201
|
Zinngrebe J, Schlichtig F, Kraus JM, Meyer M, Boldrin E, Kestler HA, Meyer L, Fischer‐Posovszky P, Debatin K. Biomarker profile for prediction of response to SMAC mimetic monotherapy in pediatric precursor B‐cell acute lymphoblastic leukemia. Int J Cancer 2020; 146:3219-3231. [DOI: 10.1002/ijc.32799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Julia Zinngrebe
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Ferdinand Schlichtig
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University Ulm Germany
| | - Malcolm Meyer
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Elena Boldrin
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University Ulm Germany
| | - Lüder‐Hinrich Meyer
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| | | | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUlm University Medical Center Ulm Germany
| |
Collapse
|
202
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
203
|
Heilig R, Dilucca M, Boucher D, Chen KW, Hancz D, Demarco B, Shkarina K, Broz P. Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD. Life Sci Alliance 2020; 3:3/6/e202000735. [PMID: 32345661 PMCID: PMC7190276 DOI: 10.26508/lsa.202000735] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Caspase-1 drives a lytic inflammatory cell death named pyroptosis by cleaving the pore-forming cell death executor gasdermin-D (GSDMD). Gsdmd deficiency, however, only delays cell lysis, indicating that caspase-1 controls alternative cell death pathways. Here, we show that in the absence of GSDMD, caspase-1 activates apoptotic initiator and executioner caspases and triggers a rapid progression into secondary necrosis. GSDMD-independent cell death required direct caspase-1-driven truncation of Bid and generation of caspase-3 p19/p12 by either caspase-8 or caspase-9. tBid-induced mitochondrial outer membrane permeabilization was also required to drive SMAC release and relieve inhibitor of apoptosis protein inhibition of caspase-3, thereby allowing caspase-3 auto-processing to the fully active p17/p12 form. Our data reveal that cell lysis in inflammasome-activated Gsdmd-deficient cells is caused by a synergistic effect of rapid caspase-1-driven activation of initiator caspases-8/-9 and Bid cleavage, resulting in an unusually fast activation of caspase-3 and immediate transition into secondary necrosis. This pathway might be advantageous for the host in counteracting pathogen-induced inhibition of GSDMD but also has implications for the use of GSDMD inhibitors in immune therapies for caspase-1-dependent inflammatory disease.
Collapse
Affiliation(s)
- Rosalie Heilig
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Marisa Dilucca
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Dave Boucher
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Dora Hancz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
204
|
Zhao XY, Wang XY, Wei QY, Xu YM, Lau ATY. Potency and Selectivity of SMAC/DIABLO Mimetics in Solid Tumor Therapy. Cells 2020; 9:cells9041012. [PMID: 32325691 PMCID: PMC7226512 DOI: 10.3390/cells9041012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). SMAC mimetics (SMs) are a series of synthetically chemical compounds. Via database analysis and literature searching, we summarize the potential mechanisms of endogenous SMAC inefficiency, degradation, mutation, releasing blockage, and depression. We review the development of SMs, as well as preclinical and clinical outcomes of SMs in solid tumor treatment, and we analyze their strengths, weaknesses, opportunities, and threats from our point of view. We also highlight several questions in need of further investigation.
Collapse
Affiliation(s)
| | | | | | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
205
|
Abbas R, Larisch S. Targeting XIAP for Promoting Cancer Cell Death-The Story of ARTS and SMAC. Cells 2020; 9:E663. [PMID: 32182843 PMCID: PMC7140716 DOI: 10.3390/cells9030663] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that regulate cell death and inflammation. XIAP (X-linked IAP) is the only family member that suppresses apoptosis by directly binding to and inhibiting caspases. On the other hand, cIAPs suppress the activation of the extrinsic apoptotic pathway by preventing the formation of pro-apoptotic signaling complexes. IAPs are negatively regulated by IAP-antagonist proteins such as Smac/Diablo and ARTS. ARTS can promote apoptosis by binding and degrading XIAP via the ubiquitin proteasome-system (UPS). Smac can induce the degradation of cIAPs but not XIAP. Many types of cancer overexpress IAPs, thus enabling tumor cells to evade apoptosis. Therefore, IAPs, and in particular XIAP, have become attractive targets for cancer therapy. In this review, we describe the differences in the mechanisms of action between Smac and ARTS, and we summarize efforts to develop cancer therapies based on mimicking Smac and ARTS. Several Smac-mimetic small molecules are currently under evaluation in clinical trials. Initial efforts to develop ARTS-mimetics resulted in a novel class of compounds, which bind and degrade XIAP but not cIAPs. Smac-mimetics can target tumors with high levels of cIAPs, whereas ARTS-mimetics are expected to be effective for cancers with high levels of XIAP.
Collapse
Affiliation(s)
| | - Sarit Larisch
- Laboratory of Cell Death and Cancer Research, Biology& Human Biology Departments, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
206
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
207
|
Vetma V, Guttà C, Peters N, Praetorius C, Hutt M, Seifert O, Meier F, Kontermann R, Kulms D, Rehm M. Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death Differ 2020; 27:2417-2432. [PMID: 32081986 PMCID: PMC7370234 DOI: 10.1038/s41418-020-0512-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Second generation TRAIL-based therapeutics, combined with sensitising co-treatments, have recently entered clinical trials. However, reliable response predictors for optimal patient selection are not yet available. Here, we demonstrate that a novel and translationally relevant hexavalent TRAIL receptor agonist, IZI1551, in combination with Birinapant, a clinically tested IAP antagonist, efficiently induces cell death in various melanoma models, and that responsiveness can be predicted by combining pathway analysis, data-driven modelling and pattern recognition. Across a panel of 16 melanoma cell lines, responsiveness to IZI1551/Birinapant was heterogeneous, with complete resistance and pronounced synergies observed. Expression patterns of TRAIL pathway regulators allowed us to develop a combinatorial marker that predicts potent cell killing with high accuracy. IZI1551/Birinapant responsiveness could be predicted not only for cell lines, but also for 3D tumour cell spheroids and for cells directly isolated from patient melanoma metastases (80–100% prediction accuracies). Mathematical parameter reduction identified 11 proteins crucial to ensure prediction accuracy, with x-linked inhibitor of apoptosis protein (XIAP) and procaspase-3 scoring highest, and Bcl-2 family members strongly represented. Applied to expression data of a cohort of n = 365 metastatic melanoma patients in a proof of concept in silico trial, the predictor suggested that IZI1551/Birinapant responsiveness could be expected for up to 30% of patient tumours. Overall, response frequencies in melanoma models were very encouraging, and the capability to predict melanoma sensitivity to combinations of latest generation TRAIL-based therapeutics and IAP antagonists can address the need for patient selection strategies in clinical trials based on these novel drugs.
Collapse
Affiliation(s)
- Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Christian Praetorius
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Dagmar Kulms
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany. .,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland. .,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany. .,Stuttgart Centre for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
208
|
Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118688. [PMID: 32087180 DOI: 10.1016/j.bbamcr.2020.118688] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/20/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022]
Abstract
Members of the caspase family of proteases play essential roles in the initiation and execution of apoptosis. These caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Many conventional cancer therapies induce apoptosis to remove the cancer cell by engaging these caspases indirectly. Newer therapeutic applications have been designed, including those that specifically activate individual caspases using gene therapy approaches and small molecules that repress natural inhibitors of caspases already present in the cell. For such approaches to have maximal clinical efficacy, emerging insights into non-apoptotic roles of these caspases need to be considered. This review will discuss the roles of caspases as safeguards against cancer in the context of the advantages and potential limitations of targeting apoptotic caspases for the treatment of cancer.
