201
|
SacAcuA/SacSrtN system modulates the metabolism by controlling the special proteins in Saccharopolyspora erythraea. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
202
|
Liu YT, Pan Y, Lai F, Yin XF, Ge R, He QY, Sun X. Comprehensive analysis of the lysine acetylome and its potential regulatory roles in the virulence of Streptococcus pneumoniae. J Proteomics 2018; 176:46-55. [DOI: 10.1016/j.jprot.2018.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
|
203
|
Reactive Acyl-CoA Species Modify Proteins and Induce Carbon Stress. Trends Biochem Sci 2018; 43:369-379. [PMID: 29478872 DOI: 10.1016/j.tibs.2018.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023]
Abstract
In recent years, our understanding of the scope and diversity of protein post-translational modifications (PTMs) has rapidly expanded. In particular, mitochondrial proteins are decorated with an array of acyl groups that can occur non-enzymatically. Interestingly, these modifying chemical moieties are often associated with intermediary metabolites from core metabolic pathways. In this Review, we describe biochemical reactions and biological mechanisms that activate carbon metabolites for protein PTM. We explore the emerging links between the intrinsic reactivity of metabolites, non-enzymatic protein acylation, and possible signaling roles for this system. Finally, we propose a model of 'carbon stress', similar to oxidative stress, as an effective way to conceptualize the relationship between widespread protein acylation, nutrient sensing, and metabolic homeostasis.
Collapse
|
204
|
Manning AJ, Lee J, Wolfgeher DJ, Kron SJ, Greenberg JT. Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:224-229. [DOI: 10.1016/j.bbapap.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/07/2017] [Accepted: 10/13/2017] [Indexed: 12/26/2022]
|
205
|
Jers C, Ravikumar V, Lezyk M, Sultan A, Sjöling Å, Wai SN, Mijakovic I. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators. Front Cell Infect Microbiol 2018; 7:537. [PMID: 29376036 PMCID: PMC5768985 DOI: 10.3389/fcimb.2017.00537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023] Open
Abstract
Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes.
Collapse
Affiliation(s)
- Carsten Jers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mateusz Lezyk
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Abida Sultan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sun N Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
206
|
He XD, Gong W, Zhang JN, Nie J, Yao CF, Guo FS, Lin Y, Wu XH, Li F, Li J, Sun WC, Wang ED, An YP, Tang HR, Yan GQ, Yang PY, Wei Y, Mao YZ, Lin PC, Zhao JY, Xu Y, Xu W, Zhao SM. Sensing and Transmitting Intracellular Amino Acid Signals through Reversible Lysine Aminoacylations. Cell Metab 2018; 27:151-166.e6. [PMID: 29198988 DOI: 10.1016/j.cmet.2017.10.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/17/2017] [Accepted: 10/26/2017] [Indexed: 02/05/2023]
Abstract
Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates. The K-AA marks can be removed by deacetylases, such as SIRT1 and SIRT3, employing the same mechanism as that involved in deacetylation. These dynamically regulated K-AAs transduce signals of their respective amino acids. Reversible leucylation on ras-related GTP-binding protein A/B regulates activity of the mammalian target of rapamycin complex 1. Glutaminylation on apoptosis signal-regulating kinase 1 suppresses apoptosis. We discovered non-canonical functions of ARSs and revealed systematic and functional amino acid sensing and signal transduction networks.
Collapse
Affiliation(s)
- Xia-Di He
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Wei Gong
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PRC
| | - Jia-Nong Zhang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Ji Nie
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Cui-Fang Yao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Fu-Shen Guo
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Yan Lin
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Xiao-Hui Wu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200032, PRC
| | - Feng Li
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Jie Li
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PRC
| | - Wei-Cheng Sun
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - En-Duo Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yan-Peng An
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Hui-Ru Tang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Guo-Quan Yan
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC
| | - Peng-Yuan Yang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC
| | - Yun Wei
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Yun-Zi Mao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining 810007, PRC
| | - Jian-Yuan Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Yanhui Xu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PRC; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PRC.
| | - Wei Xu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC.
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC.
| |
Collapse
|
207
|
Gallego-Jara J, Écija Conesa A, de Diego Puente T, Lozano Terol G, Cánovas Díaz M. Characterization of CobB kinetics and inhibition by nicotinamide. PLoS One 2017; 12:e0189689. [PMID: 29253849 PMCID: PMC5734772 DOI: 10.1371/journal.pone.0189689] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Lysine acetylation has emerged as a global protein regulation system in all domains of life. Sirtuins, or Sir2-like enzymes, are a family of histone deacetylases characterized by their employing NAD+ as a co-substrate. Sirtuins can deacetylate several acetylated proteins, but a consensus substrate recognition sequence has not yet been established. Product inhibition of many eukaryotic sirtuins by nicotinamide and its analogues has been studied in vitro due to their potential role as anticancer agents. In this work, the kinetics of CobB, the main Escherichia coli deacetylase, have been characterized. To our knowledge, this is the first kinetic characterization of a sirtuin employing a fully acetylated and natively folded protein as a substrate. CobB deacetylated several acetyl-CoA synthetase acetylated lysines with a single kinetic rate. In addition, in vitro nicotinamide inhibition of CobB has been characterized, and the intracellular nicotinamide concentrations have been determined under different growth conditions. The results suggest that nicotinamide can act as a CobB regulator in vivo. A nicotinamidase deletion strain was thus phenotypically characterized, and it behaved similarly to the ΔcobB strain. The results of this work demonstrate the potential regulatory role of the nicotinamide metabolite in vivo.
