201
|
Choi JH, Lindsey-Boltz LA, Sancar A. Reconstitution of a human ATR-mediated checkpoint response to damaged DNA. Proc Natl Acad Sci U S A 2007; 104:13301-6. [PMID: 17686975 PMCID: PMC1941640 DOI: 10.1073/pnas.0706013104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The DNA damage checkpoint response delays cell cycle progression upon DNA damage and prevents genomic instability. Genetic analysis has identified sensor, mediator, signal transducer, and effector components of this global signal transduction pathway. Here we describe an in vitro system with purified human checkpoint proteins that recapitulates key elements of the DNA damage checkpoint. We show that the damage sensor ATR in the presence of topoisomerase II binding protein 1 (TopBP1) mediator/adaptor protein phosphorylates the Chk1 signal-transducing kinase in a reaction that is strongly dependent on the presence of DNA containing bulky base lesions. The dependence on damaged DNA requires DNA binding by TopBP1, and, indeed, TopBP1 shows preferential binding to damaged DNA. This in vitro system provides a useful platform for mechanistic studies of the human DNA damage checkpoint response.
Collapse
Affiliation(s)
- Jun-Hyuk Choi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
202
|
Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS. Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 2007; 26:579-92. [PMID: 17531815 DOI: 10.1016/j.molcel.2007.04.018] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/22/2007] [Accepted: 04/20/2007] [Indexed: 12/21/2022]
Abstract
Mismatch repair (MMR) ensures the fidelity of DNA replication, initiates the cellular response to certain classes of DNA damage, and has been implicated in the generation of immune diversity. Each of these functions depends on MutSalpha (MSH2*MSH6 heterodimer). Inactivation of this protein complex is responsible for tumor development in about half of known hereditary nonpolyposis colorectal cancer kindreds and also occurs in sporadic tumors in a variety of tissues. Here, we describe a series of crystal structures of human MutSalpha bound to different DNA substrates, each known to elicit one of the diverse biological responses of the MMR pathway. All lesions are recognized in a similar manner, indicating that diversity of MutSalpha-dependent responses to DNA lesions is generated in events downstream of this lesion recognition step. This study also allows rigorous mapping of cancer-causing mutations and furthermore suggests structural pathways for allosteric communication between different regions within the heterodimer.
Collapse
Affiliation(s)
- Joshua J Warren
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
203
|
Tubbs JL, Pegg AE, Tainer JA. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair (Amst) 2007; 6:1100-15. [PMID: 17485252 PMCID: PMC1993358 DOI: 10.1016/j.dnarep.2007.03.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a crucial target both for the prevention of cancer and for chemotherapy, since it repairs mutagenic lesions in DNA, and it limits the effectiveness of alkylating chemotherapies. AGT catalyzes the unique, single-step, direct damage reversal repair of O(6)-alkylguanines by selectively transferring the O(6)-alkyl adduct to an internal cysteine residue. Recent crystal structures of human AGT alone and in complex with substrate DNA reveal a two-domain alpha/beta fold and a bound zinc ion. AGT uses its helix-turn-helix motif to bind substrate DNA via the minor groove. The alkylated guanine is then flipped out from the base stack into the AGT active site for repair by covalent transfer of the alkyl adduct to Cys145. An asparagine hinge (Asn137) couples the helix-turn-helix DNA binding and active site motifs. An arginine finger (Arg128) stabilizes the extrahelical DNA conformation. With this newly improved structural understanding of AGT and its interactions with biologically relevant substrates, we can now begin to unravel the role it plays in preserving genetic integrity and discover how it promotes resistance to anticancer therapies.
