201
|
Structural basis for quinine-dependent antibody binding to platelet integrin αIIbβ3. Blood 2015; 126:2138-45. [PMID: 26282540 DOI: 10.1182/blood-2015-04-639351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
Drug-induced immune thrombocytopenia (DITP) is caused by antibodies that react with specific platelet-membrane glycoproteins when the provoking drug is present. More than 100 drugs have been implicated as triggers for this condition, quinine being one of the most common. The cause of DITP in most cases appears to be a drug-induced antibody that binds to a platelet membrane glycoprotein only when the drug is present. How a soluble drug promotes binding of an otherwise nonreactive immunoglobulin to its target, leading to platelet destruction, is uncertain, in part because of the difficulties of working with polyclonal human antibodies usually available only in small quantities. Recently, quinine-dependent murine monoclonal antibodies were developed that recognize a defined epitope on the β-propeller domain of the platelet integrin αIIb subunit (GPIIb) only when the drug is present and closely mimic the behavior of antibodies found in human patients with quinine-induced thrombocytopenia in vitro and in vivo. Here, we demonstrate specific, high-affinity binding of quinine to the complementarity-determining regions (CDRs) of these antibodies and define in crystal structures the changes induced in the CDR by this interaction. Because no detectable binding of quinine to the target integrin could be demonstrated in previous studies, the findings indicate that a hybrid paratope consisting of quinine and reconfigured antibody CDR plays a critical role in recognition of its target epitope by an antibody and suggest that, in this type of drug-induced immunologic injury, the primary reaction involves binding of the drug to antibody CDRs, causing it to acquire specificity for a site on a platelet integrin.
Collapse
|
202
|
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36:41-7. [PMID: 26189062 DOI: 10.1016/j.ceb.2015.06.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities.
Collapse
Affiliation(s)
- Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
203
|
Haghighi A, Borhany M, Ghazi A, Edwards N, Tabaksert A, Haghighi A, Fatima N, Shamsi TS, Sayer JA. Glanzmann thrombasthenia in Pakistan: molecular analysis and identification of novel mutations. Clin Genet 2015; 89:187-92. [PMID: 26096001 PMCID: PMC4737203 DOI: 10.1111/cge.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
Glanzmann thrombasthenia (GT) is an inherited genetic disorder affecting platelets, which is characterized by spontaneous mucocutaneous bleeding and abnormally prolonged bleeding in response to injury or trauma. The underlying defect is failure of platelet aggregation due to qualitative and/or quantitative deficiency of platelet integrin αIIbβ3 resulting from molecular genetic defects in either ITGA2B or ITGB3. Here, we examine a Pakistani cohort of 15 patients with clinical symptoms of GT who underwent laboratory and molecular genetic analysis. In patients with a broad range of disease severity and age of presentation, we identified pathogenic mutations in ITGA2B in 11 patients from 8 different families, including 2 novel homozygous mutations and 1 novel heterozygous mutation. Mutations in ITGB3 were identified in 4 patients from 3 families, two of which were novel homozygous truncating mutations. A molecular genetic diagnosis was established in 11 families with GT, including 5 novel mutations extending the spectrum of mutations in this disease within a region of the world where little is known about the incidence of GT. Mutational analysis is a key component of a complete diagnosis of GT and allows appropriate management and screening of other family members to be performed.
Collapse
Affiliation(s)
- A Haghighi
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Medicine and the Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - M Borhany
- Department of Hematology, Hemostasis & Thrombosis of National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - A Ghazi
- Chronic Pain Clinic, Wilderman Medicine Professional Corporation, Toronto, Canada
| | - N Edwards
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - A Tabaksert
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - A Haghighi
- Toronto General Hospital, University of Toronto, Toronto, Canada
| | - N Fatima
- Department of Hematology, Hemostasis & Thrombosis of National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - T S Shamsi
- Department of Hematology, Hemostasis & Thrombosis of National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - J A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
204
|
Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 2015; 17:955-63. [PMID: 26121555 DOI: 10.1038/ncb3191] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
During cell migration, the forces generated in the actin cytoskeleton are transmitted across transmembrane receptors to the extracellular matrix or other cells through a series of mechanosensitive, regulable protein-protein interactions termed the molecular clutch. In integrin-based focal adhesions, the proteins forming this linkage are organized into a conserved three-dimensional nano-architecture. Here we discuss how the physical interactions between the actin cytoskeleton and focal-adhesion-associated molecules mediate force transmission from the molecular clutch to the extracellular matrix.
Collapse
|
205
|
Abstract
During the past decade, advanced techniques in structural biology have provided atomic level information on the platelet integrin αIIbβ3 activation mechanism that results in it adopting a high-affinity ligand-binding conformation(s). This review focuses on advances in imaging intact αIIbβ3 in a lipid bilayer in the absence of detergent and new structural insights into the changes in the ligand-binding pocket with receptor activation and ligand binding. It concludes with descriptions of novel therapeutic αIIbβ3 antagonists being developed based on an advanced knowledge of the receptor's structure.
Collapse
Affiliation(s)
- B S Coller
- Rockefeller University, New York, NY, USA
| |
Collapse
|
206
|
Craveur P, Joseph AP, Esque J, Narwani TJ, Noël F, Shinada N, Goguet M, Leonard S, Poulain P, Bertrand O, Faure G, Rebehmed J, Ghozlane A, Swapna LS, Bhaskara RM, Barnoud J, Téletchéa S, Jallu V, Cerny J, Schneider B, Etchebest C, Srinivasan N, Gelly JC, de Brevern AG. Protein flexibility in the light of structural alphabets. Front Mol Biosci 2015; 2:20. [PMID: 26075209 PMCID: PMC4445325 DOI: 10.3389/fmolb.2015.00020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023] Open
Abstract
Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.
