201
|
Mason M, Wanat JJ, Harper S, Schultz DC, Speicher DW, Johnson FB, Skordalakes E. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance. Structure 2012. [PMID: 23177925 DOI: 10.1016/j.str.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cdc13 is an essential yeast protein required for telomere length regulation and genome stability. It does so via its telomere-capping properties and by regulating telomerase access to the telomeres. The crystal structure of the Saccharomyces cerevisiae Cdc13 domain located between the recruitment and DNA binding domains reveals an oligonucleotide-oligosaccharide binding fold (OB2) with unusually long loops extending from the core of the protein. These loops are involved in extensive interactions between two Cdc13 OB2 folds leading to stable homodimerization. Interestingly, the functionally impaired cdc13-1 mutation inhibits OB2 dimerization. Biochemical assays indicate OB2 is not involved in telomeric DNA or Stn1 binding. However, disruption of the OB2 dimer in full-length Cdc13 affects Cdc13-Stn1 association, leading to telomere length deregulation, increased temperature sensitivity, and Stn1 binding defects. We therefore propose that dimerization of the OB2 domain of Cdc13 is required for proper Cdc13, Stn1, Ten1 (CST) assembly and productive telomere capping.
Collapse
Affiliation(s)
- Mark Mason
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J Wanat
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Stellar-Chance 405A, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sandy Harper
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David C Schultz
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David W Speicher
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Stellar-Chance 405A, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Emmanuel Skordalakes
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
202
|
Wang F, Stewart JA, Kasbek C, Zhao Y, Wright WE, Price CM. Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell Rep 2012; 2:1096-103. [PMID: 23142664 DOI: 10.1016/j.celrep.2012.10.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022] Open
Abstract
Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here, we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S phase but a delay in subsequent overhang shortening. This delay resulted from a defect in C-strand fill-in. Short telomeres exhibited the fill-in defect but normal telomere duplex replication, indicating that STN1/CST functions independently in these processes. Our work also indicates that the requirement for STN1/CST in telomere duplex replication correlates with increasing telomere length and replication stress. Our results provide direct evidence that STN1/CST participates in C-strand fill-in. They also demonstrate that STN1/CST participates in two mechanistically separate steps during telomere replication and identify CST as a replication factor that solves diverse replication-associated problems.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | |
Collapse
|
203
|
Li B. Telomere components as potential therapeutic targets for treating microbial pathogen infections. Front Oncol 2012; 2:156. [PMID: 23125966 PMCID: PMC3485576 DOI: 10.3389/fonc.2012.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023] Open
Abstract
In a number of microbial pathogens that undergoes antigenic variation to evade the host's immune attack, genes encoding surface antigens are located at subtelomeric loci, and recent studies have revealed that telomere components play important roles in regulation of surface antigen expression in several of these pathogens, indicating that telomeres play critical roles in microbial pathogen virulence regulation. Importantly, although telomere protein components and their functions are largely conserved from protozoa to mammals, telomere protein homologs in microbial pathogens and humans have low sequence homology. Therefore, pathogen telomere components are potential drug targets for therapeutic approaches because first, most telomere proteins are essential for pathogens' survival, and second, disruption of pathogens' antigenic variation mechanism would facilitate host's immune system to clear the infection.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University Cleveland, OH, USA
| |
Collapse
|
204
|
Nelson ADL, Shippen DE. Blunt-ended telomeres: an alternative ending to the replication and end protection stories. Genes Dev 2012; 26:1648-52. [PMID: 22855827 DOI: 10.1101/gad.199059.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Telomeres ensure the complete replication of genetic material while simultaneously distinguishing the chromosome terminus from a double-strand break. A prevailing theme in telomere biology is that the two chromosome ends are symmetrical. Both terminate in a single-strand 3' extension, and the 3' extension is crucial for telomere end protection. In this issue of Genes & Development, Kazda and colleagues (pp. 1703-1713) challenge this paradigm using a series of elegant biochemical and genetic assays to demonstrate that half of the chromosomes in flowering plants are blunt-ended. This discovery reveals unanticipated complexity in telomeric DNA processing and a novel mode of chromosome end protection.
Collapse
Affiliation(s)
- Andrew D L Nelson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, 77843, USA
| | | |
Collapse
|
205
|
The human CST complex is a terminator of telomerase activity. Nature 2012; 488:540-4. [PMID: 22763445 DOI: 10.1038/nature11269] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/29/2012] [Indexed: 01/13/2023]
Abstract
The lengths of human telomeres, which protect chromosome ends from degradation and end fusions, are crucial determinants of cell lifespan. During embryogenesis and in cancer, the telomerase enzyme counteracts telomeric DNA shortening. As shown in cancer cells, human telomerase binds the shelterin component TPP1 at telomeres during the S phase of the cell cycle, and adds ~60 nucleotides in a single round of extension, after which telomerase is turned off by unknown mechanisms. Here we show that the human CST (CTC1, STN1 and TEN1) complex, previously implicated in telomere protection and DNA metabolism, inhibits telomerase activity through primer sequestration and physical interaction with the protection of telomeres 1 (POT1)–TPP1 telomerase processivity factor. CST competes with POT1–TPP1 for telomeric DNA, and CST–telomeric-DNA binding increases during late S/G2 phase only on telomerase action, coinciding with telomerase shut-off. Depletion of CST allows excessive telomerase activity, promoting telomere elongation. We propose that through binding of the telomerase-extended telomere, CST limits telomerase action at individual telomeres to approximately one binding and extension event per cell cycle. Our findings define the sequence of events that occur to first enable and then terminate telomerase-mediated telomere elongation.
Collapse
|
206
|
Huang C, Dai X, Chai W. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res 2012; 22:1681-95. [PMID: 22964711 DOI: 10.1038/cr.2012.132] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere maintenance is critical for genome stability. The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance, though its precise role is unclear. We report here that depletion of hStn1 induces catastrophic telomere shortening, DNA damage response, and early senescence in human somatic cells. These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA. Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres, increases telomere fragility, hinders telomere DNA synthesis, as well as delays and compromises telomeric C-strand synthesis. We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α (polα) to telomeres, suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres. Additionally, our data suggest that hStn1 is unlikely to be part of the telomere capping complex. We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA, therefore preventing rapid telomere loss.