Collapse
Affiliation(s)
- Ashley Boice
- Department of Pediatrics, Division of Hematology-Oncology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
209
|
Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020; 13:13/619/eaax8295. [PMID: 32071170 DOI: 10.1126/scisignal.aax8295] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, and psoriasis are needed because current treatments are often suboptimal in terms of both efficacy and the risks of serious adverse events. Inhibitor of apoptosis proteins (IAPs) are E3 ubiquitin ligases that inhibit cell death pathways and are themselves inhibited by second mitochondria-derived activator of caspases (SMAC). SMAC mimetics (SMs), small-molecule antagonists of IAPs, are being evaluated as cancer therapies in clinical trials. IAPs are also crucial regulators of inflammatory pathways because they influence both the activation of inflammatory genes and the induction of cell death through the receptor-interacting serine-threonine protein kinases (RIPKs), nuclear factor κB (NF-κB)-inducing kinase, and mitogen-activated protein kinases (MAPKs). Furthermore, there is an increasing interest in specifically targeting the substrates of IAP-mediated ubiquitylation, especially RIPK1, RIPK2, and RIPK3, as druggable nodes in inflammation control. Several studies have revealed an anti-inflammatory potential of RIPK inhibitors that either block inflammatory signaling or block the form of inflammatory cell death known as necroptosis. Expanding research on innate immune signaling through pattern recognition receptors that stimulate proinflammatory NF-κB and MAPK signaling may further contribute to uncovering the complex molecular roles used by IAPs and downstream RIPKs in inflammatory signaling. This may benefit and guide the development of SMs or selective RIPK inhibitors as anti-inflammatory therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark.
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| |
Collapse
|
210
|
Zonneville J, Wong V, Limoge M, Nikiforov M, Bakin AV. TAK1 signaling regulates p53 through a mechanism involving ribosomal stress. Sci Rep 2020; 10:2517. [PMID: 32054925 PMCID: PMC7018718 DOI: 10.1038/s41598-020-59340-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer with limited therapeutic options. TAK1 is implicated in aggressive behavior of TNBC, while means are not fully understood. Here, we report that pharmacological blockade of TAK1 signaling hampered ribosome biogenesis (RBG) by reducing expression of RBG regulators such as RRS1, while not changing expression of ribosomal core proteins. Notably, TAK1 blockade upregulated expression of p53 target genes in cell lines carrying wild type (wt) TP53 but not in p53-mutant cells, suggesting involvement of ribosomal stress in the response. Accordingly, p53 activation by blockade of TAK1 was prevented by depletion of ribosomal protein RPL11. Further, siRNA-mediated depletion of TAK1 or RELA resulted in RPL11-dependent activation of p53 signaling. Knockdown of RRS1 was sufficient to disrupt nucleolar structures and resulted in activation of p53. TCGA data showed that TNBCs express high levels of RBG regulators, and elevated RRS1 levels correlate with unfavorable prognosis. Cytotoxicity data showed that TNBC cell lines are more sensitive to TAK1 inhibitor compared to luminal and HER2+ cell lines. These results show that TAK1 regulates p53 activation by controlling RBG factors, and the TAK1-ribosome axis is a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Vincent Wong
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michelle Limoge
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Mikhail Nikiforov
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Andrei V Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA.
| |
Collapse
|
211
|
Molecular mechanisms of necroptosis and relevance for neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:31-82. [PMID: 32381178 DOI: 10.1016/bs.ircmb.2019.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Necroptosis is a regulated cell death pathway morphologically similar to necrosis that depends on the kinase activity of receptor interacting protein 3 (RIP3) and the subsequent activation of the pseudokinase mixed lineage kinase domain-like protein (MLKL), being also generally dependent on RIP1 kinase activity. Necroptosis can be recruited during pathological conditions, usually following the activation of death receptors under specific cellular contexts. In this regard, necroptosis has been implicated in the pathogenesis of multiple disorders, including acute and chronic neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, and multiple sclerosis. Here, we summarize the molecular mechanisms regulating the induction of necroptosis and downstream effectors of this form of cell death, besides exploring non-necroptotic roles for necroptosis-related proteins that may impact on alternative cell death pathways and inflammatory mechanisms in disease. Finally, we outline the recent evidence implicating necroptosis in neurodegenerative conditions and the emerging therapeutic perspectives targeting necroptosis in these diseases.
Collapse
|
212
|
Kang K, Quan KT, Byun HS, Lee SR, Piao X, Ju E, Park KA, Sohn KC, Shen HM, Na M, Hur GM. 3-O-acetylrubianol C (3AR-C) induces RIPK1-dependent programmed cell death by selective inhibition of IKKβ. FASEB J 2020; 34:4369-4383. [PMID: 32027418 DOI: 10.1096/fj.201902547r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/04/2020] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death. To identify the molecular mechanism, we found that in mouse embryonic fibroblasts, 3AR-C drastically upregulated RIPK1 kinase activity by selectively inhibiting IKKβ. Notably, 3AR-C did not interfere with IKKα or affect the formation of the TNF receptor1 (TNFR1) complex-I. Moreover, in human cancer cells, 3AR-C was only sufficient to sensitize TNF-induced cell death when c-FLIPL expression was downregulated to facilitate the formation of TNFR1 complex-II and necrosome. Taken together, our study identified a novel arborinane triterpenoid 3AR-C as a potent activator of TNF-induced cell death via inhibition of IKKβ phosphorylation and promotion of the cytotoxic potential of RIPK1, thus providing a rationale for further development of 3AR-C as a selective IKKβ inhibitor to overcome TNF resistance in cancer therpay.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - So-Ra Lee
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xuezhe Piao
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eunjin Ju
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
213
|
Abstract
Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.
Collapse
Affiliation(s)
- Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; , ,
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; , ,
| | | |
Collapse
|
214
|
Feoktistova M, Makarov R, Brenji S, Schneider AT, Hooiveld GJ, Luedde T, Leverkus M, Yazdi AS, Panayotova-Dimitrova D. A20 Promotes Ripoptosome Formation and TNF-Induced Apoptosis via cIAPs Regulation and NIK Stabilization in Keratinocytes. Cells 2020; 9:E351. [PMID: 32028675 PMCID: PMC7072579 DOI: 10.3390/cells9020351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-editing protein A20 (TNFAIP3) is a known key player in the regulation of immune responses in many organs. Genome-wide associated studies (GWASs) have linked A20 with a number of inflammatory and autoimmune disorders, including psoriasis. Here, we identified a previously unrecognized role of A20 as a pro-apoptotic factor in TNF-induced cell death in keratinocytes. This function of A20 is mediated via the NF-κB-dependent alteration of cIAP1/2 expression. The changes in cIAP1/2 protein levels promote NIK stabilization and subsequent activation of noncanonical NF-κB signaling. Upregulation of TRAF1 expression triggered by the noncanonical NF-κB signaling further enhances the NIK stabilization in an autocrine manner. Finally, stabilized NIK promotes the formation of the ripoptosome and the execution of cell death. Thus, our data demonstrate that A20 controls the execution of TNF-induced cell death on multiple levels in keratinocytes. This signaling mechanism might have important implications for the development of new therapeutic strategies for the treatment of A20-associated skin diseases.
