201
|
Bird A. The dinucleotide CG as a genomic signalling module. J Mol Biol 2011; 409:47-53. [PMID: 21295585 DOI: 10.1016/j.jmb.2011.01.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
The operon model proposed the existence of a category of proteins that control gene expression by interacting with specific DNA sequences. Since then, a large number of transcription factors recognizing a diversity of sequence motifs have been discovered. This article discusses an unusually short protein recognition sequence, 5'CG, which is read by multiple DNA binding proteins. CG exists in three distinct chemical states, two of which bind mutually exclusively to proteins that modulate chromatin structure. Non-methylated CG, which is highly concentrated at CpG island promoters, recruits enzymes that create the mark of promoter activity, trimethyl-lysine 4 of histone H3. Methylated CG, on the other hand, is a gene silencing mark and accordingly recruits enzymes that deacetylate histones. Thus, CG, despite its simplicity, has the properties of a genome-wide signalling module that adds a layer of positive or negative control over gene expression.
Collapse
Affiliation(s)
- Adrian Bird
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, The King's Buildings, Edinburgh EH9 3JR, UK.
| |
Collapse
|
202
|
Krauss V, Reuter G. DNA methylation in Drosophila--a critical evaluation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:177-91. [PMID: 21507351 DOI: 10.1016/b978-0-12-387685-0.00003-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drosophila belongs to the so-called "Dnmt2 only" organisms, and does not contain any of the canonical DNA methyltransferases (Dnmt1 and Dnmt3). Furthermore, no functional homologs of known 5-methylcytosine reader proteins are found. Nevertheless, there is strong evidence for DNA methylation in this organism. It has been suggested that DNA methylation in Drosophila is simply a byproduct of Dnmt2, which is a DNA methyltransferase (Dnmt) according to structure and type of catalysis but functions in vivo as a tRNA methyltransferase. However, concerning the very specific timing of cytosine methylation in Drosophila, their suggested functions in control of retrotransposon silencing and genome stability, and the obvious DNA methylation activity of Dnmt2 enzymes in the protozoans Dictyostelium discoideum and Entamoeba histolytica, we tend to disagree with this notation. Dnmt2 probably serves, and not only in Drosophila, as a methyltransferase of both specific DNA and tRNA targets.
Collapse
Affiliation(s)
- Veiko Krauss
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle/S, Germany
| | | |
Collapse
|
203
|
Natural history of eukaryotic DNA methylation systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:25-104. [PMID: 21507349 DOI: 10.1016/b978-0-12-387685-0.00002-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not a terminal DNA modification, with enzymes of the Tet/JBP family of 2-oxoglutarate- and iron-dependent dioxygenases further hydroxylating it to form 5-hydroxymethylcytosine (5hmC). These enzymes emerged first in bacteriophages and appear to have been transferred to eukaryotes on one or more occasions. Eukaryotes appear to have recruited three major types of DNA-binding domains (SRA/SAD, TAM/MBD, and CXXC) in discriminating DNA with methylated or unmethylated cytosines. Analysis of the domain architectures of these domains and the DNA methylases suggests that early in eukaryotic evolution they developed a close functional link with SET-domain methylases and Jumonji-related demethylases that operate on peptides in chromatin proteins. In several eukaryotes, other functional connections were elaborated in the form of various combinations between domains related to DNA methylation and those involved in ATP-dependent chromatin remodeling and RNAi. In certain eukaryotes, such as mammals and angiosperms, novel dependencies on the DNA methylation system emerged, which resulted in it affecting unexpected aspects of the biology of these organisms such as parent-offspring interactions. In genomic terms, this was reflected in the emergence of new proteins related to methylation, such as Stella. The well-developed methylation systems of certain heteroloboseans, stramenopiles, chlorophytes, and haptophyte indicate that these might be new model systems to explore the relevance of DNA modifications in eukaryotes.
