201
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
202
|
Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat Commun 2014; 5:5637. [DOI: 10.1038/ncomms6637] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
|
203
|
Schmukler E, Wolfson E, Haklai R, Elad-Sfadia G, Kloog Y, Pinkas-Kramarski R. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death. Oncotarget 2014; 5:173-84. [PMID: 24368422 PMCID: PMC3960199 DOI: 10.18632/oncotarget.1500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death.
Collapse
Affiliation(s)
- Eran Schmukler
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
204
|
Zhou X, Shen L, Parris T, Huang J, Yi B, Helou K, Chen C. Regulation of the viability of Nf1 deficient cells by PKC isoforms. Oncotarget 2014; 5:10709-17. [PMID: 25301738 PMCID: PMC4279404 DOI: 10.18632/oncotarget.2531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022] Open
Abstract
Suppression of protein kinase C (PKC) is known to be synthetically lethal with ras mutations in various types of cancer cells. The studies also showed that blockade of PKC affected the viability of Nf1 deficient cells. Since PKC family consists of more than 10 isoforms, our study aimed at identifying which isoform(s) played the crucial role in sensitizing Nf1 deficient cells to apoptosis. Using genetic and chemical PKC inhibitors, we demonstrated that the concurrent inhibition of PKC α and β induced Nf1 deficient ST or 96.2 cells, but not SNF02.2 cells with a normal Nf1 or ST cells ectopically expressing Nf1 effective domain gene, to apoptosis. In this process, PKC δ in Nf1 deficient cells, but not in ST/Nf1 cells, was upregulated and translocated to the nucleus. Furthermore, caspase 3 was cleaved and cytochrome c was released to the cytosol. Thus, it appeared that PKC δ and α/β are the crucial components for sustaining the aberrant Ras signaling and further viability of Nf1 deficient cells. The abrogation of these two isoforms activated their opponent PKC δ for switching on the caspase 3-governed apoptotic machinery.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Center for Drug Discovery, Northeastern University, Boston, USA. The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Shen
- Center for Drug Discovery, Northeastern University, Boston, USA
| | - Toshima Parris
- The Institute of Clinical Sciences, Gothenburg University, Gothenburg, SE
| | - Junchi Huang
- Center for Drug Discovery, Northeastern University, Boston, USA
| | - Bo Yi
- Center for Drug Discovery, Northeastern University, Boston, USA. The Jiangxi Province Tumor Hospital, Nanchang, China
| | - Khalil Helou
- The Institute of Clinical Sciences, Gothenburg University, Gothenburg, SE
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, USA. The Institute of Clinical Sciences, Gothenburg University, Gothenburg, SE
| |
Collapse
|
205
|
Maejima Y, Chen Y, Isobe M, Gustafsson ÅB, Kitsis RN, Sadoshima J. Recent progress in research on molecular mechanisms of autophagy in the heart. Am J Physiol Heart Circ Physiol 2014; 308:H259-68. [PMID: 25398984 DOI: 10.1152/ajpheart.00711.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulation of autophagy, an evolutionarily conserved process for degradation of long-lived proteins and organelles, has been implicated in the pathogenesis of human disease. Recent research has uncovered pathways that control autophagy in the heart and molecular mechanisms by which alterations in this process affect cardiac structure and function. Although initially thought to be a nonselective degradation process, autophagy, as it has become increasingly clear, can exhibit specificity in the degradation of molecules and organelles, such as mitochondria. Furthermore, it has been shown that autophagy is involved in a wide variety of previously unrecognized cellular functions, such as cell death and metabolism. A growing body of evidence suggests that deviation from appropriate levels of autophagy causes cellular dysfunction and death, which in turn leads to heart disease. Here, we review recent advances in understanding the role of autophagy in heart disease, highlight unsolved issues, and discuss the therapeutic potential of modulating autophagy in heart disease.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey; Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan; and
| | - Yun Chen
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Diabetes Research Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan; and
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Diabetes Research Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
206
|
Carroll RG, Hollville E, Martin SJ. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep 2014; 9:1538-53. [PMID: 25456142 DOI: 10.1016/j.celrep.2014.10.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial depolarization promotes Parkin- and PTEN-induced kinase 1 (PINK1)-dependent polyubiquitination of multiple proteins on mitochondrial outer membranes, resulting in the removal of defective mitochondria via mitophagy. Because Parkin mutations occur in Parkinson's disease, a condition associated with the death of dopaminergic neurons in the midbrain, wild-type Parkin is thought to promote neuronal survival. However, here we show that wild-type Parkin greatly sensitized toward apoptosis induced by mitochondrial depolarization but not by proapoptotic stimuli that failed to activate Parkin. Parkin-dependent apoptosis required PINK1 and was efficiently blocked by prosurvival members of the Bcl-2 family or knockdown of Bax and Bak. Upon mitochondrial depolarization, the Bcl-2 family member Mcl-1 underwent rapid Parkin- and PINK1-dependent polyubiquitination and degradation, which sensitized toward apoptosis via opening of the Bax/Bak channel. These data suggest that similar to other sensors of cell stress, such as p53, Parkin has cytoprotective (mitophagy) or cytotoxic modes (apoptosis), depending on the degree of mitochondrial damage.
Collapse
Affiliation(s)
- Richard G Carroll
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Emilie Hollville
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
207
|
Nelson C, Baehrecke EH. Eaten to death. FEBS J 2014; 281:5411-7. [PMID: 25323556 DOI: 10.1111/febs.13114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Macro-autophagy (hereafter referred to as autophagy) delivers cytoplasmic material to the lysosome for degradation, and has been implicated in many cellular processes, including stress, infection, survival and death. Although the regulation and role of autophagy in stress, infection and survival is apparent, its involvement during cell death remains relatively unclear. In this review, we highlight what is known about the role that autophagy can play during physiological cell death, and discuss the implications of better understanding cellular destruction that involves autophagy.
Collapse
Affiliation(s)
- Charles Nelson
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
208
|
Choi EJ, Kee SH. Axin expression delays herpes simplex virus-induced autophagy and enhances viral replication in L929 cells. Microbiol Immunol 2014; 58:103-11. [PMID: 24329555 DOI: 10.1111/1348-0421.12123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 12/12/2022]
Abstract
Axin, a negative regulator of the Wnt signaling pathway, plays a critical role in various cellular events including cell proliferation and cell death. Axin-regulated cell death affects multiple processes, including viral replication. For example, axin expression suppresses herpes simplex virus (HSV)-induced necrotic cell death and enhances viral replication. Based on these observations, this study investigated the involvement of autophagy in regulation of HSV replication and found axin expression inhibits autophagy-mediated suppression of viral replication in L929 cells. HSV infection induced autophagy in a time- and viral dose-dependent manner in control L929 cells (L-EV), whereas virus-induced autophagy was delayed in axin-expressing L929 cells (L-axin). Subsequent analysis showed that induction of autophagy by rapamycin reduced HSV replication, and that inhibiting autophagy by 3-methyladenine (3MA) and beclin-1 knockdown facilitated viral replication in L-EV cells. In addition, preventing autophagy with 3MA suppressed virus-induced cytotoxicity in L-EV cells. In contrast, HSV replication in L-axin cells was resistant to changes in autophagy. These results suggest that axin expression may render L929 cells resistant to HSV-infection induced autophagy, leading to enhanced viral replication.