Collapse
Affiliation(s)
- Chenhui Huang
- School of Molecular Biosciences, WWAMI Medical Education Program, Washington State University, PO Box 1495, Spokane, WA 99210, USA
| | | | | |
Collapse
|
207
|
Abstract
There has been mounting evidence of a causal role for telomere dysfunction in a number of degenerative disorders. Their manifestations encompass common disease states such as idiopathic pulmonary fibrosis and bone marrow failure. Although these disorders seem to be clinically diverse, collectively they comprise a single syndrome spectrum defined by the short telomere defect. Here we review the manifestations and unique genetics of telomere syndromes. We also discuss their underlying molecular mechanisms and significance for understanding common age-related disease processes.
Collapse
|
208
|
Abstract
There has been mounting evidence of a causal role for telomere dysfunction in a number of degenerative disorders. Their manifestations encompass common disease states such as idiopathic pulmonary fibrosis and bone marrow failure. Although these disorders seem to be clinically diverse, collectively they comprise a single syndrome spectrum defined by the short telomere defect. Here we review the manifestations and unique genetics of telomere syndromes. We also discuss their underlying molecular mechanisms and significance for understanding common age-related disease processes.
Collapse
Affiliation(s)
- Mary Armanios
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
209
|
Cesare AJ, Karlseder J. A three-state model of telomere control over human proliferative boundaries. Curr Opin Cell Biol 2012; 24:731-8. [PMID: 22947495 DOI: 10.1016/j.ceb.2012.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 12/15/2022]
Abstract
Intrinsic limits on cellular proliferation in human somatic tissue serves as a tumor suppressor mechanism by restricting cell growth in aged cells with accrued pre-cancerous mutations. This is accompanied by the potential cost of restricting regenerative capacity and contributing to cellular and organismal aging. Emerging data support a model where telomere erosion controls proliferative boundaries through the progressive change of telomere structure from a protected state, through two distinct states of telomere deprotection. In this model telomeres facilitate a controlled permanent cell cycle arrest with a stable diploid genome during differentiation and may serve as an epigenetic sensor of general stress in DNA metabolism processes.
Collapse
Affiliation(s)
- Anthony J Cesare
- The Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
210
|
Xu L, Li S, Stohr BA. The role of telomere biology in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:49-78. [PMID: 22934675 DOI: 10.1146/annurev-pathol-020712-164030] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomere biology plays a critical and complex role in the initiation and progression of cancer. Although telomere dysfunction resulting from replicative attrition constrains tumor growth by engaging DNA-damage signaling pathways, it can also promote tumorigenesis by causing oncogenic chromosomal rearrangements. Expression of the telomerase enzyme enables telomere-length homeostasis and allows tumor cells to escape the antiproliferative barrier posed by short telomeres. Telomeres and telomerase also function independently of one another. Recent work has suggested that telomerase promotes cell growth through pathways unrelated to telomere maintenance, and a subset of tumors elongate telomeres through telomerase-independent mechanisms. In an effort to exploit the integral link between telomere biology and cancer growth, investigators have developed several telomerase-based therapeutic strategies, which are currently in clinical trials. Here, we broadly review the state of the field with a particular focus on recent developments of interest.
Collapse
Affiliation(s)
- Lifeng Xu
- Department of Microbiology, University of California-Davis, CA 95616, USA
| | | | | |
Collapse
|
211
|
Walne AJ, Bhagat T, Kirwan M, Gitiaux C, Desguerre I, Leonard N, Nogales E, Vulliamy T, Dokal IS. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 2012; 98:334-8. [PMID: 22899577 DOI: 10.3324/haematol.2012.071068] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dyskeratosis congenita and its variants have overlapping phenotypes with many disorders including Coats plus, and their underlying pathology is thought to be one of defective telomere maintenance. Recently, biallelic CTC1 mutations have been described in patients with syndromes overlapping Coats plus. CTC1, STN1 and TEN1 are part of the telomere-capping complex involved in maintaining telomeric structural integrity. Based on phenotypic overlap we screened 73 genetically uncharacterized patients with dyskeratosis congenita and related bone marrow failure syndromes for mutations in this complex. Biallelic CTC1 mutations were identified in 6 patients but none in either STN1 or TEN1. We have expanded the phenotypic spectrum associated with CTC1 mutations and report that intracranial and retinal abnormalities are not a defining feature, as well as showing that the effect of these mutations on telomere length is variable. The study also demonstrates the lack of disease-causing mutations in other components of the telomere-capping complex.
Collapse
|
212
|
Dai X, Huang C, Chai W. CDK1 differentially regulates G-overhang generation at leading- and lagging-strand telomeres in telomerase-negative cells in G2 phase. Cell Cycle 2012; 11:3079-86. [PMID: 22871736 DOI: 10.4161/cc.21472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human telomeres contain single-stranded 3' G-overhangs that function in telomere end protection and telomerase action. Previously we have demonstrated that multiple steps involving C-strand end resection, telomerase elongation and C-strand fill-in contribute to G-overhang generation in telomerase-positive cancer cells. However, how G-overhangs are generated in telomerase-negative human somatic cells is unknown. Here, we report that C-strand fill-in is present at lagging-strand telomeres in telomerase-negative human cells but not at leading-strand telomeres, suggesting that C-strand fill-in is independent of telomerase extension of G-strand. We further show that while cyclin-dependent kinase 1 (CDK1) positively regulates C-strand fill-in, CDK1 unlikely regulates G-overhang generation at leading-strand telomeres. In addition, DNA polymerase α (Polα) association with telomeres is not altered upon CDK1 inhibition, suggesting that CDK1 does not control the loading of Polα to telomeres during fill-in. In summary, our results reveal that G-overhang generation at leading- and lagging-strand telomeres are regulated by distinct mechanisms in human cells.
