbapenemase epidemics and provide theoretical support for preventing the spread of carbapenemase-producing organisms. Methods: A total of 893 non-duplicate E. coil strains were recruited from three major local hospitals. The carbapenemase genotype of each imipenem-resistant strain was analyzed. Molecular typing and homology analysis of the main carbapenemase-producing strains reveal the transmission mode of resistance genes. Through the conjugation experiment, the potential spreading risk of carbapenemase genes was analyzed. Extended-spectrum beta-lactamase genes and replicon detection of the conjugant carrying plasmid were performed. The unannotated Escherichia coli bacterial small non-coding RNAs (sRNAs) interacting with sdiA were predicted through a bioinformatics tool. The sRNAs overexpression and knockout strains were constructed, and the effect of sRNA on conjugation was analyzed. Results: A total of 8 carbapenemase-producing strains were detected (0.90%, 8/893). The main carbapenemase genotype was blaKPC -2 (7 strains). Multilocus sequence typing indicated that 7 E. coli isolates belonged to ST-10, ST-101, ST-131, ST-405, ST-410, and ST-1193, ST-2562, respectively. Homologous cluster analysis revealed that the sequence types among the 7 E. coli were high diversity. The blaKPC -2 genes were successfully transferred from these isolates to EC600 by conjugation. All transconjugant cells exhibited significantly reduced susceptibility to the imipenem. IncFII was the most common conjugative plasmid type (85.7%, 6/7). Bioinformatics predicted the interaction between RydB and sdiA. Further experiments found that the interaction between RydB and sdiA improved the bacterial conjugation rate between MG1655 and EC600. The regulation effect of RydB on E. coli conjugation was not affected by the replicon type and/or harboring resistance coding genotype in conjugative plasmids. Conclusion: Our findings emphasized the epidemiological characteristics of carbapenemase-resistant E. coli. A functional phenotype of the new sRNA RydB was identified, and the regulation effect of RydB on E. coli conjugation was improved.
Collapse
Affiliation(s)
- Yihua Zhu
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yuping Fan
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xinjian Cao
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Renfei Lu
- Clinical Laboratory, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Shaopeng Chu
- Clinical Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu, P.R. China
| | - Aimin Ding
- Department of Nursing, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
213
|
Fournier C, Poirel L, Despont S, Kessler J, Nordmann P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022; 10:microorganisms10030615. [PMID: 35336192 PMCID: PMC8951535 DOI: 10.3390/microorganisms10030615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aminoglycosides (AGs) in combination with β-lactams play an important role in antimicrobial therapy in severe infections. Pan-resistance to clinically relevant AGs increasingly arises from the production of 16S rRNA methylases (RMTases) that are mostly encoded by plasmids in Gram-negative bacteria. The recent emergence and spread of isolates encoding RMTases is worrisome, considering that they often co-produce extended-spectrum β-lactamases (ESBLs) or carbapenemases. Our study aimed to retrospectively analyze and characterize the association of carbapenem- and aminoglycoside-resistant clinical isolates in Switzerland during a 3.5-year period between January 2017 and June 2020. A total of 103 pan-aminoglycoside- and carbapenem-resistant clinical isolates were recovered at the NARA (Swiss National Reference Center for Emerging Antibiotic Resistance) during the 2017–2020 period. Carbapenemase and RMTase determinants were identified by PCR and sequencing. The characterization of plasmids bearing resistance determinants was performed by a mating-out assay followed by PCR-based replicon typing (PBRT). Clonality of the isolates was investigated by multilocus sequence typing (MLST). Over the 991 Enterobacterales collected at the NARA during this period, 103 (10.4%) of them were resistant to both carbapenems and all aminoglycosides. Among these 103 isolates, 35 isolates produced NDM-like carbapenemases, followed by OXA-48-like (n = 23), KPC-like (n = 21), or no carbapenemase (n = 13), OXA-48-like and NDM-like co-production (n = 7), and VIM-like enzymes (n = 4). The RMTases ArmA, RmtB, RmtC, RmtF, RmtG, and RmtB + RmtF were identified among 51.4%, 13.6%, 4.9%, 24.3%, 1%, and 1%, respectively. Plasmid co-localization of the carbapenemase and the RMTase encoding genes was found among ca. 20% of the isolates. A high diversity was identified in terms of the nature of associations between RMTase and carbapenemase-encoding genes, of incompatibility groups of the corresponding plasmids, and of strain genetic backgrounds, highlighting heterogeneous importations rather than clonal dissemination.
Collapse
Affiliation(s)
- Claudine Fournier
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| | - Sarah Despont
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Julie Kessler
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Institute for Microbiology, University of Lausanne and University Hospital Centre, 1011 Lausanne, Switzerland
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| |
Collapse
|
214
|
Khine NO, Lugsomya K, Niyomtham W, Pongpan T, Hampson DJ, Prapasarakul N. Longitudinal Monitoring Reveals Persistence of Colistin-Resistant Escherichia coli on a Pig Farm Following Cessation of Colistin Use. Front Vet Sci 2022; 9:845746. [PMID: 35372535 PMCID: PMC8964308 DOI: 10.3389/fvets.2022.845746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Colistin-resistant bacteria harboring plasmid-mediated mcr genes are of concern as they may be a cause of serious nosocomial infections. It is hypothesized that cessation of colistin use as a feed additive for pigs will reduce the occurrence and distribution of mcr genes in farms. The aim of this study was to investigate this hypothesis by longitudinal monitoring and characterizing of mcr positive Escherichia coli (MCRPE) isolates after colistin was withdrawn on a central Thailand pig farm that previously had a high frequency of MCRPE. Colistin use ceased at the beginning of 2017, and subsequently 170 samples were collected from farrowing sows and suckling piglets (n = 70), wastewater (n = 50) and farm workers (n = 50) over a 3.5-year period. Bacteria were identified by MALDI-TOF mass spectrometry and minimal inhibitory concentrations were determined by broth microdilution. The antibiogram of mcr positive E. coli isolates was determined using the Vitek2 automated susceptibility machine, and multiplex and simplex PCRs were performed for mcr-1-8 genes. MCRPE containing either mcr-1 or mcr-3 were isolated from pigs throughout the investigation period, but with a declining trend, whereas MCRPE isolates were recovered from humans only in 2017. MCRPE were still being recovered from wastewater in 2020. Most MCRPE isolates possessed the virulence genes Stap, Stb, or Stx2e, reflecting pathogenic potential in pigs, and showed high rates of resistance to ampicillin, gentamicin and tetracycline. Pulsed-field gel electrophoresis and multi-locus sequence typing showed that diverse MCRPE clones were distributed on the farm. The study identified a decline of pathogenic MCRPE following withdrawal of colistin, with pigs being the primary source, followed by wastewater. However, short-term therapeutic usage of other antibiotics could enhance the re-occurrence of mcr-carrying bacteria. Factors including the environment, management, and gene adaptations that allow maintenance of colistin resistance require further investigation, and longer-term studies are needed.
