201
|
Düwel M, Hadian K, Krappmann D. Ubiquitin Conjugation and Deconjugation in NF-κB Signaling. Subcell Biochem 2010; 54:88-99. [PMID: 21222275 DOI: 10.1007/978-1-4419-6676-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transcription factor NF-κB regulates the physiological response to a variety of stimuli. The NF-κB pathway has served as a paradigm for analyzing the impact of the covalent protein modifier ubiquitin on signal transduction. The discovery in the early 1990s that degradation of cytosolic NF-κB inhibitors (IκBs) is mediated by the ubiquitin proteasome system (UPS) was the first example for a direct involvement of ubiquitination in cellular signaling. By now it has become clear that the role of the ubiquitin system in the NF-κB pathway extends far beyond triggering IκB destruction. The IκB kinase (IKK) complex is the key regulator of NF-κB. Attachment of ubiquitin chains to the IKK complex and to further upstream components drives NF-κB signaling pathways by promoting the clustering of the signaling network. Whereas ubiquitin conjugation serves a positive function in the NF-κB pathway, ubiquitin deconjugation acts as a negative regulatory feedback mechanism that is critically involved in balancing the strength and the duration of the NF-κB response. Moreover, inactivation of deconjugating enzymes can cause sustained NF-κB activity under pathological conditions like chronic inflammation or cancer. Here we review the impact of the ubiquitin system on the NF-κB signaling network by putting a focus on the enzymes that help to shape the plasticity of the NF-κB response.
Collapse
Affiliation(s)
- Michael Düwel
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Toxicology, Department Cellular Signal Integration, Ingolstädter Landstrasse. 1, 85764, Neuherberg, Germany
| | | | | |
Collapse
|
202
|
Abstract
Removal of ubiquitin from modified proteins is an important process to regulate the ubiquitin system. Roughly 100 dedicated enzymes for this purpose, the deubiquitinases, exist in human cells and are intricately involved in a wide variety of cellular processes, although many enzymes remain unstudied to date. The deubiquitinases consist of five enzyme families that contain USP, OTU, UCH, Josephin, or JAMM/MPN+ domains providing catalytic activity. We now understand the catalytic mechanisms of all deubiquitinase families from structural work and more importantly, have obtained insight into an unanticipated variety of ways to exercise specificity. It emerges that deubiquitinases exploit the entire complexity of the ubiquitin system by recognizing their substrates, particular ubiquitin chain linkages and even the position within a ubiquitin chain. This chapter describes the mechanisms of deubiquitination and the different layers of deubiquitinase specificity. The individual deubiquitinase families are discussed with a focus on structure, regulation and specificity features for selected enzymes.
Collapse
Affiliation(s)
- David Komander
- Protein and Nucleic Acid Chemistry Division, Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK,
| |
Collapse
|
203
|
Cooper EM, Boeke JD, Cohen RE. Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J Biol Chem 2009; 285:10344-52. [PMID: 20032457 DOI: 10.1074/jbc.m109.059667] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BRISC (Brcc36-containing isopeptidase complex) is a four-subunit deubiquitinating (DUB) enzyme that has a catalytic subunit, called Brcc36, that is a member of the JAMM/MPN(+) family of zinc metalloproteases. A notable feature of BRISC is its high specificity for cleaving Lys(63)-linked polyubiquitin. Here, we show that BRISC selectivity is not due to preferential binding to Lys(63)-linked polyubiquitin but is instead dictated by how the substrate isopeptide linkage is oriented within the enzyme active site. BRISC possesses a high affinity binding site for the ubiquitin hydrophobic surface patch that accounts for the bulk of the affinity between enzyme and substrate. Although BRISC can interact with either subunit of a diubiquitin conjugate, substrate cleavage occurs only when BRISC is bound to the hydrophobic patch of the distal (i.e. the "S1") ubiquitin at a ubiquitin-ubiquitin cleavage site. The importance of the Lys(63)-linked proximal (S1') ubiquitin was underscored by our finding that BRISC could not cleave the isopeptide bond joining a ubiquitin to a non-ubiquitin substrate. Finally, we also show that Abro1, another BRISC subunit, binds directly to Brcc36 and that the Brcc36-Abro1 heterodimer includes a minimal complex with Lys(63)-specific DUB activity.