Collapse
Affiliation(s)
- Eun-Jin Choi
- Laboratory of Cell Biology, Department of Microbiology and Bank for Pathogenic Virus, College of Medicine, Korea University, Seoul, 136-705, Korea
| | | |
Collapse
|
209
|
Autophagy as a pro-death pathway. Immunol Cell Biol 2014; 93:35-42. [PMID: 25331550 DOI: 10.1038/icb.2014.85] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
The evolutionarily conserved catabolic process of autophagy involves the degradation of cytoplasmic components through lysosomal enzymes. Basal levels of autophagy maintain cellular homeostasis and under stress conditions high levels of autophagy are induced. It is often under such stress conditions that high levels of autophagy and cell death have been observed, leading to the idea that autophagy may act as an executioner of cell death. However the notion of autophagy as a cell death mechanism has been controversial and remains mechanistically undefined. There is now growing evidence that in specific contexts autophagy can indeed facilitate cell death. The pro-death role of autophagy is however complicated due to the extensive cross-talk between different signalling pathways. This review summarises the examples of where autophagy acts as a means of cell death and discusses the association of autophagy with the different cell death pathways.
Collapse
|
210
|
Bauer B, Siebert R, Traulsen A. Cancer initiation with epistatic interactions between driver and passenger mutations. J Theor Biol 2014; 358:52-60. [DOI: 10.1016/j.jtbi.2014.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
|
211
|
Bitterman PB, Polunovsky VA. eIF4E-mediated translational control of cancer incidence. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:774-80. [PMID: 25263391 DOI: 10.1016/j.bbagrm.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 11/16/2022]
Abstract
Mitogen activated translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when deregulated and overexpressed. It remains unknown, how activated eIF4E directs such distinct biological outputs. Our experimental data provide evidence that distinct threshold levels of eIF4E govern its biological output in lactating mammary glands and that eIF4E overexpression in the context of cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints caused by hyperproliferative oncogenic stimuli. These findings point at the cellular level of eIF4E as an important sensor for normal or pro-neoplastic propagation of cells. Here, we describe a model that links the pro-neoplastic function of eIF4F to its ability to disable oncogene-activated tumor surveillance programs; and propose a novel therapeutic strategy for cancer prevention based upon targeting aberrant eIF4E with safe doses of small-molecule antagonists to ensure the maintenance of eIF4E levels below the pro-neoplastic threshold. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Peter B Bitterman
- Department of Medicine, University of Minnesota, 420 Delaware Street S.E., MMC 276, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 420 Delaware Street S.E., MMC 276, Minneapolis, MN 55455, USA.
| | - Vitaly A Polunovsky
- Department of Medicine, University of Minnesota, 420 Delaware Street S.E., MMC 276, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 420 Delaware Street S.E., MMC 276, Minneapolis, MN 55455, USA.
| |
Collapse
|
212
|
Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 2014; 22:367-76. [PMID: 25257169 PMCID: PMC4326571 DOI: 10.1038/cdd.2014.143] [Citation(s) in RCA: 567] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 12/31/2022] Open
Abstract
It is controversial whether cells truly die via autophagy or whether — in dying cells — autophagy is merely an innocent bystander or a well-intentioned ‘Good Samaritan' trying to prevent inevitable cellular demise. However, there is increasing evidence that the genetic machinery of autophagy may be essential for cell death in certain settings. We recently identified a novel form of autophagy gene-dependent cell death, termed autosis, which is mediated by the Na+,K+-ATPase pump and has unique morphological features. High levels of cellular autophagy, as occurs with treatment with autophagy-inducing peptides, starvation, or in vivo during certain types of ischemia, can trigger autosis. These findings provide insights into the mechanisms and strategies for prevention of cell death during extreme stress conditions.
Collapse
|
213
|
Abstract
Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France.
| |
Collapse
|
214
|
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, et alGalluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2014; 22:58-73. [PMID: 25236395 PMCID: PMC4262782 DOI: 10.1038/cdd.2014.137] [Show More Authors] [Citation(s) in RCA: 727] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Collapse
Affiliation(s)
- L Galluzzi
- 1] Gustave Roussy Cancer Center, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - J M Bravo-San Pedro
- 1] Gustave Roussy Cancer Center, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U1138, Gustave Roussy, Paris, France
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy
| | - S A Aaronson
- Department of Oncological Sciences, The Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - D Adam
- Institute of Immunology, Christian-Albrechts University, Kiel, Germany
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - L Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - D Andrews
- Department of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - M Annicchiarico-Petruzzelli
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata - Istituto Ricovero Cura Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - N G Bazan
- Neuroscience Center of Excellence, School of Medicine, New Orleans, LA, USA
| | - M J Bertrand
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - K Bianchi
- 1] Barts Cancer Institute, Cancer Research UK Centre of Excellence, London, UK [2] Queen Mary University of London, John Vane Science Centre, London, UK
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K Blomgren
- Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - C Borner
- Institute of Molecular Medicine and Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - D E Bredesen
- 1] Buck Institute for Research on Aging, Novato, CA, USA [2] Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - C Brenner
- 1] INSERM, UMRS769, Châtenay Malabry, France [2] LabEx LERMIT, Châtenay Malabry, France [3] Université Paris Sud/Paris XI, Orsay, France
| | - M Campanella
- Department of Comparative Biomedical Sciences and Consortium for Mitochondrial Research, University College London (UCL), London, UK
| | - E Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - F Cecconi
- 1] Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy [2] Department of Biology, University of Rome Tor Vergata; Rome, Italy [3] Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - F K Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - N S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - E H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - J E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - J A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), North Carolina, NC, USA
| | - A Ciechanover
- Tumor and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - T M Dawson
- 1] Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - V L Dawson
- 1] Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - V De Laurenzi
- Department of Experimental and Clinical Sciences, Gabriele d'Annunzio University, Chieti, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| | - K-M Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - N Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - V M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - B D Dynlacht
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - W S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - G M Fimia
- 1] Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy [2] Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Ricovero Cura Carattere Scientifico (IRCCS), Rome, Italy
| | - R A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany
| | - C Garrido
- 1] INSERM, U866, Dijon, France [2] Faculty of Medicine, University of Burgundy, Dijon, France
| | - M-L Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - D R Green
- Department of Immunology, St Jude's Children's Research Hospital, Memphis, TN, USA
| | - H Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - G Hajnoczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Hardwick