Collapse
Affiliation(s)
- Julie L. Tubbs
- The Scripps Research Institute, The Skaggs Institute for Chemical Biology and Department of Molecular Biology, 10550 North Torrey Pines Road, MB4, La Jolla, CA 92037
| | - Anthony E. Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - John A. Tainer
- The Scripps Research Institute, The Skaggs Institute for Chemical Biology and Department of Molecular Biology, 10550 North Torrey Pines Road, MB4, La Jolla, CA 92037
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
204
|
Peng M, Litman R, Xie J, Sharma S, Brosh RM, Cantor SB. The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J 2007; 26:3238-49. [PMID: 17581638 PMCID: PMC1914102 DOI: 10.1038/sj.emboj.7601754] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/16/2007] [Indexed: 01/02/2023] Open
Abstract
FANCJ also called BACH1/BRIP1 was first linked to hereditary breast cancer through its direct interaction with BRCA1. FANCJ was also recently identified as a Fanconi anemia (FA) gene product, establishing FANCJ as an essential tumor suppressor. Similar to other FA cells, FANCJ-null (FA-J) cells accumulate 4N DNA content in response to DNA interstrand crosslinks (ICLs). This accumulation is corrected by reintroduction of wild-type FANCJ. Here, we show that FANCJ interacts with the mismatch repair complex MutLalpha, composed of PMS2 and MLH1. Specifically, FANCJ directly interacts with MLH1 independent of BRCA1, through its helicase domain. Genetic studies reveal that FANCJ helicase activity and MLH1 binding, but not BRCA1 binding, are essential to correct the FA-J cells' ICL-induced 4N DNA accumulation and sensitivity to ICLs. These results suggest that the FANCJ/MutLalpha interaction, but not FANCJ/BRCA1 interaction, is essential for establishment of a normal ICL-induced response. The functional role of the FANCJ/MutLalpha complex demonstrates a novel link between FA and MMR, and predicts a broader role for FANCJ in DNA damage signaling independent of BRCA1.
Collapse
Affiliation(s)
- Min Peng
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Jenny Xie
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, MA, USA
- Department of Cancer Biology, UMASS Medical School, 364 Plantation Street, LRB 415, Worcester, MA 01605, USA. Tel.: +1 508 856 4421; Fax: +1 508 856 1310; E-mail:
| |
Collapse
|
205
|
Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6:1079-99. [PMID: 17485253 DOI: 10.1016/j.dnarep.2007.03.008] [Citation(s) in RCA: 464] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.
Collapse
Affiliation(s)
- Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
206
|
Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, Batchelor TT, Futreal PA, Stratton MR, Curry WT, Iafrate AJ, Louis DN. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13:2038-45. [PMID: 17404084 PMCID: PMC2873832 DOI: 10.1158/1078-0432.ccr-06-2149] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastomas are treated by surgical resection followed by radiotherapy [X-ray therapy (XRT)] and the alkylating chemotherapeutic agent temozolomide. Recently, inactivating mutations in the mismatch repair gene MSH6 were identified in two glioblastomas recurrent post-temozolomide. Because mismatch repair pathway inactivation is a known mediator of alkylator resistance in vitro, these findings suggested that MSH6 inactivation was causally linked to these two recurrences. However, the extent of involvement of MSH6 in glioblastoma is unknown. We sought to determine the overall frequency and clinical relevance of MSH6 alterations in glioblastomas. EXPERIMENTAL DESIGN The MSH6 gene was sequenced in 54 glioblastomas. MSH6 and O(6)-methylguanine methyltransferase (MGMT) immunohistochemistry was systematically scored in a panel of 46 clinically well-characterized glioblastomas, and the corresponding patient response to treatment evaluated. RESULTS MSH6 mutation was not observed in any pretreatment glioblastoma (0 of 40), whereas 3 of 14 recurrent cases had somatic mutations (P = 0.015). MSH6 protein expression was detected in all pretreatment (17 of 17) cases examined but, notably, expression was lost in 7 of 17 (41%) recurrences from matched post-XRT + temozolomide cases (P = 0.016). Loss of MSH6 was not associated with O(6)-methylguanine methyltransferase status. Measurements of in vivo tumor growth using three-dimensional reconstructed magnetic resonance imaging showed that MSH6-negative glioblastomas had a markedly increased rate of growth while under temozolomide treatment (3.17 versus 0.04 cc/mo for MSH6-positive tumors; P = 0.020). CONCLUSIONS Loss of MSH6 occurs in a subset of post-XRT + temozolomide glioblastoma recurrences and is associated with tumor progression during temozolomide treatment, mirroring the alkylator resistance conferred by MSH6 inactivation in vitro. MSH6 deficiency may therefore contribute to the emergence of recurrent glioblastomas during temozolomide treatment.