Collapse
Affiliation(s)
- Eric M Cooper
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
204
|
Abstract
Protein ubiquitination and protein phosphorylation are two fundamental regulatory post-translational modifications controlling intracellular signalling events. However, the ubiquitin system is vastly more complex compared with phosphorylation. This is due to the ability of ubiquitin to form polymers, i.e. ubiquitin chains, of at least eight different linkages. The linkage type of the ubiquitin chain determines whether a modified protein is degraded by the proteasome or serves to attract proteins to initiate signalling cascades or be internalized. The present review focuses on the emerging complexity of the ubiquitin system. I review what is known about individual chain types, and highlight recent advances that explain how the ubiquitin system achieves its intrinsic specificity. There is much to be learnt from the better-studied phosphorylation system, and many key regulatory mechanisms underlying control by protein phosphorylation may be similarly employed within the ubiquitin system. For example, ubiquitination may have important allosteric roles in protein regulation that are currently not appreciated.
Collapse
|
205
|
Martinez-Forero I, Rouzaut A, Palazon A, Dubrot J, Melero I. Lysine 63 Polyubiquitination in Immunotherapy and in Cancer-promoting Inflammation. Clin Cancer Res 2009; 15:6751-7. [DOI: 10.1158/1078-0432.ccr-09-1225] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
206
|
Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 2009; 10:659-71. [PMID: 19773779 DOI: 10.1038/nrm2767] [Citation(s) in RCA: 674] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin-binding domains (UBDs) are modular elements that bind non-covalently to the protein modifier ubiquitin. Recent atomic-level resolution structures of ubiquitin-UBD complexes have revealed some of the mechanisms that underlie the versatile functions of ubiquitin in vivo. The preferences of UBDs for ubiquitin chains of specific length and linkage are central to these functions. These preferences originate from multimeric interactions, whereby UBDs synergistically bind multiple ubiquitin molecules, and from contacts with regions that link ubiquitin molecules into a polymer. The sequence context of UBDs and the conformational changes that follow their binding to ubiquitin also contribute to ubiquitin signalling. These new structure-based insights provide strategies for controlling cellular processes by targeting ubiquitin-UBD interfaces.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence "Macromolecular Complexes", Goethe University Frankfurt, Germany.
| | | | | |
Collapse
|
207
|
Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009; 461:114-9. [PMID: 19675569 PMCID: PMC2747300 DOI: 10.1038/nature08247] [Citation(s) in RCA: 454] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/29/2009] [Indexed: 12/27/2022]
Abstract
TRAF6 is a ubiquitin ligase that is essential for the activation of NF-kappaB and MAP kinases in several signalling pathways, including those emanating from the interleukin 1 and Toll-like receptors. TRAF6 functions together with a ubiquitin-conjugating enzyme complex consisting of UBC13 (also known as UBE2N) and UEV1A (UBE2V1) to catalyse Lys 63-linked polyubiquitination, which activates the TAK1 (also known as MAP3K7) kinase complex. TAK1 in turn phosphorylates and activates IkappaB kinase (IKK), leading to the activation of NF-kappaB. Although several proteins are known to be polyubiquitinated in the IL1R and Toll-like receptor pathways, it is not clear whether ubiquitination of any of these proteins is important for TAK1 or IKK activation. By reconstituting TAK1 activation in vitro using purified proteins, here we show that free Lys 63 polyubiquitin chains, which are not conjugated to any target protein, directly activate TAK1 by binding to the ubiquitin receptor TAB2 (also known as MAP3K7IP2). This binding leads to autophosphorylation and activation of TAK1. Furthermore, we found that unanchored polyubiquitin chains synthesized by TRAF6 and UBCH5C (also known as UBE2D3) activate the IKK complex. Disassembly of the polyubiquitin chains by deubiquitination enzymes prevented TAK1 and IKK activation. These results indicate that unanchored polyubiquitin chains directly activate TAK1 and IKK, suggesting a new mechanism of protein kinase regulation.