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - H Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - B Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institute, Stockholm, Sweden
| | - P J Jost
- Medical Department for Hematology, Technical University of Munich, Munich, Germany
| | - T Kaufmann
- Institute of Pharmacology, Medical Faculty, University of Bern, Bern, Switzerland
| | - O Kepp
- 1] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] INSERM, U1138, Gustave Roussy, Paris, France [3] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - D J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - R A Knight
- 1] Medical Molecular Biology Unit, Institute of Child Health, University College London (UCL), London, UK [2] Medical Research Council Toxicology Unit, Leicester, UK
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia [2] School of Medicine and School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - J J Lemasters
- Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - B Levine
- 1] Center for Autophagy Research, University of Texas, Southwestern Medical Center, Dallas, TX, USA [2] Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA
| | - A Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts University, Kiel, Germany
| | - S A Lipton
- 1] The Scripps Research Institute, La Jolla, CA, USA [2] Sanford-Burnham Center for Neuroscience, Aging, and Stem Cell Research, La Jolla, CA, USA [3] Salk Institute for Biological Studies, La Jolla, CA, USA [4] University of California, San Diego (UCSD), San Diego, CA, USA
| | - R A Lockshin
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - C López-Otín
- Department of Biochemistry and Molecular Biology, Faculty of Medecine, Instituto Universitario de Oncología (IUOPA), University of Oviedo, Oviedo, Spain
| | - E Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - W Malorni
- 1] Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita (ISS), Roma, Italy [2] San Raffaele Institute, Sulmona, Italy
| | - J-C Marine
- 1] Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, Leuven, Belgium [2] Laboratory for Molecular Cancer Biology, Center of Human Genetics, Leuven, Belgium
| | - S J Martin
- Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - J-C Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - J P Medema
- Laboratory for Experiments Oncology and Radiobiology (LEXOR), Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Meier
- Institute of Cancer Research, The Breakthrough Toby Robins Breast Cancer Research Centre, London, UK
| | - S Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - N Mizushima
- Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - U Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - C Muñoz-Pinedo
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - G Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - T Panaretakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institute, Stockholm, Sweden
| | - J M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - M E Peter
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Piacentini
- 1] Department of Biology, University of Rome Tor Vergata; Rome, Italy [2] Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Ricovero Cura Carattere Scientifico (IRCCS), Rome, Italy
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - J H Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons, Dublin, Ireland
| | - H Puthalakath
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - G A Rabinovich
- Laboratory of Immunopathology, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - K S Ravichandran
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - R Rizzuto
- Department Biomedical Sciences, University of Padova, Padova, Italy
| | - C M Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - D C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - T Rudel
- Department of Microbiology, University of Würzburg; Würzburg, Germany
| | - Y Shi
- Soochow Institute for Translational Medicine, Soochow University, Suzhou, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - B R Stockwell
- 1] Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA [2] Departments of Biological Sciences and Chemistry, Columbia University, New York, NY, USA
| | - G Szabadkai
- 1] Department Biomedical Sciences, University of Padova, Padova, Italy [2] Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London (UCL), London, UK
| | - S W Tait
- 1] Cancer Research UK Beatson Institute, Glasgow, UK [2] Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - H L Tang
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - N Tavernarakis
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Y Tsujimoto
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - T Vanden Berghe
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - P Vandenabeele
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium [3] Methusalem Program, Ghent University, Ghent, Belgium
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - E F Wagner
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London (UCL), London, UK
| | - E White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - W G Wood
- 1] Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN, USA [2] Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Z Zakeri
- 1] Department of Biology, Queens College, Queens, NY, USA [2] Graduate Center, City University of New York (CUNY), Queens, NY, USA
| | - B Zhivotovsky
- 1] Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden [2] Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - G Melino
- 1] Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy [2] Medical Research Council Toxicology Unit, Leicester, UK
| | - G Kroemer
- 1] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [3] INSERM, U1138, Gustave Roussy, Paris, France [4] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France [5] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
215
|
Chen S, Zhou L, Zhang Y, Leng Y, Pei XY, Lin H, Jones R, Orlowski RZ, Dai Y, Grant S. Targeting SQSTM1/p62 induces cargo loading failure and converts autophagy to apoptosis via NBK/Bik. Mol Cell Biol 2014; 34:3435-3449. [PMID: 25002530 PMCID: PMC4135623 DOI: 10.1128/mcb.01383-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/29/2013] [Accepted: 06/22/2014] [Indexed: 02/05/2023] Open
Abstract
In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Liang Zhou
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Yu Zhang
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Yun Leng
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Xin-Yan Pei
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Hui Lin
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Richard Jones
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yun Dai
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA
| | - Steven Grant
- Department of Medicine, Virginia Commonwealth University and Massey Cancer Center, Richmond, Virginia, USA Department of Biochemistry, Virginia Commonwealth University and Massey Cancer Center and Virginia Institute of Molecular Medicine, Richmond, Virginia, USA
| |
Collapse
|
216
|
Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Exp Cell Res 2014; 327:340-52. [PMID: 25128814 DOI: 10.1016/j.yexcr.2014.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 11/22/2022]
Abstract
While cellular LC3B and SQSTM1 levels serve as key autophagy markers, their regulation by different signaling pathways requires better understanding. Here, we report the mechanisms by which the Raf/MEK/ERK pathway regulates cellular LC3B and SQSTM1 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased LC3B-I, LC3B-II, and SQSTM1/p62 levels, which was accompanied by increased BiP/GRP78 expression. Use of the autophagy inhibitors chloroquine and bafilomycin A1, or RNA interference of ATG7, suggested that these increases in LC3B and SQSTM1 levels were in part attributed to altered autophagic flux. However, intriguingly, these increases were also attributed to their increased expression. Upon Raf/MEK/ERK activation, mRNA levels of LC3B and SQSTM1 were also increased, and subsequent luciferase reporter analyses suggested that SQSTM1 upregulation was mediated at transcription level. Under this condition, transcription of BiP/GRP78 was also increased, which was necessary for Raf/MEK/ERK to regulate LC3B at the protein, but not mRNA, level. This suggests that BiP has a role in regulating autophagy machinery when Raf/MEK/ERK is activated. In conclusion, these results suggest that, under a Raf/MEK/ERK-activated condition, the steady-state cellular levels of LC3B and SQSTM1 can also be determined by their altered expression wherein BiP is utilized as an effector of the signaling.