Collapse
Affiliation(s)
- Xueyu Dai
- School of Molecular Biosciences, Washington State University, Spokane, WA, USA
| | | | | |
Collapse
|
213
|
Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD, Wright WE, Price CM. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 2012; 31:3537-49. [PMID: 22863775 DOI: 10.1038/emboj.2012.215] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/11/2012] [Indexed: 01/13/2023] Open
Abstract
Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects. Stable knockdown of CTC1 or STN1 increases the incidence of anaphase bridges and multi-telomeric signals, indicating genomic and telomeric instability. STN1 knockdown also delays replication through the telomere indicating a role in replication fork passage through this natural barrier. Furthermore, we find that STN1 plays a novel role in genome-wide replication restart after hydroxyurea (HU)-induced replication fork stalling. STN1 depletion leads to reduced EdU incorporation after HU release. However, most forks rapidly resume replication, indicating replisome integrity is largely intact and STN1 depletion has little effect on fork restart. Instead, STN1 depletion leads to a decrease in new origin firing. Our findings suggest that CST rescues stalled replication forks during conditions of replication stress, such as those found at natural replication barriers, likely by facilitating dormant origin firing.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Armanios M. An emerging role for the conserved telomere component 1 (CTC1) in human genetic disease. Pediatr Blood Cancer 2012; 59:209-10. [PMID: 22556055 DOI: 10.1002/pbc.24200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Mary Armanios
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
215
|
Keller RB, Gagne KE, Usmani GN, Asdourian GK, Williams DA, Hofmann I, Agarwal S. CTC1 Mutations in a patient with dyskeratosis congenita. Pediatr Blood Cancer 2012; 59:311-4. [PMID: 22532422 PMCID: PMC3374040 DOI: 10.1002/pbc.24193] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/16/2012] [Indexed: 02/06/2023]
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome caused by mutations in seven genes involved in telomere biology, with approximately 50% of cases remaining genetically uncharacterized. We report a patient with classic DC carrying a compound heterozygous mutation in the CTC1 (conserved telomere maintenance component 1) gene, which has recently implicated in the pleiotropic syndrome Coats plus. This report confirms a molecular link between DC and Coats plus and expands the genotype-phenotype complexity observed in telomere-related genetic disorders.
Collapse
Affiliation(s)
- Rachel B. Keller
- Division of Hematology/Oncology, Stem Cell Program, Children’s Hospital Boston; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA,Harvard Stem Cell Institute, Boston, MA
| | - Katelyn E. Gagne
- Division of Hematology/Oncology, Stem Cell Program, Children’s Hospital Boston; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA,Harvard Stem Cell Institute, Boston, MA
| | - G. Naheed Usmani
- Division of Pediatric Hematology/Oncology, University of Massachusetts Medical School, Worcester, MA
| | | | - David A. Williams
- Division of Hematology/Oncology, Stem Cell Program, Children’s Hospital Boston; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA,Harvard Stem Cell Institute, Boston, MA
| | - Inga Hofmann
- Division of Hematology/Oncology, Stem Cell Program, Children’s Hospital Boston; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Stem Cell Program, Children’s Hospital Boston; Department of Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Medical School, Boston, MA,Harvard Stem Cell Institute, Boston, MA,Correspondence: Suneet Agarwal, M.D., Ph.D., Children’s Hospital Boston, CLS3002, 3 Blackfan Circle, Boston, MA 02115, Phone: (617) 919-4610, Fax: (617) 919-3359,
| |
Collapse
|
216
|
Wu P, Takai H, de Lange T. Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 2012; 150:39-52. [PMID: 22748632 DOI: 10.1016/j.cell.2012.05.026] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/12/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022]
Abstract
A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.
Collapse
Affiliation(s)
- Peng Wu
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
217
|
Gu P, Min JN, Wang Y, Huang C, Peng T, Chai W, Chang S. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J 2012; 31:2309-21. [PMID: 22531781 DOI: 10.1038/emboj.2012.96] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/21/2012] [Indexed: 11/09/2022] Open
Abstract
The proper maintenance of telomeres is essential for genome stability. Mammalian telomere maintenance is governed by a number of telomere binding proteins, including the newly identified CTC1-STN1-TEN1 (CST) complex. However, the in vivo functions of mammalian CST remain unclear. To address this question, we conditionally deleted CTC1 from mice. We report here that CTC1 null mice experience rapid onset of global cellular proliferative defects and die prematurely from complete bone marrow failure due to the activation of an ATR-dependent G2/M checkpoint. Acute deletion of CTC1 does not result in telomere deprotection, suggesting that mammalian CST is not involved in capping telomeres. Rather, CTC1 facilitates telomere replication by promoting efficient restart of stalled replication forks. CTC1 deletion results in increased loss of leading C-strand telomeres, catastrophic telomere loss and accumulation of excessive ss telomere DNA. Our data demonstrate an essential role for CTC1 in promoting efficient replication and length maintenance of telomeres.
Collapse
Affiliation(s)
- Peili Gu
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Polvi A, Linnankivi T, Kivelä T, Herva R, Keating J, Mäkitie O, Pareyson D, Vainionpää L, Lahtinen J, Hovatta I, Pihko H, Lehesjoki AE. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 2012; 90:540-9. [PMID: 22387016 PMCID: PMC3309194 DOI: 10.1016/j.ajhg.2012.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/27/2012] [Accepted: 02/02/2012] [Indexed: 01/26/2023] Open
Abstract
Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies.
Collapse
Affiliation(s)
- Anne Polvi
- Folkhälsan Institute of Genetics, Helsinki 00290, Finland
- Molecular Medicine Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
- Neuroscience Center, University of Helsinki, Helsinki 00290, Finland
| | - Tarja Linnankivi
- Department of Pediatric Neurology, Children's Castle, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Tero Kivelä
- Department of Ophthalmology, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Riitta Herva
- Department of Pathology, Oulu University Hospital, Oulu 90029, Finland
| | - James P. Keating
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki 00290, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico, C. Besta Neurological Institute, Milan 20133, Italy
| | - Leena Vainionpää
- Department of Pediatrics, Oulu University Hospital, Oulu 90029, Finland
| | - Jenni Lahtinen
- Molecular Neurology Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
| | - Iiris Hovatta
- Molecular Neurology Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Helena Pihko
- Department of Pediatric Neurology, Children's Castle, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki 00290, Finland
- Molecular Medicine Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
- Neuroscience Center, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
219
|
Boltz KA, Leehy K, Song X, Nelson AD, Shippen DE. ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis. Mol Biol Cell 2012; 23:1558-68. [PMID: 22357613 PMCID: PMC3327312 DOI: 10.1091/mbc.e11-12-1002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Telomeres protect chromosome ends from DNA damage. CTC1/STN1/TEN1 (CST), a core telomere-capping complex in plant and vertebrates, suppresses an ATR-dependent DNA damage response in Arabidopsis. Protracted ATR inactivation inhibits telomerase, hastening the onset of telomere dysfunction in CST mutants. The CTC1/STN1/TEN1 (CST) complex is an essential constituent of plant and vertebrate telomeres. Here we show that CST and ATR (ataxia telangiectasia mutated [ATM] and Rad3-related) act synergistically to maintain telomere length and genome stability in Arabidopsis. Inactivation of ATR, but not ATM, temporarily rescued severe morphological phenotypes associated with ctc1 or stn1. Unexpectedly, telomere shortening accelerated in plants lacking CST and ATR. In first-generation (G1) ctc1 atr mutants, enhanced telomere attrition was modest, but in G2 ctc1 atr, telomeres shortened precipitously, and this loss coincided with a dramatic decrease in telomerase activity in G2 atr mutants. Zeocin treatment also triggered a reduction in telomerase activity, suggesting that the prolonged absence of ATR leads to a hitherto-unrecognized DNA damage response (DDR). Finally, our data indicate that ATR modulates DDR in CST mutants by limiting chromosome fusions and transcription of DNA repair genes and also by promoting programmed cell death in stem cells. We conclude that the absence of CST in Arabidopsis triggers a multifaceted ATR-dependent response to facilitate maintenance of critically shortened telomeres and eliminate cells with severe telomere dysfunction.