Collapse
|
204
|
Lao VV, Darwanto A, Sowers LC. Impact of base analogues within a CpG dinucleotide on the binding of DNA by the methyl-binding domain of MeCP2 and methylation by DNMT1. Biochemistry 2010; 49:10228-36. [PMID: 20979427 DOI: 10.1021/bi1011942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The epigenetic control of transcription requires the selective recognition of methylated CpG dinucleotides by methylation-sensitive sequence-specific DNA binding proteins. In order to probe the mechanism of selective interaction of the methyl-binding protein with methylated DNA, we have prepared a series of oligonucleotides containing modified purines and pyrimidines at the recognition site, and we have examined the binding of these oligonucleotides to the methyl-binding domain (MBD) of the methyl-CpG-binding protein 2 (MeCP2). Our results suggest that pyrimidine 5-substituents similar in size to a methyl group facilitate protein binding; however, binding affinity does not correlate with the hydrophobicity of the substituent, and neither the 4-amino group of 5-methylcytosine (mC) nor Watson-Crick base pair geometry is essential for MBD binding. However, 5-substituted uracil analogues in one strand do not direct human DNA methyltransferase 1 (DNMT1) methylation of the opposing strand, as does mC. Important recognition elements do include the guanine O6 and N7 atoms present in the major groove. Unexpectedly, removal of the guanine 2-amino group from the minor groove substantially enhances MBD binding, likely resulting from DNA bending at the substitution site. The enhanced binding of the MBD to oligonucleotides containing several cytosine analogues observed here is better explained by a DNA-protein interface mediated by structured water as opposed to hydrophobic interactions.
Collapse
Affiliation(s)
- Victoria Valinluck Lao
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States
| | | | | |
Collapse
|
205
|
Joulie M, Miotto B, Defossez PA. Mammalian methyl-binding proteins: What might they do? Bioessays 2010; 32:1025-32. [DOI: 10.1002/bies.201000057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
|
206
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
207
|
The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. PLoS One 2010; 5:e11982. [PMID: 20700456 PMCID: PMC2917364 DOI: 10.1371/journal.pone.0011982] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation. Principal Findings Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested. Conclusions Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.
Collapse
|
208
|
MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol 2010; 30:4656-70. [PMID: 20679481 DOI: 10.1128/mcb.00379-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporadic mutations in the hMeCP2 gene, coding for a protein that preferentially binds symmetrically methylated CpGs, result in the severe neurological disorder Rett syndrome (RTT). In the present work, employing a wide range of experimental approaches, we shed new light on the many levels of MeCP2 interaction with DNA and chromatin. We show that strong methylation-independent as well as methylation-dependent binding by MeCP2 is influenced by DNA length. Although MeCP2 is strictly monomeric in solution, its binding to DNA is cooperative, with dimeric binding strongly correlated with methylation density, and strengthened by nearby A/T repeats. Dimeric binding is abolished in the F155S and R294X severe RTT mutants. MeCP2 also binds chromatin in vitro, resulting in compaction-related changes in nucleosome architecture that resemble the classical zigzag motif induced by histone H1 and considered important for 30-nm-fiber formation. In vivo chromatin binding kinetics and in vitro steady-state nucleosome binding of both MeCP2 and H1 provide strong evidence for competition between MeCP2 and H1 for common binding sites. This suggests that chromatin binding by MeCP2 and H1 in vivo should be viewed in the context of competitive multifactorial regulation.
Collapse
|
209
|
Milner-White EJ, Pietras Z, Luisi BF. An ancient anion-binding structural module in RNA and DNA helicases. Proteins 2010; 78:1900-8. [PMID: 20310069 DOI: 10.1002/prot.22704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA and DNA helicases manipulate or translocate along single strands of nucleic acids by grasping them using a conserved structural motif. We have examined the available crystal structures of helicases of the two principal superfamilies, SF1 and SF2, and observed that the most conserved interactions with the nucleic acid occur between the phosphosugar backbone of a trinucleotide and the three strand-helix loops within a (beta-strand/alpha-helix)(3) structural module. At the first and third loops is a conserved hydrogen-bonded feature called a thr-motif, often seen at alpha-helical N-termini, with the threonine as the N-cap residue. These loops can be aligned with few insertions or deletions, and their main chain atoms are structurally congruent amongst the family members and between the two modules found as tandem pairs in all SF1 and SF2 proteins. The other highly conserved interactions with nucleic acid involve main chain NH groups, often at the helical N-termini, interacting with phosphate groups. We comment on how the sequence motifs that are commonly used to identify helicases map to locations on the module and discuss the implications of the conserved orientation of nucleic acid on the surface of the module for directional stepping along DNA or RNA.