Collapse
Affiliation(s)
- Maria Feoktistova
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.F.); (R.M.); (S.B.); (A.S.Y.)
| | - Roman Makarov
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.F.); (R.M.); (S.B.); (A.S.Y.)
| | - Sihem Brenji
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.F.); (R.M.); (S.B.); (A.S.Y.)
| | - Anne T. Schneider
- Department of Medicine III, Department of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (A.T.S.); (T.L.)
| | - Guido J. Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition & Health, Wageningen University, 6700 AA Wageningen; The Netherlands;
| | - Tom Luedde
- Department of Medicine III, Department of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (A.T.S.); (T.L.)
| | - Martin Leverkus
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.F.); (R.M.); (S.B.); (A.S.Y.)
| | - Amir S. Yazdi
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.F.); (R.M.); (S.B.); (A.S.Y.)
| | - Diana Panayotova-Dimitrova
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.F.); (R.M.); (S.B.); (A.S.Y.)
| |
Collapse
|
215
|
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21:85-100. [PMID: 31636403 DOI: 10.1038/s41580-019-0173-8] [Citation(s) in RCA: 1545] [Impact Index Per Article: 309.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
216
|
Imre G. The involvement of regulated cell death forms in modulating the bacterial and viral pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:211-253. [PMID: 32381176 PMCID: PMC7102569 DOI: 10.1016/bs.ircmb.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis, necroptosis and pyroptosis represent three distinct types of regulated cell death forms, which play significant roles in response to viral and bacterial infections. Whereas apoptosis is characterized by cell shrinkage, nuclear condensation, bleb formation and retained membrane integrity, necroptosis and pyroptosis exhibit osmotic imbalance driven cytoplasmic swelling and early membrane damage. These three cell death forms exert distinct immune stimulatory potential. The caspase driven apoptotic cell demise is considered in many circumstances as anti-inflammatory, whereas the two lytic cell death modalities can efficiently trigger immune response by releasing damage associated molecular patterns to the extracellular space. The relevance of these cell death modalities in infections can be best demonstrated by the presence of viral proteins that directly interfere with cell death pathways. Conversely, some pathogens hijack the cell death signaling routes to initiate a targeted attack against the immune cells of the host, and extracellular bacteria can benefit from the destruction of intact extracellular barriers upon cell death induction. The complexity and the crosstalk between these cell death modalities reflect a continuous evolutionary race between pathogens and host. This chapter discusses the current advances in the research of cell death signaling with regard to viral and bacterial infections and describes the network of the cell death initiating molecular mechanisms that selectively recognize pathogen associated molecular patterns.
Collapse
Affiliation(s)
- Gergely Imre
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
217
|
Maelfait J, Liverpool L, Rehwinkel J. Nucleic Acid Sensors and Programmed Cell Death. J Mol Biol 2020; 432:552-568. [PMID: 31786265 PMCID: PMC7322524 DOI: 10.1016/j.jmb.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Nucleic acids derived from microorganisms are powerful triggers for innate immune responses. Proteins called RNA and DNA sensors detect foreign nucleic acids and, in mammalian cells, include RIG-I, cGAS, and AIM2. On binding to nucleic acids, these proteins initiate signaling cascades that activate host defense responses. An important aspect of this defense program is the production of cytokines such as type I interferons and IL-1β. Studies conducted over recent years have revealed that nucleic acid sensors also activate programmed cell death pathways as an innate immune response to infection. Indeed, RNA and DNA sensors induce apoptosis, pyroptosis, and necroptosis. Cell death via these pathways prevents replication of pathogens by eliminating the infected cell and additionally contributes to the release of cytokines and inflammatory mediators. Interestingly, recent evidence suggests that programmed cell death triggered by nucleic acid sensors plays an important role in a number of noninfectious pathologies. In addition to nonself DNA and RNA from microorganisms, nucleic acid sensors also recognize endogenous nucleic acids, for example when cells are damaged by genotoxic agents and in certain autoinflammatory diseases. This review article summarizes current knowledge on the links between nucleic acid sensing and cell death and explores important open questions for future studies in this area.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| | - Layal Liverpool
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
218
|
The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells 2020; 9:cells9010207. [PMID: 31947615 PMCID: PMC7017284 DOI: 10.3390/cells9010207] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
One of the hallmarks of cancer cells is their ability to evade cell death via apoptosis. The inhibitor of apoptosis proteins (IAPs) are a family of proteins that act to promote cell survival. For this reason, upregulation of IAPs is associated with a number of cancer types as a mechanism of resistance to cell death and chemotherapy. As such, IAPs are considered a promising therapeutic target for cancer treatment, based on the role of IAPs in resistance to apoptosis, tumour progression and poor patient prognosis. The mitochondrial protein smac (second mitochondrial activator of caspases), is an endogenous inhibitor of IAPs, and several small molecule mimetics of smac (smac-mimetics) have been developed in order to antagonise IAPs in cancer cells and restore sensitivity to apoptotic stimuli. However, recent studies have revealed that smac-mimetics have broader effects than was first attributed. It is now understood that they are key regulators of innate immune signalling and have wide reaching immuno-modulatory properties. As such, they are ideal candidates for immunotherapy combinations. Pre-clinically, successful combination therapies incorporating smac-mimetics and oncolytic viruses, as with chimeric antigen receptor (CAR) T cell therapy, have been reported, and clinical trials incorporating smac-mimetics and immune checkpoint blockade are ongoing. Here, the potential of IAP antagonism to enhance immunotherapy strategies for the treatment of cancer will be discussed.
Collapse
|
219
|
Key necroptotic proteins are required for Smac mimetic-mediated sensitization of cholangiocarcinoma cells to TNF-α and chemotherapeutic gemcitabine-induced necroptosis. PLoS One 2020; 15:e0227454. [PMID: 31914150 PMCID: PMC6948742 DOI: 10.1371/journal.pone.0227454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a malignant tumor originating in the biliary tract, is well known to be associated with adverse clinical outcomes and high mortality rates due to the lack of effective therapy. Evasion of apoptosis is considered a key contributor to therapeutic success and chemotherapy resistance in CCA, highlighting the need for novel therapeutic strategies. In this study, we demonstrated that the induction of necroptosis, a novel regulated form of necrosis, could potentially serve as a novel therapeutic approach for CCA patients. The RNA sequencing data in The Cancer Genome Atlas (TCGA) database were analyzed and revealed that both receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), two essential mediators of necroptosis, were upregulated in CCA tissues when compared with the levels in normal bile ducts. We demonstrated in a panel of CCA cell lines that RIPK3 was differentially expressed in CCA cell lines, while MLKL was more highly expressed in CCA cell lines than in nontumor cholangiocytes. We therefore showed that treatment with both tumor necrosis factor-α (TNF-α) and Smac mimetic, an inhibitor of apoptosis protein (IAP) antagonist, induced RIPK1/RIPK3/MLKL-dependent necroptosis in CCA cells when caspases were blocked. The necroptotic induction in a panel of CCA cells was correlated with RIPK3 expression. Intriguingly, we demonstrated that Smac mimetic sensitized CCA cells to a low dose of standard chemotherapy, gemcitabine, and induced necroptosis in an RIPK1/RIPK3/MLKL-dependent manner upon caspase inhibition but not in nontumor cholangiocytes. We further demonstrated that Smac mimetic and gemcitabine synergistically induced an increase in TNF-α mRNA levels and that Smac mimetic reversed gemcitabine-induced cell cycle arrest, leading to cell killing. Collectively, our present study demonstrated that TNF-α and gemcitabine induced RIPK1/RIPK3/MLKL-dependent necroptosis upon IAP depletion and caspase inhibition; therefore, our findings have pivotal implications for designing a novel necroptosis-based therapeutic strategy for CCA patients.