Collapse
Affiliation(s)
- Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
- * E-mail:
| | - Ana Écija Conesa
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| | - Gema Lozano Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ‘‘Campus Mare Nostrum”, Murcia, Spain
| |
Collapse
|
208
|
Sang Y, Ren J, Qin R, Liu S, Cui Z, Cheng S, Liu X, Lu J, Tao J, Yao YF. Acetylation Regulating Protein Stability and DNA-Binding Ability of HilD, thus Modulating Salmonella Typhimurium Virulence. J Infect Dis 2017; 216:1018-1026. [PMID: 28329249 DOI: 10.1093/infdis/jix102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/21/2017] [Indexed: 02/04/2023] Open
Abstract
HilD, a dominant regulator of Salmonella pathogenicity island 1, can be acetylated by protein acetyltransferase (Pat) in Salmonella Typhimurium, and the acetylation is beneficial to its stability. However, the underlying mechanism of HilD stability regulated by acetylation is not clear. We show here that lysine 297 (K297) located in the helix-turn-helix motif, can be acetylated by Pat. Acetylation of K297 increases HilD stability, but reduces its DNA-binding affinity. In turn, the deacetylated K297 enhances the DNA-binding ability but decreases HilD stability. Under the Salmonella pathogenicity island 1-inducing condition, the acetylation level of K297 is down-regulated. The acetylated K297 (mimicked by glutamine substitution) causes attenuated invasion in HeLa cells, as well as impaired virulence in mouse model, compared with the deacetylated K297 (mimicked by arginine substitution), suggesting that deacetylation of K297 is essential for Salmonella virulence. These findings demonstrate that the acetylation of K297 can regulate both protein stability and DNA-binding ability. This regulation mediated by acetylation not only degrades redundant HilD to keep a moderate protein level to facilitate S. Typhimurium growth but also maintains an appropriate DNA-binding activity of HilD to ensure bacterial pathogenicity.
Collapse
Affiliation(s)
- Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University
| | - Shuting Liu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine
| |
Collapse
|
209
|
Venkat S, Gregory C, Meng K, Gan Q, Fan C. A Facile Protocol to Generate Site-Specifically Acetylated Proteins in Escherichia Coli. J Vis Exp 2017:57061. [PMID: 29286490 PMCID: PMC5755542 DOI: 10.3791/57061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications that occur at specific positions of proteins have been shown to play important roles in a variety of cellular processes. Among them, reversible lysine acetylation is one of the most widely distributed in all domains of life. Although numerous mass spectrometry-based acetylome studies have been performed, further characterization of these putative acetylation targets has been limited. One possible reason is that it is difficult to generate purely acetylated proteins at desired positions by most classic biochemical approaches. To overcome this challenge, the genetic code expansion technique has been applied to use the pair of an engineered pyrrolysyl-tRNA synthetase variant, and its cognate tRNA from Methanosarcinaceae species, to direct the cotranslational incorporation of acetyllysine at the specific site in the protein of interest. After first application in the study of histone acetylation, this approach has facilitated acetylation studies on a variety of proteins. In this work, we demonstrated a facile protocol to produce site-specifically acetylated proteins by using the model bacterium Escherichia coli as the host. Malate dehydrogenase was used as a demonstration example in this work.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas; Cell and Molecular Biology Program, University of Arkansas
| | | | | | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas; Cell and Molecular Biology Program, University of Arkansas;
| |
Collapse
|
210
|
Meng X, Lv Y, Mujahid H, Edelmann MJ, Zhao H, Peng X, Peng Z. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:451-463. [PMID: 29313810 DOI: 10.1016/j.bbapap.2017.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022]
Abstract
Protein lysine acetylation is a highly conserved post-translational modification with various biological functions. However, only a limited number of acetylation sites have been reported in plants, especially in cereals, and the function of non-histone protein acetylation is still largely unknown. In this report, we identified 1003 lysine acetylation sites in 692 proteins of developing rice seeds, which greatly extended the number of known acetylated sites in plants. Seven distinguished motifs were detected flanking acetylated lysines. Functional annotation analyses indicated diverse biological processes and pathways engaged in lysine acetylation. Remarkably, we found that several key enzymes in storage starch synthesis pathway and the main storage proteins were heavily acetylated. A comprehensive comparison of the rice acetylome, succinylome, ubiquitome and phosphorylome with available published data was conducted. A large number of proteins carrying multiple kinds of modifications were identified and many of these proteins are known to be key enzymes of vital metabolic pathways. Our study provides extending knowledge of protein acetylation. It will have critical reference value for understanding the mechanisms underlying PTM mediated multiple signal integration in the regulation of metabolism and development in plants.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yuanda Lv
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States; Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States.
| |
Collapse
|
211
|
Abstract
Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue's charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggest that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation.IMPORTANCE Post-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.
Collapse
|
212
|
Davis R, Écija-Conesa A, Gallego-Jara J, de Diego T, Filippova EV, Kuffel G, Anderson WF, Gibson BW, Schilling B, Canovas M, Wolfe AJ. An acetylatable lysine controls CRP function in E. coli. Mol Microbiol 2017; 107:116-131. [PMID: 29105190 DOI: 10.1111/mmi.13874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023]
Abstract
Transcriptional regulation is the key to ensuring that proteins are expressed at the proper time and the proper amount. In Escherichia coli, the transcription factor cAMP receptor protein (CRP) is responsible for much of this regulation. Questions remain, however, regarding the regulation of CRP activity itself. Here, we demonstrate that a lysine (K100) on the surface of CRP has a dual function: to promote CRP activity at Class II promoters, and to ensure proper CRP steady state levels. Both functions require the lysine's positive charge; intriguingly, the positive charge of K100 can be neutralized by acetylation using the central metabolite acetyl phosphate as the acetyl donor. We propose that CRP K100 acetylation could be a mechanism by which the cell downwardly tunes CRP-dependent Class II promoter activity, whilst elevating CRP steady state levels, thus indirectly increasing Class I promoter activity. This mechanism would operate under conditions that favor acetate fermentation, such as during growth on glucose as the sole carbon source or when carbon flux exceeds the capacity of the central metabolic pathways.