Collapse
Affiliation(s)
- Kara A Boltz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
220
|
Zhang L, Rong YS. Retrotransposons at Drosophila telomeres: host domestication of a selfish element for the maintenance of genome integrity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:771-5. [PMID: 22342531 DOI: 10.1016/j.bbagrm.2012.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 01/18/2023]
Abstract
Telomere serves two essential functions for the cell. It prevents the recognition of natural chromosome ends as DNA breaks (the end capping function). It counteracts incomplete end replication by adding DNA to the ends of chromosomes (the end elongation function). In most organisms studied, telomerase fulfills the end elongation function. In Drosophila, however, telomere specific retrotransposons have been coerced into performing this essential function for the host. In this review, we focus our discussion on transposition mechanisms and transcriptional regulation of these transposable elements, and present provocative models for the purpose of spurring new interests in the field. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Liang Zhang
- Laboatory of Biochechemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
221
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
222
|
Abstract
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.
Collapse
Affiliation(s)
- Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA.
| |
Collapse
|
223
|
Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet 2012; 44:338-42. [DOI: 10.1038/ng.1084] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/21/2011] [Indexed: 11/09/2022]
|
224
|
Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 2012; 44:647-59. [PMID: 22099311 DOI: 10.1016/j.molcel.2011.08.043] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022]
Abstract
To prevent ATR activation, telomeres deploy the single-stranded DNA binding activity of TPP1/POT1a. POT1a blocks the binding of RPA to telomeres, suggesting that ATR is repressed through RPA exclusion. However, comparison of the DNA binding affinities and abundance of TPP1/POT1a and RPA indicates that TPP1/POT1a by itself is unlikely to exclude RPA. We therefore analyzed the central shelterin protein TIN2, which links TPP1/POT1a (and POT1b) to TRF1 and TRF2 on the double-stranded telomeric DNA. Upon TIN2 deletion, telomeres lost TPP1/POT1a, accumulated RPA, elicited an ATR signal, and showed all other phenotypes of POT1a/b deletion. TIN2 also affected the TRF2-dependent repression of ATM kinase signaling but not to TRF2-mediated inhibition of telomere fusions. Thus, while TIN2 has a minor contribution to the repression of ATM by TRF2, its major role is to stabilize TPP1/POT1a on the ss telomeric DNA, thereby allowing effective exclusion of RPA and repression of ATR signaling.
Collapse
Affiliation(s)
- Kaori K Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
225
|
Lewis KA, Wuttke DS. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 2012; 20:28-39. [PMID: 22244753 PMCID: PMC4180718 DOI: 10.1016/j.str.2011.10.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
Recent advances in our structural understanding of telomerase and telomere-associated proteins have contributed significantly to elucidating the molecular mechanisms of telomere maintenance. The structures of telomerase TERT domains have provided valuable insights into how experimentally identified conserved motifs contribute to the telomerase reverse transcriptase reaction. Additionally, structures of telomere-associated proteins in a variety of organisms have revealed that, across evolution, telomere-maintenance mechanisms employ common structural elements. For example, the single-stranded 3' overhang of telomeric DNA is specifically and tightly bound by an OB-fold in nearly all species, including ciliates (TEBP and Pot1a), fission yeast (SpPot1), budding yeast (Cdc13), and humans (hPOT1). Structures of the yeast Cdc13, Stn1, and Ten1 proteins demonstrated that telomere maintenance is regulated by a complex that bears significant similarity to the RPA heterotrimer. Similarly, proteins that specifically bind double-stranded telomeric DNA in divergent species use homeodomains to execute their functions (human TRF1 and TRF2 and budding yeast ScRap1). Likewise, the conserved protein Rap1, which is found in budding yeast, fission yeast, and humans, contains a structural motif that is known to be critical for protein-protein interaction. In addition to revealing the common underlying themes of telomere maintenance, structures have also elucidated the specific mechanisms by which many of these proteins function, including identifying a telomere-specific domain in Stn1 and how the human TRF proteins avoid heterodimerization. In this review, we summarize the high-resolution structures of telomerase and telomere-associated proteins and discuss the emergent common structural themes among these proteins. We also address how these high-resolution structures complement biochemical and cellular studies to enhance our understanding of telomere maintenance and function.
Collapse
Affiliation(s)
- Karen A. Lewis
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
226
|
Shtessel L, Ahmed S. Telomere dysfunction in human bone marrow failure syndromes. Nucleus 2012; 2:24-9. [PMID: 21647296 DOI: 10.4161/nucl.2.1.13993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/25/2022] Open
Abstract
Approximately 90% of all human cancers, in which some deregulation of cell cycle arrest or programmed cell death has occurred, express telomerase, a ribonucleoprotein whose activity is normally turned off in healthy somatic tissues. Additionally, small populations of self-renewing stem cells, such as hematopoietic stem cells, skin and hair follicle basal layer cells and intestinal basal crypt cells, have been shown to retain telomerase activity. Conversely, hereditary defects that result in shortened telomeres in humans have been shown to manifest most often as bone marrow failure or pulmonary fibrosis, along with a myriad of other symptoms, likely due to the loss of the stem and/or progenitor cells of affected tissues. The aim of this review is to highlight our knowledge of the mechanisms of telomere maintenance that contribute to the pathology of human disease caused by dysfunctional telomere homeostasis. Specifically, a new role for the SNM1B/Apollo nuclease in the pathologies of Hoyeraal-Hreidarsson syndrome will be discussed.