Collapse
|
220
|
Kaushal GP, Chandrashekar K, Juncos LA, Shah SV. Autophagy Function and Regulation in Kidney Disease. Biomolecules 2020; 10:E100. [PMID: 31936109 PMCID: PMC7022273 DOI: 10.3390/biom10010100] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a dynamic process by which intracellular damaged macromolecules and organelles are degraded and recycled for the synthesis of new cellular components. Basal autophagy in the kidney acts as a quality control system and is vital for cellular metabolic and organelle homeostasis. Under pathological conditions, autophagy facilitates cellular adaptation; however, activation of autophagy in response to renal injury may be insufficient to provide protection, especially under dysregulated conditions. Kidney-specific deletion of Atg genes in mice has consistently demonstrated worsened acute kidney injury (AKI) outcomes supporting the notion of a pro-survival role of autophagy. Recent studies have also begun to unfold the role of autophagy in progressive renal disease and subsequent fibrosis. Autophagy also influences tubular cell death in renal injury. In this review, we reported the current understanding of autophagy regulation and its role in the pathogenesis of renal injury. In particular, the classic mammalian target of rapamycin (mTOR)-dependent signaling pathway and other mTOR-independent alternative signaling pathways of autophagy regulation were described. Finally, we summarized the impact of autophagy activation on different forms of cell death, including apoptosis and regulated necrosis, associated with the pathophysiology of renal injury. Understanding the regulatory mechanisms of autophagy would identify important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Gur P. Kaushal
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Kiran Chandrashekar
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Luis A. Juncos
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| | - Sudhir V. Shah
- Renal Section, Central Arkansas Veterans Healthcare System Little Rock, Arkansas and Division of Nephrology, 4300 W 7th St, Little Rock, AR 72205, USA; (L.A.J.); (S.V.S.)
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
221
|
Zhuang Y, Xu HC, Shinde PV, Warfsmann J, Vasilevska J, Sundaram B, Behnke K, Huang J, Hoell JI, Borkhardt A, Pfeffer K, Taha MS, Herebian D, Mayatepek E, Brenner D, Ahmadian MR, Keitel V, Wieczorek D, Häussinger D, Pandyra AA, Lang KS, Lang PA. Fragile X mental retardation protein protects against tumour necrosis factor-mediated cell death and liver injury. Gut 2020; 69:133-145. [PMID: 31409605 PMCID: PMC6943250 DOI: 10.1136/gutjnl-2019-318215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/08/2022]
Abstract
OBJECTIVE The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens Warfsmann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Jelena Vasilevska
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kristina Behnke
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jun Huang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jessica I Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mohamed S Taha
- Research on Children with Special Needs Department, Medical research Branch, National Research Centre, Cairo, Egypt,Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental & Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, University of Southern Denmark, Odense, Denmark,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,Department of Gastroenterology, Hepatology, and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
222
|
Epigenetic Regulation of RIP3 Suppresses Necroptosis and Increases Resistance to Chemotherapy in NonSmall Cell Lung Cancer. Transl Oncol 2019; 13:372-382. [PMID: 31887632 PMCID: PMC6938879 DOI: 10.1016/j.tranon.2019.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The efficacy of chemotherapeutic agents in killing cancer cells is mainly attributed to the induction of apoptosis. However, the tremendous efforts on enhancing apoptosis-related mechanisms have only moderately improved lung cancer chemotherapy, suggesting that other cell death mechanisms such as necroptosis could be involved. In this study, we investigated the role of the necroptosis pathway in the responsiveness of nonsmall cell lung cancer (NSCLC) to chemotherapy. METHODS In vitro cell culture and in vivo xenograft tumor therapy models and clinical sample studies are combined in studying the role of necroptosis in chemotherapy and mechanism of necroptosis suppression involving RIP3 expression regulation. RESULTS While chemotherapeutic drugs were able to induce necroptotic cell death, this pathway was suppressed in lung cancer cells at least partly through downregulation of RIP3 expression. Ectopic RIP3 expression significantly sensitized lung cancer cells to the cytotoxicity of anticancer drugs such as cisplatin, etoposide, vincristine, and adriamycin. In addition, RIP3 suppression was associated with RIP3 promoter methylation, and demethylation partly restored RIP3 expression and increased chemotherapeutic-induced necroptotic cell death. In a xenograft tumor therapy model, ectopic RIP3 expression significantly sensitized anticancer activity of cisplatin in vivo. Furthermore, lower RIP3 expression was associated with worse chemotherapy response in NSCLC patients. CONCLUSION Our results indicate that the necroptosis pathway is suppressed in lung cancer through RIP3 promoter methylation, and reactivating this pathway should be exploited for improving lung cancer chemotherapy.
Collapse
|
223
|
Lopes Fischer N, Naseer N, Shin S, Brodsky IE. Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 2019; 5:14-26. [DOI: 10.1038/s41564-019-0623-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023]
|
224
|
Vanbervliet-Defrance B, Delaunay T, Daunizeau T, Kepenekian V, Glehen O, Weber K, Estornes Y, Ziverec A, Djemal L, Delphin M, Lantuéjoul S, Passot G, Grégoire M, Micheau O, Blanquart C, Renno T, Fonteneau JF, Lebecque S, Mahtouk K. Cisplatin unleashes Toll-like receptor 3-mediated apoptosis through the downregulation of c-FLIP in malignant mesothelioma. Cancer Lett 2019; 472:29-39. [PMID: 31838086 DOI: 10.1016/j.canlet.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an immune receptor that behaves like a death receptor in tumor cells, thereby providing an original target for cancer therapy. The therapeutic potential of TLR3 targeting in malignant mesothelioma, an aggressive and incurable neoplasia of the pleura and peritoneum, has so far not been addressed. We investigated TLR3 expression and sensitivity of human mesothelioma cell lines to the synthetic dsRNA Poly(I:C), alone or in combination with cisplatin, the gold standard chemotherapy in mesothelioma. Activation of TLR3 by Poly(I:C) induced apoptosis of 4/8 TLR3-positive cell lines but not of TLR3-negative cell lines. The combined cisplatin/Poly(I:C) treatment enhanced apoptosis of 3/4 Poly(I:C)-sensitive cell lines and overcame resistance to Poly(I:C) or cisplatin alone in 2/4 cell lines. Efficacy of the combined treatment relied on cisplatin-induced downregulation of c-FLIP, the main regulator of the extrinsic apoptotic pathway, leading to an enhanced caspase-8-mediated pathway. Of note, 6/6 primary cell samples isolated from patients with peritoneal mesothelioma expressed TLR3. Patient-derived cells were sensitive to Poly(I:C) alone while the combined cisplatin/Poly(I:C) treatment induced dramatic cell death. Our findings demonstrate that TLR3 targeting in combination with cisplatin presents an innovative therapeutic strategy in mesothelioma.