Collapse
|
217
|
Morgan MJ, Gamez G, Menke C, Hernandez A, Thorburn J, Gidan F, Staskiewicz L, Morgan S, Cummings C, Maycotte P, Thorburn A. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent. Autophagy 2014; 10:1814-26. [PMID: 25136801 PMCID: PMC4198365 DOI: 10.4161/auto.32135] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy "addiction" suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA; University of Colorado Comprehensive Cancer Center; Aurora, CO USA
| | - Graciela Gamez
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Christina Menke
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Ariel Hernandez
- University of Colorado School of Medicine; Medical Scientist Training Program; Aurora, CO USA
| | - Jacqueline Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Freddi Gidan
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Leah Staskiewicz
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Shellie Morgan
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Christopher Cummings
- University of Colorado School of Medicine; Medical Scientist Training Program; Aurora, CO USA
| | - Paola Maycotte
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA; University of Colorado Comprehensive Cancer Center; Aurora, CO USA
| |
Collapse
|
218
|
Maycotte P, Thorburn A. Targeting autophagy in breast cancer. World J Clin Oncol 2014; 5:224-240. [PMID: 25114840 PMCID: PMC4127596 DOI: 10.5306/wjco.v5.i3.224] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/02/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy (referred to as autophagy here) is an intracellular degradation pathway enhanced in response to a variety of stresses and in response to nutrient deprivation. This process provides the cell with nutrients and energy by degrading aggregated and damaged proteins as well as compromised organelles. Since autophagy has been linked to diverse diseases including cancer, it has recently become a very interesting target in breast cancer treatment. Indeed, current clinical trials are trying to use chloroquine or hydroxychloroquine, alone or in combination with other drugs to inhibit autophagy during breast cancer therapy since chemotherapy and radiation, regimens that are used to treat breast cancer, are known to induce autophagy in cancer cells. Importantly, in breast cancer, autophagy has been involved in the development of resistance to chemotherapy and to anti-estrogens. Moreover, a close relationship has recently been described between autophagy and the HER2 receptor. Here, we discuss some of the recent findings relating autophagy and cancer with a particular focus on breast cancer therapy.
Collapse
|
219
|
Albert MC, Brinkmann K, Kashkar H. Noxa and cancer therapy: Tuning up the mitochondrial death machinery in response to chemotherapy. Mol Cell Oncol 2014; 1:e29906. [PMID: 27308315 PMCID: PMC4905168 DOI: 10.4161/mco.29906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Biochemical analyses have characterized the BH3-only protein family member Noxa as a “sensitizer” with weak pro-apoptotic activity. Investigations into cancer cell responses to chemotherapeutic agents have identified Noxa as a pivotal factor mediating the cytotoxic effect of a plethora of anticancer treatments independent of its own pro-apoptotic activity. Accumulating evidence now suggests that tumor cells exert a number of strategies to counteract Noxa function by exploiting diverse cellular regulatory circuits that normally govern Noxa expression during cellular stress responses. Here, we summarize data concerning the role of Noxa in cancer chemosensitivity and highlight the potential of this enigmatic BH3-only protein family member in current and novel anticancer therapies.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Kerstin Brinkmann
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| |
Collapse
|
220
|
Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol 2014; 1:e29911. [PMID: 27308318 PMCID: PMC4905171 DOI: 10.4161/mco.29911] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Abstract
Macroautophagy (herein referred to as autophagy) is a highly conserved mechanism for the lysosomal degradation of cytoplasmic components. Autophagy is critical for the maintenance of intracellular homeostasis, both in baseline conditions and in the context of adaptive responses to stress. In line with this notion, defects in the autophagic machinery have been etiologically associated with various human disorders including infectious, inflammatory and neoplastic conditions. Once tumors are established, however, autophagy sustains the survival of malignant cells, hence representing an appealing target for the design of novel anticancer regimens. Accordingly, inhibitors of autophagy including chloroquine and hydroxychloroquine have been shown to mediate substantial antineoplastic effects in preclinical models, especially when combined with chemo- or radiotherapeutic interventions. The pharmacological profile of chloroquine and hydroxychloroquine, however, appear to involve mechanisms other than autophagy inhibition. Here, we discuss the dual role of autophagy in oncogenesis and tumor progression, and summarize the results or design of clinical studies recently completed or initiated to evaluate the therapeutic activity of chloroquine derivatives in cancer patients.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France; INSERM, UMRS1138; Villejuif, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Guido Kroemer
- INSERM, UMRS1138; Villejuif, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Lorenzo Galluzzi
- Regina Elena National Cancer Institute; Rome, Italy; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
221
|
Affiliation(s)
- C Muñoz-Pinedo
- Cell Death Regulation Group, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge) - Hospital Duran i Reynals 3 planta, Gran Via de L'Hospitalet 199, L'Hospitalet, Barcelona 08908, Spain
| | - S J Martin
- 1] Molecular Cell Biology Laboratory, Department of Genetics, Trinity College, Dublin 2, Ireland [2] Cellular Biotechnology Laboratory, Saint-Petersburg State Institute of Technology, Moskovskii prospekt, Saint Petersburg, Russia
| |
Collapse
|
222
|
Hollville E, Carroll RG, Cullen SP, Martin SJ. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell 2014; 55:451-66. [PMID: 24999239 DOI: 10.1016/j.molcel.2014.06.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 03/24/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023]
Abstract
Mitophagy facilitates the selective elimination of impaired or depolarized mitochondria through targeting the latter to autophagosomes. Parkin becomes localized to depolarized mitochondria in a PINK1-dependent manner and polyubiquitinates multiple mitochondrial outer membrane proteins. This permits ubiquitin-binding proteins (e.g., p62 and NBR1) to target impaired mitochondria to autophagosomes via Atg8/LC3II. Bcl-2 family proteins regulate mitochondrial outer membrane permeabilization during apoptosis and can also influence macroautophagy via interactions with Beclin-1. Here, we show that Parkin-dependent mitophagy is antagonized by prosurvival members of the Bcl-2 family (e.g., Bcl-xL and Mcl-1) in a Beclin-1-independent manner. Bcl-2 proteins suppressed mitophagy through inhibition of Parkin translocation to depolarized mitochondria. Consistent with this, Parkin translocation to mitochondria was enhanced by BH3-only proteins or a BH3-only mimetic. Taken together with their role as regulators of apoptosis-associated mitochondrial permeabilization, as well as mitochondrial fission/fusion dynamics, this suggests that Bcl-2 family proteins act as global regulators of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Emilie Hollville
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Richard G Carroll
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Sean P Cullen
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
223
|
Rowshanravan B, Woodcock SA, Botella JA, Kiermayer C, Schneuwly S, Hughes DA. RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis. J Cell Sci 2014; 127:2849-61. [PMID: 24816559 DOI: 10.1242/jcs.139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon A Woodcock
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - José A Botella
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Claudia Kiermayer
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Schneuwly
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - David A Hughes
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
224
|
Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol 2014; 85:830-8. [PMID: 24574520 PMCID: PMC4014668 DOI: 10.1124/mol.114.091850] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Autophagy is the process by which cellular material is delivered to lysosomes for degradation and recycling. There are three different types of autophagy, but macroautophagy, which involves the formation of double membrane vesicles that engulf proteins and organelles that fuse with lysosomes, is by far the most studied and is thought to have important context-dependent roles in cancer development, progression, and treatment. The roles of autophagy in cancer treatment are complicated by two important discoveries over the past few years. First, most (perhaps all) anticancer drugs, as well as ionizing radiation, affect autophagy. In most, but not all cases, these treatments increase autophagy in tumor cells. Second, autophagy affects the ability of tumor cells to die after drug treatment, but the effect of autophagy may be to promote or inhibit cell death, depending on context. Here we discuss recent research related to autophagy and cancer therapy with a focus on how these processes may be manipulated to improve cancer therapy.