Collapse
Affiliation(s)
- E James Milner-White
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|
210
|
Cannistraro VJ, Taylor JSA. Methyl CpG binding protein 2 (MeCP2) enhances photodimer formation at methyl-CpG sites but suppresses dimer deamination. Nucleic Acids Res 2010; 38:6943-55. [PMID: 20601406 PMCID: PMC2978359 DOI: 10.1093/nar/gkq582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spontaneous deamination of cytosine to uracil in DNA is a ubiquitous source of C→T mutations, but occurs with a half life of ∼50 000 years. In contrast, cytosine within sunlight induced cyclobutane dipyrimidine dimers (CPD's), deaminate within hours to days. Methylation of C increases the frequency of CPD formation at PyCG sites which correlate with C→T mutation hotspots in skin cancers. MeCP2 binds to mCG sites and acts as a transcriptional regulator and chromatin modifier affecting thousands of genes, but its effect on CPD formation and deamination is unknown. We report that the methyl CpG binding domain of MeCP2 (MBD) greatly enhances C=mC CPD formation at a TCmCG site in duplex DNA and binds with equal or better affinity to the CPD-containing duplex compared with the undamaged duplex. In comparison, MBD does not enhance T=mC CPD formation at a TTmCG site, but instead increases CPD formation at the adjacent TT site. MBD was also found to completely suppress deamination of the T=mCG CPD, suggesting that MeCP2 may have the capability to both suppress UV mutagenesis at PymCpG sites as well as enhance it.
Collapse
|
211
|
Ghosh RP, Nikitina T, Horowitz-Scherer RA, Gierasch LM, Uversky VN, Hite K, Hansen JC, Woodcock CL. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry 2010; 49:4395-410. [PMID: 20405910 DOI: 10.1021/bi9019753] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylated DNA binding protein 2 (MeCP2) is a methyl CpG binding protein whose key role is the recognition of epigenetic information encoded in DNA methylation patterns. Mutation or misregulation of MeCP2 function leads to Rett syndrome as well as a variety of other autism spectrum disorders. Here, we have analyzed in detail the properties of six individually expressed human MeCP2 domains spanning the entire protein with emphasis on their interactions with each other, with DNA, and with nucleosomal arrays. Each domain contributes uniquely to the structure and function of the full-length protein. MeCP2 is approximately 60% unstructured, with nine interspersed alpha-molecular recognition features (alpha-MoRFs), which are polypeptide segments predicted to acquire secondary structure upon forming complexes with binding partners. Large increases in secondary structure content are induced in some of the isolated MeCP2 domains and in the full-length protein by binding to DNA. Interactions between some MeCP2 domains in cis and trans seen in our assays likely contribute to the structure and function of the intact protein. We also show that MeCP2 has two functional halves. The N-terminal portion contains the methylated DNA binding domain (MBD) and two highly disordered flanking domains that modulate MBD-mediated DNA binding. One of these flanking domains is also capable of autonomous DNA binding. In contrast, the C-terminal portion of the protein that harbors at least two independent DNA binding domains and a chromatin-specific binding domain is largely responsible for mediating nucleosomal array compaction and oligomerization. These findings led to new mechanistic and biochemical insights regarding the conformational modulations of this intrinsically disordered protein, and its context-dependent in vivo roles.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Sasai N, Nakao M, Defossez PA. Sequence-specific recognition of methylated DNA by human zinc-finger proteins. Nucleic Acids Res 2010; 38:5015-22. [PMID: 20403812 PMCID: PMC2926618 DOI: 10.1093/nar/gkq280] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.
Collapse
|
213
|
Clouaire T, de Las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res 2010; 38:4620-34. [PMID: 20378711 PMCID: PMC2919722 DOI: 10.1093/nar/gkq228] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MBD1, a member of the methyl-CpG-binding domain family of proteins, has been reported to repress transcription of methylated and unmethylated promoters. As some MBD1 isoforms contain two DNA-binding domains—an MBD, which recognizes methylated DNA; and a CXXC3 zinc finger, which binds unmethylated CpG—it is unclear whether these two domains function independently of each other or if they cooperate in facilitating recruitment of MBD1 to particular genomic loci. In this report we investigate DNA-binding specificity of MBD and CXXC3 domains in vitro and in vivo. We find that the methyl-CpG-binding domain of MBD1 binds more efficiently to methylated DNA within a specific sequence context. We identify genes that are targeted by MBD1 in human cells and demonstrate that a functional MBD domain is necessary and sufficient for recruitment of MBD1 to specific sites at these loci, while DNA binding by the CXXC3 motif is largely dispensable. In summary, the binding preferences of MBD1, although dependent upon the presence of methylated DNA, are clearly distinct from those of other methyl-CpG-binding proteins, MBD2 and MeCP2.