Collapse
Affiliation(s)
- Béatrice Vanbervliet-Defrance
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Tiphaine Delaunay
- CRCINA, INSERM, Université D'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Thomas Daunizeau
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Vahan Kepenekian
- Service de Chirurgie Viscérale et Oncologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, EMR 3738, Oullins, France
| | - Olivier Glehen
- Service de Chirurgie Viscérale et Oncologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, EMR 3738, Oullins, France
| | - Kathrin Weber
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Yann Estornes
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Audrey Ziverec
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Leila Djemal
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marion Delphin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Sylvie Lantuéjoul
- Department of Biopathology and Translation Research and Innovation, Centre Léon Bérard and Synergie Lyon Cancer, Lyrican, Lyon, and Grenoble Alpes University, France
| | - Guillaume Passot
- Service de Chirurgie Viscérale et Oncologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, EMR 3738, Oullins, France
| | - Marc Grégoire
- CRCINA, INSERM, Université D'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Olivier Micheau
- Université Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079, Dijon, France
| | - Christophe Blanquart
- CRCINA, INSERM, Université D'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Toufic Renno
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Jean-François Fonteneau
- CRCINA, INSERM, Université D'Angers, Université de Nantes, Nantes, France; Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Serge Lebecque
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Service D'Anatomie Pathologique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Karène Mahtouk
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.
| |
Collapse
|
225
|
Chauhan D, Bartok E, Gaidt MM, Bock FJ, Herrmann J, Seeger JM, Broz P, Beckmann R, Kashkar H, Tait SWG, Müller R, Hornung V. BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1β Maturation in Macrophages. Cell Rep 2019; 25:2354-2368.e5. [PMID: 30485805 DOI: 10.1016/j.celrep.2018.10.087] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/14/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022] Open
Abstract
IL-1β is a cytokine of pivotal importance to the orchestration of inflammatory responses. Synthesized as an inactive pro-cytokine, IL-1β requires proteolytic maturation to gain biological activity. Here, we identify intrinsic apoptosis as a non-canonical trigger of IL-1β maturation. Guided by the discovery of the immunomodulatory activity of vioprolides, cyclic peptides isolated from myxobacteria, we observe IL-1β maturation independent of canonical inflammasome pathways, yet dependent on intrinsic apoptosis. Mechanistically, vioprolides inhibit MCL-1 and BCL2, which in turn triggers BAX/BAK-dependent mitochondrial outer membrane permeabilization (MOMP). Induction of MOMP results in the release of pro-apoptotic factors initiating intrinsic apoptosis, as well as the depletion of IAPs (inhibitors of apoptosis proteins). IAP depletion, in turn, operates upstream of ripoptosome complex formation, subsequently resulting in caspase-8-dependent IL-1β maturation. These results establish the ripoptosome/caspase-8 complex as a pro-inflammatory checkpoint that senses the perturbation of mitochondrial integrity.
Collapse
Affiliation(s)
- Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Moritz M Gaidt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Florian J Bock
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jens M Seeger
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
226
|
Wilczynska A, Gillen SL, Schmidt T, Meijer HA, Jukes-Jones R, Langlais C, Kopra K, Lu WT, Godfrey JD, Hawley BR, Hodge K, Zanivan S, Cain K, Le Quesne J, Bushell M. eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR. Genome Biol 2019; 20:262. [PMID: 31791371 PMCID: PMC6886185 DOI: 10.1186/s13059-019-1857-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulation of the mRNA life cycle is central to gene expression control and determination of cell fate. miRNAs represent a critical mRNA regulatory mechanism, but despite decades of research, their mode of action is still not fully understood. RESULTS Here, we show that eIF4A2 is a major effector of the repressive miRNA pathway functioning via the Ccr4-Not complex. We demonstrate that while DDX6 interacts with Ccr4-Not, its effects in the mechanism are not as pronounced. Through its interaction with the Ccr4-Not complex, eIF4A2 represses mRNAs at translation initiation. We show evidence that native eIF4A2 has similar RNA selectivity to chemically inhibited eIF4A1. eIF4A2 exerts its repressive effect by binding purine-rich motifs which are enriched in the 5'UTR of target mRNAs directly upstream of the AUG start codon. CONCLUSIONS Our data support a model whereby purine motifs towards the 3' end of the 5'UTR are associated with increased ribosome occupancy and possible uORF activation upon eIF4A2 binding.
Collapse
Affiliation(s)
- Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Hedda A Meijer
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | - Kari Kopra
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
- Present Address: Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500, Turku, Finland
| | - Wei-Ting Lu
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Jack D Godfrey
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | | | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kelvin Cain
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - John Le Quesne
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
227
|
Molecular Insights into the Mechanism of Necroptosis: The Necrosome As a Potential Therapeutic Target. Cells 2019; 8:cells8121486. [PMID: 31766571 PMCID: PMC6952807 DOI: 10.3390/cells8121486] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Necroptosis, or regulated necrosis, is an important type of programmed cell death in addition to apoptosis. Necroptosis induction leads to cell membrane disruption, inflammation and vascularization. It plays important roles in various pathological processes, including neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. The molecular regulation of necroptotic pathway has been intensively studied in recent years. Necroptosis can be triggered by multiple stimuli and this pathway is regulated through activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like (MLKL). A better understanding of the mechanism of regulation of necroptosis will further aid to the development of novel drugs for necroptosis-associated human diseases. In this review, we focus on new insights in the regulatory machinery of necroptosis. We further discuss the role of necroptosis in different pathologies, its potential as a therapeutic target and the current status of clinical development of drugs interfering in the necroptotic pathway.
Collapse
|
228
|
Necroptosis is dispensable for motor neuron degeneration in a mouse model of ALS. Cell Death Differ 2019; 27:1728-1739. [PMID: 31745214 DOI: 10.1038/s41418-019-0457-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/08/2022] Open
Abstract
Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is proposed to occur by necroptosis, an inflammatory form of regulated cell death. Prior studies implicated necroptosis in ALS based on accumulation of necroptotic markers in affected tissues of patients and mouse models, and amelioration of disease in mutant superoxide dismutase 1 (SOD1G93A) mice with inhibition of the upstream necroptotic mediators, receptor interacting protein kinase 1 (RIPK1), and RIPK3. To definitively address the pathogenic role of necroptosis in ALS, we genetically ablated the critical terminal executioner of necroptosis, mixed lineage kinase domain-like protein (MLKL), in SOD1G93A mice. Disease onset, progression, and survival were not affected in SOD1G93A mice lacking MLKL. Motor neuron degeneration and activation of neuroinflammatory cells, astrocytes, and microglia, were independent of MLKL expression in SOD1G93A mice. While RIPK1 accumulation occurred in spinal cords of SOD1G93A mice in late stage disease, RIPK3 and MLKL expression levels were not detected in central nervous system tissues from normal or SOD1G93A mice at any disease stage. These findings demonstrate that necroptosis does not play an important role in motor neuron death in ALS, which may limit the potential of therapeutic targeting of necroptosis in the treatment of neurological disorders.
Collapse
|
229
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
230
|
Zhuang C, Chen F. Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives. J Med Chem 2019; 63:1490-1510. [PMID: 31622096 DOI: 10.1021/acs.jmedchem.9b01317] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Necroptosis, an important form of programmed cell death (PCD), is a highly regulated caspase-independent type of cell death that plays a critical role in the pathophysiology of various inflammatory, infectious, and degenerative diseases. Currently, receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) have been widely recognized as critical therapeutic targets of the necroptotic machinery. Targeting RIPK1, RIPK3, and/or MLKL is a promising strategy for necroptosis-related diseases. Following the identification of the first RIPK1 inhibitor Nec-1 in 2005, the antinecroptosis field is attracting increasing research interest from multiple disciplines, including the biological and medicinal chemistry communities. Herein, we will review the functions of necroptosis in human diseases, as well as the related targets and representative small-molecule inhibitors, mainly focusing on research articles published during the past 10 years. Outlooks and perspectives on the associated challenges are also discussed.