Collapse
Affiliation(s)
- Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tawat Pongpan
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| |
Collapse
|
215
|
Chen F, Wang P, Yin Z, Yang H, Hu L, Yu T, Jing Y, Guan J, Wu J, Zhou D. VIM-encoding Inc pSTY plasmids and chromosome-borne integrative and mobilizable elements (IMEs) and integrative and conjugative elements (ICEs) in Pseudomonas. Ann Clin Microbiol Antimicrob 2022; 21:10. [PMID: 35264204 PMCID: PMC8905914 DOI: 10.1186/s12941-022-00502-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiahong Wu
- Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
216
|
Liu J, Lin X, Soteyome T, Ye Y, Chen D, Yang L, Xu Z. A strategy design based on antibiotic‑resistance and plasmid replicons genes of clinical Escherichia coli strains. Bioengineered 2022; 13:7500-7514. [PMID: 35259054 PMCID: PMC9208507 DOI: 10.1080/21655979.2022.2047543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since antimicrobial resistance, especially β-lactam resistance genes were common in clinical Escherichia coli strains, this study had designed and developed multiplex amplification platform for rapid and accurate detection of such resistance genes in 542 clinical E. coli isolates. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, and detection of β-lactamase genes and plasmid replicons. The major virulence genes were detected by 7 groups of multiplex PCR and eight groups of multiplex PCR were designed to detect 8 different plasmid replicons including parA-parB, iteron, repA, and RNAI. It was found that most MDR isolates were co-resistant to penicillins (AMP) and fluoroquindones (LVX, CIP) and distribution of LVX and CIP resistance was significantly higher among female than male gender. RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of corresponding plasmids. BlaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. Among the β-lactamase genes, blaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. The RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of the corresponding plasmids by clinical E. coli isolates. It is shown that the developed multiplex amplification methodology is applicable to AMR detection, and such identification of plasmid replicons and β-lactamase genes may aid in the understanding of clinical E. coli isolate epidemiology.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.,Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.,Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong, China
| |
Collapse
|
217
|
Wangkheimayum J, Chanda DD, Bhattacharjee A. Expression of itaT toxin gene is enhanced under aminoglycoside stress in Escherichia coli harbouring aac(6′)Ib. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
218
|
Occurrence of blaOXA-48 type carbapenemase in Escherichia coli with coexisting resistance determinants: A report from India. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
219
|
Nakayama T, Hoa TTT, Huyen HM, Yamaguchi T, Jinnai M, Minh DTN, Hoang ON, Thi HL, Thanh PN, Hoang Hoai P, Nguyen Do P, Van CD, Kumeda Y, Hase A. Isolation of carbapenem-resistant Enterobacteriaceae harbouring NDM-1, 4, 5, OXA48 and KPC from river fish in Vietnam. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
220
|
Liu F, Tian A, Wang J, Zhu Y, Xie Z, Zhang R, Jiang S. Occurrence and molecular epidemiology of fosA3-bearing Escherichia coli from ducks in Shandong province of China. Poult Sci 2022; 101:101620. [PMID: 34986446 PMCID: PMC8743214 DOI: 10.1016/j.psj.2021.101620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
The plasmid-borne fosfomycin resistance gene fosA3 has been identified in Escherichia coli (E. coli) from various animals but has rarely been reported in ducks. In this study, we investigated the fosA3 prevalence and molecular characteristics of fosA3-harboring E. coli strains from ducks in Shandong province of China. In 416 E. coli isolates, 91 (21.88%) were identified as fosA3-bearing strains, and the fosfomycin-resistant phenotype of 88 of the 91 fosA3-harboring strains was successfully transferred to the recipient strains. Seven different genetic structures surrounding the fosA3 gene were detected and 2 new contexts were discovered among the fosA3-carrying E. coli. Twenty fosA3-harboring isolates and their trans-conjugants were randomly selected for pulsed-field gel electrophoresis (PFGE) typing and S1-nuclease PFGE, respectively. The PFGE patterns revealed that the 20 randomly selected fosA3-bearing isolates were not a result of clonal dissemination. S1-PFGE showed that 15 of the 20 randomly selected trans-conjugants carried a single plasmid, and these 15 plasmids that harbored fosA3 (55-190 kb) were distributed into the following replicon types: IncF (n = 11), IncI1 (n = 1), IncN (n = 1), untypable (n = 1), and W-FIC (n = 1). Additionally, as vectors for fosA3 in E. coli, F-:A1:B6, N/ST1, IncI1/ST2, W-FIC, and one untypable plasmid had never been reported before. These observations highlighted the importance of ducks as a reservoir for multidrug-resistant fosA3-carrying E. coli.
Collapse
Affiliation(s)
- Fengzhi Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Ang Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China.
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
221
|
Outbreak of NDM-1-Producing Escherichia coli in a Coronavirus Disease 2019 Intensive Care Unit in a Mexican Tertiary Care Center. Microbiol Spectr 2022; 10:e0201521. [PMID: 35019697 PMCID: PMC8754109 DOI: 10.1128/spectrum.02015-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergency department areas were repurposed as intensive care units (ICUs) for patients with acute respiratory distress syndrome during the initial months of the coronavirus disease 2019 (COVID-19) pandemic. We describe an outbreak of New Delhi metallo-β-lactamase 1 (NDM-1)-producing Escherichia coli infections in critically ill COVID-19 patients admitted to one of the repurposed units. Seven patients developed infections (6 ventilator-associated pneumonia [VAP] and 1 urinary tract infection [UTI]) due to carbapenem-resistant E. coli, and only two survived. Five of the affected patients and four additional patients had rectal carriage of carbapenem-resistant E. coli. The E. coli strain from the affected patients corresponded to a single sequence type. Rectal screening identified isolates of two other sequence types bearing blaNDM-1. Isolates of all three sequence types harbored an IncFII plasmid. The plasmid was confirmed to carry blaNDM-1 through conjugation. An outbreak of clonal NDM-1-producing E. coli isolates and subsequent dissemination of NDM-1 through mobile elements to other E. coli strains occurred after hospital conversion during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This emphasizes the need for infection control practices in surge scenarios. IMPORTANCE The SARS-CoV-2 pandemic has resulted in a surge of critically ill patients. Hospitals have had to adapt to the demand by repurposing areas as intensive care units. This has resulted in high workload and disruption of usual hospital workflows. Surge capacity guidelines and pandemic response plans do not contemplate how to limit collateral damage from issues like hospital-acquired infections. It is vital to ensure quality of care in surge scenarios.
Collapse
|
222
|
Plasmid Replicon Diversity of Clinical Uropathogenic Escherichia coli Isolates from Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify and compare the plasmid replicons of clinical uropathogenic Escherichia coli (UPEC) isolates, involving extended spectrum β-lactamase (ESBL)-positive and ESBL-negative, E. coli ST131 and non-ST131 and various ST131 subclones. Plasmid replicon typing on 24 clinical UPEC isolates was carried out using polymerase chain reaction-based replicon typing. A statistical analysis was performed to assess the associations between plasmid replicon types and ESBL carriage, and to evaluate the link between ST131 isolates and high replicon carriage. Eight replicons, I1α, N2, Iγ, X1, FIIS, K, FIA, and FII were detected. The FII was the most common replicon identified here. ESBL-positive E. coli isolates were highly associated with I1α, N2, Iγ, X1, and FIIS replicons, while FIA was present only in ESBL-negative group. ST131 isolates were highly associated with I1α and N2 replicons compared to non-ST131. No link was found between replicon carriage and the number or type of ESBLs in E. coli isolates. The diversity observed in replicon patterns of our clinical E. coli isolates indicates that they might be originated from different sources. The presence of replicons reported previously in animal sources suggests a possible transfer of antimicrobial resistance between animal and human bacterial isolates.
Collapse
|
223
|
Clinically healthy household dogs and cats as carriers of multidrug-resistant Salmonella enterica with variable R plasmids. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including
Salmonella
. However, data on AMR in companion animals is limited.
Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.
Purpose. This study aimed to phenotypically and genetically investigate AMR in
Salmonella
isolated from pet dogs and cats in Thailand.
Methodology.
Salmonella enterica
were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.
Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the β-lactamase genes bla
TEM-1 and bla
CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).
Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR
Salmonella
strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.
Collapse
|
224
|
Geetha PV, Aishwarya KVL, Shanthi M, Sekar U. Plasmid-Mediated Fluoroquinolone Resistance in Pseudomonas aeruginosa and Acinetobacter baumannii. J Lab Physicians 2022; 14:271-277. [PMID: 36119417 PMCID: PMC9473940 DOI: 10.1055/s-0042-1742636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction
Pseudomonas aeruginosa
and
Acinetobacter baumannii
are important pathogens in health care–associated infections. Fluoroquinolone resistance has emerged in these pathogens. In this study, we aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) determinants (
qnrA
,
qnrB
,
qnrS
,
aac(6′)-Ib-cr
,
oqxAB
, and
qepA
) by polymerase chain reaction (PCR) and the transmissibility of plasmid-borne resistance determinants in clinical isolates of
P. aeruginosa
and
A. baumannii
.
Materials and Methods
The study included
P. aeruginosa
(85) and
A. baumannii
(45) which were nonduplicate, clinically significant, and ciprofloxacin resistant. Antibiotic susceptibility testing was done by disk diffusion method for other antimicrobial agents, namely amikacin, ceftazidime, piperacillin/tazobactam, ofloxacin, levofloxacin, and imipenem. Minimum inhibitory concentration of ciprofloxacin was determined. Efflux pump activity was evaluated using carbonyl-cyanide m-chlorophenylhydrazone (CCCP). The presence of PMQR genes was screened by PCR amplification. Transferability of PMQR genes was determined by conjugation experiment, and plasmid-based replicon typing was performed.