Collapse
Affiliation(s)
- Pierrick Craveur
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Agnel P Joseph
- Rutherford Appleton Laboratory, Science and Technology Facilities Council Didcot, UK
| | - Jeremy Esque
- Institut National de la Santé et de la Recherche Médicale U964,7 UMR Centre National de la Recherche Scientifique 7104, IGBMC, Université de Strasbourg Illkirch, France
| | - Tarun J Narwani
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Floriane Noël
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Nicolas Shinada
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Matthieu Goguet
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Sylvain Leonard
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Pierre Poulain
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Ets Poulain Pointe-Noire, Congo
| | - Olivier Bertrand
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Guilhem Faure
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Joseph Rebehmed
- Centre National de la Recherche Scientifique UMR7590, Sorbonne Universités, Université Pierre et Marie Curie - MNHN - IRD - IUC Paris, France
| | | | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore Bangalore, India ; Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto Toronto, ON, Canada
| | - Ramachandra M Bhaskara
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore Bangalore, India ; Department of Theoretical Biophysics, Max Planck Institute of Biophysics Frankfurt, Germany
| | - Jonathan Barnoud
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, Centre National de la Recherche Scientifique UMR 5672 Lyon, France
| | - Stéphane Téletchéa
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Faculté des Sciences et Techniques, Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines, Centre National de la Recherche Scientifique UMR 6286, Université Nantes Nantes, France
| | - Vincent Jallu
- Platelet Unit, Institut National de la Transfusion Sanguine Paris, France
| | - Jiri Cerny
- Institute of Biotechnology, The Czech Academy of Sciences Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology, The Czech Academy of Sciences Prague, Czech Republic
| | - Catherine Etchebest
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | | | - Jean-Christophe Gelly
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Alexandre G de Brevern
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| |
Collapse
|
207
|
Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A, Filizola M, Ouwehand WH, Coller BS. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci U S A 2015; 112:E1898-907. [PMID: 25827233 PMCID: PMC4403182 DOI: 10.1073/pnas.1422238112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing is transforming our understanding of human genetic variation but assessing the functional impact of novel variants presents challenges. We analyzed missense variants in the integrin αIIbβ3 receptor subunit genes ITGA2B and ITGB3 identified by whole-exome or -genome sequencing in the ThromboGenomics project, comprising ∼32,000 alleles from 16,108 individuals. We analyzed the results in comparison with 111 missense variants in these genes previously reported as being associated with Glanzmann thrombasthenia (GT), 20 associated with alloimmune thrombocytopenia, and 5 associated with aniso/macrothrombocytopenia. We identified 114 novel missense variants in ITGA2B (affecting ∼11% of the amino acids) and 68 novel missense variants in ITGB3 (affecting ∼9% of the amino acids). Of the variants, 96% had minor allele frequencies (MAF) < 0.1%, indicating their rarity. Based on sequence conservation, MAF, and location on a complete model of αIIbβ3, we selected three novel variants that affect amino acids previously associated with GT for expression in HEK293 cells. αIIb P176H and β3 C547G severely reduced αIIbβ3 expression, whereas αIIb P943A partially reduced αIIbβ3 expression and had no effect on fibrinogen binding. We used receiver operating characteristic curves of combined annotation-dependent depletion, Polyphen 2-HDIV, and sorting intolerant from tolerant to estimate the percentage of novel variants likely to be deleterious. At optimal cut-off values, which had 69-98% sensitivity in detecting GT mutations, between 27% and 71% of the novel αIIb or β3 missense variants were predicted to be deleterious. Our data have implications for understanding the evolutionary pressure on αIIbβ3 and highlight the challenges in predicting the clinical significance of novel missense variants.
Collapse
Affiliation(s)
- Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology and
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge Institute of Public Health, Cambridge, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, New York, NY 10065
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom; National Health Service Blood & Transplant, Cambridge, United Kingdom; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology and
| |
Collapse
|
208
|
Liu J, Wang Z, Thinn AMM, Ma YQ, Zhu J. The dual structural roles of the membrane distal region of the α-integrin cytoplasmic tail during integrin inside-out activation. J Cell Sci 2015; 128:1718-31. [PMID: 25749862 DOI: 10.1242/jcs.160663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on the mechanism of integrin inside-out activation have been focused on the role of β-integrin cytoplasmic tails, which are relatively conserved and bear binding sites for the intracellular activators including talin and kindlin. Cytoplasmic tails for α-integrins share a conserved GFFKR motif at the membrane-proximal region and this forms a specific interface with the β-integrin membrane-proximal region to keep the integrin inactive. The α-integrin membrane-distal regions, after the GFFKR motif, are diverse both in length and sequence and their roles in integrin activation have not been well-defined. In this study, we report that the α-integrin cytoplasmic membrane-distal region contributes to maintaining integrin in the resting state and to integrin inside-out activation. Complete deletion of the α-integrin membrane-distal region diminished talin- and kindlin-mediated integrin ligand binding and conformational change. A proper length and suitable amino acids in α-integrin membrane-distal region was found to be important for integrin inside-out activation. Our data establish an essential role for the α-integrin cytoplasmic membrane-distal region in integrin activation and provide new insights into how talin and kindlin induce the high-affinity integrin conformation that is required for fully functional integrins.
Collapse
Affiliation(s)
- Jiafu Liu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan-Qing Ma
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
209
|
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors. Biochem J 2015; 464:301-13. [PMID: 25333419 DOI: 10.1042/bj20141047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Collapse
|
210
|
Dominguez GA, Anderson NR, Hammer DA. The direction of migration of T-lymphocytes under flow depends upon which adhesion receptors are engaged. Integr Biol (Camb) 2015; 7:345-55. [PMID: 25674729 DOI: 10.1039/c4ib00201f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-lymphocyte migration is important for homing, cell trafficking, and immune surveillance. T-lymphocytes express lymphocyte function-associated antigen-1 (LFA-1; αLβ2) and very late antigen-4 (VLA-4; α4β1), which bind to their cognate ligands, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These adhesive interactions provide T-lymphocytes with the ability to withstand hemodynamic shear forces to facilitate adhesion and migration along the blood endothelium. Recently, it has been shown that T-lymphocytes will crawl upstream against the direction of flow on surfaces functionalized with ICAM-1. Here, we have investigated whether the identity of the receptor and the magnitude of its engagement affects the direction of T-lymphocyte migration under flow. We used microcontact printed ICAM-1 and VCAM-1 PDMS surfaces on which density and type of adhesion molecule can be tightly controlled and non-specific adhesion adequately blocked. Using a laminar flow chamber, we demonstrate that T-lymphocytes migrate either upstream or downstream dependent upon ligand type, ligand concentration and shear rate. T-lymphocytes were found to migrate upstream on ICAM-1 but downstream on VCAM-1 surfaces - a behavior unique to T-lymphocytes. By varying concentrations of ICAM-1 and VCAM-1, directed migration under flow was observed to be dependent upon the type and concentration of ligand. As shear rates increase, T-lymphocytes favor upstream migration when any ICAM-1 is present, even in the presence of substantial amounts of VCAM-1. Furthermore, a loss of cytoskeletal polarity was observed upon introduction of fluid flow with reorganization that is dependent upon ligand presentation. These results indicate that T-lymphocytes exhibit two different modes of motility - upstream or downstream - under fluid flow that depends on ligand composition and the shear rate.