Collapse
Affiliation(s)
- Zong-Ping Xia
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Lijun Sun
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Xiang Chen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Gabriel Pineda
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Xiaomo Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Anirban Adhikari
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Wenwen Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| |
Collapse
|
208
|
Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550-63. [PMID: 19626045 DOI: 10.1038/nrm2731] [Citation(s) in RCA: 1613] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Collapse
Affiliation(s)
- David Komander
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| | | | | |
Collapse
|
209
|
Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. MOLECULAR BIOSYSTEMS 2009; 5:1797-808. [PMID: 19734957 DOI: 10.1039/b907669g] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ubiquitin specific proteases (USPs) are the largest family of deubiquitinating enzymes with approximately 56 members in humans. USPs regulate a wide variety of cellular processes by their ability to remove (poly)ubiquitin from target proteins. Their enzymatic activity is encoded in a common catalytic core of approximately 350 amino acids, however many USPs show significantly larger catalytic domains. Here we have analysed human and yeast USP domains, combining bioinformatics with structural information. We reveal that all USP domains can be divided into six conserved boxes, and we map the conserved boxes onto the USP domain core structure. The boxes are interspersed by insertions, some of which as large as the catalytic core. The two most common insertion points place inserts near the distal ubiquitin binding site, and in many cases ubiquitin binding domains or ubiquitin-like folds are found in these insertions, potentially directly affecting catalytic function. Other inserted sequences are unstructured, and removal of these might aid future structural and functional analysis. Yeast USP domains have a different pattern of inserted sequences, suggesting that the insertions are hotspots for evolutionary diversity to expand USP functionality.
Collapse
Affiliation(s)
- Yu Ye
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Hills Road, Cambridge, UK
| | | | | | | |
Collapse
|
210
|
Blake PW, Toro JR. Update of cylindromatosis gene (CYLD) mutations in Brooke-Spiegler syndrome: novel insights into the role of deubiquitination in cell signaling. Hum Mutat 2009; 30:1025-36. [PMID: 19462465 PMCID: PMC3243308 DOI: 10.1002/humu.21024] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germline mutations in the cylindromatosis (CYLD) gene have been described in families with cylindromas, trichoepitheliomas, and/or spiradenomas. Brooke-Spiegler syndrome (BSS) is the autosomal dominant predisposition to skin appendageal neoplasms including cylindromas, trichoepitheliomas, and/or spiradenomas. We review the clinical features, molecular genetics, and the animal models of BSS. To date, a total of 51 germline CYLD mutations have been reported, occurring in exons 9-20, in 73 families with diverse ethnic and racial backgrounds. Of 51 mutations, 86% are expected to lead to truncated proteins. The seven missense mutations reported to date occur only within the ubiquitin (Ub)-specific protease (USP) domain of the CYLD protein and most are associated exclusively with multiple familial trichoepithelioma (MFT). CYLD functions as a tumor suppressor gene. CYLD encodes a deubiquitinating (DUB) enzyme that negatively regulates the nuclear factor (NF)-kappaB and c-Jun N-terminal kinase (JNK) pathways. CYLD DUB activity is highly specific for lysine 63 (K63)-linked Ub chains but has been shown to act on K48-linked Ub chains as well. In 2008, the CYLD USP domain was crystallized, revealing that the truncated Fingers subdomain confers CYLD's unique specificity for K63-linked Ub chains. Recent work using animal models revealed new roles for CYLD in immunity, lipid metabolism, spermatogenesis, osteoclastogenesis, antimicrobial defense, and inflammation.