Results
Resistance to other classes of antimicrobial agents was as follows: ceftazidime (86.9%), piperacillin/tazobactam (73.8%), imipenem (69.2%), and amikacin (63.8%). The minimal inhibitory concentration (MIC)50 and MIC90 for ciprofloxacin were 64 and greater than or equal to 256 µg/mL, respectively. There was a reduction in MIC for 37 (28.4%) isolates with CCCP. In
P. aeruginosa
, 12 (14.1%) isolates harbored
qnrB
, 12 (14.1%)
qnrS
, 9 (10.5%) both
qnrB
and
qnrS
, 66 (77.6%)
aac(6′)-Ib-cr
, and 3 (3.5%)
oqxAB
gene. In
A. baumannii
,
qnrB
was detected in 2 (4.4%), 1 (2.2%) harbored both the
qnrA
and
qnrS
, 1 isolate harbored
qnrB
and
qnrS
, 21 (46.6%)
aac(6′)-Ib-cr
, and 1 (2.2%) isolate harbored
oqxAB
gene. Notably,
qepA
gene was not detected in any of the study isolates. Conjugation experiments revealed that 12 (9.2%) were transferable. Of the transconjugants, seven (58.3%) belonged to IncFII type plasmid replicon, followed by four (33.3%) IncA/C and one (8.3%) IncFIC type.
Conclusion
The plasmid-mediated resistance
aac(6′)-Ib-cr
gene is primarily responsible for mediating fluoroquinolone resistance in clinical isolates of
P
.
aeruginosa
and
A. baumannii
. The predominant plasmid type is IncFII.
Collapse
Affiliation(s)
- P. V. Geetha
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - K. V. L. Aishwarya
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - M. Shanthi
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Uma Sekar
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
225
|
Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a BlaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics (Basel) 2022; 11:antibiotics11020196. [PMID: 35203799 PMCID: PMC8868147 DOI: 10.3390/antibiotics11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the capacities of persistence and dissemination of blaNDM-5 within Escherichia coli and in aquatic environment, we characterized E. coli (sequence type 636) strains B26 and B28 isolated one month apart from the same urban river in Montpellier, France. The two isolates carried a pTsB26 plasmid, which sized 45,495 Kb, harbored blaNDM-5 gene and belonged to IncX-3 incompatibility group. pTsB26 was conjugative in vitro at high frequency, it was highly stable after 400 generations and it exerted no fitness cost on its host. blaNDM-5harboring plasmids are widely dispersed in E. coli all around the world, with no lineage specialization. The genomic comparison between B26 and B28 stated that the two isolates probably originated from the same clone, suggesting the persistence of pTsB26 in an E. coli host in aquatic environment.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Fabien Aujoulat
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Estelle Jumas-Bilak
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
| | - Patricia Licznar-Fajardo
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
226
|
Wangkheimayum J, Paul D, Chanda DD, Melson Singha K, Bhattacharjee A. Elevated expression of rsmI can act as a reporter of aminoglycoside resistance in Escherichia coli using kanamycin as signal molecule. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105229. [PMID: 35104679 DOI: 10.1016/j.meegid.2022.105229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
We aimed to design and analyse expressional response of endogenous and exogenous 16S rRNA methyl transferase genes under sub inhibitory concentration stress of different clinically relevant aminoglycoside antibiotics in Escherichia coli to identify an endogenous marker. One hundred twenty nine aminoglycoside resistant E. coli of clinical origin were collected for detection of 16S rRNA methyl transferase genes by PCR assay and each gene type was cloned within E. coli JM107. Parent isolates were subjected to plasmid elimination by SDS treatment. Expression analysis of both acquired and endogenous 16S rRNA methyl transferase genes were performed by quantitative real-time PCR in clones and parent isolates under aminoglycoside stress (4 mg/L). Majority of the isolates were harbouring rmtC (35/129), followed by rmtB (32/129), rmtA (21/129), rmtE (13/129), armA (11/129) rmtF (9/129) and rmtH (8/129). Plasmid was successfully eliminated for all the isolates with 6% of SDS. Expression analysis indicates that kanamycin, tobramycin and netilmicin stress could increase the expression of 16S rRNA methyltransferese genes. In the presence of kanamycin stress the expression of rsmI was consistently elevated for all the wild type isolates and clones tested. Except for isolates harbouring rmtB and rmtC expression of rsmE and rsmF was increased in the presence of all aminoglycosides. For all the cured mutants it was apparently observed that expression of endogenous methyl transferases were marginally increased. Elevated expression of constitutive rsmI can be used as a potential biomarker for detection of acquired 16S rRNA methyl transferase mediated aminoglycoside resistance by using sub inhibitory concentration of kanamycin as signal molecule.
Collapse
Affiliation(s)
| | - Deepjyoti Paul
- Department of Microbiology, Assam University Silchar, India
| | | | - K Melson Singha
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | |
Collapse
|
227
|
Li R, Lu X, Munir A, Abdullah S, Liu Y, Xiao X, Wang Z, Mohsin M. Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150689. [PMID: 34599956 DOI: 10.1016/j.scitotenv.2021.150689] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally.
Collapse
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Asim Munir
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sabahat Abdullah
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
228
|
Shen S, Huang X, Shi Q, Guo Y, Yang Y, Yin D, Zhou X, Ding L, Han R, Yu H, Hu F. Occurrence of NDM-1, VIM-1, and OXA-10 Co-Producing Providencia rettgeri Clinical Isolate in China. Front Cell Infect Microbiol 2022; 11:789646. [PMID: 35047418 PMCID: PMC8761753 DOI: 10.3389/fcimb.2021.789646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Providencia rettgeri is a nosocomial pathogen associated with urinary tract infections related to hospital-acquired Infections. In recent years, P. rettgeri clinical strains producing New Delhi Metallo-β-lactamase (NDM) and other β-lactamase which reduce the efficiency of antimicrobial therapy have been reported. However, there are few reports of P. rettgeri co-producing two metallo-β-lactamases in one isolate. Here, we first reported a P. rettgeri strain (P138) co-harboring blaNDM-1, blaVIM-1, and blaOXA-10. The specie were identified using MALDI-TOF MS. The results of antimicrobial susceptibility testing by broth microdilution method indicated that P. rettgeri P138 was resistant to meropenem (MIC = 64μg/ml), imipenem (MIC = 64μg/ml), and aztreonam (MIC = 32μg/ml). Conjugation experiments revealed that the blaNDM-1-carrying plasmid was transferrable. The carbapenemase genes were detected using PCR and confirmed by PCR-based sequencing. The complete genomic sequence of the P. rettgeri was identified using Illumina (Illumina, San Diego, CA, USA) short-read sequencing (150bp paired-end reads), and many common resistance genes had been identified, including blaNDM-1, blaVIM-1, blaOXA-10, aac(6’)-Il, aadA5, ant(2’’)-Ia, aadA1, aac(6’)-Ib3, aadA1, aph(3’)-Ia, aac(6’)-Ib-cr, qnrD1, qnrA1, and catA2. The blaNDM-1 gene was characterized by the following structure: IS110–TnpA–IntI1–aadB–IS91–GroEL–GroES–DsbD–PAI–ble–blaNDM-1–IS91–QnrS1–IS110. Blast comparison revealed that the blaNDM-1 gene structure shared >99% similarity with plasmid p5_SCLZS62 (99% nucleotide identity and query coverage). In summary, we isolated a P. rettgeri strain coproducing blaNDM-1, blaVIM-1, and blaOXA-10. To the best of our acknowledge, this was first reported in the world. The occurrence of the strain needs to be closely monitored.
Collapse
Affiliation(s)
- Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xiangning Huang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xun Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hua Yu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
229
|
Huang W, Zhang J, Zeng L, Yang C, Yin L, Wang J, Li J, Li X, Hu K, Zhang X, Liu B. Carbapenemase Production and Epidemiological Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Western Chongqing, China. Front Cell Infect Microbiol 2022; 11:775740. [PMID: 35071036 PMCID: PMC8769044 DOI: 10.3389/fcimb.2021.775740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to determine the molecular characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in a hospital in western Chongqing, southwestern China. Methods A total of 127 unique CRKP isolates were collected from the Yongchuan Hospital of Chongqing Medical University, identified using a VITEK-2 compact system, and subjected to microbroth dilution to determine the minimal inhibitory concentration. Enterobacteriaceae intergenic repeat consensus polymerase chain reaction and multilocus sequence typing were used to analyze the homology among the isolates. Genetic information, including resistance and virulence genes, was assessed using polymerase chain reaction. The genomic features of the CRKP carrying gene blaKPC-2 were detected using whole-genome sequencing. Results ST11 was the dominant sequence type in the homology comparison. The resistance rate to ceftazidime-avibactam in children was much higher than that in adults as was the detection rate of the resistance gene blaNDM (p < 0.0001). Virulence genes such as mrkD (97.6%), uge (96.9%), kpn (96.9%), and fim-H (84.3%) had high detection rates. IncF (57.5%) was the major replicon plasmid detected, and sequencing showed that the CRKP063 genome contained two plasmids. The plasmid carrying blaKPC-2, which mediates carbapenem resistance, was located on the 359,625 base pair plasmid IncFII, together with virulence factors, plasmid replication protein (rep B), stabilizing protein (par A), and type IV secretion system (T4SS) proteins that mediate plasmid conjugation transfer. Conclusion Our study aids in understanding the prevalence of CRKP in this hospital and the significant differences between children and adults, thus providing new ideas for clinical empirical use of antibiotics.