Collapse
Affiliation(s)
- Robert Davis
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ana Écija-Conesa
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Teresa de Diego
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Ekaterina V Filippova
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gina Kuffel
- Loyola Genomics Facility, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | - Manuel Canovas
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| |
Collapse
|
213
|
Dai Y, Shortreed MR, Scalf M, Frey BL, Cesnik AJ, Solntsev S, Schaffer LV, Smith LM. Elucidating Escherichia coli Proteoform Families Using Intact-Mass Proteomics and a Global PTM Discovery Database. J Proteome Res 2017; 16:4156-4165. [PMID: 28968100 PMCID: PMC5679780 DOI: 10.1021/acs.jproteome.7b00516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A proteoform family is a group of related molecular forms of a protein (proteoforms) derived from the same gene. We have previously described a strategy to identify proteoforms and elucidate proteoform families in complex mixtures of intact proteins. The strategy is based upon measurements of two properties for each proteoform: (i) the accurate proteoform intact-mass, measured by liquid chromatography/mass spectrometry (LC-MS), and (ii) the number of lysine residues in each proteoform, determined using an isotopic labeling approach. These measured properties are then compared with those extracted from a catalog of theoretical proteoforms containing protein sequences and localized post-translational modifications (PTMs) for the organism under study. A match between the measured properties and those in the catalog constitutes an identification of the proteoform. In the present study, this strategy is extended by utilizing a global PTM discovery database and is applied to the widely studied model organism Escherichia coli, providing the most comprehensive elucidation of E. coli proteoforms and proteoform families to date.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Anthony J. Cesnik
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan Solntsev
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Leah V. Schaffer
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, 425G Henry Mall, Room 3420, Madison, Wisconsin 53706, United States
| |
Collapse
|
214
|
Site-specific and kinetic characterization of enzymatic and nonenzymatic protein acetylation in bacteria. Sci Rep 2017; 7:14790. [PMID: 29093482 PMCID: PMC5665961 DOI: 10.1038/s41598-017-13897-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
Reversible Nε-lysine acetylation has emerging as an important metabolic regulatory mechanism in microorganisms. Herein, we systematically investigated the site-specific and kinetic characterization of enzymatic (lysine acetyltransferase) and nonenzymatic acetylation (AcP-dependent or Acyl-CoA-dependent), as well as their different effect on activity of metabolic enzyme (AMP-forming acetyl-CoA synthetase, Acs). It was found that Bacillus subtilis acetyl-CoA synthetase (BsAcsA) can be acetylated in vitro either catalytically by lysine acetyltransferase BsAcuA and Ac-CoA (at low concentration), or nonenzymatically by Ac-CoA or AcP (at high concentration). Two distinct mechanisms show preference for different lysine acetylation site (enzymatic acetylation for K549 and nonenzymatic acetylation for K524), and reveal different dynamics of relative acetylation changes at these lysine sites. The results demonstrated that lysine residues on the same protein exhibit different acetylation reactivity with acetyl-phosphate and acetyl-CoA, which was determined by surface accessibility, three-dimensional microenvironment, and pKa value of lysine. Acetyl-CoA synthetase is inactivated by AcuA-catalyzed acetylation, but not by nonenzymatic acetylation.
Collapse
|
215
|
Hartl M, Füßl M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 2017; 13:949. [PMID: 29061669 PMCID: PMC5658702 DOI: 10.15252/msb.20177819] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.
Collapse
Affiliation(s)
- Markus Hartl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Mass Spectrometry Facility, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Magdalena Füßl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paul J Boersema
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan-Oliver Jost
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ahmet Bakirbas
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Magdalena Plöchinger
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Greg Bg Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jürgen Cox
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael E Salvucci
- US Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany .,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| |
Collapse
|
216
|
Volkwein W, Maier C, Krafczyk R, Jung K, Lassak J. A Versatile Toolbox for the Control of Protein Levels Using N ε-Acetyl-l-lysine Dependent Amber Suppression. ACS Synth Biol 2017; 6:1892-1902. [PMID: 28594177 DOI: 10.1021/acssynbio.7b00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The analysis of the function of essential genes in vivo depends on the ability to experimentally modulate levels of their protein products. Current methods to address this are based on transcriptional or post-transcriptional regulation of mRNAs, but approaches based on the exploitation of translation regulation have so far been neglected. Here we describe a toolbox, based on amber suppression in the presence of Nε-acetyl-l-lysine (AcK), for translational tuning of protein output. We chose the highly sensitive luminescence system LuxCDABE as a reporter and incorporated a UAG stop codon into the gene for the reductase subunit LuxC. The system was used to measure and compare the effects of AcK- and Nε-(tert-butoxycarbonyl)-l-lysine (BocK) dependent amber suppression in Escherichia coli. We also demonstrate here that, in combination with transcriptional regulation, the system allows protein production to be either totally repressed or gradually adjusted. To identify sequence motifs that provide improved translational regulation, we varied the sequence context of the amber codon and found that insertion of two preceding prolines drastically decreases luminescence. In addition, using LacZ as a reporter, we demonstrated that a strain encoding a variant with a Pro-Pro amber motif can only grow on lactose when AcK is supplied, thus confirming the tight translational regulation of protein output. In parallel, we constructed an E. coli strain that carries an isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible version of the AcK-tRNA synthetase (AcKRS) gene on the chromosome, thus preventing mischarging of noncognate substrates. Subsequently, a diaminopimelic acid auxotrophic mutant (ΔdapA) was generated demonstrating the potential of this strain in regulating essential gene products. Furthermore, we assembled a set of vectors based on the broad-host-range pBBR ori that enable the AcK-dependent amber suppression system to control protein output not only in E. coli, but also in Salmonella enterica and Vibrio cholerae.