Collapse
Affiliation(s)
- George A Dominguez
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
211
|
Comrie WA, Li S, Boyle S, Burkhardt JK. The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility. ACTA ACUST UNITED AC 2015; 208:457-73. [PMID: 25666808 PMCID: PMC4332244 DOI: 10.1083/jcb.201406120] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrity of the dendritic cell (DC) actin cytoskeleton is essential for T cell priming, but the underlying mechanisms are poorly understood. We show that the DC F-actin network regulates the lateral mobility of intracellular cell adhesion molecule 1 (ICAM-1), but not MHCII. ICAM-1 mobility and clustering are regulated by maturation-induced changes in the expression and activation of moesin and α-actinin-1, which associate with actin filaments and the ICAM-1 cytoplasmic domain. Constrained ICAM-1 mobility is important for DC function, as DCs expressing a high-mobility ICAM-1 mutant lacking the cytoplasmic domain exhibit diminished antigen-dependent conjugate formation and T cell priming. These defects are associated with inefficient induction of leukocyte functional antigen 1 (LFA-1) affinity maturation, which is consistent with a model in which constrained ICAM-1 mobility opposes forces on LFA-1 exerted by the T cell cytoskeleton, whereas ICAM-1 clustering enhances valency and further promotes ligand-dependent LFA-1 activation. Our results reveal an important new mechanism through which the DC cytoskeleton regulates receptor activation at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Shuixing Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Sarah Boyle
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| |
Collapse
|
212
|
Comrie WA, Babich A, Burkhardt JK. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. ACTA ACUST UNITED AC 2015; 208:475-91. [PMID: 25666810 PMCID: PMC4332248 DOI: 10.1083/jcb.201406121] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse. Integrin-dependent interactions between T cells and antigen-presenting cells are vital for proper T cell activation, effector function, and memory. Regulation of integrin function occurs via conformational change, which modulates ligand affinity, and receptor clustering, which modulates valency. Here, we show that conformational intermediates of leukocyte functional antigen 1 (LFA-1) form a concentric array at the immunological synapse. Using an inhibitor cocktail to arrest F-actin dynamics, we show that organization of this array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical for maintaining the high affinity conformation of LFA-1, for increasing valency by recruiting LFA-1 to the immunological synapse, and ultimately for promoting intracellular cell adhesion molecule 1 (ICAM-1) binding. Finally, we show that F-actin forces are opposed by immobilized ICAM-1, which triggers LFA-1 activation through a combination of induced fit and tension-based mechanisms. Our data provide direct support for a model in which the T cell actin network generates mechanical forces that regulate LFA-1 activity at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
213
|
The integrin αL leg region controls the Mg/EGTA mediated activation of LFA-1. Biochem Biophys Res Commun 2015; 458:251-5. [PMID: 25640842 DOI: 10.1016/j.bbrc.2015.01.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 11/23/2022]
Abstract
We have shown that Mg/EGTA (5 mM Mg(2+) and 1.5 mM EGTA) could effectively promote the adhesion of integrin αLβ2 to its ligand ICAM-1 but could not promote that of the αMβ2 to denatured BSA. In order to determine the structural differences between αL and αM that specifically contribute to Mg/EGTA sensitivity, a series of αL/αM chimeras were constructed. Our results showed that αLβ2 with αM calf-1 domain completely lost the response to Mg/EGTA activation. In the reverse experiment, αMβ2 would require the presence of both the αL calf-1 and calf-2 domain to initiate the Mg/EGTA sensitivity.
Collapse
|
214
|
DeMali KA, Sun X, Bui GA. Force transmission at cell-cell and cell-matrix adhesions. Biochemistry 2014; 53:7706-17. [PMID: 25474123 DOI: 10.1021/bi501181p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All cells are subjected to mechanical forces throughout their lifetimes. These forces are sensed by cell surface adhesion receptors and trigger robust actin cytoskeletal rearrangements and growth of the associated adhesion complex to counter the applied force. In this review, we discuss how integrins and cadherins sense force and transmit these forces into the cell interior. We focus on the complement of proteins each adhesion complex recruits to bear the force and the signal transduction pathways activated to allow the cell to tune its contractility. A discussion of the similarities, differences, and crosstalk between cadherin- and integrin-mediated force transmission is also presented.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Biochemistry and Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine , Iowa City, Iowa 52242, United States
| | | | | |
Collapse
|
215
|
Abstract
Integrin α5β1 binds to an Arg-Gly-Asp (RGD) motif in its ligand fibronectin. We report high-resolution crystal structures of a four-domain α5β1 headpiece fragment, alone or with RGD peptides soaked into crystals, and RGD peptide affinity measurements. The headpiece crystallizes in a closed conformation essentially identical to that seen previously for α5β1 complexed with a Fab that allosterically inhibits ligand binding by stabilizing the closed conformation. Soaking experiments show that binding of cyclic RGD peptide with 20-fold higher affinity than a linear RGD peptide induces conformational change in the β1-subunit βI domain to a state that is intermediate between closed (low affinity) and open (high affinity). In contrast, binding of a linear RGD peptide induces no shape shifting. However, linear peptide binding induces shape shifting when Ca(2+) is depleted during soaking. Ca(2+) bound to the adjacent to metal ion-dependent adhesion site (ADMIDAS), at the locus of shape shifting, moves and decreases in occupancy, correlating with an increase in affinity for RGD measured when Ca(2+) is depleted. The results directly demonstrate that Ca(2+) binding to the ADMIDAS stabilizes integrins in the low-affinity, closed conformation. Comparisons in affinity between four-domain and six-domain headpiece constructs suggest that flexible integrin leg domains contribute to conformational equilibria. High-resolution views of the hybrid domain interface with the plexin-semaphorin-integrin (PSI) domain in different orientations show a ball-and-socket joint with a hybrid domain Arg side chain that rocks in a PSI domain socket lined with carbonyl oxygens.
Collapse
|
216
|
Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat Struct Mol Biol 2014; 21:1091-6. [PMID: 25383667 DOI: 10.1038/nsmb.2905] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Eight integrin α-β heterodimers recognize ligands with an Arg-Gly-Asp (RGD) motif. However, the structural mechanism by which integrins differentiate among extracellular proteins with RGD motifs is not understood. Here, crystal structures, mutations and peptide-affinity measurements show that αVβ6 binds with high affinity to a RGDLXXL/I motif within the prodomains of TGF-β1 and TGF-β3. The LXXL/I motif forms an amphipathic α-helix that binds in a hydrophobic pocket in the β6 subunit. Elucidation of the basis for ligand binding specificity by the integrin β subunit reveals contributions by three different βI-domain loops, which we designate specificity-determining loops (SDLs) 1, 2 and 3. Variation in a pair of single key residues in SDL1 and SDL3 correlates with the variation of the entire β subunit in integrin evolution, thus suggesting a paradigmatic role in overall β-subunit function.