Collapse
Affiliation(s)
- Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Lining Yin
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
230
|
Kyung SM, Choi SW, Lim J, Shim S, Kim S, Im YB, Lee NE, Hwang CY, Kim D, Yoo HS. Comparative genomic analysis of plasmids encoding metallo-β-lactamase NDM-5 in Enterobacterales Korean isolates from companion dogs. Sci Rep 2022; 12:1569. [PMID: 35091689 PMCID: PMC8799648 DOI: 10.1038/s41598-022-05585-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenems are broad-spectrum antibiotics widely used for the treatment of human infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, emerging carbapenemase-producing Enterobacterales (CPE) are rising as a public threat to human and animal health. We screened clinical bacterial isolates from 241 dogs and 18 cats hospitalized at Veterinary Medical Teaching Hospital, Seoul National University, from 2018 to 2020 for carbapenemase production. In our study, 5 strains of metallo-β-lactamase NDM-5-producing Escherichia coli and Klebsiella pneumoniae were isolated from 4 different dogs. Multilocus sequence typing (MLST) results showed that all E. coli strains were ST410 and all K. pneumoniae strains were ST378. Whole genome analysis of the plasmid showed that blaNDM-5 is carried on a IncX3 plasmid, showing a high concordance rate with plasmids detected worldwide in human and animal isolates. The blaNDM gene was associated with the bleMBL gene and the ISAba125 element, truncated with the IS5 element. The results of this study show that CPE has already become as a threat to both animals and humans in our society, posing the necessity to solve it in terms of "One Health". Therefore, preventive strategies should be developed to prevent the spread of CPE in animal and human societies.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soojin Shim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Im
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
231
|
Ben Sallem R, Laribi B, Arfaoui A, Ben Khelifa Melki S, Ouzari I, Ben Slama K, Naas T, Klibi N. Co-occurrence of genes encoding carbapenemase, ESBL, pAmpC, and Non-β-Lactam resistance among Klebsiella pneumonia and E. coli clinical isolates in Tunisia. Lett Appl Microbiol 2022; 74:729-740. [PMID: 35076956 DOI: 10.1111/lam.13658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the molecular mechanisms of carbapenem and colistin resistance in K. pneumoniae and E. coli isolates obtained from hospitalized patients in Carthagene International Hospital of Tunis. A total of 25 K. pneumoniae and 2 E. coli clinical isolates with reduced susceptibility to carbapenems were recovered. Susceptibility testing and phenotypic screening tests were carried out. ESBL, AmpC, carbapenemase, and other antibiotic resistance genes were sought by PCR-sequencing. The presence of plasmid-mediated colistin resistance genes (mcr-1-8) was examined by PCR and the nucleotide sequence of the mgrB gene was determined. The analysis of plasmid content was performed by PCR-Based Replicon Typing (PBRT). The clonality of isolates was assessed by PFGE and multilocus sequence typing (MLST). All of the isolates produced carbapenemase activity. They showed a great variation in the distribution of ESBL, AmpC, carbapenemase, and other plasmid-mediated resistance determinants. K. pneumoniae isolates carried blaNDM-1 (n=11), blaOXA-48 (n=11), blaNDM-1 + blaOXA-48 (n=1), blaNDM-1 + blaVIM-1 (n=1), blaOXA-204 (n=1), along with blaCTX-M , blaOXA , blaTEM , blaCMY , blaDHA and blaSHV genes variants on conjugative plasmid of IncL/M, IncR, IncFIIK , IncFIB, and IncHI1 types. Three sequence types ST101, ST307, and ST15 were identified. The mgrB alteration g109a (G37S) was detected in a single colistin-resistant, NDM-1 and OXA-48-coproducing K. pneumoniae isolate. The two E. coli isolates belonged to ST95, co-produced NDM-1 and CTX-M-15, and harbored plasmid of IncFII and IncFIB types. To our knowledge, this is the first report in Tunisia of NDM-1, OXA-48, and CTX-M-15 coexistence in colistin-resistant K. pneumoniae ST15.
Collapse
Affiliation(s)
- Rym Ben Sallem
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Bochra Laribi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | | | - Imen Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Thierry Naas
- Bacteriology-Hygiene unit, Bicêtre Hospital, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
232
|
Vázquez X, García V, Fernández J, Bances M, de Toro M, Ladero V, Rodicio R, Rodicio MR. Colistin Resistance in Monophasic Isolates of Salmonella enterica ST34 Collected From Meat-Derived Products in Spain, With or Without CMY-2 Co-production. Front Microbiol 2022; 12:735364. [PMID: 35069462 PMCID: PMC8770973 DOI: 10.3389/fmicb.2021.735364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Colistin is a last-resort antibiotic in fighting severe infections caused by multidrug resistant Gram negative pathogens in hospitals. Zoonotic bacteria acquire colistin resistance in animal reservoirs and mediate its spread along the food chain. This is the case of non-typhoid serovars of Salmonella enterica. Colistin-resistant S. enterica in foods represents a threat to human health. Here, we assessed the prevalence of colistin-resistance in food-borne isolates of S. enterica (2014–2019; Asturias, Spain), and established the genetic basis and transferability of this resistance. Five out of 231 isolates tested (2.2%) were resistant to colistin. Four of them, belonging to the European monophasic ST34 clone of S. Typhimurium, were characterized in the present study. They were collected from pork or pork and beef meat-derived products, either in 2015 (three isolates) or 2019 (one isolate). Molecular typing with XbaI-PFGE and plasmid profiling revealed distinct patterns for each isolate, even though two of the 2015 isolates derived from the same sample. The MICs of colistin ranged from 8 to 16 mg/L. All isolates carried the mcr-1.1 gene located on conjugative plasmids of the incompatibility groups IncX4 (2015 isolates) or IncHI2 (2019 isolate). Apart from colistin resistance, the four isolates carried chromosomal genes conferring resistance to ampicillin, streptomycin, sulfonamides and tetracycline [blaTEM–1, strA-strB, sul2, and tet(B)] and heavy metals, including copper and silver (silESRCFBAGP and pcoGE1ABCDRSE2), arsenic (arsRSD2A2BCA1D1) ± mercury (merEDACPTR), which are characteristically associated with the European ST34 monophasic clone. The 2019 isolate was also resistant to other antibiotics, comprising third generation cephalosporins and cephamycins. The latter phenotype was conferred by the blaCMY–2 gene located on an IncI1-I(α)-ST2 plasmid. Results in the present study identified meat-derived products as a reservoir of a highly successful clone harboring transferable plasmids which confer resistance to colistin and other clinically important antibiotics. An important reduction in the number of food-borne S. enterica detected during the period of the study, together with the low frequency of colistin resistance, underlines the success of One Health initiatives, such as those implemented at the UE, to control zoonotic bacteria along the food chain and to halt the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Xenia Vázquez
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.,Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Javier Fernández
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Margarita Bances
- Laboratorio de Salud Pública (LSP), Consejería de Sanidad del Principado de Asturias, Oviedo, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Víctor Ladero
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - M Rosario Rodicio
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.,Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
233
|
Colistin exposure enhances expression of eptB in colistin-resistant Escherichia coli co-harboring mcr-1. Sci Rep 2022; 12:1348. [PMID: 35079093 PMCID: PMC8789769 DOI: 10.1038/s41598-022-05435-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 01/20/2023] Open
Abstract
Colistin resistance has increased due to the increasing and inappropriate use of this antibiotic. The mechanism involves modification of lipid A with phosphoethanolamine (PEtN) and/or 4-amino-4deoxy-l-arabinose (L-Ara4N). EptA and eptB catalyze the transfer of phosphoethanolamine to lipid A. In this study, gene network was constructed to find the associated genes related to colistin resistance, and further in vitro validation by transcriptional analysis was performed. In silico studies showed that eptB gene is a highly interconnected node in colistin resistance gene network. To ascertain these findings twelve colistin-resistant clinical isolates of Escherichia coli were selected in which five were harboring the plasmid-mediated mcr-1. Screening for colistin resistance was performed by broth microdilution (BMD) method and Rapid polymyxin NP test. PCR confirmed the presence of the eptA and eptB genes in all isolates and five isolates were harboring mcr-1. Transcriptional expression in five isolates harboring mcr-1, showed an enhanced expression of eptB when exposed under sub-inhibitory colistin stress. The present study for the first time highlighted genetic interplay between mcr-1 and eptA and eptB under colistin exposure.