Collapse
Affiliation(s)
- Wolfram Volkwein
- Center for integrated Protein
Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Christopher Maier
- Center for integrated Protein
Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Ralph Krafczyk
- Center for integrated Protein
Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Center for integrated Protein
Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Jürgen Lassak
- Center for integrated Protein
Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Martinsried, Germany
| |
Collapse
|
217
|
Venkat S, Gregory C, Gan Q, Fan C. Biochemical Characterization of the Lysine Acetylation of Tyrosyl-tRNA Synthetase in Escherichia coli. Chembiochem 2017; 18:1928-1934. [PMID: 28741290 PMCID: PMC5629106 DOI: 10.1002/cbic.201700343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl-tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic-code-expansion strategy to site-specifically incorporate Nϵ -acetyl-l-lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5-related N-acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl-CoA or acetyl-phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 727011, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
218
|
Birhanu AG, Yimer SA, Holm-Hansen C, Norheim G, Aseffa A, Abebe M, Tønjum T. N ε- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains: Proteins Involved in Bioenergetics, Virulence, and Antimicrobial Resistance Are Acetylated. J Proteome Res 2017; 16:4045-4059. [PMID: 28920697 DOI: 10.1021/acs.jproteome.7b00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence demonstrates that lysine acetylation is involved in Mycobacterium tuberculosis (Mtb) virulence and pathogenesis. However, previous investigations in Mtb have only monitored acetylation at lysine residues using selected reference strains. We analyzed the global Nε- and O-acetylation of three Mtb isolates: two lineage 7 clinical isolates and the lineage 4 H37Rv reference strain. Quantitative acetylome analysis resulted in identification of 2490 class-I acetylation sites, 2349 O-acetylation and 141 Nε-acetylation sites, derived from 953 unique proteins. Mtb O-acetylation was thereby significantly more abundant than Nε-acetylation. The acetylated proteins were found to be involved in central metabolism, translation, stress responses, and antimicrobial drug resistance. Notably, 261 acetylation sites on 165 proteins were differentially regulated between lineage 7 and lineage 4 strains. A total of 257 acetylation sites on 161 proteins were hypoacetylated in lineage 7 strains. These proteins are involved in Mtb growth, virulence, bioenergetics, host-pathogen interactions, and stress responses. This study provides the first global analysis of O-acetylated proteins in Mtb. This quantitative acetylome data expand the current understanding regarding the nature and diversity of acetylated proteins in Mtb and open a new avenue of research for exploring the role of protein acetylation in Mtb physiology.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Addis Ababa University , Institute of Biotechnology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Carol Holm-Hansen
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Gunnstein Norheim
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
219
|
Zhou Q, Zhou YN, Jin DJ, Tse-Dinh YC. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB. Nucleic Acids Res 2017; 45:5349-5358. [PMID: 28398568 PMCID: PMC5605244 DOI: 10.1093/nar/gkx250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Escherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The NAD+-dependent protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modification in E. coli. Here, we show that the absence of CobB in a ΔcobB mutant reduces intracellular TopA catalytic activity and increases negative DNA supercoiling. TopA expression level is elevated as topA transcription responds to the increased negative supercoiling. The slow growth phenotype of the ΔcobB mutant can be partially compensated by further increase of intracellular TopA level via overexpression of recombinant TopA. The relaxation activity of purified TopA is decreased by in vitro non-enzymatic acetyl phosphate mediated lysine acetylation, and the presence of purified CobB protects TopA from inactivation by such non-enzymatic acetylation. The specific activity of TopA expressed from His-tagged fusion construct in the chromosome is inversely proportional to the degree of in vivo lysine acetylation during growth transition and growth arrest. These findings demonstrate that E. coli TopA catalytic activity can be modulated by lysine acetylation–deacetylation, and prevention of TopA inactivation from excess lysine acetylation and consequent increase in negative DNA supercoiling is an important physiological function of the CobB protein deacetylase.
Collapse
Affiliation(s)
- Qingxuan Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yan Ning Zhou
- Transcription Control Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ding Jun Jin
- Transcription Control Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
220
|
Abstract
Nε-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria.
Collapse
|
221
|
Identification and characterization of two types of amino acid-regulated acetyltransferases in actinobacteria. Biosci Rep 2017; 37:BSR20170157. [PMID: 28539332 PMCID: PMC6434083 DOI: 10.1042/bsr20170157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
One hundred and fifty GCN5-like acetyltransferases with amino acid-binding (ACT)-GCN5-related N-acetyltransferase (GNAT) domain organization have been identified in actinobacteria. The ACT domain is fused to the GNAT domain, conferring amino acid-induced allosteric regulation to these protein acetyltransferases (Pat) (amino acid sensing acetyltransferase, (AAPatA)). Members of the AAPatA family share similar secondary structure and are divided into two groups based on the allosteric ligands of the ACT domain: the asparagine (Asn)-activated PatA and the cysteine (Cys)-activated PatA. The former are mainly found in Streptomyces; the latter are distributed in other actinobacteria. We investigated the effect of Asn and Cys on the acetylation activity of Sven_0867 (SvePatA, from Streptomyces venezuelae DSM 40230) and Amir_5672 (AmiPatA, from Actinosynnema mirum strain DSM 43827), respectively, as well as the relationship between the structure and function of these enzymes. These findings indicate that the activity of PatA and acetylation level of proteins may be closely correlated with intracellular concentrations of Asn and Cys in actinobacteria. Amino acid-sensing signal transduction in acetyltransferases may be a mechanism that regulates protein acetylation in response to nutrient availability. Future work examining the relationship between protein acetylation and amino acid metabolism will broaden our understanding of post-translational modifications (PTMs) in feedback regulation.
Collapse
|
222
|
Chen Z, Zhang G, Yang M, Li T, Ge F, Zhao J. Lysine Acetylome Analysis Reveals Photosystem II Manganese-stabilizing Protein Acetylation is Involved in Negative Regulation of Oxygen Evolution in Model Cyanobacterium Synechococcus sp. PCC 7002. Mol Cell Proteomics 2017; 16:1297-1311. [PMID: 28550166 PMCID: PMC5500762 DOI: 10.1074/mcp.m117.067835] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Nε-Acetylation of lysine residues represents a frequently occurring post-translational modification widespread in bacteria that plays vital roles in regulating bacterial physiology and metabolism. However, the role of lysine acetylation in cyanobacteria remains unclear, presenting a hurdle to in-depth functional study of this post-translational modification. Here, we report the lysine acetylome of Synechococcus sp. PCC 7002 (hereafter Synechococcus) using peptide prefractionation, immunoaffinity enrichment, and coupling with high-precision liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis of Synechococcus identified 1653 acetylation sites on 802 acetylproteins involved in a broad range of biological processes. Interestingly, the lysine acetylated proteins were enriched for proteins involved in photosynthesis, for example. Functional studies of the photosystem II manganese-stabilizing protein were performed by site-directed mutagenesis and mutants mimicking either constitutively acetylated (K99Q, K190Q, and K219Q) or nonacetylated states (K99R, K190R, and K219R) were constructed. Mutation of the K190 acetylation site resulted in a distinguishable phenotype. Compared with the K190R mutant, the K190Q mutant exhibited a decreased oxygen evolution rate and an enhanced cyclic electron transport rate in vivo Our findings provide new insight into the molecular mechanisms of lysine acetylation that involved in the negative regulation of oxygen evolution in Synechococcus and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in photosynthesis in cyanobacteria.