Collapse
|
217
|
Marjoram RJ, Lessey EC, Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med 2014; 14:199-208. [PMID: 24467208 PMCID: PMC3929014 DOI: 10.2174/1566524014666140128104541] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The low molecular weight GTP-binding protein RhoA regulates many cellular events, including cell migration, organization of the cytoskeleton, cell adhesion, progress through the cell cycle and gene expression. Physical forces influence these cellular processes in part by regulating RhoA activity through mechanotransduction of cell adhesion molecules (e.g. integrins, cadherins, Ig superfamily molecules). RhoA activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that are themselves regulated by many different signaling pathways. Significantly, the engagement of many cell adhesion molecules can affect RhoA activity in both positive and negative ways. In this brief review, we consider how RhoA activity is regulated downstream from cell adhesion molecules and mechanical force. Finally, we highlight the importance of mechanotransduction signaling to RhoA in normal cell biology as well as in certain pathological states.
Collapse
Affiliation(s)
| | | | - K Burridge
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
218
|
Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit β3: Structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants. Biochimie 2014; 105:84-90. [DOI: 10.1016/j.biochi.2014.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/21/2014] [Indexed: 11/21/2022]
|
219
|
Janoštiak R, Pataki AC, Brábek J, Rösel D. Mechanosensors in integrin signaling: The emerging role of p130Cas. Eur J Cell Biol 2014; 93:445-54. [DOI: 10.1016/j.ejcb.2014.07.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
|
220
|
Provasi D, Negri A, Coller BS, Filizola M. Talin-driven inside-out activation mechanism of platelet αIIbβ3 integrin probed by multimicrosecond, all-atom molecular dynamics simulations. Proteins 2014; 82:3231-3240. [PMID: 24677266 DOI: 10.1002/prot.24540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/20/2023]
Abstract
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so-called "inside-out" mechanism characterized by the membrane-assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi-microsecond, all-atom molecular dynamics simulations carried on the complete transmembrane (TM) and C-terminal (CT) domains of αIIbβ3 integrin in an explicit lipid-water environment, and in the presence or absence of the talin-1 F2 and F3 subdomains. These large-scale simulations provide unprecedented molecular-level insights into the talin-driven inside-out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid-water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin-1. Notably, not only do these simulations give support to a stable left-handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin-driven integrin activation.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, Box 309, New York, New York 10065
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029
| |
Collapse
|
221
|
Mansour W, Hauschner H, Seligsohn U, Rosenberg N, Einav Y. Natural and artificial mutations in αIIb integrin lead to a structural deformation of a calcium-binding site. Protein J 2014; 33:474-83. [PMID: 25216802 DOI: 10.1007/s10930-014-9579-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The platelet integrin αIIbβ3 is widely accepted as a structural and a functional model of the broad integrin protein family. The four calcium-binding sites in the αIIb subunit contribute to biogenesis and stability of the protein. Mansour et al. (J Thromb Haemost 9:192-200, 2011) showed that the natural Asn2Asp mutation causing Glanzmann thrombasthenia, prevented surface expression of αIIbβ3, whereas the artificial Asn2Gln mutation only decreased its level. Molecular dynamics simulations and EDTA chelation assay were used here to explore the mechanism of these structural deformations. We show a considerable expansion of the calcium-binding site 3 in Asn2Asp mutation, whereas the Asn2Gln toggles between normal and expanded conformations. The αIIbβ3 surface expression level correlates to the relative spending time in the expanded conformation. By a comparison to other calcium-binding sites of αIIb and of other α integrins we show that the size of a calcium-binding loop is conserved. EDTA chelation assay shows a sensitivity to calcium removal, which correlates with the reduction in αIIbβ3 surface expression and with the calcium binding site expansion, thus verifying the simulation data. Here we indicate that Asn2 mutation affects a calcium-binding site 3 of αIIb, which structural deformation is proposed to deprive calcium binding and interfere with an integrin intracellular trafficking and its surface expression.
Collapse
Affiliation(s)
- Wissam Mansour
- The Amalia Biron Research Institute of Thrombosis and Haemostasis, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | | | | | | | | |
Collapse
|
222
|
Rui X, Mehrbod M, Van Agthoven JF, Anand S, Xiong JP, Mofrad MRK, Arnaout MA. The α-subunit regulates stability of the metal ion at the ligand-associated metal ion-binding site in β3 integrins. J Biol Chem 2014; 289:23256-23263. [PMID: 24975416 DOI: 10.1074/jbc.m114.581470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aspartate in the prototypical integrin-binding motif Arg-Gly-Asp binds the integrin βA domain of the β-subunit through a divalent cation at the metal ion-dependent adhesion site (MIDAS). An auxiliary metal ion at a ligand-associated metal ion-binding site (LIMBS) stabilizes the metal ion at MIDAS. LIMBS contacts distinct residues in the α-subunits of the two β3 integrins αIIbβ3 and αVβ3, but a potential role of this interaction on stability of the metal ion at LIMBS in β3 integrins has not been explored. Equilibrium molecular dynamics simulations of fully hydrated β3 integrin ectodomains revealed strikingly different conformations of LIMBS in unliganded αIIbβ3 versus αVβ3, the result of stronger interactions of LIMBS with αV, which reduce stability of the LIMBS metal ion in αVβ3. Replacing the αIIb-LIMBS interface residue Phe(191) in αIIb (equivalent to Trp(179) in αV) with Trp strengthened this interface and destabilized the metal ion at LIMBS in αIIbβ3; a Trp(179) to Phe mutation in αV produced the opposite but weaker effect. Consistently, an F191/W substitution in cellular αIIbβ3 and a W179/F substitution in αVβ3 reduced and increased, respectively, the apparent affinity of Mn(2+) to the integrin. These findings offer an explanation for the variable occupancy of the metal ion at LIMBS in αVβ3 structures in the absence of ligand and provide new insights into the mechanisms of integrin regulation.
Collapse
Affiliation(s)
- Xianliang Rui
- Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Mehrdad Mehrbod
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720
| | - Johannes F Van Agthoven
- Structural Biology Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Saurabh Anand
- Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Jian-Ping Xiong
- Structural Biology Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Mohammad R K Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720.
| | - M Amin Arnaout
- Leukocyte Biology and Inflammation Program and Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; Structural Biology Program, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and.
| |
Collapse
|
223
|
Single-particle EM reveals plasticity of interactions between the adenovirus penton base and integrin αVβ3. Proc Natl Acad Sci U S A 2014; 111:8815-9. [PMID: 24889614 DOI: 10.1073/pnas.1404575111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human adenoviruses are double-stranded DNA viruses responsible for numerous infections, some of which can be fatal. Furthermore, adenoviruses are currently used in clinical trials as vectors for gene therapy applications. Although initial binding of adenoviruses to host attachment receptors has been extensively characterized, the interactions with the entry receptor (integrins) remain poorly understood at the structural level. We characterized the interactions between the adenovirus 9 penton base subunit and αVβ3 integrin using fluorescence correlation spectroscopy and single-particle electron microscopy to understand the mechanisms underlying virus internalization and infection. Our results indicate that the penton base subunit can bind integrins with high affinity and in several different orientations. These outcomes correlate with the requirement of the pentameric penton base to simultaneously bind several integrins to enable their clustering and promote virus entry into the host cell.