Collapse
Affiliation(s)
- Thomas Clouaire
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
214
|
Thambirajah AA, Ausió J. A moment's pause: putative nucleosome-based influences on MeCP2 regulation. Biochem Cell Biol 2010; 87:791-8. [PMID: 19898528 DOI: 10.1139/o09-054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There has been a hotbed of activity surrounding MeCP2 research in the past number of years. Despite better characterizing the functions and nature of this protein, it has become abundantly clear that MeCP2 is involved in far more complex activities than perhaps initially anticipated. Recent publications have shown that MeCP2 is dynamically post-translationally modified, and it is possible that these marks permit MeCP2 to inhabit very diverse chromatin environments. It is also of interest to consider how nucleosome composition differs in these varying chromatin regions, and how the chromatin template itself contributes to diversifying the regulatory roles of MeCP2. These will be critical points to examine when seeking to understand how MeCP2 behaviour differentiates in tissues other than the brain. By understanding the chromatin and (or) tissue context in which MeCP2 interacts, it may be possible to discern the specific etiology of diseases linked to MeCP2 dysfunction.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W3P6, Canada
| | | |
Collapse
|
215
|
Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 2009; 35:219-33. [PMID: 19442733 PMCID: PMC2722110 DOI: 10.1016/j.nbd.2009.05.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022] Open
Abstract
Rett syndrome (RTT) is an X chromosome-linked neurodevelopmental disorder associated with the characteristic neuropathology of dendritic spines common in diseases presenting with mental retardation (MR). Here, we present the first quantitative analyses of dendritic spine density in postmortem brain tissue from female RTT individuals, which revealed that hippocampal CA1 pyramidal neurons have lower spine density than age-matched non-MR female control individuals. The majority of RTT individuals carry mutations in MECP2, the gene coding for a methylated DNA-binding transcriptional regulator. While altered synaptic transmission and plasticity has been demonstrated in Mecp2-deficient mouse models of RTT, observations regarding dendritic spine density and morphology have produced varied results. We investigated the consequences of MeCP2 dysfunction on dendritic spine structure by overexpressing ( approximately twofold) MeCP2-GFP constructs encoding either the wildtype (WT) protein, or missense mutations commonly found in RTT individuals. Pyramidal neurons within hippocampal slice cultures transfected with either WT or mutant MECP2 (either R106W or T158M) showed a significant reduction in total spine density after 48 h of expression. Interestingly, spine density in neurons expressing WT MECP2 for 96 h was comparable to that in control neurons, while neurons expressing mutant MECP2 continued to have lower spine density than controls after 96 h of expression. Knockdown of endogenous Mecp2 with a specific small hairpin interference RNA (shRNA) also reduced dendritic spine density, but only after 96 h of expression. On the other hand, the consequences of manipulating MeCP2 levels for dendritic complexity in CA3 pyramidal neurons were only minor. Together, these results demonstrate reduced dendritic spine density in hippocampal pyramidal neurons from RTT patients, a distinct dendritic phenotype also found in neurons expressing RTT-associated MECP2 mutations or after shRNA-mediated endogenous Mecp2 knockdown, suggesting that this phenotype represent a cell-autonomous consequence of MeCP2 dysfunction.
Collapse
Affiliation(s)
- Christopher A. Chapleau
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Gaston D. Calfa
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Meredith C. Lane
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Asher J. Albertson
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Jennifer L. Larimore
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Shinichi Kudo
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Dawna L. Armstrong
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030
| | - Alan K. Percy
- Department of Pediatrics, UAB, Birmingham, AL 35294-2182, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| |
Collapse
|
216
|
Hite KC, Adams VH, Hansen JC. Recent advances in MeCP2 structure and function. Biochem Cell Biol 2009; 87:219-27. [PMID: 19234536 DOI: 10.1139/o08-115] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in methyl DNA binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). The mechanism(s) by which the native MeCP2 protein operates in the cell are not well understood. Historically, MeCP2 has been characterized as a proximal gene silencer with 2 functional domains: a methyl DNA binding domain and a transcription repression domain. However, several lines of new data indicate that MeCP2 structure and function relationships are more complex. In this review, we first discuss recent studies that have advanced understanding of the basic structural biochemistry of MeCP2. This is followed by an analysis of cell-based experiments suggesting MeCP2 is a regulator, rather than a strict silencer, of transcription. The new data establish MeCP2 as a multifunctional nuclear protein, with potentially important roles in chromatin architecture, regulation of RNA splicing, and active transcription. We conclude by discussing clinical correlations between domain-specific mutations and RTT pathology to stress that all structural domains of MeCP2 are required to properly mediate cellular function of the intact protein.