Collapse
Affiliation(s)
- Zhuo Chen
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- §Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Guiying Zhang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
- ¶University of Chinese Academy of Sciences, Beijing 100094, China
| | - Mingkun Yang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Tao Li
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
| | - Feng Ge
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China;
| | - Jindong Zhao
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|
223
|
Post DMB, Schilling B, Reinders LM, D’Souza AK, Ketterer MR, Kiel SJ, Chande AT, Apicella MA, Gibson BW. Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. PLoS One 2017; 12:e0179621. [PMID: 28654654 PMCID: PMC5487020 DOI: 10.1371/journal.pone.0179621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, has a number of factors known to contribute to pathogenesis; however, a full understanding of these processes and their regulation has proven to be elusive. Post-translational modifications (PTMs) of bacterial proteins are now recognized as one mechanism of protein regulation. In the present study, Western blot analyses, with an anti-acetyl-lysine antibody, indicated that a large number of gonococcal proteins are post-translationally modified. Previous work has shown that Nε-lysine acetylation can occur non-enzymatically with acetyl-phosphate (AcP) as the acetyl donor. In the current study, an acetate kinase mutant (1291ackA), which accumulates AcP, was generated in N. gonorrhoeae. Broth cultures of N. gonorrhoeae 1291wt and 1291ackA were grown, proteins extracted and digested, and peptides containing acetylated-lysines (K-acetyl) were affinity-enriched from both strains. Mass spectrometric analyses of these samples identified a total of 2686 unique acetylation sites. Label-free relative quantitation of the K-acetyl peptides derived from the ackA and wild-type (wt) strains demonstrated that 109 acetylation sites had an ackA/wt ratio>2 and p-values <0.05 in at least 2/3 of the biological replicates and were designated as “AckA-dependent”. Regulated K-acetyl sites were found in ribosomal proteins, central metabolism proteins, iron acquisition and regulation proteins, pilus assembly and regulation proteins, and a two-component response regulator. Since AckA is part of a metabolic pathway, comparative growth studies of the ackA mutant and wt strains were performed. The mutant showed a growth defect under aerobic conditions, an inability to grow anaerobically, and a defect in biofilm maturation. In conclusion, the current study identified AckA-dependent acetylation sites in N. gonorrhoeae and determined that these sites are found in a diverse group of proteins. This work lays the foundation for future studies focusing on specific acetylation sites that may have relevance in gonococcal pathogenesis and metabolism.
Collapse
Affiliation(s)
- Deborah M. B. Post
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (DMBP); (BWG)
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Lorri M. Reinders
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - Margaret R. Ketterer
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Steven J. Kiel
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Aroon T. Chande
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael A. Apicella
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, United States of America
- * E-mail: (DMBP); (BWG)
| |
Collapse
|
224
|
Baron S, Eisenbach M. CheY acetylation is required for ordinary adaptation time in Escherichia coli chemotaxis. FEBS Lett 2017; 591:1958-1965. [PMID: 28542702 DOI: 10.1002/1873-3468.12699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022]
Abstract
Recent studies demonstrated the dependence of speed adaptation in Escherichia coli on acetylation of the chemotaxis signaling molecule CheY. Here, we examined whether CheY acetylation is involved in chemotactic adaptation. A mutant lacking the acetylating enzyme acetyl-CoA synthetase (Acs) requires more time to adapt to attractant stimulation, and vice versa to repellent stimulation. This effect is avoided by conditions that favor production of acetyl-CoA, thus enabling Acs-independent CheY autoacetylation, or reversed by expressing Acs from a plasmid. These findings suggest that CheY should be acetylated for ordinary adaptation time, and that the function of this acetylation in adaptation is to enable the motor to shift its rotation to clockwise. We further identify the enzyme phosphotransacetylase as a third deacetylase of CheY in E. coli.
Collapse
Affiliation(s)
- Szilvia Baron
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Eisenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
225
|
Lv Y. Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 2017; 12:e0178603. [PMID: 28582408 PMCID: PMC5459447 DOI: 10.1371/journal.pone.0178603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- * E-mail:
| |
Collapse
|
226
|
Venkat S, Gregory C, Sturges J, Gan Q, Fan C. Studying the Lysine Acetylation of Malate Dehydrogenase. J Mol Biol 2017; 429:1396-1405. [PMID: 28366830 PMCID: PMC5479488 DOI: 10.1016/j.jmb.2017.03.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Protein acetylation plays important roles in many biological processes. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, has been identified to be acetylated in bacteria by proteomic studies, but no further characterization has been reported. One challenge for studying protein acetylation is to get purely acetylated proteins at specific positions. Here, we applied the genetic code expansion strategy to site-specifically incorporate Nε-acetyllysine into MDH. The acetylation of lysine residues in MDH could enhance its enzyme activity. The Escherichia coli deacetylase CobB could deacetylate acetylated MDH, while the E. coli acetyltransferase YfiQ cannot acetylate MDH efficiently. Our results also demonstrated that acetyl-CoA or acetyl-phosphate could acetylate MDH chemically in vitro. Furthermore, the acetylation level of MDH was shown to be affected by carbon sources in the growth medium.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jourdan Sturges
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
227
|
Ye Q, Ji QQ, Yan W, Yang F, Wang ED. Acetylation of lysine ϵ-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli. J Biol Chem 2017; 292:10709-10722. [PMID: 28455447 DOI: 10.1074/jbc.m116.770826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Previous proteomic analyses have shown that aminoacyl-tRNA synthetases in many organisms can be modified by acetylation of Lys. In this present study, leucyl-tRNA synthetase and arginyl-tRNA synthetase from Escherichia coli (EcLeuRS and EcArgRS) were overexpressed and purified and found to be acetylated on Lys residues by MS. Gln scanning mutagenesis revealed that Lys619, Lys624, and Lys809 in EcLeuRS and Lys126 and Lys408 in EcArgRS might play important roles in enzyme activity. Furthermore, we utilized a novel protein expression system to obtain enzymes harboring acetylated Lys at specific sites and investigated their catalytic activity. Acetylation of these Lys residues could affect their aminoacylation activity by influencing amino acid activation and/or the affinity for tRNA. In vitro assays showed that acetyl-phosphate nonenzymatically acetylates EcLeuRS and EcArgRS and suggested that the sirtuin class deacetylase CobB might regulate acetylation of these two enzymes. These findings imply a potential regulatory role for Lys acetylation in controlling the activity of aminoacyl-tRNA synthetases and thus protein synthesis.
Collapse
Affiliation(s)
- Qing Ye
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Quan-Quan Ji
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Wei Yan
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Fang Yang
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and .,the School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
228
|
Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism. PLoS One 2017; 12:e0176050. [PMID: 28448512 PMCID: PMC5407757 DOI: 10.1371/journal.pone.0176050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator–DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.
Collapse
|
229
|
Ren J, Sang Y, Lu J, Yao YF. Protein Acetylation and Its Role in Bacterial Virulence. Trends Microbiol 2017; 25:768-779. [PMID: 28462789 DOI: 10.1016/j.tim.2017.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Protein acetylation is a universal post-translational modification which is found in both eukaryotes and prokaryotes. This process is achieved enzymatically by the protein acetyltransferase Pat, and nonenzymatically by metabolic intermediates (e.g., acetyl phosphate) in bacteria. Protein acetylation plays a role in bacterial chemotaxis, metabolism, DNA replication, and other cellular processes. Recently, accumulating evidence has suggested that protein acetylation might be involved in bacterial virulence because a number of bacterial virulence factors are acetylated. In this review, we summarize the progress in understanding bacterial protein acetylation and discuss how it mediates bacterial virulence.