Collapse
Affiliation(s)
- Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , China
| |
Collapse
|
231
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 661] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
232
|
Matveeva A, Fichtner M, McAllister K, McCann C, Sturrock M, Longley DB, Prehn JHM. Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. PLoS Comput Biol 2019; 15:e1007374. [PMID: 31553717 PMCID: PMC6779275 DOI: 10.1371/journal.pcbi.1007374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
Ligand binding to death receptors activates apoptosis in cancer cells. Stimulation of death receptors results in the formation of intracellular multiprotein platforms that either activate the apoptotic initiator Caspase-8 to trigger cell death, or signal through kinases to initiate inflammatory and cell survival signalling. Two of these platforms, the Death-Inducing Signalling Complex (DISC) and the RIPoptosome, also initiate necroptosis by building filamentous scaffolds that lead to the activation of mixed lineage kinase domain-like pseudokinase. To explain cell decision making downstream of death receptor activation, we developed a semi-stochastic model of DISC/RIPoptosome formation. The model is a hybrid of a direct Gillespie stochastic simulation algorithm for slow assembly of the RIPoptosome and a deterministic model of downstream caspase activation. The model explains how alterations in the level of death receptor-ligand complexes, their clustering properties and intrinsic molecular fluctuations in RIPoptosome assembly drive heterogeneous dynamics of Caspase-8 activation. The model highlights how kinetic proofreading leads to heterogeneous cell responses and results in fractional cell killing at low levels of receptor stimulation. It reveals that the noise in Caspase-8 activation-exclusively caused by the stochastic molecular assembly of the DISC/RIPoptosome platform-has a key function in extrinsic apoptotic stimuli recognition.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine McAllister
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Marc Sturrock
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
233
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
234
|
The Molecular Links between Cell Death and Inflammasome. Cells 2019; 8:cells8091057. [PMID: 31509938 PMCID: PMC6769855 DOI: 10.3390/cells8091057] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death pathways and inflammasome activation pathways can be genetically and functionally separated. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, interleukin-1β (IL-1β), and IL-18 to bioactive forms for protection from a wide range of pathogens, as well as environmental and host-derived danger molecules. Programmed cell death has been extensively studied, and its role in the development, homeostasis, and control of infection and danger is widely appreciated. Apoptosis and the recently recognized necroptosis are the best-characterized forms of programmed death, and the interplay between them through death receptor signaling is also being studied. Moreover, growing evidence suggests that many of the signaling molecules known to regulate programmed cell death can also modulate inflammasome activation in a cell-intrinsic manner. Therefore, in this review, we will discuss the current knowledge concerning the role of the signaling molecules originally associated with programmed cell death in the activation of inflammasome and IL-1β processing.
Collapse
|
235
|
Elimination of Osteosarcoma by Necroptosis with Graphene Oxide-Associated Anti-HER2 Antibodies. Int J Mol Sci 2019; 20:ijms20184360. [PMID: 31491952 PMCID: PMC6770144 DOI: 10.3390/ijms20184360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
The prognosis for non-resectable or recurrent osteosarcoma (OS) remains poor. The finding that the majority of OS overexpress the protooncogene HER2 raises the possibility of using HER2 as a therapeutic target. However, clinical trials on the anti-HER2 antibody trastuzumab (TRA) in treating OS find no therapeutic benefit. HER2 overexpression in OS is not generally associated with gene amplification, with low-level expression regarded as HER2 “negative”, as per criteria used to classify breast cancer HER2 status. Nevertheless, active HER2-targeting approaches, such as virus-based HER2 vaccines or CAR-T cells have generated promising results. More recently, it has been found that the noncovalent association of TRA with nanomaterial graphene oxide (GO) generates stable TRA/GO complexes capable of rapidly killing OS cells. TRA/GO induces oxidative stress and strong HER2 signaling to elicit immediate degradation of both cIAP (cellular inhibitor of apoptosis protein) and caspase 8, leading to activation of necroptosis. This is an attractive mechanism of cancer cell death as chemo/apoptosis-resistant tumors may remain susceptible to necroptosis. In addition, necroptosis is potentially immunogenic to promote tumor immunity, as opposed to apoptosis that tends to silence tumor immunity. Currently, no established anticancer therapeutics are known to eliminate cancers by necroptosis. The aim of this article is to review the rationale and mechanisms of TRA/GO-mediated cytotoxicity.
Collapse
|
236
|
Yuan S, Yu Z, Zhang Z, Zhang J, Zhang P, Li X, Li H, Shen H, Chen G. RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiol Dis 2019; 129:144-158. [PMID: 31082470 DOI: 10.1016/j.nbd.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Necroptosis is a regulated form of necrosis that is mediated by a variety of proteins including tumor necrosis factor-α (TNF-α) and receptor-interacting proteins (RIPs). TNF-α, a critical inflammatory molecule, is one of the initiating signals in the necroptosis pathway, and RIP3 acts as a switch that commits the cell to necroptosis. Subarachnoid hemorrhage (SAH) is a common type of hemorrhagic stroke with high mortality and disability rates. RIP3 has been studied in many central nervous system (CNS) diseases, but its role in SAH has not been investigated in depth. Here, we used an autologous-blood injection model to study the role of RIP3 in brain injury induced by SAH in rats. Several indexes such as brain edema, loss of blood-brain barrier (BBB) integrity, and behavioral tests of neurological function were used to evaluate brain damage in SAH-injured rats. We found that the expression of RIP3 was increased in the rat brain after SAH, reaching the highest point 24 h post-injury. We also showed that genetic or pharmacological inhibition of RIP3 or TNF-α reduced the brain damage induced by SAH, whereas overexpression of RIP3 aggravated brain injury and neurological damage. Additionally, we verified the presence of RIP3-mediated necroptosis in an in vitro SAH model of primary cultured neurons treated with conditioned medium from primary microglia activated by oxygen hemoglobin (OxyHb). Collectively, our findings indicated that RIP3 contributed to brain damage after SAH by inducing necroptosis.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhuwei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
237
|
The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene 2019; 39:1-16. [PMID: 31462710 DOI: 10.1038/s41388-019-0980-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
The maintenance of genome stability is essential for the cell as the integrity of genomic information guaranties reproduction of a whole organism. DNA damage occurring in response to different natural and nonnatural stimuli (errors in DNA replication, UV radiation, chemical agents, etc.) is normally detected by special cellular machinery that induces DNA repair. However, further accumulation of genetic lesions drives the activation of cell death to eliminate cells with defective genome. This particular feature is used for targeting fast-proliferating tumor cells during chemo-, radio-, and immunotherapy. Among different cell death modalities induced by DNA damage, apoptosis is the best studied. Nevertheless, nonapoptotic cell death and adaptive stress responses are also activated following genotoxic stress and play a crucial role in the outcome of anticancer therapy. Here, we provide an overview of nonapoptotic cell death pathways induced by DNA damage and discuss their interplay with cellular senescence, mitotic catastrophe, and autophagy.
Collapse
|
238
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
239
|
Choi ME, Price DR, Ryter SW, Choi AMK. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 2019; 4:128834. [PMID: 31391333 DOI: 10.1172/jci.insight.128834] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Necroptosis is a genetically regulated form of necrotic cell death that has emerged as an important pathway in human disease. The necroptosis pathway is induced by a variety of signals, including death receptor ligands, and regulated by receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), which form a regulatory necrosome complex. RIPK3-mediated phosphorylation of MLKL executes necroptosis. Recent studies, using animal models of tissue injury, have revealed that RIPK3 and MLKL are key effectors of injury propagation. This Review explores the functional roles of RIPK3 and MLKL as crucial pathogenic determinants and markers of disease progression and severity in experimental models of human disease, including acute and chronic pulmonary diseases; renal, hepatic, cardiovascular, and neurodegenerative diseases; cancer; and critical illness.