Collapse
Affiliation(s)
- Kristopher C Hite
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| | | | | |
Collapse
|
217
|
Ilnytskyy Y, Koturbash I, Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:105-113. [PMID: 19107897 DOI: 10.1002/em.20440] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure of animal body parts to ionizing radiation (IR) can lead to molecular changes in distant shielded "bystander" tissues and organs. Nevertheless, tissue specificity of bystander responses within the same organism has not been examined in detail. Studies on in vivo bystander effect conducted so far analyzed changes induced by single-dose exposure. The potential of fractionated irradiation to induce bystander effects in vivo has never been studied. We analyzed changes in global DNA methylation and microRNAome in skin and spleen of animals subjected to single-dose (acute or fractionated) whole-body or cranial exposure to 0.5 Gy of X-rays. We found that IR-induced DNA methylation changes in bystander spleen and skin were distinct. Acute radiation exposure resulted in a significant loss of global DNA methylation in the exposed and bystander spleen 6 hr, 96 hr, and 14 days after irradiation. Fractionated irradiation led to hypomethylation in bystander spleen 6 hr after whole-body exposure, and 6 hr, 96 hr, and 14 days after cranial irradiation. Contrarily, changes in the skin of the same animals were seen only 6 hr after acute whole-body and head exposure. DNA hypomethylation observed in spleen was paralleled by a reduction of methyl-binding protein MeCP2 expression. Irradiation also induced tissue-specific microRNAome alterations in skin and spleen. For the first time, we have shown that IR-induced epigenetic bystander effects that occur in the same organism are triggered by both acute and fractionated exposure and are very distinct in different bystander organs. Future studies are clearly needed to address organismal and carcinogenic repercussions of those changes.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
218
|
Hashimoto H, Horton JR, Zhang X, Cheng X. UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics 2009; 4:8-14. [PMID: 19077538 DOI: 10.4161/epi.4.1.7370] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytosine methylation in DNA is a major epigenetic signal, and plays a central role in propagating chromatin status during cell division. However the mechanistic links between DNA methylation and histone methylation are poorly understood. A multi-domain protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for DNA CpG maintenance methylation at replication forks, and mouse UHRF1-null cells show enhanced susceptibility to DNA replication arrest and DNA damaging agents. Recent data demonstrated that the SET and RING associated (SRA) domain of UHRF1 binds hemimethylated CpG and flips 5-methylcytosine out of the DNA helix, whereas its tandom tudor domain and PHD domain bind the tail of histone H3 in a highly methylation sensitive manner. We hypothesize that UHRF1 brings the two components (histones and DNA) carrying appropriate markers (on the tails of H3 and hemimethylated CpG sites) ready to be assembled into a nucleosome after replication.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
219
|
Dhasarathy A, Wade PA. The MBD protein family-reading an epigenetic mark? Mutat Res 2008; 647:39-43. [PMID: 18692077 PMCID: PMC2670759 DOI: 10.1016/j.mrfmmm.2008.07.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 04/27/2023]
Abstract
A family of proteins conserved throughout the eukaryotic lineage is characterized by the presence of a common sequence motif-the methyl-CpG-binding domain, or MBD. This sequence motif corresponds to a structural domain which, in some but not all cases, confers the ability to bind methylated cytosine residues in the context of the dinucleotide 5' CG 3'. Mammals have five well-characterized members of this family, each with unique biological characteristics. Recently, much progress has been made in defining the biochemical properties of one member of this family, MeCP2. This protein has a very high affinity for chromatin and considerable insight has been gained into its interactions with naked DNA and with chromatin fibers. Previous models have proposed that several members of the MBD family contribute to establishment and/or maintenance of transcriptional repression by recruiting enzymes that locally modify histones. Surprisingly, recent data indicate that MeCP2 is likely to contribute to chromatin properties through an architectural role, participating in higher order chromatin structures that facilitate both gene repression as well as gene activation. These observations suggest that existing models probably do not explain the entire gamut of biological functions performed by this very interesting protein family.