Collapse
|
224
|
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev 2014; 6:203-213. [PMID: 28510180 PMCID: PMC5418412 DOI: 10.1007/s12551-013-0124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
225
|
Abstract
T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycle, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force, but display variable substrate rigidities to the blood and lymphatic circulation systems, where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they respond and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here, we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
226
|
Liu J, Fu T, Peng B, Sun H, Chu H, Li G, Chen J. The hydrophobic contacts between the center of the βI domain and the α1/α7 helices are crucial for the low-affinity state of integrin α4 β7. FEBS J 2014; 281:2915-26. [PMID: 24802248 DOI: 10.1111/febs.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/21/2014] [Accepted: 05/01/2014] [Indexed: 11/28/2022]
Abstract
Integrin α4 β7 mediates both rolling and firm adhesion of lymphocytes by modulating its affinity to the ligand: mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Integrin activation is associated with allosteric reshaping in the β subunit I (βI) domain. A prominently conformational change comprises displacement of the α1 and α7 helices in the βI domain, suggesting that the location of these helices is important for the change in integrin affinity. In the present study, we report that the hydrophobic contacts between the center of the β7 I domain and the α1/α7 helices play critical roles in keeping α4 β7 in a low-affinity state. Using molecular dynamics simulation, we identified nine hydrophobic residues that might be involved in the critical hydrophobic contacts maintaining integrin in a low-affinity state. Integrin β7 I domain exhibited a lower binding free energy for ligand after disrupting these hydrophobic contacts by substituting the hydrophobic residues with Ala. Moreover, these α4 β7 mutants not only showed high-affinity binding to soluble MAdCAM-1, but also demonstrated firm cell adhesion to immobilized MAdCAM-1 in shear flow and enhanced the strength of the α4 β7 -MAdCAM-1 interaction. Disruption of the hydrophobic contacts also induced the active conformation of α4 β7 . Thus, the findings obtained in the present study reveal an important structural basis for the low-affinity state of integrin.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
227
|
Mor-Cohen R, Rosenberg N, Averbukh Y, Seligsohn U, Lahav J. Disulfide bond exchanges in integrins αIIbβ3 and αvβ3 are required for activation and post-ligation signaling during clot retraction. Thromb Res 2014; 133:826-36. [DOI: 10.1016/j.thromres.2014.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/12/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
228
|
Rocha-Perugini V, González-Granado JM, Tejera E, López-Martín S, Yañez-Mó M, Sánchez-Madrid F. Tetraspanins CD9 and CD151 at the immune synapse support T-cell integrin signaling. Eur J Immunol 2014; 44:1967-75. [PMID: 24723389 DOI: 10.1002/eji.201344235] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/25/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022]
Abstract
Understanding how the immune response is activated and amplified requires detailed knowledge of the stages in the formation of the immunological synapse (IS) between T lymphocytes and antigen-presenting cells (APCs). We show that tetraspanins CD9 and CD151 congregate at the T-cell side of the IS. Silencing of CD9 or CD151 blunts the IL-2 secretion and expression of the activation marker CD69 by APC-conjugated T lymphocytes, but does not affect the accumulation of CD3 or actin to the IS, or the translocation of the microtubule-organizing center toward the T-B contact area. CD9 or CD151 silencing diminishes the relocalization of α4β1 integrin to the IS and reduces the accumulation of high-affinity β1 integrins at the cell-cell contact. These changes are accompanied by diminished phosphorylation of the integrin downstream targets FAK and ERK1/2. Our results suggest that CD9 and CD151 support integrin-mediated signaling at the IS.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
229
|
Adamson K, Dolan C, Moran N, Forster RJ, Keyes TE. RGD Labeled Ru(II) Polypyridyl Conjugates for Platelet Integrin αIIbβ3 Recognition and as Reporters of Integrin Conformation. Bioconjug Chem 2014; 25:928-44. [DOI: 10.1021/bc5000737] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kellie Adamson
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Ciaran Dolan
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Niamh Moran
- The
Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Robert J. Forster
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
230
|
Mehrbod M, Trisno S, Mofrad MRK. On the activation of integrin αIIbβ3: outside-in and inside-out pathways. Biophys J 2014; 105:1304-15. [PMID: 24047981 DOI: 10.1016/j.bpj.2013.07.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/06/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023] Open
Abstract
Integrin αIIbβ3 is a member of the integrin family of transmembrane proteins present on the plasma membrane of platelets. Integrin αIIbβ3 is widely known to regulate the process of thrombosis via activation at its cytoplasmic side by talin and interaction with the soluble fibrinogen. It is also reported that three groups of interactions restrain integrin family members in the inactive state, including a set of salt bridges on the cytoplasmic side of the transmembrane domain of the integrin α- and β-subunits known as the inner membrane clasp, hydrophobic packing of a few transmembrane residues on the extracellular side between the α- and β-subunits that is known as the outer membrane clasp, and the key interaction group of the βA domain (located on the β-subunit head domain) with the βTD (proximal to the plasma membrane on the β-subunit). However, molecular details of this key interaction group as well as events that lead to detachment of the βTD and βA domains have remained ambiguous. In this study, we use molecular dynamics models to take a comprehensive outside-in and inside-out approach at exploring how integrin αIIbβ3 is activated. First, we show that talin's interaction with the membrane-proximal and membrane-distal regions of integrin cytoplasmic-transmembrane domains significantly loosens the inner membrane clasp. Talin also interacts with an additional salt bridge (R734-E1006), which facilitates integrin activation through the separation of the integrin's α- and β-subunits. The second part of our study classifies three types of interactions between RGD peptides and the extracellular domains of integrin αIIbβ3. Finally, we show that the interaction of the Arg of the RGD sequence may activate integrin via disrupting the key interaction group between K350 on the βA domain and S673/S674 on the βTD.
Collapse
Affiliation(s)
- Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | |
Collapse
|
231
|
Integrin activation and internalization mediated by extracellular matrix elasticity: A biomechanical model. J Biomech 2014; 47:1479-84. [DOI: 10.1016/j.jbiomech.2014.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/25/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
|
232
|
Sowmya G, Khan JM, Anand S, Ahn SB, Baker MS, Ranganathan S. A site for direct integrin αvβ6·uPAR interaction from structural modelling and docking. J Struct Biol 2014; 185:327-35. [DOI: 10.1016/j.jsb.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/22/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
|
233
|
Leick M, Azcutia V, Newton G, Luscinskas FW. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 2014; 355:647-56. [PMID: 24562377 PMCID: PMC3994997 DOI: 10.1007/s00441-014-1809-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
Abstract
The immune cell system is a critical component of host defense. Recruitment of immune cells to sites of infection, immune reaction, or injury is complex and involves coordinated adhesive interactions between the leukocyte and the endothelial cell monolayer that lines blood vessels. This article reviews basic mechanisms in the recruitment of leukocytes to tissues and then selectively reviews new concepts that are emerging based on advances in live cell imaging microscopy and mouse strains. These emerging concepts are altering the conventional paradigms of inflammatory leukocyte recruitment established in the early 1990s. Indeed, recent publications have identified previously unrecognized contributions from pericytes and interstitial leukocytes and their secreted products that guide leukocytes to their targets. Investigators have also begun to design organs on a chip. Recent reports indicate that this avenue of research holds much promise.