Collapse
Affiliation(s)
- Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, USA
| | - David R Price
- NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, USA.,Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Augustine M K Choi
- NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, USA.,Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
240
|
Ellwanger K, Briese S, Arnold C, Kienes I, Heim V, Nachbur U, Kufer TA. XIAP controls RIPK2 signaling by preventing its deposition in speck-like structures. Life Sci Alliance 2019; 2:2/4/e201900346. [PMID: 31350258 PMCID: PMC6660644 DOI: 10.26508/lsa.201900346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022] Open
Abstract
This study provides evidence that the NOD1/2-associated kinase RIPK2 localizes to detergent insoluble cytosolic complexes upon activation and suggests novel regulatory mechanisms for RIPK2 signaling. The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for linking activation of the pattern recognition receptors NOD1 and NOD2 to cellular signaling events. Recently, it was shown that RIPK2 can form higher order molecular structures in vitro. Here, we demonstrate that RIPK2 forms detergent insoluble complexes in the cytosol of host cells upon infection with invasive enteropathogenic bacteria. Formation of these structures occurred after NF-κB activation and depended on the caspase activation and recruitment domain of NOD1 or NOD2. Complex formation upon activation required RIPK2 autophosphorylation at Y474 and was influenced by phosphorylation at S176. We found that the E3 ligase X-linked inhibitor of apoptosis (XIAP) counteracts complex formation of RIPK2, accordingly mutation of the XIAP ubiquitylation sites in RIPK2 enhanced complex formation. Taken together, our work reveals novel roles of XIAP in the regulation of RIPK2 and expands our knowledge on the function of RIPK2 posttranslational modifications in NOD1/2 signaling.
Collapse
Affiliation(s)
- Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christine Arnold
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Valentin Heim
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
241
|
Griewahn L, Köser A, Maurer U. Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Front Cell Dev Biol 2019; 7:117. [PMID: 31316982 PMCID: PMC6609852 DOI: 10.3389/fcell.2019.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Pro-inflammatory signaling pathways, induced by pathogens, tissue damage or cytokines, depend on the ubiquitylation of various subunits of receptor signaling complexes, controlled by ubiquitin ligases and deubiquitinases. Ubiquitylation sets the stage for the activation of kinases within these receptor complexes, which ultimately regulate pro-inflammatory gene expression. The receptors, which transduce pro-inflammatory signals, can often induce cell death, which is controlled by ubiquitylation as well. In this review, we discuss the key role of ubiquitylation in pro-inflammatory signaling by TNFR1 and TLRs and its role in setting the threshold for cell death induced by these pro-inflammatory triggers.
Collapse
Affiliation(s)
- Laura Griewahn
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Aaron Köser
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg im Breisgau, Germany
| |
Collapse
|
242
|
PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Sci Rep 2019; 9:8755. [PMID: 31217499 PMCID: PMC6584570 DOI: 10.1038/s41598-019-45209-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Most deaths from breast cancer result from tumour recurrence, which is typically an incurable disease. Down-regulation of the pro-apoptotic tumour suppressor protein prostate apoptosis response-4 (PAR-4) is required for breast cancer recurrence and resistance to chemotherapy. Recent advances in the analysis of apoptotic signalling networks have uncovered an important role for activation of caspase-8 following DNA damage by genotoxic drugs. DNA damage induces depletion of IAP proteins and causes caspase-8 activation by promoting the formation of a cytosolic cell death complex. We demonstrate that loss of PAR-4 in triple negative breast cancer cell lines (TNBC) mediates resistance to DNA damage-induced apoptosis and prevents activation of caspase-8. Moreover, loss of PAR-4 prevents DNA damage-induced cIAP1 depletion. PAR-4 functions downstream of caspase-8 by cleavage-induced nuclear translocation of the C-terminal part and we demonstrate that nuclear translocation of the C-terminal PAR-4 fragment leads to depletion of cIAP1 and subsequent caspase-8 activation. Specifically targeting cIAP1 with RNAi or Smac mimetics (LCL161) overcomes chemo-resistance induced by loss of PAR-4 and restores caspase-8 activation. Our data identify cIAP1 as important downstream mediator of PAR-4 and we provide evidence that combining Smac mimetics and genotoxic drugs creates vulnerability for synthetic lethality in TNBC cells lacking PAR-4.
Collapse
|
243
|
Liu ZY, Zheng M, Li YM, Fan XY, Wang JC, Li ZC, Yang HJ, Yu JM, Cui J, Jiang JL, Tang J, Chen ZN. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Am J Cancer Res 2019; 9:3659-3673. [PMID: 31281505 PMCID: PMC6587173 DOI: 10.7150/thno.32126] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/12/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Necroptosis is a programmed form of non-apoptotic cell death that requires receptor-interacting protein 3 (RIP3). RIP3 has been shown to be relevant in multiple tumor types and has differential impact on tumor progression. We investigated whether RIP3 is involved in the progression of colitis-associated cancer (CAC) in mice. Methods: Tissues from colorectal cancer patients were examined for RIP3 expression. CAC was induced using azoxymethane (AOM) injection followed by dextran sodium sulfate (DSS) treatment in RIP3-deficient or wild-type mice. Colon tissues were collected and analyzed by Western blotting and gene expression profile analyses. Immune cell infiltration and CXCL1 expression were examined by flow cytometry and Real-time PCR, respectively. Results: RIP3 expression was upregulated in mouse CAC and human colon cancer. RIP3-deficient mice showed significantly attenuated colitis-associated tumorigenesis. Bone marrow transplantation experiments suggested that RIP3's function in hematopoietic cells primarily contributes to the phenotype. RIP3 supported epithelial proliferation and tumor growth via JNK signaling but had no effect on apoptosis. RIP3 deletion increased T cell accumulation and reduced infiltration by immunosuppressive subsets of myeloid cells during acute colitis and CAC. The immune-suppressive tumor microenvironment was dependent on RIP3-induced expression of the chemokine attractant CXCL1, and administration of recombinant CXCL1 during CAC restored tumorigenesis in Rip3-/- mice. Conclusion: Our results reveal an unexpected function of RIP3 in enhancing the proliferation of premalignant intestinal epithelial cells (IECs) and promoting myeloid cell-induced adaptive immune suppression. These two distinct mechanisms of RIP3-induced JNK and CXCL1 signalling contribute to CAC progression.
Collapse
|
244
|
Caspase-8 promotes c-Rel-dependent inflammatory cytokine expression and resistance against Toxoplasma gondii. Proc Natl Acad Sci U S A 2019; 116:11926-11935. [PMID: 31147458 DOI: 10.1073/pnas.1820529116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caspase-8 is a key integrator of cell survival and cell death decisions during infection and inflammation. Following engagement of tumor necrosis factor superfamily receptors or certain Toll-like receptors (TLRs), caspase-8 initiates cell-extrinsic apoptosis while inhibiting RIPK3-dependent programmed necrosis. In addition, caspase-8 has an important, albeit less well understood, role in cell-intrinsic inflammatory gene expression. Macrophages lacking caspase-8 or the adaptor FADD have defective inflammatory cytokine expression and inflammasome priming in response to bacterial infection or TLR stimulation. How caspase-8 regulates cytokine gene expression, and whether caspase-8-mediated gene regulation has a physiological role during infection, remain poorly defined. Here we demonstrate that both caspase-8 enzymatic activity and scaffolding functions contribute to inflammatory cytokine gene expression. Caspase-8 enzymatic activity was necessary for maximal expression of Il1b and Il12b, but caspase-8 deficient cells exhibited a further decrease in expression of these genes. Furthermore, the ability of TLR stimuli to induce optimal IκB kinase phosphorylation and nuclear translocation of the nuclear factor kappa light chain enhancer of activated B cells family member c-Rel required caspase activity. Interestingly, overexpression of c-Rel was sufficient to restore expression of IL-12 and IL-1β in caspase-8-deficient cells. Moreover, Ripk3 -/- Casp8 -/- mice were unable to control infection by the intracellular parasite Toxoplasma gondii, which corresponded to defects in monocyte recruitment to the peritoneal cavity, and exogenous IL-12 restored monocyte recruitment and protection of caspase-8-deficient mice during acute toxoplasmosis. These findings provide insight into how caspase-8 controls inflammatory gene expression and identify a critical role for caspase-8 in host defense against eukaryotic pathogens.