Collapse
Affiliation(s)
- Ludmila Shtessel
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | | |
Collapse
|
227
|
Dewar JM, Lydall D. Simple, non-radioactive measurement of single-stranded DNA at telomeric, sub-telomeric, and genomic loci in budding yeast. Methods Mol Biol 2012; 920:341-8. [PMID: 22941615 DOI: 10.1007/978-1-61779-998-3_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-stranded DNA (ssDNA) is a DNA repair, replication, and recombination intermediate and a stimulus for checkpoint kinase-dependent cell cycle arrest. Current assays to detect ssDNA generated in vivo are indirect, laborious, and generally require the use of radioactivity. Here, we describe simple, quantitative approaches to measure ssDNA generated in yeast, at single- and multi-copy chromosomal loci and in highly repetitive telomeric sequences. We describe a fluorescence in-gel assay to measure ssDNA in the telomeric TG repeats of telomere cap-defective budding yeast yku70∆ and cdc13-1 mutants. We also describe a rapid method to prepare DNA for Quantitative Amplification of ssDNA, used to measure ssDNA in single-copy and repetitive sub-telomeric loci. These complementary methods are useful to understand the important roles of ssDNA in yeast cells and could be readily extended to other cell types.
Collapse
Affiliation(s)
- James M Dewar
- Institute for Cell and Molecular Biosciences, Newcastle University,Medical School, Newcastle upon Tyne, UK
| | | |
Collapse
|
228
|
Dewar JM, Lydall D. Similarities and differences between "uncapped" telomeres and DNA double-strand breaks. Chromosoma 2011; 121:117-30. [PMID: 22203190 DOI: 10.1007/s00412-011-0357-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022]
Abstract
Telomeric DNA is present at the ends of eukaryotic chromosomes and is bound by telomere "capping" proteins, which are the (Cdc13-Stn1-Ten1) CST complex, Ku (Yku70-Yku80), and Rap1-Rif1-Rif2 in budding yeast. Inactivation of any of these complexes causes telomere "uncapping," stimulating a DNA damage response (DDR) that frequently involves resection of telomeric DNA and stimulates cell cycle arrest. This is presumed to occur because telomeres resemble one half of a DNA double-strand break (DSB). In this review, we outline the DDR that occurs at DSBs and compare it to the DDR occurring at uncapped telomeres, in both budding yeast and metazoans. We give particular attention to the resection of DSBs in budding yeast by Mre11-Xrs2-Rad50 (MRX), Sgs1/Dna2, and Exo1 and compare their roles at DSBs and uncapped telomeres. We also discuss how resection uncapped telomeres in budding yeast is promoted by the by 9-1-1 complex (Rad17-Mec3-Ddc1), to illustrate how analysis of uncapped telomeres can serve as a model for the DDR elsewhere in the genome. Finally, we discuss the role of the helicase Pif1 and its requirement for resection of uncapped telomeres, but not DSBs. Pif1 has roles in DNA replication and mammalian and plant CST complexes have been identified and have roles in global genome replication. Based on these observations, we suggest that while the DDR at uncapped telomeres is partially due to their resemblance to a DSB, it may also be partially due to defective DNA replication. Specifically, we propose that the budding yeast CST complex has dual roles to inhibit a DSB-like DDR initiated by Exo1 and a replication-associated DDR initiated by Pif1. If true, this would suggest that the mammalian CST complex inhibits a Pif1-dependent DDR.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
229
|
Amiard S, Depeiges A, Allain E, White CI, Gallego ME. Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. THE PLANT CELL 2011; 23:4254-65. [PMID: 22158468 PMCID: PMC3269864 DOI: 10.1105/tpc.111.092387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 05/18/2023]
Abstract
The ends of linear eukaryotic chromosomes are hidden in nucleoprotein structures called telomeres, and loss of the telomere structure causes inappropriate repair, leading to severe karyotypic and genomic instability. Although it has been shown that DNA damaging agents activate a DNA damage response (DDR), little is known about the signaling of dysfunctional plant telomeres. We show that absence of telomerase in Arabidopsis thaliana elicits an ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR)-dependent DDR at telomeres, principally through ATM. By contrast, telomere dysfunction induces an ATR-dependent response in telomeric Conserved telomere maintenance component1 (Ctc1)-Suppressor of cdc thirteen (Stn1)-Telomeric pathways in association with Stn1 (CST)-complex mutants. These results uncover a new role for the CST complex in repressing the ATR-dependent DDR pathway in plant cells and show that plant cells use two different DNA damage surveillance pathways to signal telomere dysfunction. The absence of either ATM or ATR in ctc1 and stn1 mutants significantly enhances developmental and genome instability while reducing stem cell death. These data thus give a clear illustration of the action of ATM/ATR-dependent programmed cell death in maintaining genomic integrity through elimination of genetically unstable cells.
Collapse
|
230
|
Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 2011. [PMID: 22099311 DOI: 10.1016/j.molcel.2011.08.043;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To prevent ATR activation, telomeres deploy the single-stranded DNA binding activity of TPP1/POT1a. POT1a blocks the binding of RPA to telomeres, suggesting that ATR is repressed through RPA exclusion. However, comparison of the DNA binding affinities and abundance of TPP1/POT1a and RPA indicates that TPP1/POT1a by itself is unlikely to exclude RPA. We therefore analyzed the central shelterin protein TIN2, which links TPP1/POT1a (and POT1b) to TRF1 and TRF2 on the double-stranded telomeric DNA. Upon TIN2 deletion, telomeres lost TPP1/POT1a, accumulated RPA, elicited an ATR signal, and showed all other phenotypes of POT1a/b deletion. TIN2 also affected the TRF2-dependent repression of ATM kinase signaling but not to TRF2-mediated inhibition of telomere fusions. Thus, while TIN2 has a minor contribution to the repression of ATM by TRF2, its major role is to stabilize TPP1/POT1a on the ss telomeric DNA, thereby allowing effective exclusion of RPA and repression of ATR signaling.