Collapse
Affiliation(s)
- Patrick W. Blake
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD 20892, USA
- Research Scholars Program, Howard Hughes Medical Institute, Bethesda, MD 20814, USA
| | - Jorge R. Toro
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD 20892, USA
| |
Collapse
|
211
|
Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 2009; 28:2461-8. [PMID: 19536136 DOI: 10.1038/emboj.2009.160] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 11/09/2022] Open
Abstract
RAP80 has a key role in the recruitment of the Abraxas-BRCC36-BRCA1-BARD1 complex to DNA-damage foci for DNA repair through specific recognition of Lys 63-linked polyubiquitinated proteins by its tandem ubiquitin-interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80-UIM1-UIM2) in complex with Lys 63-linked di-ubiquitin at 2.2 A resolution. The two UIMs, UIM1 and UIM2, and the alpha-helical inter-UIM region together form a continuous 60 A-long alpha-helix. UIM1 and UIM2 bind to the proximal and distal ubiquitin moieties, respectively. Both UIM1 and UIM2 of RAP80 recognize an Ile 44-centered hydrophobic patch on ubiquitin but neither UIM interacts with the Lys 63-linked isopeptide bond. Our structure suggests that the inter-UIM region forms a 12 A-long alpha-helix that ensures that the UIMs are arranged to enable specific binding of Lys 63-linked di-ubiquitin. This was confirmed by pull-down analyses using RAP80-UIM1-UIM2 mutants of various length inter-UIM regions. Further, we show that the Epsin1 tandem UIM, which has an inter-UIM region similar to that of RAP80-UIM1-UIM2, also selectively binds Lys 63-linked di-ubiquitin.
Collapse
Affiliation(s)
- Yusuke Sato
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
212
|
Chen X, Chou CY, Chang GG. Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme. Antivir Chem Chemother 2009; 19:151-6. [PMID: 19374142 DOI: 10.1177/095632020901900402] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the search for effective therapeutics against severe acute respiratory syndrome (SARS), 6-mercaptopurine (6MP) and 6-thioguanine (6TG) were found to be specific inhibitors for the SARS-coronavirus (CoV) papain-like protease (PLpro), a cysteine protease with deubiquitinating and deISGylating activity. 6MP and 6TG have long been used in cancer chemotherapy for treatment of acute lymphoblastic or myeloblastic leukaemia. Development and optimization of 6MP and 6TG will not only be important for antiviral studies, but also for further elucidating the biological functions of cellular deubiquitinating enzymes (DUBs) and deISGylating enzymes. So far, several crystal structures of cellular DUBs have been solved. Structure comparison has been carried out to search for DUBs with a similar structure to that of PLpro, and we have tried to dock 6MP and 6TG into these DUBs to investigate the potential use of 6MP and 6TG as cellular DUB inhibitors. The best docking score and binding energy for 6MP and 6TG is against ubiquitin-specific protease (USP)14, suggesting that 6MP and 6TG are potential inhibitors of USP14. Finding new usages for old drugs will speed up the process of drug discovery and substantially reduce the cost of drug development.
Collapse
Affiliation(s)
- Xin Chen
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institute, Miaoli, Taiwan
| | | | | |
Collapse
|
213
|
Komander D, Reyes-Turcu F, Licchesi JDF, Odenwaelder P, Wilkinson KD, Barford D. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466-73. [PMID: 19373254 PMCID: PMC2680876 DOI: 10.1038/embor.2009.55] [Citation(s) in RCA: 480] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 11/08/2022] Open
Abstract
At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63-linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48-linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin-binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF-kappaB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.
Collapse
Affiliation(s)
- David Komander
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| | | | | | | | | | | |
Collapse
|
214
|
Affiliation(s)
- Yu-Hsin Chiu
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390-9148
| | - Meng Zhao
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390-9148
| | - Zhijian J. Chen
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390-9148
- Howard Hughes Medical Institute University of Texas Southwestern Medical Center Dallas, TX 75390-9148
| |
Collapse
|
215
|
|
216
|
Abstract
The small protein ubiquitin is a central regulator of a cell's life and death. Ubiquitin is best known for targeting protein destruction by the 26S proteasome. In the past few years, however, nonproteolytic functions of ubiquitin have been uncovered at a rapid pace. These functions include membrane trafficking, protein kinase activation, DNA repair, and chromatin dynamics. A common mechanism underlying these functions is that ubiquitin, or polyubiquitin chains, serves as a signal to recruit proteins harboring ubiquitin-binding domains, thereby bringing together ubiquitinated proteins and ubiquitin receptors to execute specific biological functions. Recent advances in understanding ubiquitination in protein kinase activation and DNA repair are discussed to illustrate the nonproteolytic functions of ubiquitin in cell signaling.