Collapse
Affiliation(s)
- Marion Leick
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
234
|
Sen M, Yuki K, Springer TA. An internal ligand-bound, metastable state of a leukocyte integrin, αXβ2. ACTA ACUST UNITED AC 2014; 203:629-42. [PMID: 24385486 PMCID: PMC3840939 DOI: 10.1083/jcb.201308083] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a metastable, internal ligand-bound conformation of the αXβ2 integrin suggests it enables rapid equilibration between the bent-closed and extended-open conformational states. How is massive conformational change in integrins achieved on a rapid timescale? We report crystal structures of a metastable, putative transition state of integrin αXβ2. The αXβ2 ectodomain is bent; however, a lattice contact stabilizes its ligand-binding αI domain in a high affinity, open conformation. Much of the αI α7 helix unwinds, loses contact with the αI domain, and reshapes to form an internal ligand that binds to the interface between the β propeller and βI domains. Lift-off of the αI domain above this platform enables a range of extensional and rotational motions without precedent in allosteric machines. Movements of secondary structure elements in the β2 βI domain occur in an order different than in β3 integrins, showing that integrin β subunits can be specialized to assume different intermediate states between closed and open. Mutations demonstrate that the structure trapped here is metastable and can enable rapid equilibration between bent and extended-open integrin conformations and up-regulation of leukocyte adhesiveness.
Collapse
Affiliation(s)
- Mehmet Sen
- Program in Cellular and Molecular Medicine, 2 Department of Medicine, 3 Department of Anethesiology, 4 Children's Hospital Boston, and 5 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
235
|
Abstract
Most proteins in nature are chemically modified after they are made to control how, when, and where they function. The 3 core features of proteins are posttranslationally modified: amino acid side chains can be modified, peptide bonds can be cleaved or isomerized, and disulfide bonds can be cleaved. Cleavage of peptide bonds is a major mechanism of protein control in the circulation, as exemplified by activation of the blood coagulation and complement zymogens. Cleavage of disulfide bonds is emerging as another important mechanism of protein control in the circulation. Recent advances in our understanding of control of soluble blood proteins and blood cell receptors by functional disulfide bonds is discussed as is how these bonds are being identified and studied.
Collapse
|
236
|
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8:6-16. [DOI: 10.1007/s11684-014-0317-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Indexed: 11/25/2022]
|
237
|
Dynamical Aspects of Biomacromolecular Multi-resolution Modelling Using the UltraScan Solution Modeler (US-SOMO) Suite. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-017-8550-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
238
|
Cheng M, Li J, Negri A, Coller BS. Swing-out of the β3 hybrid domain is required for αIIbβ3 priming and normal cytoskeletal reorganization, but not adhesion to immobilized fibrinogen. PLoS One 2013; 8:e81609. [PMID: 24349096 PMCID: PMC3857192 DOI: 10.1371/journal.pone.0081609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022] Open
Abstract
Structural and functional analyses of integrin αIIbβ3 has implicated swing-out motion of the β3 hybrid domain in αIIbβ3 activation and ligand binding. Using data from targeted molecular dynamics (TMD) simulations, we engineered two disulfide-bonded mutant receptors designed to limit swing-out (XS-O). XS-O mutants cannot bind the high Mr ligand fibrinogen in the presence of an activating mAb or after introducing mutations into the αIIb subunit designed to simulate inside-out signaling. They also have reduced capacity to be “primed” to bind fibrinogen by pretreatment with eptifibatide. They can, however, bind the small RGD venom protein kistrin. Despite their inability to bind soluble fibrinogen, the XS-O mutants can support adhesion to immobilized fibrinogen, although such adhesion does not initiate outside-in signaling leading to normal cytoskeletal reorganization. Collectively, our data further define the biologic role of β3 hybrid domain swing-out in both soluble and immobilized high Mr ligand binding, as well as in priming and outside-in signaling. We also infer that swing-out is likely to be a downstream effect of receptor extension.
Collapse
Affiliation(s)
- Ming Cheng
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, New York, United States of America
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, New York, United States of America
| | - Ana Negri
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Barry S. Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
239
|
Cho J. Protein disulfide isomerase in thrombosis and vascular inflammation. J Thromb Haemost 2013; 11:2084-91. [PMID: 24118938 PMCID: PMC4076787 DOI: 10.1111/jth.12413] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 12/14/2022]
Abstract
Protein disulfide isomerase (PDI) catalyzes disulfide bond oxidation, reduction and isomerization during protein synthesis in the endoplasmic reticulum (ER). In addition to its critical role in the ER, in vitro and in vivo studies with blocking antibodies and conditional knockout mice have demonstrated that cell surface PDI is required for thrombosis, hemostasis and vascular inflammation in a manner dependent on its isomerase activity. This review will focus on our current understanding of the pathophysiologic role of PDI in regulating integrin-mediated platelet and neutrophil functions during vascular disease.
Collapse
Affiliation(s)
- J Cho
- Departments of Pharmacology and Anesthesiology, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
240
|
Zhang H, Chang YC, Brennan ML, Wu J. The structure of Rap1 in complex with RIAM reveals specificity determinants and recruitment mechanism. J Mol Cell Biol 2013; 6:128-39. [PMID: 24287201 DOI: 10.1093/jmcb/mjt044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The small GTPase Rap1 induces integrin activation via an inside-out signaling pathway mediated by the Rap1-interacting adaptor molecule (RIAM). Blocking this pathway may suppress tumor metastasis and other diseases that are related to hyperactive integrins. However, the molecular basis for the specific recognition of RIAM by Rap1 remains largely unknown. Herein we present the crystal structure of an active, GTP-bound GTPase domain of Rap1 in complex with the Ras association (RA)-pleckstrin homology (PH) structural module of RIAM at 1.65 Å. The structure reveals that the recognition of RIAM by Rap1 is governed by side-chain interactions. Several side chains are critical in determining specificity of this recognition, particularly the Lys31 residue in Rap1 that is oppositely charged compared with the Glu31/Asp31 residue in other Ras GTPases. Lys31 forms a salt bridge with RIAM residue Glu212, making it the key specificity determinant of the interaction. We also show that disruption of these interactions results in reduction of Rap1:RIAM association, leading to a loss of co-clustering and cell adhesion. Our findings elucidate the molecular mechanism by which RIAM mediates Rap1-induced integrin activation. The crystal structure also offers new insight into the structural basis for the specific recruitment of RA-PH module-containing effector proteins by their small GTPase partners.