Collapse
|
234
|
Rocha J, Ferreira C, Mil-Homens D, Busquets A, Fialho AM, Henriques I, Gomila M, Manaia CM. Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: what do they have in common? BMC Genomics 2022; 23:72. [PMID: 35065607 PMCID: PMC8783465 DOI: 10.1186/s12864-021-08279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae are ubiquitous bacteria and recognized multidrug-resistant opportunistic pathogens that can be released into the environment, mainly through sewage, where they can survive even after wastewater treatment. A major question is if once released into wastewater, the selection of lineages missing clinically-relevant traits may occur. Wastewater (n = 25) and clinical (n = 34) 3rd generation cephalosporin-resistant K. pneumoniae isolates were compared based on phenotypic, genotypic and genomic analyses. RESULTS Clinical and wastewater isolates were indistinguishable based on phenotypic and genotypic characterization. The analysis of whole genome sequences of 22 isolates showed that antibiotic and metal resistance or virulence genes, were associated with mobile genetic elements, mostly transposons, insertion sequences or integrative and conjugative elements. These features were variable among isolates, according to the respective genetic lineage rather than the origin. CONCLUSIONS It is suggested that once acquired, clinically relevant features of K. pneumoniae may be preserved in wastewater, even after treatment. This evidence highlights the high capacity of K. pneumoniae for spreading through wastewater, enhancing the risks of transmission back to humans.
Collapse
Affiliation(s)
- Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Dalila Mil-Homens
- iBB-Institute of Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Antonio Busquets
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Arsénio M Fialho
- iBB-Institute of Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Isabel Henriques
- University of Coimbra, Department of Life Sciences, Faculty of Science and Technology, Coimbra, Portugal
- CESAM, University of Aveiro, Aveiro, Portugal
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
235
|
Šuto S, Bedenić B, Likić S, Kibel S, Anušić M, Tičić V, Zarfel G, Grisold A, Barišić I, Vraneš J. Diffusion of OXA-48 carbapenemase among urinary isolates of Klebsiella pneumoniae in non-hospitalized elderly patients. BMC Microbiol 2022; 22:30. [PMID: 35045829 PMCID: PMC8767700 DOI: 10.1186/s12866-022-02443-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Recently, a dramatic increase of Klebsiella pneumoniae positive for OXA-48 β-lactamases was observed first in the hospital setting and later in the long-term care facilities (LTCFs) and community in the Zagreb County, particularly, in urinary isolates. The aim of the study was to analyse the epidemiology and the mechanisms of antibiotic resistance of OXA-48 carbapenemase producing K. pneumoniae strains isolated from urine of non-hospitalized elderly patients. Results The isolates were classified into two groups: one originated from the LTCFs and the other from the community. Extended-spectrum β-lactamases (ESBLs) were detected by double disk-synergy (DDST) and combined disk tests in 55% of the isolates (51/92). The ESBL-positive isolates exhibited resistance to expanded-spectrum cephalosporins (ESC) and in majority of cases to gentamicin. LTCFs isolates showed a significantly lower rate of additional ESBLs and consequential resistance to ESC and a lower gentamicin resistance rate compared to the community isolates, similarly to hospital isolates in Zagreb, pointing out to the possible transmission from hospitals.ESBL production was associated with group 1 of CTX-M or SHV-12 β-lactamases. Ertapenem resistance was transferable from only 12 isolates. blaOXA-48 genes were carried by IncL plasmid in 42 isolates. In addition IncFII and IncFIB were identified in 18 and 2 isolates, respectively. Two new sequence types were reported: ST4870 and ST4781. Conclusions This study showed eruptive and extensive diffusion of OXA-48 carbapenemase to LTCFs and community population in Zagreb County, particularly affecting patients with UTIs and urinary catheters. On the basis of susceptibility testing, β-lactamase production, conjugation experiments, MLST and plasmid characterization it can be concluded that there was horizontal gene transfer between unrelated isolates, responsible for epidemic spread of OXA-48 carbapenemase in the LTCFs and the community The rapid spread of OXA-48 producing K. pneumoniae points out to the shortcomings in the infection control measures.
Collapse
|
236
|
Emeraud C, Petit C, Gauthier L, Bonnin RA, Naas T, Dortet L. Emergence of VIM-producing Enterobacter cloacae complex in France between 2015 and 2018. J Antimicrob Chemother 2022; 77:944-951. [PMID: 35045171 DOI: 10.1093/jac/dkab471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To genetically characterize VIM-producing Enterobacter cloacae complex (ECC) isolates recovered in France from 2015 to 2018. METHODS WGS, species determination, MLST, clonal relationship and genetic characterization were performed on 149 VIM-producing ECC isolates. RESULTS Among VIM-producing Enterobacterales, the prevalence of ECC increased drastically from 6% in 2012 to 52% in 2018. The most prevalent species were Enterobacter hormaechei subsp. hoffmannii (40.9%), E. hormaechei subsp. steigerwaltii (21.5%), E. hormaechei subsp. xiangfangensis (14.8%) and ECC clade S (17.4%). Major STs were ST-873 (17.5%), ST-66 (12.1%), ST-78 (9.4%), ST-419 (8.1%), ST-145 (4.7%), ST-50 (4.0%), ST-118 (4.0%) and ST-168 (4.0%). Finally, six different integrons were identified, with some being specific to a given blaVIM variant (In916 with blaVIM-1-aacA4'-aphA15-aadA1-catB2 and In416 with blaVIM-4-aacA7-dfrA1b-aadA1b-smr2 genes). CONCLUSIONS This study demonstrated the genetic diversity among VIM-producing ECC isolates, indicating that their spread is not linked to a single clone.
Collapse
Affiliation(s)
- Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Caroline Petit
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Lauraine Gauthier
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Team "Resist", UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB), INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| |
Collapse
|
237
|
Phylogeny and potential virulence of cryptic clade Escherichia coli species complex isolates derived from an arable field trial. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100093. [PMID: 35005658 PMCID: PMC8718834 DOI: 10.1016/j.crmicr.2021.100093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022] Open
Abstract
Analysis of Escherichia coli taxonomy has expanded into a species-complex with the identification of divergent cryptic clades. A key question is the evolutionary trajectory of these clades and their relationship to isolates of clinical or veterinary importance. Since they have some environmental association, we screened a collection of E. coli isolated from a long-term spring barley field trial for their presence. While most isolates clustered into the enteric-clade, four of them clustered into Clade-V, and one in Clade-IV. The Clade -V isolates shared >96% intra-clade average nucleotide sequence identity but <91% with other clades. Although pan-genomics analysis confirmed their taxonomy as Clade -V (E. marmotae), retrospective phylogroup PCR did not discriminate them correctly. Differences in metabolic and adherence gene alleles occurred in the Clade -V isolates compared to E. coli sensu scricto. They also encoded the bacteriophage phage-associated cyto-lethal distending toxin (CDT) and antimicrobial resistance (AMR) genes, including an ESBL, blaOXA-453. Thus, the isolate collection encompassed a genetic diversity, and included cryptic clade isolates that encode potential virulence factors. The analysis has determined the phylogenetic relationship of cryptic clade isolates with E. coli sensu scricto and indicates a potential for horizontal transfer of virulence factors.