Collapse
Affiliation(s)
- Archana Dhasarathy
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Science, Research Triangle Park, NC 27517, USA
| | | |
Collapse
|
220
|
Qian C, Li S, Jakoncic J, Zeng L, Walsh MJ, Zhou MM. Structure and hemimethylated CpG binding of the SRA domain from human UHRF1. J Biol Chem 2008; 283:34490-4. [PMID: 18945682 DOI: 10.1074/jbc.c800169200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human UHRF1 (ubiquitin-like PHD and RING finger 1) functions to maintain CpG DNA methylation patterns through DNA replication by co-localizing with the DNA methyltransferase DNMT1 at chromatin in mammals. Recent studies show that UHRF1 binds selectively to hemimethylated CpG via its conserved SRA (SET- and RING finger-associated) domain. However, the underlying molecular mechanism is not known. Here, we report a 1.95 A resolution crystal structure of the SRA domain of human UHRF1. Using NMR structure-guided mutagenesis, electrophoretic mobility shift assay, and fluorescence anisotropy analysis, we determined key amino acid residues for methyl-DNA binding that are conserved in the SRA domain.
Collapse
Affiliation(s)
- Chengmin Qian
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
221
|
Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 2008; 455:818-21. [PMID: 18772891 DOI: 10.1038/nature07249] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/09/2008] [Indexed: 12/27/2022]
Abstract
DNA methylation of CpG dinucleotides is an important epigenetic modification of mammalian genomes and is essential for the regulation of chromatin structure, of gene expression and of genome stability. Differences in DNA methylation patterns underlie a wide range of biological processes, such as genomic imprinting, inactivation of the X chromosome, embryogenesis, and carcinogenesis. Inheritance of the epigenetic methylation pattern is mediated by the enzyme DNA methyltransferase 1 (Dnmt1), which methylates newly synthesized CpG sequences during DNA replication, depending on the methylation status of the template strands. The protein UHRF1 (also known as Np95 and ICBP90) recognizes hemi-methylation sites via a SET and RING-associated (SRA) domain and directs Dnmt1 to these sites. Here we report the crystal structures of the SRA domain in free and hemi-methylated DNA-bound states. The SRA domain folds into a globular structure with a basic concave surface formed by highly conserved residues. Binding of DNA to the concave surface causes a loop and an amino-terminal tail of the SRA domain to fold into DNA interfaces at the major and minor grooves of the methylation site. In contrast to fully methylated CpG sites recognized by the methyl-CpG-binding domain, the methylcytosine base at the hemi-methylated site is flipped out of the DNA helix in the SRA-DNA complex and fits tightly into a protein pocket on the concave surface. The complex structure suggests that the successive flip out of the pre-existing methylated cytosine and the target cytosine to be methylated is associated with the coordinated transfer of the hemi-methylated CpG site from UHRF1 to Dnmt1.
Collapse
Affiliation(s)
- Kyohei Arita
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
222
|
Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, Arrowsmith CH, Dhe-Paganon S. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 2008; 455:822-5. [PMID: 18772889 DOI: 10.1038/nature07273] [Citation(s) in RCA: 359] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/18/2008] [Indexed: 11/09/2022]
Abstract
Epigenetic inheritance in mammals is characterized by high-fidelity replication of CpG methylation patterns during development. UHRF1 (also known as ICBP90 in humans and Np95 in mouse) is an E3 ligase important for the maintenance of global and local DNA methylation in vivo. The preferential affinity of UHRF1 for hemi-methylated DNA over symmetrically methylated DNA by means of its SET and RING-associated (SRA) domain and its association with the maintenance DNA methyltransferase 1 (DNMT1) suggests a role in replication of the epigenetic code. Here we report the 1.7 A crystal structure of the apo SRA domain of human UHRF1 and a 2.2 A structure of its complex with hemi-methylated DNA, revealing a previously unknown reading mechanism for methylated CpG sites (mCpG). The SRA-DNA complex has several notable structural features including a binding pocket that accommodates the 5-methylcytosine that is flipped out of the duplex DNA. Two specialized loops reach through the resulting gap in the DNA from both the major and the minor grooves to read the other three bases of the CpG duplex. The major groove loop confers both specificity for the CpG dinucleotide and discrimination against methylation of deoxycytidine of the complementary strand. The structure, along with mutagenesis data, suggests how UHRF1 acts as a key factor for DNMT1 maintenance methylation through recognition of a fundamental unit of epigenetic inheritance, mCpG.