Collapse
Affiliation(s)
- Daniel P Cahill
- Molecular Pathology Unit, Neurosurgical Service, Brain Tumor Center, and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Guan X, Bai H, Shi G, Theriot CA, Hazra TK, Mitra S, Lu AL. The human checkpoint sensor Rad9-Rad1-Hus1 interacts with and stimulates NEIL1 glycosylase. Nucleic Acids Res 2007; 35:2463-72. [PMID: 17395641 PMCID: PMC1885643 DOI: 10.1093/nar/gkm075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The checkpoint protein Rad9/Rad1/Hus1 heterotrimer (the 9-1-1 complex) is structurally similar to the proliferating cell nuclear antigen sliding clamp and has been proposed to sense DNA damage that leads to cell cycle arrest or apoptosis. Human (h) NEIL1 DNA glycosylase, an ortholog of bacterial Nei/Fpg, is involved in repairing oxidatively damaged DNA bases. In this study, we show that hNEIL1 interacts with hRad9, hRad1 and hHus1 as individual proteins and as a complex. Residues 290–350 of hNEIL1 are important for the 9-1-1 association. A significant fraction of the hNEIL1 nuclear foci co-localize with hRad9 foci in hydrogen peroxide treated cells. Human NEIL1 DNA glycosylase activity is significantly stimulated by hHus1, hRad1, hRad9 separately and the 9-1-1 complex. Thus, the 9-1-1 complex at the lesion sites serves as both a damage sensor to activate checkpoint control and a component of base excision repair.
Collapse
Affiliation(s)
- Xin Guan
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haibo Bai
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Corey A. Theriot
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tapas K. Hazra
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA and Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- *To whom correspondence should be addressed +1-410-706-4356+1-410-706-1787
| |
Collapse
|
208
|
Eoff RL, Angel KC, Egli M, Guengerich FP. Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing. J Biol Chem 2007; 282:13573-84. [PMID: 17337730 DOI: 10.1074/jbc.m700656200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that Sulfolobus solfataricus DNA polymerase Dpo4-catalyzed bypass of O(6)-methylguanine (O(6)-MeG) proceeds largely in an accurate but inefficient manner with a "wobble" base pairing between C and O(6)-MeG (Eoff, R. L., Irimia, A., Egli, M., and Guengerich, F. P. (2007) J. Biol. Chem. 282, 1456-1467). We considered here the bulky lesion O(6)-benzylguanine (O(6)-BzG) in DNA and catalysis by Dpo4. Mass spectrometry analysis of polymerization products revealed that the enzyme bypasses and extends across from O(6)-BzG, with C the major product ( approximately 70%) and some T and A ( approximately 15% each) incorporated opposite the lesion. Steady-state kinetic parameters indicated that Dpo4 was 7-, 5-, and 27-fold more efficient at C incorporation opposite O(6)-BzG than T, A, or G, respectively. In transient state kinetic analysis, the catalytic efficiency was decreased 62-fold for C incorporation opposite O(6)-BzG relative to unmodified DNA. Crystal structures reveal wobble pairing between C and O(6)-BzG. Pseudo-"Watson-Crick" pairing was observed between T and O(6)-BzG. Two other structures illustrate a possible mechanism for the accommodation of a +1 frameshift in the Dpo4 active site. The overall effect of O(6)-BzG is to decrease the efficiency of bypass by roughly an order of magnitude in every case except correct bypass, where the effect is not as pronounced. By comparison, Dpo4 is more accurate but no more efficient than model replicative polymerases, such as bacteriophage T7(-) DNA polymerase and human immunodeficiency virus-1 reverse transcriptase in the polymerization past O(6)-MeG and O(6)-BzG.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
209
|
Sedletska Y, Fourrier L, Malinge JM. Modulation of MutS ATP-dependent functional activities by DNA containing a cisplatin compound lesion (base damage and mismatch). J Mol Biol 2007; 369:27-40. [PMID: 17400248 DOI: 10.1016/j.jmb.2007.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/03/2007] [Accepted: 02/12/2007] [Indexed: 11/27/2022]
Abstract
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.