Collapse
Affiliation(s)
- Kaori K Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
231
|
Nakaoka H, Nishiyama A, Saito M, Ishikawa F. Xenopus laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in priming DNA synthesis on single-stranded DNA template in Xenopus egg extract. J Biol Chem 2011; 287:619-627. [PMID: 22086929 PMCID: PMC3249116 DOI: 10.1074/jbc.m111.263723] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Ctc1-Stn1-Ten1 (CST) complex is an RPA (replication protein A)-like protein complex that binds to single-stranded (ss) DNA. It localizes at telomeres and is involved in telomere end protection in mammals and plants. It is also known to stimulate DNA polymerase α-primase in vitro. However, it is not known how CST accomplishes these functions in vivo. Here, we report the identification and characterization of Xenopus laevis CST complex (xCST). xCST showed ssDNA binding activity with moderate preference for G (guanine)-rich sequences. xStn1-immunodepleted Xenopus egg extracts supported chromosomal DNA replication in in vitro reconstituted sperm nuclei, suggesting that xCST is not a general replication factor. However, the immunodepletion or neutralization of xStn1 compromised DNA synthesis on ssDNA template. Because primed ssDNA template was replicated in xStn1-immunodepleted extracts as efficiently as in control ones, we conclude that xCST is involved in the priming step on ssDNA template. These results are consistent with the current model that CST is involved in telomeric C-strand synthesis through the regulation of DNA polymerase α-primase.
Collapse
Affiliation(s)
- Hidenori Nakaoka
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsuya Nishiyama
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motoki Saito
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fuyuki Ishikawa
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
232
|
QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize (Zea mays L.). G3-GENES GENOMES GENETICS 2011; 1:437-50. [PMID: 22384354 PMCID: PMC3276162 DOI: 10.1534/g3.111.000703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/16/2011] [Indexed: 11/30/2022]
Abstract
Telomere length is a quantitative trait important for many cellular functions. Failure to regulate telomere length contributes to genomic instability, cellular senescence, cancer, and apoptosis in humans, but the functional significance of telomere regulation in plants is much less well understood. To gain a better understanding of telomere biology in plants, we used quantitative trait locus (QTL) mapping to identify genetic elements that control telomere length variation in maize (Zea mays L.). For this purpose, we measured the median and mean telomere lengths from 178 recombinant inbred lines of the IBM mapping population and found multiple regions that collectively accounted for 33–38% of the variation in telomere length. Two-way analysis of variance revealed interaction between the quantitative trait loci at genetic bin positions 2.09 and 5.04. Candidate genes within these and other significant QTL intervals, along with select genes known a priori to regulate telomere length, were tested for correlations between expression levels and telomere length in the IBM population and diverse inbred lines by quantitative real-time PCR. A slight but significant positive correlation between expression levels and telomere length was observed for many of the candidate genes, but Ibp2 was a notable exception, showing instead a negative correlation. A rad51-like protein (TEL-MD_5.04) was strongly supported as a candidate gene by several lines of evidence. Our results highlight the value of QTL mapping plus candidate gene expression analysis in a genetically diverse model system for telomere research.
Collapse
|
233
|
Analyses of Candida Cdc13 orthologues revealed a novel OB fold dimer arrangement, dimerization-assisted DNA binding, and substantial structural differences between Cdc13 and RPA70. Mol Cell Biol 2011; 32:186-98. [PMID: 22025677 DOI: 10.1128/mcb.05875-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The budding yeast Cdc13-Stn1-Ten1 complex is crucial for telomere protection and has been proposed to resemble the RPA complex structurally and functionally. The Cdc13 homologues in Candida species are unusually small and lack two conserved domains previously implicated in telomere regulation, thus raising interesting questions concerning the mechanisms and evolution of these proteins. In this report, we show that the unusually small Cdc13 homologue in Candida albicans is indeed a regulator of telomere lengths and that it associates with telomere DNA in vivo. We demonstrated high-affinity telomere DNA binding by C. tropicalis Cdc13 (CtCdc13) and found that dimerization of this protein through its OB4 domain is important for high-affinity DNA binding. Interestingly, CtCdc13-DNA complex formation appears to involve primarily recognition of multiple copies of a six-nucleotide element (GGATGT) that is shared by many Candida telomere repeats. We also determined the crystal structure of the OB4 domain of C. glabrata Cdc13, which revealed a novel mechanism of OB fold dimerization. The structure also exhibits marked differences to the C-terminal OB fold of RPA70, thus arguing against a close evolutionary kinship between these two proteins. Our findings provide new insights on the mechanisms and evolution of a critical telomere end binding protein.
Collapse
|
234
|
Lakamp AS, Ouellette MM. A ssDNA Aptamer That Blocks the Function of the Anti-FLAG M2 Antibody. J Nucleic Acids 2011; 2011:720798. [PMID: 22013507 PMCID: PMC3195435 DOI: 10.4061/2011/720798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 11/20/2022] Open
Abstract
Using SELEX (systematic evolution of ligands by exponential enrichment), we serendipitously discovered a ssDNA aptamer that binds selectively to the anti-FLAG M2 antibody. The aptamer consisted of two motifs (CCTTA and TGTCTWCC) separated by 2-3 bases, and the elimination of one or the other motif abrogated binding. The DNA aptamer and FLAG peptide competed for binding to the antigen-binding pocket of the M2 antibody. In addition, the aptamer eluted FLAG-tagged proteins from the antibody, suggesting a commercial application in protein purification. These findings demonstrate the feasibility of using SELEX to develop ssDNA aptamers that block the function of a specific antibody, a capability that could lead to the development of novel therapeutic modalities for patients with systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases.
Collapse
Affiliation(s)
- Amanda S Lakamp
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
235
|
|
236
|
Mandell EK, Gelinas AD, Wuttke DS, Lundblad V. Sequence-specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain. Biochemistry 2011; 50:6289-91. [PMID: 21668015 PMCID: PMC11492561 DOI: 10.1021/bi2005448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the budding yeast Saccharomyces cerevisiae, chromosome end protection is provided by a heterotrimeric complex composed of Cdc13 in association with the RPA-like proteins Stn1 and Ten1. We report here that the high affinity and specificity of the S. cerevisiae Cdc13 DNA binding domain for single-stranded telomeric DNA are not widely shared by other fungal Cdc13 proteins, suggesting that restriction of this complex to telomeres may be limited to the Saccharomyces clade. We propose that the evolutionarily conserved task of Stn1 and Ten1 (and their associated large subunit) is a genome-wide role in DNA replication rather than a telomere-dedicated activity.