Collapse
Affiliation(s)
- George V Avvakumov
- Structural Genomics Consortium, University of Toronto, 100 College Street, Toronto, Ontario M5G 1L5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
223
|
The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 2008; 455:826-9. [PMID: 18772888 DOI: 10.1038/nature07280] [Citation(s) in RCA: 328] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 07/23/2008] [Indexed: 12/11/2022]
Abstract
Maintenance methylation of hemimethylated CpG dinucleotides at DNA replication forks is the key to faithful mitotic inheritance of genomic methylation patterns. UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for maintenance methylation by interacting with DNA nucleotide methyltransferase 1 (DNMT1), the maintenance methyltransferase, and with hemimethylated CpG, the substrate for DNMT1 (refs 1 and 2). Here we present the crystal structure of the SET and RING-associated (SRA) domain of mouse UHRF1 in complex with DNA containing a hemimethylated CpG site. The DNA is contacted in both the major and minor grooves by two loops that penetrate into the middle of the DNA helix. The 5-methylcytosine has flipped completely out of the DNA helix and is positioned in a binding pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5-methylcytosine. Hence, UHRF1 contains a previously unknown DNA-binding module and is the first example of a non-enzymatic, sequence-specific DNA-binding protein domain to use the base flipping mechanism to interact with DNA.
Collapse
|
224
|
Abstract
The methyl-CpG-binding protein MeCP2 was discovered over 15 years ago as part of a search for proteins that selectively bind methylated DNA. It is a nuclear protein that is largely chromatin-bound and has a strong preference for binding to methylated DNA sequences in vivo. Evidence from model systems shows that MeCP2 can recruit the Sin3a co-repressor complex to promoters leading to transcriptional repression, therefore suggesting that MeCP2 can interpret the DNA methylation signal to bring about gene silencing. Mutations in the human MECP2 gene cause the autism spectrum disorder Rett Syndrome. MeCP2 is most highly expressed in neurons, and mice lacking this protein show symptoms that strikingly parallel those of Rett patients. Surprisingly, these symptoms are efficiently reversed by delayed activation of a ‘stopped’ Mecp2 gene, raising hopes that human Rett syndrome may also be reversible. Future studies of MeCP2 promise to shed light upon brain function, neurological disease and the biology of DNA methylation.
Collapse
|
225
|
Ghosh RP, Horowitz-Scherer RA, Nikitina T, Gierasch LM, Woodcock CL. Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions. J Biol Chem 2008; 283:20523-34. [PMID: 18499664 PMCID: PMC2459279 DOI: 10.1074/jbc.m803021200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/21/2008] [Indexed: 12/22/2022] Open
Abstract
Most cases of Rett syndrome (RTT) are caused by mutations in the methylated DNA-binding protein, MeCP2. Here, we have shown that frequent RTT-causing missense mutations (R106W, R133C, F155S, T158M) located in the methylated DNA-binding domain (MBD) of MeCP2 have profound and diverse effects on its structure, stability, and DNA-binding properties. Fluorescence spectroscopy, which reports on the single tryptophan in the MBD, indicated that this residue is strongly protected from the aqueous environment in the wild type but is more exposed in the R133C and F155S mutations. In the mutant proteins R133C, F155S, and T158M, the thermal stability of the domain was strongly reduced. Thermal stability of the wild-type protein was increased in the presence of unmethylated DNA and was further enhanced by DNA methylation. DNA-induced thermal stability was also seen, but to a lesser extent, in each of the mutant proteins. Circular dichroism (CD) of the MBD revealed differences in the secondary structure of the four mutants. Upon binding to methylated DNA, the wild type showed a subtle but reproducible increase in alpha-helical structure, whereas the F155S and R106W did not acquire secondary structure with DNA. Each of the mutant proteins studied is unique in terms of the properties of the MBD and the structural changes induced by DNA binding. For each mutation, we examined the extent to which the magnitude of these differences correlated with the severity of RTT patient symptoms.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Department of Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