Collapse
Affiliation(s)
- Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (A.T.); and Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (D.H.T., D.L.G.)
| | | | | |
Collapse
|
225
|
Therapeutic targeting of autophagy in cancer. Part I: molecular pathways controlling autophagy. Semin Cancer Biol 2014; 31:89-98. [PMID: 24879905 DOI: 10.1016/j.semcancer.2014.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 05/18/2014] [Indexed: 12/31/2022]
Abstract
Autophagy is a process in which cells can generate energy and building materials, by degradation of redundant and/or damaged organelles and proteins. Especially during conditions of stress, autophagy helps to maintain homeostasis. In addition, autophagy has been shown to influence malignant transformation and cancer progression. The precise molecular events in autophagy are complex and the core autophagic machinery described to date consists of nearly thirty proteins. Apart from these factors that execute the process of autophagy, several signalling pathways are involved in converting internal and external stimuli into an autophagic response. In this review we provide an overview of the signalling pathways that influence autophagy, particularly in cancer cells. We will illustrate that interference with multiple of these signalling pathways can have significant effects on cancer cell survival.
Collapse
|
226
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
227
|
Tong Y, You L, Liu H, Li L, Meng H, Qian Q, Qian W. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia. Oncotarget 2014; 4:860-74. [PMID: 23765161 PMCID: PMC3757243 DOI: 10.18632/oncotarget.1018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An attractive strategy among adenovirus-based oncolytic systems is to design adenoviral vectors to express pro-apoptotic genes, in which this gene-virotherapy approach significantly enhances tumor cell death by activating apoptotic pathways. However, the existence of cancer cells with apoptotic defects is one of the major obstacles in gene-virotherapy. Here, we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with simultaneous expression of Beclin-1, an autophagy gene, offers a therapeutic advantage for leukemia. A Beclin-1 cDNA was cloned in an oncolytic adenovirus with chimeric Ad5/11 fiber (SG511-BECN). SG511-BECN treatment induced significant autophagic cell death, and resulted in enhanced cell killing in a variety of leukemic cell lines and primary leukemic blasts. SG511-BECN effects were seen in chronic myeloid leukemia and acute myeloid leukemia with resistance to imatinib or chemotherapy, but exhibited much less cytotoxicity on normal cells. The SG511-BECN-induced autophagic cell death could be partially reversed by RNA interference knockdown of UVRAG, ATG5, and ATG7. We also showed that SG511-BECN strongly inhibited the growth of leukemic progenitors in vitro. In murine leukemia models, SG511-BECN prolonged the survival and decreased the xenograft tumor size by inducing autophagic cell death. Our results suggest that infection of leukemia cells with an oncolytic adenovirus overexpressing Beclin-1 can induce significant autophagic cell death and provide a new strategy for the elimination of leukemic cells via a unique mechanism of action distinct from apoptosis.
Collapse
Affiliation(s)
- Yin Tong
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, P.R. China
| | | | | | | | | | | | | |
Collapse
|
228
|
Titone R, Morani F, Follo C, Vidoni C, Mezzanzanica D, Isidoro C. Epigenetic control of autophagy by microRNAs in ovarian cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:343542. [PMID: 24877083 PMCID: PMC4022060 DOI: 10.1155/2014/343542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/14/2014] [Indexed: 12/22/2022]
Abstract
Autophagy is a lysosomal-driven catabolic process that contributes to the preservation of cell homeostasis through the regular elimination of cellular damaged, aged, and redundant molecules and organelles. Autophagy plays dual opposite roles in cancer: on one hand it prevents carcinogenesis; on the other hand it confers an advantage to cancer cells to survive under prohibitive conditions. Autophagy has been implicated in ovarian cancer aggressiveness and in ovarian cancer cell chemoresistance and dormancy. Small noncoding microRNAs (miRNAs) regulate gene expression at posttranscriptional level, thus playing an important role in many aspects of cell pathophysiology, including cancerogenesis and cancer progression. Certain miRNAs have recently emerged as important epigenetic modulators of autophagy in cancer cells. The mRNA of several autophagy-related genes contains, in fact, the target sequence for miRNAs belonging to different families, with either oncosuppressive or oncogenic activities. MiRNA profiling studies have identified some miRNAs aberrantly expressed in ovarian cancer tissues that can impact autophagy. In addition, plasma and stroma cell-derived miRNAs in tumour-bearing patients can regulate the expression of relevant autophagy genes in cancer cells. The present review focuses on the potential implications of miRNAs regulating autophagy in ovarian cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Centro di Biotecnologie per la Ricerca Medica Applicata, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
229
|
Abstract
Autophagy is intimately associated with eukaryotic cell death and apoptosis. Indeed, in some cases the same proteins control both autophagy and apoptosis. Apoptotic signalling can regulate autophagy and conversely autophagy can regulate apoptosis (and most likely other cell death mechanisms). However, the molecular connections between autophagy and cell death are complicated and, in different contexts, autophagy may promote or inhibit cell death. Surprisingly, although we know that, at its core, autophagy involves degradation of sequestered cytoplasmic material, and therefore presumably must be mediating its effects on cell death by degrading something, in most cases we have little idea of what is being degraded to promote autophagy's pro- or anti-death activities. Because autophagy is known to play important roles in health and many diseases, it is critical to understand the mechanisms by which autophagy interacts with and affects the cell death machinery since this will perhaps allow new ways to prevent or treat disease. In the present chapter, we discuss the current state of understanding of these processes.
Collapse
|
230
|
Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1630-42. [PMID: 24726643 DOI: 10.1016/j.ajpath.2014.02.028] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
Abstract
Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death.
Collapse
|
231
|
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014; 171:1917-42. [PMID: 24720258 PMCID: PMC3976613 DOI: 10.1111/bph.12503] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies.