Collapse
Affiliation(s)
- Edward K. Mandell
- Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amy D. Gelinas
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0125, United States
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0125, United States
| | - Victoria Lundblad
- Salk Institute for Biological Studies, La Jolla, California 92037, United States
| |
Collapse
|
237
|
Abstract
Telomeres are essential for the stability and complete replication of linear chromosomes. Telomere elongation by telomerase counteracts the telomere shortening due to the incomplete replication of chromosome ends by DNA polymerase. Telomere elongation is cell-cycle-regulated and coupled to DNA replication during S-phase. However, the molecular mechanisms that underlie such cell-cycle-dependent telomere elongation by telomerase remain largely unknown. Several aspects of telomere replication in budding yeast, including the modulation of telomere chromatin structure, telomere end processing, recruitment of telomere-binding proteins and telomerase complex to telomere as well as the coupling of DNA replication to telomere elongation during cell cycle progression will be discussed, and the potential roles of Cdk (cyclin-dependent kinase) in these processes will be illustrated.
Collapse
|
238
|
Abstract
Cdc13 is a single stranded telomere binding protein that specifically localizes to the telomere ends of budding yeasts and is essential for cell viability. It caps the ends of chromosomes thus preventing chromosome end-to-end fusions and exonucleolytic degradation, events that could lead to genomic instability and senescence, the hallmark of aging. Cdc13 is also involved in telomere length regulation by recruiting or preventing access of telomerase to the telomeric overhang. Recruitment of telomerase to the telomeres for G-strand extension is required for continuous cell division, while preventing its access to the telomeres through capping the chromosome ends prevents mitotic events that could lead to cell immortality, the hall mark of carcinogenesis. Cdc13 and its putative homologues human CTC1 and POT1 are therefore key to many biological processes directly associated with life extension and cancer prevention and can be viewed as an ideal target for cancer and age related therapies.
Collapse
Affiliation(s)
- Mark Mason
- The Wistar Institute, Philadelphia, PA 19103, USA
| | | |
Collapse
|
239
|
Addinall SG, Holstein EM, Lawless C, Yu M, Chapman K, Banks AP, Ngo HP, Maringele L, Taschuk M, Young A, Ciesiolka A, Lister AL, Wipat A, Wilkinson DJ, Lydall D. Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 2011; 7:e1001362. [PMID: 21490951 PMCID: PMC3072368 DOI: 10.1371/journal.pgen.1001362] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/02/2011] [Indexed: 12/20/2022] Open
Abstract
To better understand telomere biology in budding yeast, we have performed systematic suppressor/enhancer analyses on yeast strains containing a point mutation in the essential telomere capping gene CDC13 (cdc13-1) or containing a null mutation in the DNA damage response and telomere capping gene YKU70 (yku70Δ). We performed Quantitative Fitness Analysis (QFA) on thousands of yeast strains containing mutations affecting telomere-capping proteins in combination with a library of systematic gene deletion mutations. To perform QFA, we typically inoculate 384 separate cultures onto solid agar plates and monitor growth of each culture by photography over time. The data are fitted to a logistic population growth model; and growth parameters, such as maximum growth rate and maximum doubling potential, are deduced. QFA reveals that as many as 5% of systematic gene deletions, affecting numerous functional classes, strongly interact with telomere capping defects. We show that, while Cdc13 and Yku70 perform complementary roles in telomere capping, their genetic interaction profiles differ significantly. At least 19 different classes of functionally or physically related proteins can be identified as interacting with cdc13-1, yku70Δ, or both. Each specific genetic interaction informs the roles of individual gene products in telomere biology. One striking example is with genes of the nonsense-mediated RNA decay (NMD) pathway which, when disabled, suppress the conditional cdc13-1 mutation but enhance the null yku70Δ mutation. We show that the suppressing/enhancing role of the NMD pathway at uncapped telomeres is mediated through the levels of Stn1, an essential telomere capping protein, which interacts with Cdc13 and recruitment of telomerase to telomeres. We show that increased Stn1 levels affect growth of cells with telomere capping defects due to cdc13-1 and yku70Δ. QFA is a sensitive, high-throughput method that will also be useful to understand other aspects of microbial cell biology.
Collapse
Affiliation(s)
- Stephen Gregory Addinall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Eva-Maria Holstein
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Conor Lawless
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Min Yu
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Kaye Chapman
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - A. Peter Banks
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Hien-Ping Ngo
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Laura Maringele
- Crucible Laboratory, Institute for Ageing and Health, Newcastle University Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Morgan Taschuk
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Alexander Young
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adam Ciesiolka
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Allyson Lurena Lister
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Anil Wipat
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Darren James Wilkinson
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
- School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
240
|
Anbalagan S, Bonetti D, Lucchini G, Longhese MP. Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet 2011; 7:e1002024. [PMID: 21437267 PMCID: PMC3060071 DOI: 10.1371/journal.pgen.1002024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 01/26/2011] [Indexed: 12/28/2022] Open
Abstract
Telomere integrity in budding yeast depends on the CST (Cdc13-Stn1-Ten1) and shelterin-like (Rap1-Rif1-Rif2) complexes, which are thought to act independently from each other. Here we show that a specific functional interaction indeed exists among components of the two complexes. In particular, unlike RIF2 deletion, the lack of Rif1 is lethal for stn1ΔC cells and causes a dramatic reduction in viability of cdc13-1 and cdc13-5 mutants. This synthetic interaction between Rif1 and the CST complex occurs independently of rif1Δ-induced alterations in telomere length. Both cdc13-1 rif1Δ and cdc13-5 rif1Δ cells display very high amounts of telomeric single-stranded DNA and DNA damage checkpoint activation, indicating that severe defects in telomere integrity cause their loss of viability. In agreement with this hypothesis, both DNA damage checkpoint activation and lethality in cdc13 rif1Δ cells are partially counteracted by the lack of the Exo1 nuclease, which is involved in telomeric single-stranded DNA generation. The functional interaction between Rif1 and the CST complex is specific, because RIF1 deletion does not enhance checkpoint activation in case of CST-independent telomere capping deficiencies, such as those caused by the absence of Yku or telomerase. Thus, these data highlight a novel role for Rif1 in assisting the essential telomere protection function of the CST complex. Protection of chromosome ends is crucial for maintaining chromosome stability and genome integrity, and its failure leads to genome rearrangements that may facilitate carcinogenesis. This protection is achieved by the packaging of chromosome ends into protective structures called telomeres that prevent DNA repair/recombination activities. Telomeric DNA is bound and stabilized by two protein complexes named CST and shelterin, which are present in a wide range of multicellular organisms. Whether structural and functional connections exist between these two capping complexes is an important issue in telomere biology. Here, we investigate this topic by analyzing the consequences of disabling the two Saccharomyces cerevisiae shelterin-like components, Rif1 and Rif2, in different hypomorphic mutants defective in CST components. We demonstrate that Rif1 plays a previously unanticipated role in assisting the essential telomere protection function of the CST complex, indicating a tight coupling between CST and Rif1. As CST complexes have been recently identified also in other organisms, including humans, which all rely on shelterin for telomere protection, this functional link between CST and shelterin might be an evolutionarily conserved common feature to ensure telomere integrity.