Collapse
Affiliation(s)
- Zhijian J Chen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | | |
Collapse
|
217
|
Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 2009; 136:1098-109. [PMID: 19303852 DOI: 10.1016/j.cell.2009.03.007] [Citation(s) in RCA: 617] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/20/2009] [Accepted: 03/04/2009] [Indexed: 11/16/2022]
Abstract
Activation of nuclear factor-kappaB (NF-kappaB), a key mediator of inducible transcription in immunity, requires binding of NF-kappaB essential modulator (NEMO) to ubiquitinated substrates. Here, we report that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO selectively binds linear (head-to-tail) ubiquitin chains. Crystal structures of the UBAN motif revealed a parallel coiled-coil dimer that formed a heterotetrameric complex with two linear diubiquitin molecules. The UBAN dimer contacted all four ubiquitin moieties, and the integrity of each binding site was required for efficient NF-kappaB activation. Binding occurred via a surface on the proximal ubiquitin moiety and the canonical Ile44 surface on the distal one, thereby providing specificity for linear chain recognition. Residues of NEMO involved in binding linear ubiquitin chains are required for NF-kappaB activation by TNF-alpha and other agonists, providing an explanation for the detrimental effect of NEMO mutations in patients suffering from X-linked ectodermal dysplasia and immunodeficiency.
Collapse
Affiliation(s)
- Simin Rahighi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 2009; 28:621-31. [PMID: 19214193 DOI: 10.1038/emboj.2009.27] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 01/19/2009] [Indexed: 01/08/2023] Open
Abstract
An unusual deubiquitinating (DUB) activity exists in HeLa cell extracts that is highly specific for cleaving K63-linked but not K48-linked polyubiquitin chains. The activity is insensitive to both N-ethyl-maleimide and ubiquitin aldehyde, indicating that it lacks an active site cysteine residue, and gel filtration experiments show that it resides in a high molecular weight (approximately 600 kDa) complex. Using a biochemical approach, we found that the K63-specific DUB activity co-fractionated through seven chromatographic steps with three multisubunit complexes: the 19S (PA700) portion of the 26S proteasome, the COP9 signalosome (CSN) and a novel complex that includes the JAMM/MPN+ domain-containing protein Brcc36. When we analysed the individual complexes, we found that the activity was intrinsic to PA700 and the Brcc36 isopeptidase complex (BRISC), but that the CSN-associated activity was due entirely to an interaction with Brcc36. None of the complexes cleave K6, K11, K29, K48 or alpha-linked polyubiquitin, but they do cleave K63 linkages within mixed-linkage chains. Our results suggest that specificity for K63-linked polyubiquitin is a common property of the JAMM/MPN+ family of DUBs.
Collapse
Affiliation(s)
- Eric M Cooper
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
219
|
Abstract
Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.
Collapse
Affiliation(s)
| | - Karen H. Ventii
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Keith D. Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
220
|
Wang H, Matsuzawa A, Brown SA, Zhou J, Guy CS, Tseng PH, Forbes K, Nicholson TP, Sheppard PW, Häcker H, Karin M, Vignali DAA. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci U S A 2008; 105:20197-202. [PMID: 19091944 PMCID: PMC2629300 DOI: 10.1073/pnas.0810461105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Indexed: 12/31/2022] Open
Abstract
Modification of proteins by the addition of lysine (K)-63-linked polyubiquitin (polyUb) chains is suggested to play important roles in a variety of cellular events, including DNA repair, signal transduction, and receptor endocytosis. However, identifying such modifications in living cells is complex and cumbersome. We have generated a monoclonal antibody (mAb) that specifically recognizes K63-linked polyUb, but not any other isopeptide-linked (K6, K11, K27, K29, K33, or K48) polyUb or monoubiquitin. We demonstrate the sensitivity and specificity of this K63Ub-specific mAb to detect K63Ub-modified proteins in cell lysates by Western blotting and in cells by immunofluorescence, and K63Ub-modified TRAF6 and MEKK1 in vitro and ex vivo. This unique mAb will facilitate the analysis of K63-linked polyubiquitylation ex vivo and presents a strategy for the generation of similar reagents against other forms of polyUb.