Collapse
Affiliation(s)
- Yuliya Sedletska
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
210
|
Eoff RL, Irimia A, Egli M, Guengerich FP. Sulfolobus solfataricus DNA Polymerase Dpo4 Is Partially Inhibited by “Wobble” Pairing between O6-Methylguanine and Cytosine, but Accurate Bypass Is Preferred. J Biol Chem 2007; 282:1456-67. [PMID: 17105728 DOI: 10.1074/jbc.m609661200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the effect of a single O6-methylguanine (O6-MeG) template residue on catalysis by a model Y family polymerase, Dpo4 from Sulfolobus solfataricus. Mass spectral analysis of Dpo4-catalyzed extension products revealed that the enzyme accurately bypasses O6-MeG, with C being the major product (approximately 70%) and T or A being the minor species (approximately 20% or approximately 10%, respectively), consistent with steady-state kinetic parameters. Transient-state kinetic experiments revealed that kpol, the maximum forward rate constant describing polymerization, for dCTP incorporation opposite O6-MeG was approximately 6-fold slower than observed for unmodified G, and no measurable product was observed for dTTP incorporation in the pre-steady state. The lack of any structural information regarding how O6-MeG paired in a polymerase active site led us to perform x-ray crystallographic studies, which show that "wobble" pairing occurs between C and O6-MeG. A structure containing T opposite O6-MeG was solved, but much of the ribose and pyrimidine base density was disordered, in accordance with a much higher Km,dTTP that drives the difference in efficiency between C and T incorporation. The more stabilized C:O6-MeG pairing reinforces the importance of hydrogen bonding with respect to nucleotide selection within a geometrically tolerant polymerase active site.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
211
|
Reynolds M, Stoddard L, Bespalov I, Zhitkovich A. Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair. Nucleic Acids Res 2006; 35:465-76. [PMID: 17169990 PMCID: PMC1802609 DOI: 10.1093/nar/gkl1069] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Here we examined the role of cellular vitamin C in genotoxicity of carcinogenic chromium(VI) that requires reduction to induce DNA damage. In the presence of ascorbate (Asc), low 0.2–2 μM doses of Cr(VI) caused 10–15 times more chromosomal breakage in primary human bronchial epithelial cells or lung fibroblasts. DNA double-strand breaks (DSB) were preferentially generated in G2 phase as detected by colocalization of γH2AX and 53BP1 foci in cyclin B1-expressing cells. Asc dramatically increased the formation of centromere-negative micronuclei, demonstrating that induced DSB were inefficiently repaired. DSB in G2 cells were caused by aberrant mismatch repair of Cr damage in replicated DNA, as DNA polymerase inhibitor aphidicolin and silencing of MSH2 or MLH1 by shRNA suppressed induction of γH2AX and micronuclei. Cr(VI) was also up to 10 times more mutagenic in cells containing Asc. Increasing Asc concentrations generated progressively more mutations and DSB, revealing the genotoxic potential of otherwise nontoxic Cr(VI) doses. Asc amplified genotoxicity of Cr(VI) by altering the spectrum of DNA damage, as total Cr-DNA binding was unchanged and post-Cr loading of Asc exhibited no effects. Collectively, these studies demonstrated that Asc-dependent metabolism is the main source of genotoxic and mutagenic damage in Cr(VI)-exposed cells.