Collapse
|
245
|
Hrdinka M, Yabal M. Inhibitor of apoptosis proteins in human health and
disease. Genes Immun 2019; 20:641-650. [DOI: 10.1038/s41435-019-0078-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
|
246
|
Shindo R, Ohmuraya M, Komazawa-Sakon S, Miyake S, Deguchi Y, Yamazaki S, Nishina T, Yoshimoto T, Kakuta S, Koike M, Uchiyama Y, Konishi H, Kiyama H, Mikami T, Moriwaki K, Araki K, Nakano H. Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis. iScience 2019; 15:536-551. [PMID: 31132747 PMCID: PMC6538961 DOI: 10.1016/j.isci.2019.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/12/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
A short form of cellular FLICE-inhibitory protein encoded by CFLARs promotes necroptosis. Although necroptosis is involved in various pathological conditions, the detailed mechanisms are not fully understood. Here we generated transgenic mice wherein CFLARs was integrated onto the X chromosome. All male CFLARs Tg mice died perinatally due to severe ileitis. Although necroptosis was observed in various tissues of CFLARs Tg mice, large numbers of intestinal epithelial cells (IECs) died by apoptosis. Deletion of Ripk3 or Mlkl, essential genes of necroptosis, prevented both necroptosis and apoptosis, and rescued lethality of CFLARs Tg mice. Type 3 innate lymphoid cells (ILC3s) were activated and recruited to the small intestine along with upregulation of interleukin-22 (Il22) in CFLARs Tg mice. Deletion of ILC3s or Il22 rescued lethality of CFLARs Tg mice by preventing apoptosis, but not necroptosis of IECs. Together, necroptosis-dependent activation of ILC3s induces lethal ileitis in an IL-22-dependent manner. CFLARs Tg mice develop severe ileitis in utero Intestinal epithelial cells die by apoptosis and necroptosis in CFLARs Tg mice Blockade of necroptosis rescues lethality of CFLARs Tg mice Necroptosis activates type 3 innate lymphoid cells, resulting in severe ileitis
Collapse
Affiliation(s)
- Ryodai Shindo
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Sanae Miyake
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku-ku, Tokyo 160-8402, Japan
| | - Soichiro Kakuta
- Department of Cellular Molecular Neuropathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular Molecular Neuropathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya 466-8560, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumaicho, Showa-ku, Nagoya 466-8560, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan; Host Defense Research Center, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
247
|
Peltzer N, Walczak H. Cell Death and Inflammation – A Vital but Dangerous Liaison. Trends Immunol 2019; 40:387-402. [DOI: 10.1016/j.it.2019.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023]
|
248
|
Safa AR, Kamocki K, Saadatzadeh MR, Bijangi-Vishehsaraei K. c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer's Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target. BIOMARKERS JOURNAL 2019; 5:4. [PMID: 32352084 PMCID: PMC7189798 DOI: 10.36648/2472-1646.5.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - Krzysztof Kamocki
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - M Reza Saadatzadeh
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
249
|
Kolachala VL, Palle SK, Shen M, Shenoi A, Shayakhmetov DM, Gupta NA. Influence of Fat on Differential Receptor Interacting Serine/Threonine Protein Kinase 1 Activity Leading to Apoptotic Cell Death in Murine Liver Ischemia Reperfusion Injury Through Caspase 8. Hepatol Commun 2019; 3:925-942. [PMID: 31334443 PMCID: PMC6601319 DOI: 10.1002/hep4.1352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Current understanding is that receptor interacting serine/threonine protein kinase 1 (RIPK1) can lead to two distinct forms of cell death: RIPK3‐mediated necroptosis or caspase 8 (Casp8)‐mediated apoptosis. Here, we report that RIPK1 signaling is indispensable for protection from hepatocellular injury in a steatotic liver undergoing ischemia reperfusion injury (IRI) but not in the lean liver. In lean liver IRI, RIPK1‐mediated cell death is operational, leading to protection in RIP1 kinase‐dead knock‐in (RIPK1K45A) mice and necrostatin‐1s (Nec1s)‐treated lean wild‐type (WT) mice. However, when fed a high‐fat diet (HFD), RIPK1K45A‐treated and Nec1s‐treated WT mice undergoing IRI demonstrate exacerbated hepatocellular injury along with decreased RIPK1 ubiquitylation. Furthermore, we demonstrate that HFD‐fed RIPK3–/–/Casp8–/– mice show protection from IRI, but HFD‐fed RIPK3–/–/Casp8–/+ mice do not. We also show that blockade of RIPK1 leads to increased Casp8 activity and decreases mitochondrial viability. Conclusion: Although more studies are required, we provide important proof of concept for RIPK1 inhibition leading to distinctive outcomes in lean and steatotic liver undergoing IRI. Considering the rising incidence of nonalcoholic fatty liver disease (NAFLD) in the general population, it will be imperative to address this critical difference when treating patients with RIPK1 inhibitors. This study also presents a new target for drug therapy to prevent hepatocellular injury in NAFLD.
Collapse
Affiliation(s)
| | - Sirish K Palle
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | - Ming Shen
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | - Asha Shenoi
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | | | - Nitika A Gupta
- Department of Pediatrics Emory University School of Medicine Atlanta GA.,Transplant Services Children's Healthcare of Atlanta Atlanta GA
| |
Collapse
|
250
|
cIAP1 promotes proliferation and migration and prevents apoptosis in gallbladder cancer in vitro. Biosci Rep 2019; 39:BSR20182266. [PMID: 30902881 PMCID: PMC6465201 DOI: 10.1042/bsr20182266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 01/02/2023] Open
Abstract
Gallbladder cancer (GBC) is a demanding fatal disease with no ideal treatment for inoperable patients. Recent reports have determined TNF-α associated lymphatic metastasis in GBC, while its resistance to TNF-α-killing remains largely unexplored. In this assay, we first found cellular inhibitor of apoptosis (cIAP1) overexpressed in GBC tissues and the roles in promoting the proliferation and migration of GBC in vitro as its homology cIAP2 does. Then how GBC cell survives TNF-α toxicity and TNF-α-induced apoptosis first prevail as follows. The reduction in cIAP1 does not give rise to apoptosis even with the stimulation of TNF-α. Importantly, the loss of cIAP1 enhanced TNF-α/cycloheximide-induced apoptosis in higher activation statuses of Caspase-8, Caspase-3 without the induction of Complex Ⅱ. In response to TNF-α, the reduction in cIAP1 caused the suppression in nuclear factor-κB (NF-κB) pathway and inhibition of transcription of cell death regulator cellular FLICE-like Inhibitory Protein (c-FLIP) instead. To conclude, cIAP1 is an oncological protein abundant in GBC tissues, which enhances proliferation and immigration and blocks TNF-α from apoptosis through NF-κB pathway in vitro.
Collapse
|