Collapse
Affiliation(s)
- Savani Anbalagan
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Giovanna Lucchini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
241
|
Diotti R, Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus 2011; 2:119-35. [PMID: 21738835 PMCID: PMC3127094 DOI: 10.4161/nucl.2.2.15135] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 12/17/2022] Open
Abstract
The processes regulating telomere function have major impacts on fundamental issues in human cancer biology. First, active telomere maintenance is almost always required for full oncogenic transformation of human cells, through cellular immortalization by endowment of an infinite replicative potential. Second, the attrition that telomeres undergo upon replication is responsible for the finite replicative life span of cells in culture, a process called senescence, which is of paramount importance for tumor suppression in vivo. The process of telomere-based senescence is intimately coupled to the induction of a DNA damage response emanating from telomeres, which can be elicited by both the ATM and ATR dependent pathways. At telomeres, the shelterin complex is constituted by a group of six proteins which assembles quantitatively along the telomere tract, and imparts both telomere maintenance and telomere protection. Shelterin is known to regulate the action of telomerase, and to prevent inappropriate DNA damage responses at chromosome ends, mostly through inhibition of ATM and ATR. The roles of shelterin have increasingly been associated with transient interactions with downstream factors that are not associated quantitatively or stably with telomeres. Here, some of the important known interactions between shelterin and these associated factors and their interplay to mediate telomere functions are reviewed.
Collapse
Affiliation(s)
- Raffaella Diotti
- Department of Biological Sciences, Hunter College, New York, NY, USA
| | | |
Collapse
|
242
|
Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem 2011; 149:5-14. [PMID: 20937668 DOI: 10.1093/jb/mvq119] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent studies have provided evidence of special structures of telomere DNA and genes essential for the phenotypes of ALT cells. The molecular models of the ALT pathway should be validated to elucidate recombination-mediated telomere maintenance and promote the applications to anti-cancer therapy.
Collapse
Affiliation(s)
- Akira Nabetani
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University,Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
243
|
Abstract
Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection.
Collapse
Affiliation(s)
- Shilpa Sampathi
- WWAMI Medical Education Program, Washington State UniversitySpokane, WA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Weihang Chai
- WWAMI Medical Education Program, Washington State UniversitySpokane, WA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
244
|
Affiliation(s)
- Devanshi Jain
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom;
| | - Julia Promisel Cooper
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom;
| |
Collapse
|
245
|
Dewar JM, Lydall D. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J 2010; 29:4020-34. [PMID: 21045806 PMCID: PMC3020640 DOI: 10.1038/emboj.2010.267] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/29/2010] [Indexed: 11/16/2022] Open
Abstract
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.
Collapse
Affiliation(s)
- James M Dewar
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle upon Tyne, Tyne-and-Wear, UK
| | - David Lydall
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle upon Tyne, Tyne-and-Wear, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, Tyne-and-Wear, UK
| |
Collapse
|
246
|
Giraud-Panis MJ, Teixeira MT, Géli V, Gilson E. CST meets shelterin to keep telomeres in check. Mol Cell 2010; 39:665-76. [PMID: 20832719 DOI: 10.1016/j.molcel.2010.08.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022]
Abstract
Telomere protection in budding yeast requires the heterotrimer named CST (for Cdc13-Stn1-Ten1). Recent data show that CST components are conserved and required for telomere stability in a wide range of eukaryotes, even those utilizing the shelterin complex to protect their telomeres. A common function of these proteins might be to stimulate priming at the C-strand gap that remains after telomerase elongation, replication termination, and terminal processing. In light of the budding yeast situation, another conserved function of CST might well be the regulation of telomerase. The cohabitation at telomeres of CST and shelterin components highlights the complexity of telomere biology.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- Laboratory of Biology and Pathology of Genomes, University of Nice, CNRS UMR 6267, U998 INSERM, 28 Avenue Valombrose Faculté de Médecine, 06107 Nice, Cedex 2, France
| | | | | | | |
Collapse
|
247
|
Sun J, Yang Y, Wan K, Mao N, Yu TY, Lin YC, DeZwaan DC, Freeman BC, Lin JJ, Lue NF, Lei M. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res 2010; 21:258-74. [PMID: 20877309 DOI: 10.1038/cr.2010.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase α (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.
Collapse
Affiliation(s)
- Jia Sun
- Howard Hughes Medical Institute, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Abstract
The fourth AACR Special Conference on The Role of Telomeres and Telomerase in Cancer Research was held February 27 to March 2, 2010 in Fort Worth, TX. The meeting was organized to bring together those interested in the basic molecular mechanisms that govern telomere dynamics and stability with those interested in the clinical implications of telomere dysfunction and the use of telomeres and telomerase as therapeutic targets. The meeting was extremely successful as evidenced by the attendance and quality of the presentations. Indeed, several important themes emerged including (a) the intricate connection between the DNA replication and repair machineries in basic telomere replication and stability, (b) the complex interplay between the telomere-specific shelterin components and DNA repair proteins, (c) the nontelomeric functions of TERT in numerous cell types including stem cells, (d) a growing appreciation for the connection that exists between telomere maintenance deficiency states and diverse conditions such as idiopathic pulmonary fibrosis and hematopoietic malignancies, and (e) the successful progression of agents targeting telomerase directly and immunologically to phase III clinical trials. Evident at the meeting was the vibrant energy that permeates the telomere field and the important biological and medical findings that it continues to yield.
Collapse
Affiliation(s)
- Sheila A Stewart
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
249
|
Abstract
The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.
Collapse
|
250
|
Abstract
Proteins that specifically bind the single-stranded overhang at the ends of telomeres have been identified in a wide range of eukaryotes and play pivotal roles in chromosome end protection and telomere length regulation. Here we summarize recent findings regarding the functions of POT1 proteins in vertebrates and discuss the functional evolution of POT1 proteins following gene duplication in protozoa, plants, nematodes and mice.
Collapse
Affiliation(s)
- Peter Baumann
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, KS 66160, U.S.A
| | - Carolyn Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|