Collapse
Affiliation(s)
- Hao Zhang
- Developmental Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
241
|
Molecular dynamics analysis of a novel β3 Pro189Ser mutation in a patient with glanzmann thrombasthenia differentially affecting αIIbβ3 and αvβ3 expression. PLoS One 2013; 8:e78683. [PMID: 24236036 PMCID: PMC3827234 DOI: 10.1371/journal.pone.0078683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/13/2013] [Indexed: 01/11/2023] Open
Abstract
Mutations in ITGA2B and ITGB3 cause Glanzmann thrombasthenia, an inherited bleeding disorder in which platelets fail to aggregate when stimulated. Whereas an absence of expression or qualitative defects of αIIbβ3 mainly affect platelets and megakaryocytes, αvβ3 has a widespread tissue distribution. Little is known of how amino acid substitutions of β3 comparatively affect the expression and structure of both integrins. We now report computer modelling including molecular dynamics simulations of extracellular head domains of αIIbβ3 and αvβ3 to determine the role of a novel β3 Pro189Ser (P163S in the mature protein) substitution that abrogates αIIbβ3 expression in platelets while allowing synthesis of αvβ3. Transfection of wild-type and mutated integrins in CHO cells confirmed that only αvβ3 surface expression was maintained. Modeling initially confirmed that replacement of αIIb by αv in the dimer results in a significant decrease in surface contacts at the subunit interface. For αIIbβ3, the presence of β3S163 specifically displaces an α-helix starting at position 259 and interacting with β3R261 while there is a moderate 11% increase in intra-subunit H-bonds and a very weak decrease in the global H-bond network. In contrast, for αvβ3, S163 has different effects with β3R261 coming deeper into the propeller with a 43% increase in intra-subunit H-bonds but with little effect on the global H-bond network. Compared to the WT integrins, the P163S mutation induces a small increase in the inter-subunit fluctuations for αIIbβ3 but a more rigid structure for αvβ3. Overall, this mutation stabilizes αvβ3 despite preventing αIIbβ3 expression.
Collapse
|
242
|
Kalli AC, Campbell ID, Sansom MSP. Conformational changes in talin on binding to anionic phospholipid membranes facilitate signaling by integrin transmembrane helices. PLoS Comput Biol 2013; 9:e1003316. [PMID: 24204243 PMCID: PMC3814715 DOI: 10.1371/journal.pcbi.1003316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023] Open
Abstract
Integrins are heterodimeric (αβ) cell surface receptors that are activated to a high affinity state by the formation of a complex involving the α/β integrin transmembrane helix dimer, the head domain of talin (a cytoplasmic protein that links integrins to actin), and the membrane. The talin head domain contains four sub-domains (F0, F1, F2 and F3) with a long cationic loop inserted in the F1 domain. Here, we model the binding and interactions of the complete talin head domain with a phospholipid bilayer, using multiscale molecular dynamics simulations. The role of the inserted F1 loop, which is missing from the crystal structure of the talin head, PDB:3IVF, is explored. The results show that the talin head domain binds to the membrane predominantly via cationic regions on the F2 and F3 subdomains and the F1 loop. Upon binding, the intact talin head adopts a novel V-shaped conformation which optimizes its interactions with the membrane. Simulations of the complex of talin with the integrin α/β TM helix dimer in a membrane, show how this complex promotes a rearrangement, and eventual dissociation of, the integrin α and β transmembrane helices. A model for the talin-mediated integrin activation is proposed which describes how the mutual interplay of interactions between transmembrane helices, the cytoplasmic talin protein, and the lipid bilayer promotes integrin inside-out activation. Transmission of signals across the cell membrane is an essential process for all living organisms. Integrins are one example of cell surface receptors (αβ) which, uniquely, form a bidirectional signalling pathway across the membrane. Integrins are crucial for many cellular processes and play key roles in pathological defects such as cardiovascular diseases and cancer. They are activated to a high affinity state by the intracellular protein talin in a process known as ‘inside-out activation’. Despite their importance and the existence of functional and structural data, the mechanism by which talin activates integrin remains elusive. In this study we use a multi-scale computational approach, which combines coarse-grained and atomistic molecular dynamics simulations, to suggest how the formation of the complex between the talin head domain, the cell membrane and the integrin moves the integrin equilibrium towards an active state. Our results show that conformational changes within the talin head domains optimize its interactions with the cell membrane. Upon binding to the integrin, talin facilitates rearrangement of the integrin TM region thus promoting integrin activation. This study also provides a demonstration of the strengths of a computational multi-scale approach in studies of membrane interactions and receptor conformational changes and associated proteins that enable transmembrane signaling.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Iain D. Campbell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
243
|
Three-dimensional reconstruction of intact human integrin αIIbβ3: new implications for activation-dependent ligand binding. Blood 2013; 122:4165-71. [PMID: 24136164 DOI: 10.1182/blood-2013-04-499194] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrin αIIbβ3 plays a central role in hemostasis and thrombosis. We provide the first 3-dimensional reconstruction of intact purified αIIbβ3 in a nanodisc lipid bilayer. Unlike previous models, it shows that the ligand-binding head domain is on top, pointing away from the membrane. Moreover, unlike the crystal structure of the recombinant ectodomain, the lower legs are not parallel, straight, and adjacent. Rather, the αIIb lower leg is bent between the calf-1 and calf-2 domains and the β3 Integrin-Epidermal Growth Factor (I-EGF) 2 to 4 domains are freely coiled rather than in a cleft between the β3 headpiece and the αIIb lower leg. Our data indicate an important role for the region that links the distal calf-2 and β-tail domains to their respective transmembrane (TM) domains in transmitting the conformational changes in the TM domains associated with inside-out activation.
Collapse
|
244
|
Raborn J, Fu T, Wu X, Xiu Z, Li G, Luo BH. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity. PLoS One 2013; 8:e76793. [PMID: 24116162 PMCID: PMC3792891 DOI: 10.1371/journal.pone.0076793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/29/2013] [Indexed: 01/06/2023] Open
Abstract
The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.