Collapse
Affiliation(s)
- Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Lu
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
230
|
Li S, Zhang Q, Xu Z, Yao YF. Acetylation of Lysine 243 Inhibits the oriC Binding Ability of DnaA in Escherichia coli. Front Microbiol 2017; 8:699. [PMID: 28473824 PMCID: PMC5397419 DOI: 10.3389/fmicb.2017.00699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
DNA replication initiation is a central event in the cell cycle, and it is strictly controlled by multiple regulatory mechanisms. Our previous work showed that acetylation of residue lysine (K) 178 prevents DnaA from binding to ATP, which leads to the inhibition of DNA replication initiation. Here, we show that another residue, K243, is critical for DnaA full activity in vivo. K243 can be acetylated, and its acetylation level varies with cell growth. A homogeneous, recombinant DnaA that contains N𝜀-acetyllysine at K243 (K243Ac) retained its ATP/ADP binding ability, but showed decreased binding activity to the oriC region. A DNase I footprinting assay showed that DnaA K243Ac failed to recognize DnaA boxes I3, C1, and C3, and, thus, it formed an incomplete initiation complex with oriC. Finally, we found that acetyl phosphate and the deacetylase CobB can regulate the acetylation level of K243 in vivo. These findings suggest that DnaA K243 acetylation disturbs its binding to low-affinity DnaA boxes, and they provide new insights into the regulatory mechanisms of DNA replication initiation.
Collapse
Affiliation(s)
- Shuxian Li
- Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Qiufen Zhang
- Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhihong Xu
- Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
231
|
Brown CW, Sridhara V, Boutz DR, Person MD, Marcotte EM, Barrick JE, Wilke CO. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics 2017; 18:301. [PMID: 28412930 PMCID: PMC5392934 DOI: 10.1186/s12864-017-3676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/31/2017] [Indexed: 01/24/2023] Open
Abstract
Background Post-translational modification (PTM) of proteins is central to many cellular processes across all domains of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects. Results We utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal patterns for N-terminal N α acetylation, C-terminal glutamylation, and asparagine deamidation. Furthermore, we identify a possible relationship between N-terminal N α acetylation and regulation of protein degradation in stationary phase, pointing to a previously unrecognized biological function for this poorly-understood PTM. Conclusions Unbiased detection of PTM in MS/MS proteomics data facilitates the discovery of novel modification types and previously unobserved dynamic changes in modification across growth timepoints. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3676-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin W Brown
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Viswanadham Sridhara
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Maria D Person
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA. .,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas, USA. .,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
232
|
A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metab 2017; 25:823-837.e8. [PMID: 28380375 PMCID: PMC5399522 DOI: 10.1016/j.cmet.2017.03.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 09/26/2016] [Accepted: 03/10/2017] [Indexed: 11/23/2022]
Abstract
The mechanisms underlying the formation of acyl protein modifications remain poorly understood. By investigating the reactivity of endogenous acyl-CoA metabolites, we found a class of acyl-CoAs that undergo intramolecular catalysis to form reactive intermediates that non-enzymatically modify proteins. Based on this mechanism, we predicted, validated, and characterized a protein modification: 3-hydroxy-3-methylglutaryl(HMG)-lysine. In a model of altered HMG-CoA metabolism, we found evidence of two additional protein modifications: 3-methylglutaconyl(MGc)-lysine and 3-methylglutaryl(MG)-lysine. Using quantitative proteomics, we compared the "acylomes" of two reactive acyl-CoA species, namely HMG-CoA and glutaryl-CoA, which are generated in different pathways. We found proteins that are uniquely modified by each reactive metabolite, as well as common proteins and pathways. We identified the tricarboxylic acid cycle as a pathway commonly regulated by acylation and validated malate dehydrogenase as a key target. These data uncover a fundamental relationship between reactive acyl-CoA species and proteins and define a new regulatory paradigm in metabolism.
Collapse
|
233
|
Wittouck S, van Noort V. Correlated duplications and losses in the evolution of palmitoylation writer and eraser families. BMC Evol Biol 2017; 17:83. [PMID: 28320309 PMCID: PMC5359973 DOI: 10.1186/s12862-017-0932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background Protein post-translational modifications (PTMs) change protein properties. Each PTM type is associated with domain families that apply the modification (writers), remove the modification (erasers) and bind to the modified sites (readers) together called toolkit domains. The evolutionary origin and diversification remains largely understudied, except for tyrosine phosphorylation. Protein palmitoylation entails the addition of a palmitoyl fatty acid to a cysteine residue. This PTM functions as a membrane anchor and is involved in a range of cellular processes. One writer family and two erasers families are known for protein palmitoylation. Results In this work we unravel the evolutionary history of these writer and eraser families. We constructed a high-quality profile hidden Markov model (HMM) of each family, searched for protein family members in fully sequenced genomes and subsequently constructed phylogenetic distributions of the families. We constructed Maximum Likelihood phylogenetic trees and using gene tree rearrangement and tree reconciliation inferred their evolutionary histories in terms of duplication and loss events. We identified lineages where the families expanded or contracted and found that the evolutionary histories of the families are correlated. The results show that the erasers were invented first, before the origin of the eukaryotes. The writers first arose in the eukaryotic ancestor. The writers and erasers show co-expansions in several eukaryotic ancestral lineages. These expansions often seem to be followed by contractions in some or all of the lineages further in evolution. Conclusions A general pattern of correlated evolution appears between writer and eraser domains. These co-evolution patterns could be used in new methods for interaction prediction based on phylogenies. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0932-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stijn Wittouck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
234
|
Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media. Appl Environ Microbiol 2017; 83:AEM.03034-16. [PMID: 28062462 DOI: 10.1128/aem.03034-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/03/2017] [Indexed: 01/12/2023] Open
Abstract
Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth.IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided. They also demonstrate how to increase bacterial growth in complex media.