Collapse
Affiliation(s)
- Haopeng Wang
- Departments of Immunology and
- Interdisciplinary Program and
| | - Atsushi Matsuzawa
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0723; and
| | | | - JingRan Zhou
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794
| | | | - Ping-Hui Tseng
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0723; and
| | | | - Thomas P. Nicholson
- BIOMOL International, Inc., Palatine House, Matford Court, Exeter EX2 8NL, United Kingdom
| | - Paul W. Sheppard
- BIOMOL International, Inc., Palatine House, Matford Court, Exeter EX2 8NL, United Kingdom
| | - Hans Häcker
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0723; and
| | - Dario A. A. Vignali
- Departments of Immunology and
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
221
|
Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 2008; 283:26436-43. [PMID: 18599482 DOI: 10.1074/jbc.m803692200] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin chain complexity in cells is likely regulated by a diverse set of deubiquitinating enzymes (DUBs) with distinct ubiquitin chain preferences. Here we show that the polyglutamine disease protein, ataxin-3, binds and cleaves ubiquitin chains in a manner suggesting that it functions as a mixed linkage, chain-editing enzyme. Ataxin-3 cleaves ubiquitin chains through its amino-terminal Josephin domain and binds ubiquitin chains through a carboxyl-terminal cluster of ubiquitin interaction motifs neighboring the pathogenic polyglutamine tract. Ataxin-3 binds both Lys(48)- or Lys(63)-linked chains yet preferentially cleaves Lys(63) linkages. Ataxin-3 shows even greater activity toward mixed linkage polyubiquitin, cleaving Lys(63) linkages in chains that contain both Lys(48) and Lys(63) linkages. The ubiquitin interaction motifs regulate the specificity of this activity by restricting what can be cleaved by the protease domain, demonstrating that linkage specificity can be determined by elements outside the catalytic domain of a DUB. These findings establish ataxin-3 as a novel DUB that edits topologically complex chains.
Collapse
Affiliation(s)
- Brett J Winborn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Ubiquitylation is a fundamental mechanism of signal transduction that regulates immune responses and many other biological processes. Similar to phosphorylation, ubiquitylation is a reversible process that is counter-regulated by ubiquitylating enzymes and deubiquitylating enzymes (DUBs). Despite the identification of a large number of DUBs, our knowledge of the function and activities of this family of enzymes is just starting to accumulate. As described in this Review, recent studies of several DUBs, in particular CYLD and A20, show that deubiquitylation has an important role in the regulation of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, BOX 902, Houston, Texas 77030, USA.
| |
Collapse
|
223
|
Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J Biol Chem 2008; 283:19581-92. [PMID: 18482987 DOI: 10.1074/jbc.m800947200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The conjugation of polyubiquitin to target proteins acts as a signal that regulates target stability, localization, and function. Several ubiquitin binding domains have been described, and while much is known about ubiquitin binding to the isolated domains, little is known with regard to how the domains interact with polyubiquitin in the context of full-length proteins. Isopeptidase T (IsoT/USP5) is a deubiquitinating enzyme that is largely responsible for the disassembly of unanchored polyubiquitin in the cell. IsoT has four ubiquitin binding domains: a zinc finger domain (ZnF UBP), which binds the proximal ubiquitin, a UBP domain that forms the active site, and two ubiquitin-associated (UBA) domains whose roles are unknown. Here, we show that the UBA domains are involved in binding two different polyubiquitin isoforms, linear and K48-linked. Using isothermal titration calorimetry, we show that IsoT has at least four ubiquitin binding sites for both polyubiquitin isoforms. The thermodynamics of the interactions reveal that the binding is enthalpy-driven. Mutation of the UBA domains suggests that UBA1 and UBA2 domains of IsoT interact with the third and fourth ubiquitins in both polyubiquitin isoforms, respectively. These data suggest that recognition of the polyubiquitin isoforms by IsoT involves considerable conformational mobility in the polyubiquitin ligand, in the enzyme, or in both.
Collapse
Affiliation(s)
- Francisca E Reyes-Turcu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
224
|
|