Collapse
|
238
|
Lopez-Diaz M, Ellaby N, Turton J, Woodford N, Tomas M, Ellington MJ. NDM-1 carbapenemase resistance gene vehicles emergent on distinct plasmid backbones from the IncL/M family. J Antimicrob Chemother 2022; 77:620-624. [PMID: 34993543 DOI: 10.1093/jac/dkab466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To assess the genetic contexts surrounding blaNDM-1 genes carried on IncM plasmids harboured by six carbapenemase-producing Enterobacterales (CPE) isolates referred to the UK Health Security Agency's Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit. METHODS Between 2014 and 2018, the AMRHAI Reference Unit undertook WGS of CPE isolates using Illumina NGS. Nanopore sequencing was used for selected isolates and publicly available plasmid references were downloaded. Analysis of incRNA, which encodes the antisense RNA regulating plasmidic repA gene expression, was performed and bioinformatics tools were used to analyse whole plasmid sequences. RESULTS Of 894 NDM-positive isolates of Enterobacterales, 44 NDM-1-positive isolates of five different species (Citrobacter spp., Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca) encoded the IncRNA locus of IncM2 plasmids. Long-read sequencing of six diverse isolates revealed related IncM2, NDM-1-encoding plasmids. Plasmid 'backbone' areas were conserved and contrasted with highly variable resistance regions. Sub-groupings of IncM2 plasmids encoding blaNDM-1 were detected; one sub-group occurred in five different health regions of England in every year. The diversity of NDM-1-encoding resistance gene integrons and transposons and their insertions sites in the plasmids indicated that NDM-1 has been acquired repeatedly by IncM2 variants. CONCLUSIONS The use of sequencing helped inform: (i) a wide geographical distribution of isolates encoding NDM-1 on emergent IncM2 plasmids; (ii) variant plasmids have acquired NDM-1 separately; and (iii) dynamic arrangements and evolution of the resistance elements in this plasmid group. The geographical and temporal distribution of IncM2 plasmids that encode NDM-1 highlights them as a public health threat that requires ongoing monitoring.
Collapse
Affiliation(s)
- Maria Lopez-Diaz
- UK Health Security Agency, 61 Colindale Avenue, London, UK.,Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | | | - Jane Turton
- UK Health Security Agency, 61 Colindale Avenue, London, UK
| | - Neil Woodford
- UK Health Security Agency, 61 Colindale Avenue, London, UK
| | - Maria Tomas
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | | |
Collapse
|
239
|
Hao Y, Zhao X, Zhang C, Bai Y, Song Z, Lu X, Chen R, Zhu Y, Wang Y. Clonal Dissemination of Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates Carrying fosA3 and bla KPC-2 Coharboring Plasmids in Shandong, China. Front Microbiol 2022; 12:771170. [PMID: 34975798 PMCID: PMC8718808 DOI: 10.3389/fmicb.2021.771170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment strategies of infection by carbapenem-resistant Klebsiella pneumoniae (CRKP) are limited. Fosfomycin, a broad-spectrum antibiotic, has attracted renewed interest in combination therapy to fight K. pneumoniae infections. However, reports on fosfomycin-resistant K. pneumoniae are increasing. Among the 57 CRKP strains, 40 (70.2%) were resistant to fosfomycin. Thus, whole-genome sequencing and bioinformatics analysis were conducted to reveal molecular characteristics of fosfomycin-resistant K. pneumoniae. Twenty-three isolates coharbored fosAkp and fosA3, with K. pneumoniae carbapenemase (KPC)-producing ST11-KL64-wzi64-O2 (n = 13) and ST11-KL47-wzi209-OL101 (n = 8), the predominating clonal groups, while fosA3 was not detected in isolates carrying class B carbapenemase genes. Twenty-two (out of 26) ST11-KL64 strains were positive for rmpA2, of which 12 carried fosA3. Four of the 23 fosA3-positive isolates could successfully transfer their fosfomycin-resistant determinants to Escherichia coli J53AziR. All four strains belonged to ST11-KL47 with the same pulsed-field gel electrophoresis profile, and their transconjugants acquired fosfomycin, carbapenem, and aminoglycoside resistance. A 127-kb conjugative pCT-KPC-like hybrid plasmid (pJNKPN52_KPC_fosA) coharboring fosA3, blaKPC–2, blaCTX–M–65, blaSHV–12, rmtB, and blaTEM–1 was identified. ST11-KL64 and ST11-KL47 K. pneumoniae, with higher resistance and virulence, should be critically monitored to prevent the future dissemination of resistance.
Collapse
Affiliation(s)
- Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuguang Zhao
- Department of Clinical Laboratory, The People's Hospital of Shouguang City, Shouguang, China
| | - Cui Zhang
- Department of Clinical Laboratory, Feicheng Hospital of Shandong Guoxin Yiyang Group, Feicheng, China
| | - Yuanyuan Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinglun Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaoyao Zhu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
240
|
Starčič Erjavec M, Jeseničnik K, Elam LP, Kastrin A, Predojević L, Sysoeva TA. Complete sequence of classic F-type plasmid pRK100 shows unique conservation over time and geographic location. Plasmid 2022; 119-120:102618. [PMID: 35077724 PMCID: PMC8978152 DOI: 10.1016/j.plasmid.2022.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/05/2022]
Abstract
Plasmids exhibit great diversity of gene content and host ranges and are famous for quick adaptation to the genetic background of the bacterial host cell. In addition to observing ever evolving plasmids, some plasmids have conserved backbones: a stable core composition and arrangement of genes in addition to variable regions. There are a few reports of extremely conserved plasmids. Here we report the complete sequence of pRK100 plasmid - a large, well-characterized conjugative F-like plasmid found in an Escherichia coli strain isolated from a urinary tract infection patient in 1990. The sequence shows that the 142 kb-long pRK100 plasmid is nearly identical to plasmids circulating in distant geographical locations and found in different host E. coli strains between 2007 and 2017. We also performed additional functional characterization of pRK100. Our results showed that pRK100 does not have a strong pathogenicity phenotype in porcine primary bladder epithelial cell culture. Moreover, the conjugation of pRK100 seems to strongly depend on recipient characteristics. These observations and identification of the pRK100 plasmid in different strain genotypes leave the extreme sequence conservation and broad distribution of this plasmid unexplained.
Collapse
Affiliation(s)
- Marjanca Starčič Erjavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Karmen Jeseničnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Lauren P Elam
- Department of Biological Sciences, The University of Alabama in Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Luka Predojević
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tatyana A Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA.
| |
Collapse
|
241
|
Wickramarachchi A, Lin Y. GraphPlas: Refined Classification of Plasmid Sequences Using Assembly Graphs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:57-67. [PMID: 34029192 DOI: 10.1109/tcbb.2021.3082915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmids are extra-chromosomal genetic materials with important markers that affect the function and behaviour of the microorganisms supporting their environmental adaptations. Hence the identification and recovery of such plasmid sequences from assemblies is a crucial task in metagenomics analysis. In the past, machine learning approaches have been developed to separate chromosomes and plasmids. However, there is always a compromise between precision and recall in the existing classification approaches. The similarity of compositions between chromosomes and their plasmids makes it difficult to separate plasmids and chromosomes with high accuracy. However, high confidence classifications are accurate with a significant compromise of recall, and vice versa. Hence, the requirement exists to have more sophisticated approaches to separate plasmids and chromosomes accurately while retaining an acceptable trade-off between precision and recall. We present GraphPlas, a novel approach for plasmid recovery using coverage, composition and assembly graph topology. We evaluated GraphPlas on simulated and real short read assemblies with varying compositions of plasmids and chromosomes. Our experiments show that GraphPlas is able to significantly improve accuracy in detecting plasmid and chromosomal contigs on top of popular state-of-the-art plasmid detection tools. The source code is freely available at: https://github.com/anuradhawick/GraphPlas.
Collapse
|
242
|
Genetic Context Diversity of Plasmid-Borne blaCTX-M-55 in Escherichia coli Isolated from Waterfowl. J Glob Antimicrob Resist 2022; 28:185-194. [DOI: 10.1016/j.jgar.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
|
243
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1286-1295. [DOI: 10.1093/jac/dkac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
|
244
|
Fetahagić M, Ibrahimagić A, Uzunović S, Beader N, Elveđi-Gašparović V, Luxner J, Gladan M, Bedenić B. Detection and characterisation of extended-spectrum and plasmid-mediated AmpC β-lactamase produced by Escherichia coli isolates found at poultry farms in Bosnia and Herzegovina. Arh Hig Rada Toksikol 2021; 72:305-314. [PMID: 34985844 PMCID: PMC8785107 DOI: 10.2478/aiht-2021-72-3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/01/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) hydrolyse extended-spectrum cephalosporins (ESC) and aztreonam. As ESBL-producing organisms have been identified in food producing animals, the aim of our study was to detect and analyse such Escherichia coli isolates from poultry. Antibiotic susceptibility of the isolates was determined with disk-diffusion and broth microdilution methods. ESBLs were detected with the double-disk synergy and inhibitor-based test with clavulanic acid. The transferability of cefotaxime resistance was determined with conjugation experiments, and genes encoding ESBLs, plasmid-mediated AmpC β-lactamases, and quinolone resistance determinants identified by polymerase chain reaction. The study included 108 faecal samples (cloacal swabs) from 25 different poultry farms in the Zenica-Doboj Canton, Bosnia and Herzegovina. Of these, 75 (69.4 %) were positive for E. coli, of which 27 were resistant to cefotaxime, amoxicillin, cefazoline, and cefriaxone, and susceptible to imipenem, meropenem, ertapenem, and amikacin. All 27 cefotaxime-resistant isolates were positive in double-disk synergy and combined disk tests. Eighteen isolates transferred cefotaxime resistance to E. coli recipient. Twenty-one isolates were positive for the bla CTX-M-1 cluster genes and seven for bla CTX-M-15. Fourteen were positive for the bla TEM genes. The most frequent plasmid incompatibility group was IncFIB, whereas IncFIA and Inc HI1 were present in only a few isolates. Two different sequence types (STs) were identified: ST117 and ST155. The emergence of ESBL-producing E. coli in farm animals presents a public health threat, as they can colonise the intestine and cause infections in humans.