226
|
Fomenkov A, Too PHM, Chan SH, Vaisvila R, Cantin BA, Mazzola L, Tam V, Xu SY. Targeting DNA 5mCpG sites with chimeric endonucleases. Anal Biochem 2008; 381:135-41. [PMID: 18638441 DOI: 10.1016/j.ab.2008.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 02/04/2023]
Abstract
Cytosine modification of the dinucleotide CpG in the DNA regulatory region is an important epigenetic marker during early embryo development, cellular differentiation, and cancer progression. In clinical settings, such as anti-cancer drug treatment, it is desirable to develop research tools to characterize DNA sequences affected by epigenetic perturbations. Here, we describe the construction and characterization of two fusion endonucleases consisting of the (5)mCpG-binding domain of human MeCP2 (hMeCP2) and the cleavage domains of BmrI and FokI restriction endonucleases (REases). The chimeric (CH) endonucleases cleave M.HpaII (C(5)mCGG)-and M.SssI ((5)mCpG)-modified DNA. Unmodified DNA and M.MspI-modified DNA ((5)mCCGG) are poor substrates for the CH-endonucleases. Sequencing cleavage products of modified lambda DNA indicates that cleavage takes place outside the (5)mCpG recognition sequence, predominantly 4-17 bp upstream of the modified base (/N(4-17)(5)mCpG, where / indicates the cleavage site). Such (5)mCpG-specific endonucleases will be useful to study CpG island modification of the regulatory regions of tumor suppressor genes, and for the construction of cell-specific and tumor-specific modified CpG island databases.
Collapse
Affiliation(s)
- Alexey Fomenkov
- New England Biolabs, Inc., 240 County Road. Ipswich, MA 01938-2723, USA
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Matsumoto M, Toraya T. cDNA cloning, expression, and characterization of methyl-CpG-binding domain type 2/3 proteins from starfish and sea urchin. Gene 2008; 420:125-34. [PMID: 18585872 DOI: 10.1016/j.gene.2008.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 05/13/2008] [Indexed: 11/18/2022]
Abstract
Two kinds of cDNAs that are highly homologous to mammalian MBD2 and MBD3 cDNAs were cloned from ovary of the starfish Asterina pectinifera. They are splicing variants and designated sMBD2/3a and sMBD2/3b cDNAs. sMBD2/3a cDNA spans 1378 bp and consists of a 48-bp upstream untranslated region, a 807-bp open reading frame encoding sMBD2/3a, and a 523-bp downstream untranslated region. sMBD2/3a and sMBD2/3b cDNAs encode proteins with predicted molecular weights of 30,724 and 29,635 consisting of 268 and 260 amino acid residues, respectively. The deduced amino acid sequences of these two are identical from residues 1 to 255, but different from residues 256 to the C-terminal ends. sMBD2/3a is expressed in all the tissues of starfish, whereas sMBD2/3b is highly expressed in ovary and oocytes, slightly in testis, but not in somatic cells. As suggested from the whole-genome sequence of Strongylocentrotus purpuratus, a sea urchin MBD2/3 cDNA was cloned from eggs of Hemicentrotus pulcherrimus and designated suMBD2/3 cDNA. It encodes a protein with predicted molecular weight of 30,778 consisting of 274 amino acid residues. All the three echinodermal MBD2/3 proteins consist of a methy-CpG-binding domain (MBD) and a coiled-coil domain, and only sMBD2/3a contains a glutamate-rich C-terminal region, a key mark in vertebrate MBD3. The three MBD2/3 proteins expressed in Escherichia coli and purified to homogeneity were capable to bind specifically to methylated DNA. It was shown that sMBD2/3a exists as dimer or in the monomer-dimer equilibrium, whereas sMBD2/3b and suMBD2/3 exist as monomer and dimer, respectively.
Collapse
Affiliation(s)
- Masahito Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | | |
Collapse
|
228
|
Fernández-Recio J, Verma C. Editorial. Curr Opin Struct Biol 2008; 18:131-3. [DOI: 10.1016/j.sbi.2008.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
229
|
Research highlights. Nature 2008. [DOI: 10.1038/452130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|