Collapse
Affiliation(s)
| | | | | | - Anatoly Zhitkovich
- To whom correspondence should be addressed. Tel: +1 401 863 2912; Fax: +1 401 863 9008;
| |
Collapse
|
212
|
Sekiguchi M. Molecular devices for high fidelity of DNA replication and gene expression. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:278-296. [PMID: 25792791 PMCID: PMC4338819 DOI: 10.2183/pjab.82.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/12/2006] [Indexed: 06/04/2023]
Abstract
Certain types of DNA lesions, produced through cellular metabolic processes and also by external environmental stresses, are responsible for the induction of mutations as well as of cancer. Most of these lesions can be eliminated by DNA repair enzymes, and cells carrying the remaining DNA lesions are subjected to apoptosis. The persistence of damaged bases in RNA can cause errors in gene expression, and the cells appear to possess a mechanism which can prevent damaged RNA molecules from entering the translation process. We have investigated these processes for high fidelity of DNA replication and gene expression, by using both biochemical and genetic means. We herein describe (1) the molecular mechanisms for accurate DNA synthesis, (2) mammalian proteins for sanitizing the DNA precursor pool, (3) error avoidance mechanisms for gene expression under oxidative stress, and (4) the roles of DNA repair and apoptosis in the prevention of cancer.
Collapse
Affiliation(s)
- Mutsuo Sekiguchi
- Fukuoka Dental College, 2–15–1 Tamura, Sawara-ku, Fukuoka 814–0193, Japan (e-mail: )
| |
Collapse
|
213
|
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2006; 19:1580-94. [PMID: 17173371 PMCID: PMC2542901 DOI: 10.1021/tx060164e] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical methylating agents methylmethane sulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) have been used for decades as classical DNA damaging agents. These agents have been utilized to uncover and explore pathways of DNA repair, DNA damage response, and mutagenesis. MMS and MNNG modify DNA by adding methyl groups to a number of nucleophilic sites on the DNA bases, although MNNG produces a greater percentage of O-methyl adducts. There has been substantial progress elucidating direct reversal proteins that remove methyl groups and base excision repair (BER), which removes and replaces methylated bases. Direct reversal proteins and BER, thus, counteract the toxic, mutagenic, and clastogenic effects of methylating agents. Despite recent progress, the complexity of DNA damage responses to methylating agents is still being discovered. In particular, there is growing understanding of pathways such as homologous recombination, lesion bypass, and mismatch repair that react when the response of direct reversal proteins and BER is insufficient. Furthermore, the importance of proper balance within the steps in BER has been uncovered with the knowledge that DNA structural intermediates during BER are deleterious. A number of issues complicate the elucidation of the downstream responses when direct reversal is insufficient or BER is imbalanced. These include inter-species differences, cell-type-specific differences within mammals and between cancer cell lines, and the type of methyl damage or BER intermediate encountered. MMS also carries a misleading reputation of being a radiomimetic, that is, capable of directly producing strand breaks. This review focuses on the DNA methyl damage caused by MMS and MNNG for each site of potential methylation to summarize what is known about the repair of such damage and the downstream responses and consequences if the damage is not repaired.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Basic Pharmaceutical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
214
|
Schroering AG, Edelbrock MA, Richards TJ, Williams KJ. The cell cycle and DNA mismatch repair. Exp Cell Res 2006; 313:292-304. [PMID: 17157834 DOI: 10.1016/j.yexcr.2006.10.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 10/13/2006] [Accepted: 10/16/2006] [Indexed: 11/22/2022]
Abstract
The DNA mismatch repair (MMR) pathway contributes to the fidelity of DNA synthesis and recombination by correcting mispaired nucleotides and insertion/deletion loops (IDLs). We have investigated whether MMR protein expression, activity, and subcellular location are altered during discrete phases of the cell cycle in mammalian cells. Two distinct methods have been used to demonstrate that although physiological MMR protein expression, mismatch binding, and nick-directed MMR activity within the nucleus are at highest levels during S phase, MMR is active throughout the cell cycle. Despite equal MMR nuclear protein concentrations in S and G(2) phases, mismatch binding and repair activities within G(2) are significantly lower, indicating a post-translational decrease in MMR activity specific to G(2). We further demonstrate that typical co-localization of MutSalpha to late S phase replication foci can be disrupted by 2 microM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This concentration of MNNG does not decrease ongoing DNA synthesis nor induce cell cycle arrest until the second cell cycle, with long-term colony survival decreased by only 24%. These results suggest that low level alkylation damage can selectively disrupt MMR proofreading activity during DNA synthesis and potentially increase mutation frequency within surviving cells.