Collapse
Affiliation(s)
- Majda Fetahagić
- Institute for Health and Food Safety Zenica, Department for Epizootiology, Zenica, Bosnia and Herzegovina
| | - Amir Ibrahimagić
- Institute for Health and Food Safety Zenica, Department for Chemical Diagnostics, Zenica, Bosnia and Herzegovina
| | - Selma Uzunović
- Institute for Health and Food Safety Zenica, Department for Clinical Microbiology, Zenica, Bosnia and Herzegovina
| | - Nataša Beader
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinical Hospital Centre Zagreb, Department for Clinical and Molecular Microbiology, Zagreb, Croatia
| | - Vesna Elveđi-Gašparović
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinical Hospital Centre Zagreb, Department for Clinical and Molecular Microbiology, Zagreb, Croatia
| | - Josefa Luxner
- Medical University of Graz, Institute for Hygiene, Microbiology and Environmental Medicine, Graz, Austria
| | - Muhamed Gladan
- Institute for Health and Food Safety Zenica, Department for Epizootiology, Zenica, Bosnia and Herzegovina
| | - Branka Bedenić
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinical Hospital Centre Zagreb, Department for Clinical and Molecular Microbiology, Zagreb, Croatia
| |
Collapse
|
245
|
Di Mento G, Gona F, Russelli G, Cuscino N, Barbera F, Carreca AP, Di Carlo D, Cardinale F, Monaco F, Campanella M, Mularoni A, Grossi P, Conaldi PG, Douradinha B. A retrospective molecular epidemiological scenario of carbapenemase-producing Klebsiella pneumoniae clinical isolates in a Sicilian transplantation hospital shows a swift polyclonal divergence among sequence types, resistome and virulome. Microbiol Res 2021; 256:126959. [PMID: 34995971 DOI: 10.1016/j.micres.2021.126959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022]
Abstract
In this work, we assessed and characterized the epidemiological scenario of carbapenem-resistant Klebsiella pneumoniae strains (CR-Kp) at IRCCS-ISMETT, a transplantation hospital in Palermo, Italy, from 2008 to 2017. A total of 288 K. pneumoniae clinical isolates were selected based on their resistance to carbapenems. Molecular characterization was also done in terms of the presence of virulence and resistance genes. All patients were inpatients from our facility and clinical isolates were collected from several sources, either from infection or colonization cases. We observed that, in agreement with the Italian epidemiological scenario, initially only ST258 and ST512 clade II (but not from clade I) were identified from 2008 to 2011. From 2012 onwards, other STs have been observed, including the clinically relevant ST101 and ST307, but also others not previously observed in other Italian health settings, such as ST220 and ST753. The presence of genes involved in resistance and virulence was confirmed, and a heterogeneous genetic resistance profile throughout the years was observed. Our work highlights that resistance genes are rapidly disseminating between different and novel K. pneumoniae clones which, combined with resistance to multiple antibiotics, can derive into more aggressive and pathogenic multidrug-resistant strains of clinical importance. Our results stress the importance of continuous surveillance of CR Enterobacterales in health facilities so that novel STs carrying resistance and virulence genes that may become increasingly pathogenic can be identified and adequate therapies to adopted to avoid their dissemination and derived pathologies.
Collapse
Affiliation(s)
- Giuseppina Di Mento
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Floriana Gona
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Giovanna Russelli
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Nicola Cuscino
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Floriana Barbera
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Anna Paola Carreca
- Unità di Medicina Rigenerativa ed Immunologia, Fondazione Ri.MED, Palermo, Italy
| | - Daniele Di Carlo
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Francesca Cardinale
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Francesco Monaco
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Maria Campanella
- Dipartimento per la Cura e lo Studio delle Patologie Addominali e dei Trapianti Addominali, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Alessandra Mularoni
- Dipartimento per la Cura e lo Studio delle Patologie Addominali e dei Trapianti Addominali, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Paolo Grossi
- Dipartimento di Malattie Infettive e Tropicali, Università di Insubria, Ospedale di Circolo Fondazione Macchi, Varese, Italy
| | - Pier Giulio Conaldi
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Bruno Douradinha
- Dipartimento di Ricerca, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Unità di Medicina Rigenerativa ed Immunologia, Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
246
|
Onishi R, Shigemura K, Osawa K, Yang YM, Maeda K, Fang SB, Sung SY, Onuma K, Uda A, Miyara T, Fujisawa M. The Antimicrobial Resistance Characteristics of Imipenem-Non-Susceptible, Imipenemase-6-Producing Escherichia coli. Antibiotics (Basel) 2021; 11:antibiotics11010032. [PMID: 35052909 PMCID: PMC8772982 DOI: 10.3390/antibiotics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Imipenemase-6 (IMP-6) type carbapenemase-producing Enterobacteriaceae is regarded as dangerous due to its unique lack of antimicrobial susceptibility. It is resistant to meropenem (MEPM) but susceptible to imipenem (IPM). In addition to carbapenemase, outer membrane porins and efflux pumps also play roles in carbapenem resistance by reducing the antimicrobial concentration inside cells. Extended-spectrum β-lactamase (ESBL) is transmitted with IMP-6 by the plasmid and broadens the spectrum of antimicrobial resistance. We collected 42 strains of IMP-6-producing Escherichia coli and conducted a molecular analysis of carbapenemase, ESBL, porin, efflux, and epidemiological characteristics using plasmid replicon typing. Among the 42 isolates, 21 strains were susceptible to IPM (50.0%) and 1 (2.4%) to MEPM. Seventeen strains (40.5%) co-produced CTX-M-2 type ESBL. We found that the relative expression of ompC and ompF significantly correlated with the MIC of IPM (p = 0.01 and p = 0.03, respectively). Sixty-eight% of CTX-M-2-non-producing strains had IncI1, which was significantly different from CTX-M-2-producing strains (p < 0.001). In conclusion, 50.0% of our IMP-6-producing strains were non-susceptible to IPM, which is different from the typical pattern and can be attributed to decreased porin expression. Further studies investigating other types of carbapenemase are warranted.
Collapse
Affiliation(s)
- Reo Onishi
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe 654-0142, Japan;
| | - Katsumi Shigemura
- Department of Public Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe 654-0142, Japan;
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
- Correspondence: ; Tel.: +81-78-382-6155
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe 653-0838, Japan;
| | - Young-Min Yang
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
| | - Koki Maeda
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
| | - Shiuh-Bin Fang
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City 23561, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kenichiro Onuma
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (K.O.); (A.U.); (T.M.)
| | - Atsushi Uda
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (K.O.); (A.U.); (T.M.)
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (K.O.); (A.U.); (T.M.)