Collapse
Affiliation(s)
- G C Higgins
- Glycation, Nutrition & Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
232
|
Thorburn J, Andrysik Z, Staskiewicz L, Gump J, Maycotte P, Oberst A, Green DR, Espinosa JM, Thorburn A. Autophagy controls the kinetics and extent of mitochondrial apoptosis by regulating PUMA levels. Cell Rep 2014; 7:45-52. [PMID: 24685133 DOI: 10.1016/j.celrep.2014.02.036] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy is thought to protect against apoptosis; however, underlying mechanisms are poorly understood. We examined how autophagy affects canonical death receptor-induced mitochondrial outer membrane permeabilization (MOMP) and apoptosis. MOMP occurs at variable times in a population of cells, and this is delayed by autophagy. Additionally, autophagy leads to inefficient MOMP, after which some cells die through a slower process than typical apoptosis and, surprisingly, can recover and divide afterward. These effects are associated with p62/SQSTM1-dependent selective autophagy causing PUMA levels to be kept low through an indirect mechanism whereby autophagy affects constitutive levels of PUMA mRNA. PUMA depletion is sufficient to prevent the sensitization to apoptosis that occurs when autophagy is blocked. Autophagy can therefore control apoptosis via a key regulator that makes MOMP faster and more efficient, thus ensuring rapid completion of apoptosis. This identifies a molecular mechanism whereby cell-fate decisions can be determined by autophagy.
Collapse
Affiliation(s)
- Jacqueline Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Leah Staskiewicz
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Gump
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paola Maycotte
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109-8059, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
233
|
Urbanelli L, Magini A, Ercolani L, Sagini K, Polchi A, Tancini B, Brozzi A, Armeni T, Principato G, Emiliani C. Oncogenic H-Ras up-regulates acid β-hexosaminidase by a mechanism dependent on the autophagy regulator TFEB. PLoS One 2014; 9:e89485. [PMID: 24586816 PMCID: PMC3933543 DOI: 10.1371/journal.pone.0089485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
The expression of constitutively active H-RasV12 oncogene has been described to induce proliferative arrest and premature senescence in many cell models. There are a number of studies indicating an association between senescence and lysosomal enzyme alterations, e.g. lysosomal β-galactosidase is the most widely used biomarker to detect senescence in cultured cells and we previously reported that H-RasV12 up-regulates lysosomal glycohydrolases enzymatic activity in human fibroblasts. Here we investigated the molecular mechanisms underlying lysosomal glycohydrolase β-hexosaminidase up-regulation in human fibroblasts expressing the constitutively active H-RasV12. We demonstrated that H-Ras activation increases β-hexosaminidase expression and secretion by a Raf/extracellular signal-regulated protein kinase dependent pathway, through a mechanism that relies on the activity of the transcription factor EB (TFEB). Because of the pivotal role of TFEB in the regulation of lysosomal system biogenesis and function, our results suggest that this could be a general mechanism to enhance lysosomal enzymes activity during oncogene-induced senescence.
Collapse
Affiliation(s)
- Lorena Urbanelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail: (CE); (LU)
| | - Alessandro Magini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Department of Medical and Biological Sciences (DSMB), University of Udine, Udine, Italy
| | - Luisa Ercolani
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Marche Polytechnic University, Ancona, Italy
| | - Krizia Sagini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Alice Polchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Brunella Tancini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Alessandro Brozzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Marche Polytechnic University, Ancona, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia, Italy
- * E-mail: (CE); (LU)
| |
Collapse
|
234
|
Abstract
The common clear cell subtype of renal cell carcinoma is associated with hereditary or acquired loss of function of the von Hippel-Lindau tumor suppressor, a key component in oxygen sensing, perpetuating a stressed state. Autophagy is primarily a highly conserved, catabolic process by which stressed cells shuttle damaged or effete organelles and proteins into autophagosomes for sequestration and digestion after fusion with lysosomes. Autophagy is directed by autophagy-related genes and is divided into 4 discrete steps: initiation, nucleation, maturation, and degradation. During early tumorigenesis, apoptosis is enhanced and autophagy is suppressed, allowing accumulation of mutations and emergence of genomic instability. Late, an "autophagic switch" occurs, promoting survival and limiting apoptosis. Compounds such as chloroquine and hydroxychloroquine that prevent acidification of the lysosomal compartment are the sole clinically available inhibitors of autophagy. Currently, there are more than 30 trials examining combinations of hydroxychloroquine with anticancer agents. The intricate effects of autophagy on the immune response complicate manipulation of autophagy as part of the antitumor strategy. Further understanding of basic mechanisms of renal cell carcinoma pathogenesis and of autophagy will enable development of the next generation of pharmacologic modulators of autophagy.
Collapse
|
235
|
|
236
|
Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V, Sigl V, Aumayr K, Schmauss G, Fellner N, Handschuh S, Glösmann M, Pasierbek P, Schlederer M, Resch GP, Ma Y, Yang H, Popper H, Kenner L, Kroemer G, Penninger JM. A dual role for autophagy in a murine model of lung cancer. Nat Commun 2014; 5:3056. [DOI: 10.1038/ncomms4056] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022] Open
|
237
|
Abstract
Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.
Collapse
|
238
|
Frezza C. The role of mitochondria in the oncogenic signal transduction. Int J Biochem Cell Biol 2014; 48:11-7. [PMID: 24397955 DOI: 10.1016/j.biocel.2013.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/15/2013] [Accepted: 12/26/2013] [Indexed: 12/14/2022]
Abstract
Mitochondria are intracellular organelles thought to have evolved from an alphaproteobacterium engulfed by the ancestor of the eukaryotic cell, an archeon, two billion years ago. Although mitochondria are frequently recognised as the "power plant" of the cell, the function of these organelles go beyond the simple generation of ATP. In fact, mounting evidence suggests that mitochondria are involved in several cellular processes, from regulation of cell death to signal transduction. Given this important role in cell physiology, mitochondrial dysfunction has been frequently associated with human diseases including cancer. Importantly, recent evidence suggests that mitochondrial function is directly regulated by oncogenes and tumour suppressors. However, the consequences of deregulation of mitochondrial function in tumour formation are still unclear. In this review, I propose that mitochondria play a pivotal role in shaping the oncogenic signalling cascade and that mitochondrial dysfunction, in some circumstances, is a required step for cancer transformation.
Collapse
Affiliation(s)
- Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
239
|
Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 2014; 39:91-100. [PMID: 24388967 DOI: 10.1016/j.tibs.2013.12.004] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
Oncogenic KRAS mutation is the signature genetic event in the progression and growth of pancreatic ductal adenocarcinoma (PDAC), an almost universally fatal disease. Although it has been appreciated for some time that nearly 95% of PDAC harbor mutationally activated KRAS, to date no effective treatments that target this mutant protein have reached the clinic. A number of studies have shown that oncogenic KRAS plays a central role in controlling tumor metabolism by orchestrating multiple metabolic changes including stimulation of glucose uptake, differential channeling of glucose intermediates, reprogrammed glutamine metabolism, increased autophagy, and macropinocytosis. We review these recent findings and address how they may be applied to develop new PDAC treatments.