Collapse
Affiliation(s)
- Allen G Schroering
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, OH 43614-5804, USA
| | | | | | | |
Collapse
|
215
|
Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12:440-50. [PMID: 16899408 DOI: 10.1016/j.molmed.2006.07.007] [Citation(s) in RCA: 1127] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 07/06/2006] [Accepted: 07/28/2006] [Indexed: 12/29/2022]
Abstract
Following the induction of DNA damage, a prominent route of cell inactivation is apoptosis. During the last ten years, specific DNA lesions that trigger apoptosis have been identified. These include O6-methylguanine, base N-alkylations, bulky DNA adducts, DNA cross-links and DNA double-strand breaks (DSBs). Repair of these lesions are important in preventing apoptosis. An exception is O6-methylguanine-thymine lesions, which require mismatch repair for triggering apoptosis. Apoptosis induced by many chemical genotoxins is the consequence of blockage of DNA replication, which leads to collapse of replication forks and DSB formation. These DSBs are thought to be crucial downstream apoptosis-triggering lesions. DSBs are detected by ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) proteins, which signal downstream to CHK1, CHK2 (checkpoint kinases) and p53. p53 induces transcriptional activation of pro-apoptotic factors such as FAS, PUMA and BAX. Many tumors harbor mutations in p53. There are p53 backup systems that involve CHK1 and/or CHK2-driven E2F1 activation and p73 upregulation, which in turn transcribes BAX, PUMA and NOXA. Another trigger of apoptosis upon DNA damage is the inhibition of RNA synthesis, which leads to a decline in the level of critical gene products such as MKP1 (mitogen-activated protein kinase phosphatase). This causes sustained activation of JNK (Jun kinase) and, finally, AP-1, which stimulates death-receptor activation. DNA damage-triggered signaling and execution of apoptosis is cell-type- and genotoxin-specific depending on the p53 (p63 and p73) status, death-receptor responsiveness, MAP-kinase activation and, most importantly, DNA repair capacity. Because most clinical anti-cancer drugs target DNA, increasing knowledge on DNA damage-triggered signaling leading to cell death is expected to provide new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Wynand P Roos
- Department of Toxicology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | |
Collapse
|
216
|
Abstract
The DNA mismatch repair (MMR) system maintains genome integrity by correcting replication errors. MMR also stimulates checkpoint and cell death responses to DNA damage suggested by the resistance of MMR-defective tumor cells to several chemotherapeutic agents. MMR-dependent cytotoxic response may result from futile repair; however, MMR-mediated apoptosis has been genetically separated from its repair function. In a recent issue of Molecular Cell, Yoshioka and coworkers show that MMR complexes (MutSalpha and MutLalpha) are required for the recruitment of ATR-ATRIP to sites of alkylation damage, demonstrating that MMR complexes can function as sensors in DNA damage signal transduction.
Collapse
Affiliation(s)
- Jean Y J Wang
- Division of Hematology/Oncology, Department of Medicine and Moores Cancer Center, University of California, San Diego, School of Medicine, 3855 Health Sciences Drive, La Jolla, California 92093, USA.
| | | |
Collapse
|