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.-M.Y.); (K.M.); (M.F.)
| |
Collapse
|
247
|
Abstract
The emergence of the plasmid-mediated colistin resistance gene mcr-1 and the plasmid-mediated tigecycline resistance gene tet(X4) represents a significant threat to public health. Although mcr-1 and tet(X4) have been reported to coexist in the same isolate, there are no reports on the emergence of plasmids coharboring mcr-1 and tet(X4). In this study, we aimed to investigate the opportunities for the emergence of mcr-1- and tet(X4)-coharboring plasmids and their destiny in Escherichia coli. Two plasmids carrying both mcr-1 and tet(X4) were constructed through conjugation assays and confirmed by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Nanopore long-read sequencing. Seven evolved plasmids carrying mcr-1 and tet(X4) from one of the two plasmids were acquired after continuous evolutionary processes. The fitness effects of mcr-1- and tet(X4)-coharboring plasmids were studied by stability experiments, competition experiments, and growth curve measurements. A plasmid carrying mcr-1 and tet(X4) and conferring no fitness cost to its host strain E. coli C600 emerged after evolution during serial passages of bacteria. We proved that it can be anticipated that mcr-1 and tet(X4) could appear in a single plasmid, and the possibility of occurrence in field strains should be monitored constantly. The originally formed cointegrate plasmids coharboring mcr-1 and tet(X4) could evolve into a plasmid with lower fitness costs. This will undoubtedly accelerate the transmission of mcr-1 and tet(X4) globally. The findings highlighted the great possibility of novel hybrid plasmids positive for mcr-1 and tet(X4), and the risk is worthy of increasing attention and public concern globally. IMPORTANCE Tigecycline and colistin are used as last-resort therapies to treat infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, the emergence of the plasmid-mediated tigecycline resistance gene tet(X4) and the plasmid-mediated colistin resistance gene mcr-1 represents a significant threat to human health. A plasmid coharboring mcr-1 and tet(X4) has not emerged so far, but the potential risk should not be ignored. Plasmids coharboring such vital resistance genes will greatly accelerate the progression of pan-drug resistance among pathogens globally. Therefore, evaluation of the emerging opportunity for the mcr-1- and tet(X4)-coharboring plasmids and their destiny in E. coli is of great significance. We provide important insight into the contributions of intI1, IS26, a truncated ISCR2 (ΔISCR2), and IS4321R during the generation of cointegrate plasmids carrying mcr-1 and tet(X4) and highlight the importance of antimicrobials in the evolution and diversity of mcr-1- and tet(X4)-coharboring plasmids. We show that monitoring of the occurrence of mcr-1-carrying MDR plasmids and tet(X4)-bearing MDR plasmids in the same strain should be strengthened to avoid the formation of mcr-1- and tet(X4)-coharboring plasmids.
Collapse
|
248
|
Girlich D, Bonnin RA, Proust A, Naas T, Dortet L. Undetectable Production of the VIM-1 Carbapenemase in an Atlantibacter hermannii Clinical Isolate. Front Microbiol 2021; 12:741972. [PMID: 34987484 PMCID: PMC8721206 DOI: 10.3389/fmicb.2021.741972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The differential expression of VIM-1 in Atlantibacter hermannii WEB-2 and Enterobacter hormaechei ssp. hoffmannii WEB-1 clinical isolates from a rectal swab of a hospitalized patient in France was investigated. A. hermannii WEB-2 was resistant to all β-lactams except carbapenems. It produced ESBL SHV-12, but the Carba NP test failed to detect any carbapenemase activity despite the production of VIM-1. Conversely, E. hormaechei WEB-1, previously recovered from the same patient, was positive for the detection of carbapenemase activity. The blaVIM–1 gene was located on a plasmid and embedded within class 1 integron. Both plasmids were of the same IncA incompatibility group and conferred the same resistance pattern when electroporated in Escherichia coli TOP10 or Enterobacter cloacae CIP7933. Quantitative RT-PCR experiments indicated a weaker replication of pWEB-2 in A. hermannii as compared to E. hormaechei. An isogenic mutant of A. hermannii WEB-2 selected after sequential passages with increased concentrations of imipenem possessed higher MICs for carbapenems and cephalosporins including cefiderocol, higher levels of the blaVIM–1 gene transcripts, and detectable carbapenemase activity using the Carba NP test. Assessment of read coverage demonstrated that a duplication of the region surrounding blaVIM–1 gene occurred in the A. hermannii mutant with detectable carbapenemase activity. The lack of detection of the VIM-1 carbapenemase activity in A. hermannii WEB-2 isolate was likely due to a weak replication of the IncA plasmid harboring the blaVIM–1 gene. Imipenem as selective pressure led to a duplication of this gene on the plasmid and to the restoration of a significant carbapenem-hydrolyzing phenotype.
Collapse
Affiliation(s)
- Delphine Girlich
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Alexis Proust
- Department of Hormonal Biochemistry, Hôpital de Bicêtre, Assistance Publique—Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- *Correspondence: Laurent Dortet,
| |
Collapse
|
249
|
Paul D, Anto N, Bhardwaj M, Prendiville A, Elangovan R, Bachmann TT, Chanda DD, Bhattacharjee A. Antimicrobial resistance in patients with suspected urinary tract infections in primary care in Assam, India. JAC Antimicrob Resist 2021; 3:dlab164. [PMID: 34917941 PMCID: PMC8669238 DOI: 10.1093/jacamr/dlab164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives We investigated the prevalence and diversity of antimicrobial resistance in bacteria isolated from urine samples of community-onset urinary tract infection (UTI) patients in southern Assam, India. Methods Freshly voided midstream urine samples were collected from patients attending primary healthcare centres, with the patients’ epidemiological data also recorded. Species identification was confirmed using a VITEK 2 compact automated system. Phenotypic confirmation of ESBLs was performed using the combined disc diffusion method (CLSI 2017) and carbapenemase production was phenotypically characterized using a modified Hodge test. Common ESBLs and carbapenem-resistance mechanisms were determined in Escherichia coli isolates using PCR assays. Incompatibility typing of the conjugable plasmids was determined by PCR-based replicon typing; the phylotypes and MLSTs were also analysed. Results A total of 301 (59.7%) samples showed significant bacteriuria along with symptoms of UTI and among them 103 isolates were identified as E. coli of multiple STs (ST3268, ST3430, ST4671 and others). Among them, 26.2% (27/103) were phenotypically ESBL producers whereas 12.6% (13/103) were carbapenemase producers. This study describes the occurrence of diverse ESBL genes—blaCTX-M-15, blaSHV-148, blaPER-1 and blaTEM—and two E. coli isolates carrying the blaNDM-1 carbapenemase gene. ESBL genes were located within transconjugable plasmids of IncP and IncF type whereas blaNDM-1 was carried in an IncFrepB type plasmid. Conclusions This study illustrates the high rate of MDR in E. coli causing UTI in primary care in rural Assam. UTIs caused by ESBL- or MBL-producing bacteria are very difficult to treat and can often lead to treatment failure. Thus, future research should focus on rapid diagnostics to enable targeted treatment options and reduce the treatment failure likely to occur with commonly prescribed antibiotics, which will help to combat antimicrobial resistance and the burden of UTIs.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, India
| | - Nimmy Anto
- Department of Biochemical Engineering and Biotechnology (DBEB), Indian Institute of Technology, Delhi, India
| | - Mohit Bhardwaj
- Department of Biochemical Engineering and Biotechnology (DBEB), Indian Institute of Technology, Delhi, India
| | | | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology (DBEB), Indian Institute of Technology, Delhi, India
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
250
|
Forde BM, De Oliveira DMP, Falconer C, Graves B, Harris PNA. Strengths and caveats of identifying resistance genes from whole genome sequencing data. Expert Rev Anti Infect Ther 2021; 20:533-547. [PMID: 34852720 DOI: 10.1080/14787210.2022.2013806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) continues to present major challenges to modern healthcare. Recent advances in whole-genome sequencing (WGS) have made the rapid molecular characterization of AMR a realistic possibility for diagnostic laboratories; yet major barriers to clinical implementation exist. AREAS COVERED We describe and compare short- and long-read sequencing platforms, typical components of bioinformatics pipelines, tools for AMR gene detection and the relative merits of read- or assembly-based approaches. The challenges of characterizing mobile genetic elements from genomic data are outlined, as well as the complexities inherent to the prediction of phenotypic resistance from WGS. Practical obstacles to implementation in diagnostic laboratories, the critical role of quality control and external quality assurance, as well as standardized reporting standards are also discussed. Future directions, such as the application of machine-learning and artificial intelligence algorithms, linked to clinically meaningful outcomes, may offer a new paradigm for the clinical application of AMR prediction. EXPERT OPINION AMR prediction from WGS data presents an exciting opportunity to advance our capacity to comprehensively characterize infectious pathogens in a rapid manner, ultimately aiming to improve patient outcomes. Collaborative efforts between clinicians, scientists, regulatory bodies and healthcare administrators will be critical to achieve the full promise of this approach.
Collapse
Affiliation(s)
- Brian M Forde
- University of Queensland, Faculty of Medicine, Uq Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Australia
| | - David M P De Oliveira
- University of Queensland, Faculty of Science, School of Chemistry and Molecular Biosciences, St Lucia, Australia
| | - Caitlin Falconer
- University of Queensland, Faculty of Medicine, Uq Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Australia
| | - Bianca Graves
- Herston Infectious Disease Institute, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Patrick N A Harris
- University of Queensland, Faculty of Medicine, Uq Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Herston, Australia.,Herston Infectious Disease Institute, Royal Brisbane & Women's Hospital, Herston, Australia.,Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Herston, Australia
| |
Collapse
|