Collapse
|
235
|
Weinert BT, Satpathy S, Hansen BK, Lyon D, Jensen LJ, Choudhary C. Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the E. coli Acetylome. Mol Cell Proteomics 2017; 16:759-769. [PMID: 28254776 DOI: 10.1074/mcp.m117.067587] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation is a protein posttranslational modification (PTM) that occurs on thousands of lysine residues in diverse organisms from bacteria to humans. Accurate measurement of acetylation stoichiometry on a proteome-wide scale remains challenging. Most methods employ a comparison of chemically acetylated peptides to native acetylated peptides, however, the potentially large differences in abundance between these peptides presents a challenge for accurate quantification. Stable isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry (MS) is one of the most widely used quantitative proteomic methods. Here we show that serial dilution of SILAC-labeled peptides (SD-SILAC) can be used to identify accurately quantified peptides and to estimate the quantification error rate. We applied SD-SILAC to determine absolute acetylation stoichiometry in exponentially-growing and stationary-phase wild-type and Sirtuin deacetylase CobB-deficient cells. To further analyze CobB-regulated sites under conditions of globally increased or decreased acetylation, we measured stoichiometry in phophotransacetylase (ptaΔ) and acetate kinase (ackAΔ) mutant strains in the presence and absence of the Sirtuin inhibitor nicotinamide. We measured acetylation stoichiometry at 3,669 unique sites and found that the vast majority of acetylation occurred at a low stoichiometry. Manipulations that cause increased nonenzymatic acetylation by acetyl-phosphate (AcP), such as stationary-phase arrest and deletion of ackA, resulted in globally increased acetylation stoichiometry. Comparison to relative quantification under the same conditions validated our stoichiometry estimates at hundreds of sites, demonstrating the accuracy of our method. Similar to Sirtuin deacetylase 3 (SIRT3) in mitochondria, CobB suppressed acetylation to lower than median stoichiometry in WT, ptaΔ, and ackAΔ cells. Together, our results provide a detailed view of acetylation stoichiometry in E. coli and suggest an evolutionarily conserved function of Sirtuin deacetylases in suppressing low stoichiometry acetylation.
Collapse
Affiliation(s)
- Brian Tate Weinert
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Shankha Satpathy
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Bogi Karbech Hansen
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - David Lyon
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Lars Juhl Jensen
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
236
|
Wei W, Liu T, Li X, Wang R, Zhao W, Zhao G, Zhao S, Zhou Z. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. Mol Microbiol 2017; 104:278-293. [PMID: 28118511 DOI: 10.1111/mmi.13627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 01/04/2023]
Abstract
The metabolism of the purple non-sulfur bacterium Rhodobacter sphaeroides is versatile and it can grow under various conditions. Here, we report evidence that the anaerobic photosynthetic metabolism of R. sphaeroides is regulated by protein lysine acetylation. Using a proteomic approach, 59 acetylated peptides were detected. Among them is the global anaerobic transcription factor FnrL, which regulates the biosynthetic pathway of tetrapyrroles and synthesis of the photosynthetic apparatus. Lysine 223 of FnrL was identified as acetylated. We show that all three lysines in the DNA binding domain (K223, K213 and K175) of FnrL can be acetylated by acetyl-phosphate in vitro. A bacterial deacetylase homolog, RsCobB can deacetylate FnrL in vitro. The transcription of genes downstream of FnrL decreased when the DNA binding domain of FnrL was acetylated, as revealed by chromatin immunoprecipitation and acetylation-mimicking mutagenesis. An increasing number of acetylated lysines resulted in a further decrease in DNA binding ability. These results demonstrate that the lysine acetylation can fine tune the function of the oxygen-sensitive FnrL; thus, it might regulate anaerobic photosynthetic metabolism of R. sphaeroides.
Collapse
Affiliation(s)
- Wei Wei
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| | - Xinfeng Li
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ruofan Wang
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
237
|
Enjalbert B, Millard P, Dinclaux M, Portais JC, Létisse F. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci Rep 2017; 7:42135. [PMID: 28186174 PMCID: PMC5301487 DOI: 10.1038/srep42135] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli excretes acetate upon growth on fermentable sugars, but the regulation of this production remains elusive. Acetate excretion on excess glucose is thought to be an irreversible process. However, dynamic 13C-metabolic flux analysis revealed a strong bidirectional exchange of acetate between E. coli and its environment. The Pta-AckA pathway was found to be central for both flux directions, while alternative routes (Acs or PoxB) play virtually no role in glucose consumption. Kinetic modelling of the Pta-AckA pathway predicted that its flux is thermodynamically controlled by the extracellular acetate concentration in vivo. Experimental validations confirmed that acetate production can be reduced and even reversed depending solely on its extracellular concentration. Consistently, the Pta-AckA pathway can rapidly switch from acetate production to consumption. Contrary to current knowledge, E. coli is thus able to co-consume glucose and acetate under glucose excess. These metabolic capabilities were confirmed on other glycolytic substrates which support the growth of E. coli in the gut. These findings highlight the dual role of the Pta-AckA pathway in acetate production and consumption during growth on glycolytic substrates, uncover a novel regulatory mechanism that controls its flux in vivo, and significantly expand the metabolic capabilities of E. coli.
Collapse
Affiliation(s)
- Brice Enjalbert
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Mickael Dinclaux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
238
|
Gu J, Chen Y, Guo H, Sun M, Yang M, Wang X, Zhang X, Deng J. Lysine acetylation regulates the activity of Escherichia coli pyridoxine 5'-phosphate oxidase. Acta Biochim Biophys Sin (Shanghai) 2017; 49:186-192. [PMID: 28039149 DOI: 10.1093/abbs/gmw129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/14/2022] Open
Abstract
Nɛ-lysine acetylation is one of the most abundant post-translational modifications in eukaryote and prokaryote. Protein acetylome of Escherichia coli has been screened using mass spectrometry (MS) technology, and many acetylated proteins have been identified, including the pyridoxine 5'-phosphate oxidase (EcPNPOx), but the biological roles played by lysine acetylation in EcPNPOx still remain unknown. In this study, EcPNPOx was firstly overexpressed and purified, and two acetylated lysine residues were identified by the subsequent liquid chromatography-tandem mass spectrometry analysis. Site-directed mutagenesis analysis demonstrated that acetylated lysine residues play important roles in the enzymatic activity and enzymatic properties of the protein. EcPNPOx could be non-enzymatically acetylated by acetyl-phosphate and deacetylated by CobB in vitro. Furthermore, enzymatic activities of acetylated and deacetylated EcPNPOx were compared in vitro, and results showed that acetylation led to a decrease of its enzymatic activity, which could be rescued by CobB deacetylation. Taken together, our data suggest that CobB modulates the enzymatic activity of EcPNPOx in vitro.