Collapse
Affiliation(s)
- Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
240
|
Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AFG. Tumor suppression and promotion by autophagy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:603980. [PMID: 25328887 PMCID: PMC4189854 DOI: 10.1155/2014/603980] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Jimena Canales
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Roberto Bravo-Sagua
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
| | - Alfredo Criollo
- 3Research Institute of Dental Science, Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Sergio Lavandero
- 2Laboratory of Molecular Signal Transduction, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- 4Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- *Sergio Lavandero: and
| | - Andrew F. G. Quest
- 1Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell, Program in Cell and Molecular Biology, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, 8380492 Santiago, Chile
- *Andrew F. G. Quest:
| |
Collapse
|
241
|
Wei SH, Li W, Liu Y, Gao DEK, Pan J, Gu CW, Wu HR. Disturbance of autophagy-lysosome signaling molecule expression in human gastric adenocarcinoma. Oncol Lett 2013; 7:635-640. [PMID: 24527069 PMCID: PMC3919863 DOI: 10.3892/ol.2013.1773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/06/2013] [Indexed: 12/22/2022] Open
Abstract
Autophagy is classified as type II programmed cell death and may participate in tumorigenesis. However, changes in autophagy-lysosome signaling and the relationship between the apoptotic cascade and gastric cancer cells have not been fully elucidated. The present study investigated the induction of autophagy in poorly differentiated human gastric adenocarcinoma. Immunoblotting revealed markedly induced autophagy in low grade differentiated gastric adenocarcinoma, indicated by elevation of microtubule-associated protein 1 light chain 3-I/II conversion and Beclin 1 in human gastric carcinomas. In addition, the diffuse (poorly differentiated) subtype showed significantly elevated Lamp2 and cathepsin B protein levels. Concomitantly, significant induction of anti-apoptotic events were indicated by changes in B-cell lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis protein levels. Notably, confocal laser microscope data indicated co-expression of Bcl-2 and Beclin 1 in poorly differentiated human gastric adenocarcinoma. Results of this study indicate that the autophagy-lysosome signaling participates in poorly differentiated human gastric adenocarcinoma and there are intracellular links between autophagic signaling and the apoptotic cascade.
Collapse
Affiliation(s)
- Shao-Hua Wei
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Li
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yang Liu
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - DE-Kang Gao
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jun Pan
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chun-Wei Gu
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hao-Rong Wu
- Department of General Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
242
|
Wroblewski D, Jiang CC, Croft A, Farrelly ML, Zhang XD, Hersey P. OBATOCLAX and ABT-737 induce ER stress responses in human melanoma cells that limit induction of apoptosis. PLoS One 2013; 8:e84073. [PMID: 24367627 PMCID: PMC3868604 DOI: 10.1371/journal.pone.0084073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023] Open
Abstract
Anti-apoptotic Bcl-2 family proteins, in particular, Mcl-1, are known to play a critical role in resistance of human melanoma cells to induction of apoptosis by endoplasmic reticulum stress and other agents. The present study examined whether the BH3 mimetics, Obatoclax and ABT-737, which inhibit multiple anti-apoptotic Bcl-2 family proteins, would overcome resistance to apoptosis. We report that both agents induced a strong unfolded protein response (UPR) and that RNAi knockdown of UPR signalling proteins ATF6, IRE1α and XBP-1 inhibited Mcl-1 upregulation and increased sensitivity to the agents. These results demonstrate that inhibition of anti-apoptotic Bcl-2 proteins by Obatoclax and ABT-737 appears to elicit a protective feedback response in melanoma cells, by upregulation of Mcl-1 via induction of the UPR. We also report that Obatoclax, but not ABT-737, strongly induces autophagy, which appears to play a role in determining melanoma sensitivity to the agents.
Collapse
Affiliation(s)
- David Wroblewski
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Amanda Croft
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Margaret L. Farrelly
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Xu Dong Zhang
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Peter Hersey
- Kolling Institute, Royal North Shore Hospital, University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
243
|
Mealer RG, Murray AJ, Shahani N, Subramaniam S, Snyder SH. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy. J Biol Chem 2013; 289:3547-54. [PMID: 24324270 DOI: 10.1074/jbc.m113.536912] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protein mutated in Huntington disease (HD), mutant huntingtin (mHtt), is expressed throughout the brain and body. However, the pathology of HD is characterized by early and dramatic destruction selectively of the striatum. We previously reported that the striatal-specific protein Rhes binds mHtt and enhances its cytotoxicity. Moreover, Rhes-deleted mice are dramatically protected from neurodegeneration and motor dysfunction in mouse models of HD. We now report a function of Rhes in autophagy, a lysosomal degradation pathway implicated in aging and HD neurodegeneration. In PC12 cells, deletion of endogenous Rhes decreases autophagy, whereas Rhes overexpression activates autophagy. These effects are independent of mTOR and opposite in the direction predicted by the known activation of mTOR by Rhes. Rhes robustly binds the autophagy regulator Beclin-1, decreasing its inhibitory interaction with Bcl-2 independent of JNK-1 signaling. Finally, co-expression of mHtt blocks Rhes-induced autophagy activation. Thus, the isolated pathology and delayed onset of HD may reflect the striatal-selective expression and changes in autophagic activity of Rhes.
Collapse
|
244
|
Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 2013; 110:20364-71. [PMID: 24277826 DOI: 10.1073/pnas.1319661110] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
Collapse
|
245
|
Chronic mTOR activation promotes cell survival in Merkel cell carcinoma. Cancer Lett 2013; 344:272-281. [PMID: 24262658 DOI: 10.1016/j.canlet.2013.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/22/2013] [Accepted: 11/10/2013] [Indexed: 01/22/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with rising incidence. In this study, we demonstrate that mTOR activation and suppressed autophagy is common in MCCs. mTOR inhibition in two primary human MCC cell lines induces autophagy and cell death that is independent of caspase activation but can be attenuated by autophagy inhibition. This is the first study to evaluate mTOR and autophagy in MCC. Our data suggests a potential role of autophagic cell death upon mTOR inhibition and thus uncovers a previously underappreciated role of mTOR signaling and cell survival, and merits further studies for potential therapeutic targets.