Collapse
Affiliation(s)
- Joel Raborn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Ting Fu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xue Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Zhilong Xiu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, PR China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- * E-mail: (GL); (BL)
| | - Bing-Hao Luo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail: (GL); (BL)
| |
Collapse
|
245
|
Abstract
Crystals soaked with RGD peptides reveal six intermediate conformational states between the closed and higher affinity, fully open state of the integrin αIIbβ3 headpiece. Carefully soaking crystals with Arg-Gly-Asp (RGD) peptides, we captured eight distinct RGD-bound conformations of the αIIbβ3 integrin headpiece. Starting from the closed βI domain conformation, we saw six intermediate βI conformations and finally the fully open βI with the hybrid domain swung out in the crystal lattice. The β1-α1 backbone that hydrogen bonds to the Asp side chain of RGD was the first element to move followed by adjacent to metal ion-dependent adhesion site Ca2+, α1 helix, α1’ helix, β6-α7 loop, α7 helix, and hybrid domain. We define in atomic detail how conformational change was transmitted over long distances in integrins, 40 Å from the ligand binding site to the opposite end of the βI domain and 80 Å to the far end of the hybrid domain. During these movements, RGD slid in its binding groove toward αIIb, and its Arg side chain became ordered. RGD concentration requirements in soaking suggested a >200-fold higher affinity after opening. The thermodynamic cycle shows how higher affinity pays the energetic cost of opening.
Collapse
Affiliation(s)
- Jieqing Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
246
|
Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost 2013; 39:642-55. [PMID: 23929305 DOI: 10.1055/s-0033-1353393] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glanzmann thrombasthenia (GT) is the principal inherited disease of platelets and the most commonly encountered disorder of an integrin. GT is characterized by spontaneous mucocutaneous bleeding and an exaggerated response to trauma caused by platelets that fail to aggregate when stimulated by physiologic agonists. GT is caused by quantitative or qualitative deficiencies of αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes and which by binding fibrinogen and other adhesive proteins joins platelets together in the aggregate. Widespread genotyping has revealed that mutations spread across both genes, yet the reason for the extensive variation in both the severity and intensity of bleeding between affected individuals remains poorly understood. Furthermore, although genetic defects of ITGB3 affect other tissues with β3 present as αvβ3 (the vitronectin receptor), the bleeding phenotype continues to dominate. Here, we look in detail at mutations that affect (i) the β-propeller region of the αIIb head domain and (ii) the membrane proximal disulfide-rich epidermal growth factor (EGF) domains of β3 and which often result in spontaneous integrin activation. We also examine deep vein thrombosis as an unexpected complication of GT and look at curative procedures for the diseases, including allogeneic stem cell transfer and the potential for gene therapy.
Collapse
Affiliation(s)
- Alan T Nurden
- Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | | | |
Collapse
|
247
|
Valignat MP, Theodoly O, Gucciardi A, Hogg N, Lellouch AC. T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys J 2013; 104:322-31. [PMID: 23442854 DOI: 10.1016/j.bpj.2012.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/01/2012] [Accepted: 12/05/2012] [Indexed: 01/13/2023] Open
Abstract
As they leave the blood stream and travel to lymph nodes or sites of inflammation, T lymphocytes are captured by the endothelium and migrate along the vascular wall to permissive sites of transmigration. These processes take place under the influence of hemodynamic shear stress; therefore, we investigated how migrational speed and directionality are influenced by variations in shear stress. We examined human effector T lymphocytes on intercellular adhesion molecule 1 (ICAM-1)-coated surfaces under the influence of shear stresses from 2 to 60 dyn.cm(-2). T lymphocytes were shown to respond to shear stress application by a rapid (30 s) and fully reversible orientation of their migration against the fluid flow without a change in migration speed. Primary T lymphocytes migrating on ICAM-1 in the presence of uniformly applied SDF-1α were also found to migrate against the direction of shear flow. In sharp contrast, neutrophils migrating in the presence of uniformly applied fMLP and leukemic HSB2 T lymphocytes migrating on ICAM-1 alone oriented their migration downstream, with the direction of fluid flow. Our findings suggest that, in addition to biochemical cues, shear stress is a contributing factor to leukocyte migration directionality.
Collapse
Affiliation(s)
- Marie-Pierre Valignat
- Laboratoire d'Adhésion Cellulaire et Inflammation, Aix Marseille Université, CNRS UMR7333, Marseille, France.
| | | | | | | | | |
Collapse
|
248
|
Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover. Proc Natl Acad Sci U S A 2013; 110:E2352-61. [PMID: 23754369 DOI: 10.1073/pnas.1221637110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch.
Collapse
|
249
|
Müller MA, Opfer J, Brunie L, Volkhardt LA, Sinner EK, Boettiger D, Bochen A, Kessler H, Gottschalk KE, Reuning U. The glycophorin A transmembrane sequence within integrin αvβ3 creates a non-signaling integrin with low basal affinity that is strongly adhesive under force. J Mol Biol 2013; 425:2988-3006. [PMID: 23727145 DOI: 10.1016/j.jmb.2013.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/22/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Integrin heterodimeric cell adhesion and signaling receptors bind ligands of the extracellular matrix and relay signals bidirectionally across cell membranes. Thereby, integrins adopt multiple conformational and functional states that control ligand binding affinity and linkage to cytosolic/cytoskeletal proteins. Here, we designed an integrin chimera encompassing the strongly dimerizing transmembrane domain (TMD) of glycophorin A (GpA) in the context of the otherwise unaltered integrin αvβ3. We hypothesized that this chimera should have a low basal affinity to soluble ligand but should be force-activatable. By cellular expression of this chimera, we found a decreased integrin affinity to a soluble peptide ligand and inhibited intracellular signaling. However, under external forces applied by an atomic force microscope or by a spinning disc device causing shear forces, the mutant caused stronger cell adhesion than the wild-type integrin. Our results demonstrate that the signaling- and migration-incapable integrin αvβ3-TMD mutant TMD-GpA shows the characteristics of a primed integrin state, which is of low basal affinity in the absence of forces, but may form strong bonds in the presence of forces. Thus, TMD-GpA may mimic a force-activatable signaling intermediate.
Collapse
Affiliation(s)
- Martina A Müller
- Clinical Research Unit, Department for Obstetrics and Gynecology, Technische Universitaet Muenchen, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Protein action in nature is largely controlled by the level of expression and by post-translational modifications. Post-translational modifications result in a proteome that is at least two orders of magnitude more diverse than the genome. There are three basic types of post-translational modifications: covalent modification of an amino acid side chain, hydrolytic cleavage or isomerization of a peptide bond, and reductive cleavage of a disulfide bond. This review addresses the modification of disulfide bonds. Protein disulfide bonds perform either a structural or a functional role, and there are two types of functional disulfide: the catalytic and allosteric bonds. The allosteric disulfide bonds control the function of the mature protein in which they reside by triggering a change when they are cleaved. The change can be in ligand binding, substrate hydrolysis, proteolysis, or oligomer formation. The allosteric disulfides are cleaved by oxidoreductases or by thiol/disulfide exchange, and the configurations of the disulfides and the secondary structures that they link share some recurring features. How these bonds are being identified using bioinformatics and experimental screens and what the future holds for this field of research are also discussed.
Collapse
Affiliation(s)
- Kristina M Cook
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW2052, Australia
| | | |
Collapse
|