Collapse
|
246
|
Pliyev BK, Menshikov M. Differential effects of the autophagy inhibitors 3-methyladenine and chloroquine on spontaneous and TNF-α-induced neutrophil apoptosis. Apoptosis 2013; 17:1050-65. [PMID: 22638980 DOI: 10.1007/s10495-012-0738-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagy and apoptosis cooperate to modulate cell survival. Neutrophils are short-lived cells and apoptosis is considered to be the major mechanism of their death. In the present study, we addressed whether autophagy regulates neutrophil apoptosis and investigated the effects of autophagy inhibition on apoptosis of human neutrophils. We first showed that the established autophagy inhibitors 3-methyladenine (MA) and chloroquine (CQ) markedly accelerated spontaneous neutrophil apoptosis as was evidenced by phosphatidylserine exposure, DNA fragmentation and caspase-3 activation. Apoptosis induced by the autophagy inhibitors was completely abrogated by a pan-caspase inhibitor Q-VD-OPh. Unexpectedly, both MA and CQ significantly delayed neutrophil apoptosis induced by TNF-α, although the inhibitors did attenuate late pro-survival effect of the cytokine. The effect was specific for TNF-α because it was not observed in the presence of other inflammation-associated cytokines (IL-1β or IL-8). The autophagy inhibitors did not modulate surface expression of TNF-α receptors in the absence or presence of TNF-α. Both MA and CQ induced a marked down-regulation of a key anti-apoptotic protein Mcl-1 but did not affect significantly the levels of another anti-apoptotic protein Bcl-X(L). Finally, to confirm the effects of the pharmacological inhibition of autophagy by a genetic approach, we evaluated the consequences of siRNA-mediated autophagy suppression in neutrophil-like differentiated HL60 cells. Knockdown of ATG5 in the cells resulted in accelerated spontaneous apoptosis but attenuated TNF-α-induced apoptosis. Together, these data suggest that autophagy regulates neutrophil apoptosis in an inflammatory context-dependent manner and mediates the early pro-apoptotic effect of TNF-α in neutrophils.
Collapse
Affiliation(s)
- Boris K Pliyev
- Department of Biological and Medical Chemistry, Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 31-5, Moscow 119192, Russia.
| | | |
Collapse
|
247
|
Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 2013; 4:e892. [PMID: 24176850 PMCID: PMC3920945 DOI: 10.1038/cddis.2013.422] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023]
Abstract
Autophagy (macroautophagy) is an evolutionarily conserved lysosomal degradation process, in which a cell degrades long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed the core molecular machinery of autophagy in carcinogenesis; however, the intricate relationship between autophagy and cancer continue to remain an enigma. Why does autophagy have either pro-survival (oncogenic) or pro-death (tumor suppressive) role at different cancer stages, including cancer stem cell, initiation and progression, invasion and metastasis, as well as dormancy? How does autophagy modulate a series of oncogenic and/or tumor suppressive pathways, implicated in microRNA (miRNA) involvement? Whether would targeting the oncogenic and tumor suppressive autophagic network be a novel strategy for drug discovery? To address these problems, we focus on summarizing the dynamic oncogenic and tumor suppressive roles of autophagy and their relevant small-molecule drugs, which would provide a new clue to elucidate the oncosuppressive (survival or death) autophagic network as a potential therapeutic target.
Collapse
|
248
|
Lorin S, Hamaï A, Mehrpour M, Codogno P. Autophagy regulation and its role in cancer. Semin Cancer Biol 2013; 23:361-79. [DOI: 10.1016/j.semcancer.2013.06.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
|
249
|
Nencioni A, Cea M, Montecucco F, Longo VD, Patrone F, Carella AM, Holyoake TL, Helgason GV. Autophagy in blood cancers: biological role and therapeutic implications. Haematologica 2013; 98:1335-1343. [PMID: 24006406 PMCID: PMC3762088 DOI: 10.3324/haematol.2012.079061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/13/2013] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a cell recycling process the molecular apparatus of which has been identified over the past decade. Autophagy allows cells to survive starvation and inhospitable conditions and plays a key role in numerous physiological functions, including hematopoiesis and immune responses. In hematologic malignancies, autophagy can either act as a chemo-resistance mechanism or have tumor suppressive functions, depending on the context. In addition, autophagy is involved in other important aspects of blood cancers as it promotes immune competence and anti-cancer immunity, and may even help enhance patient tolerance to standard treatments. Approaches exploiting autophagy, either to activate or inhibit it, could find broad application in hematologic malignancies and contribute to improved clinical outcomes. These aspects are discussed here together with a brief introduction to the molecular machinery of autophagy and to its role in blood cell physiology.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Wang Y, Han C, Lu L, Magliato S, Wu T. Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology 2013; 58:995-1010. [PMID: 23504944 PMCID: PMC3706478 DOI: 10.1002/hep.26394] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hedgehog (Hh) signaling plays an important role in embryonic development and in the regulation of a variety of cellular functions. Aberrant activation of Hh signaling has been implicated in several human cancers including hepatocellular carcinoma (HCC). In this study we examined the pathobiological functions and molecular mechanisms of the Hh signaling pathway in HCC cells. Treatment of cultured human HCC cells (Huh7, Hep3B, and HepG2) with the Hh signaling ligand (recombinant Shh) or agonist, SAG and purmorphamine, prevented the induction of autophagy. In contrast, GANT61 (a small molecule inhibitor of Gli1 and Gli2) induced autophagy, as determined by immunoblotting for microtubule-associated protein light chain 3 (LC3) and p62, GFP-LC3 puncta, monodansylcadaverine (MDC) staining, and transmission electron microscopy. Hh inhibition-induced autophagy was associated with up-regulation of Bnip3, as determined by immunoblotting and real-time polymerase chain reaction (PCR) assay. Knockdown of Bnip3 by RNAi impaired GANT61-induced autophagy. Additionally, Hh inhibition-induced autophagy was associated with Bnip3-mediated displacement of Bcl-2 from Beclin-1, as determined by immunoblotting and immunoprecipitation assays. Furthermore, inhibition of Hh signaling increased HCC cell apoptosis and decreased cell viability, as determined by caspase and WST-1 assays. Pharmacological or genetic inhibition of autophagy by 3-methyladenine (3-MA) or Beclin-1 small interfering RNA (siRNA) partially suppressed GANT61-induced cell apoptosis and cytotoxicity. In a tumor xenograft model using SCID mice inoculated with Huh7 cells, administration of GANT61 inhibited tumor formation and decreased tumor volume; this effect was partially blocked by the autophagy inhibitor, 3-MA. CONCLUSION These findings provide novel evidence that Hh inhibition induces autophagy through up-regulation of Bnip3 and that this mechanism contributes to apoptosis. Therefore, the status of autophagy is a key factor that determines the therapeutic response to Hh-targeted therapies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112,Department of Gastroenterology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| | - Lu Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| | - Susan Magliato
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue SL-79, New Orleans, Louisiana 70112
| |
Collapse
|