Collapse
Affiliation(s)
- Jing Gu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuanyuan Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Hongsen Guo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Manluan Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingkun Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xude Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian'en Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaoyu Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
239
|
Tatham MH, Cole C, Scullion P, Wilkie R, Westwood NJ, Stark LA, Hay RT. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome. Mol Cell Proteomics 2017; 16:310-326. [PMID: 27913581 PMCID: PMC5294217 DOI: 10.1074/mcp.o116.065219] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations.
Collapse
Affiliation(s)
- Michael H Tatham
- From the ‡Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK
| | - Christian Cole
- §Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK
| | - Paul Scullion
- ¶Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK
| | - Ross Wilkie
- ‖School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife. KY16 9ST. UK
| | - Nicholas J Westwood
- ‖School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife. KY16 9ST. UK
| | - Lesley A Stark
- **Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU UK
| | - Ronald T Hay
- From the ‡Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK;
| |
Collapse
|
240
|
Yoo M, Croux C, Meynial-Salles I, Soucaille P. Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum. Metab Eng 2017; 40:138-147. [PMID: 28159643 DOI: 10.1016/j.ymben.2017.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/30/2016] [Accepted: 01/30/2017] [Indexed: 01/05/2023]
Abstract
Clostridium acetobutylicum possesses two homologous buk genes, buk (or buk1) and buk2, which encode butyrate kinases involved in the last step of butyrate formation. To investigate the contribution of buk in detail, an in-frame deletion mutant was constructed. However, in all the Δbuk mutants obtained, partial deletions of the upstream ptb gene were observed, and low phosphotransbutyrylase and butyrate kinase activities were measured. This demonstrates that i) buk (CA_C3075) is the key butyrate kinase-encoding gene and that buk2 (CA_C1660) that is poorly transcribed only plays a minor role; and ii) strongly suggests that a Δbuk mutant is not viable if the ptb gene is not also inactivated, probably due to the accumulation of butyryl-phosphate, which might be toxic for the cell. One of the ΔbukΔptb mutants was subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic and alcohologenic chemostat cultures. In addition to the low butyrate production, drastic changes in metabolic fluxes were also observed for the mutant: i) under acidogenic conditions, the primary metabolite was butanol and a new metabolite, 2-hydroxy-valerate, was produced ii) under solventogenesis, 58% increased butanol production was obtained compared to the control strain under the same conditions, and a very high yield of butanol formation (0.3gg-1) was reached; and iii) under alcohologenesis, the major product was lactate. Furthermore, at the transcriptional level, adhE2, which encodes an aldehyde/alcohol dehydrogenase and is known to be a gene specifically expressed in alcohologenesis, was surprisingly highly expressed in all metabolic states in the mutant. The results presented here not only support the key roles of buk and ptb in butyrate formation but also highlight the metabolic flexibility of C. acetobutylicum in response to genetic alteration of its primary metabolism.
Collapse
Affiliation(s)
- Minyeong Yoo
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France; INRA, UMR792, Toulouse, France; CNRS, UMR5504, Toulouse, France.
| | - Christian Croux
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France; INRA, UMR792, Toulouse, France; CNRS, UMR5504, Toulouse, France.
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France; INRA, UMR792, Toulouse, France; CNRS, UMR5504, Toulouse, France.
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France; INRA, UMR792, Toulouse, France; CNRS, UMR5504, Toulouse, France; Metabolic Explorer, Biopôle Clermont-Limagne, Saint Beauzire, France.
| |
Collapse
|
241
|
You D, Wang MM, Ye BC. Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels. Mol Microbiol 2017; 103:845-859. [PMID: 27987242 DOI: 10.1111/mmi.13595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 12/25/2022]
Abstract
Saccharopolyspora erythraea has three AMP-forming acetyl-CoA synthetases (Acs) encoded by acsA1, acsA2, and acsA3. In this work, we found that nitrogen response regulator GlnR can directly interact with the promoter regions of all three genes and can activate their transcription in response to nitrogen availability. The typical GlnR-binding boxes were identified in the promoter regions. Moreover, the activities of three Acs enzymes were modulated by the reversible lysine acetylation (RLA) with acetyltransferase AcuA and NAD+ -dependent deacetylase SrtN. Interestingly, GlnR controlled the RLA by directly activating the expression of acuA and srtN. A glnR-deleted mutant (ΔglnR) caused a growth defect in 10 mM acetate minimal medium, a condition under which RLA function is critical to control Acs activity. Overexpression of acuA reversed the growth defect of ΔglnR mutant. Total activity of Acs in cell-free extracts from ΔglnR strain had a 4-fold increase relative to that of wildtype strain. Western Blotting showed that in vivo acetylation levels of Acs were influenced by nitrogen availability and lack of glnR. These results demonstrated that GlnR regulated acetyl-CoA synthetases at transcriptional and post-translational levels, and mediated the interplay between nitrogen and carbon metabolisms by integrating nitrogen signals to modulate the acetate metabolism.
Collapse
Affiliation(s)
- Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China
| | - Miao-Miao Wang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong RD 130, Shanghai, 200237, China.,School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
242
|
Biswas R, Wilson CM, Giannone RJ, Klingeman DM, Rydzak T, Shah MB, Hettich RL, Brown SD, Guss AM. Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:6. [PMID: 28053665 PMCID: PMC5209896 DOI: 10.1186/s13068-016-0684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/08/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H2 production, including the hydrogenase maturase hydG and NiFe hydrogenase ech, were deleted from the chromosome of C. thermocellum. While ethanol yield increased, the growth rate of ΔhydG decreased substantially compared to wild type. RESULTS Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ∆hydG, whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG, 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes, Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically upregulated in C. thermocellum ΔhydG in the presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG. Clostridium thermocellum ΔhydGΔech had a higher growth rate than ΔhydG in the absence of added acetate, and a similar but less pronounced transcriptional and physiological effect was seen in this strain upon addition of acetate. CONCLUSIONS Sulfur metabolism is perturbed in C. thermocellum ΔhydG strains, likely to increase flux through sulfate reduction to act either as an electron sink to balance redox reactions or to offset an unknown deficiency in sulfur assimilation.
Collapse
Affiliation(s)
- Ranjita Biswas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Charlotte M. Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Richard J. Giannone
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Thomas Rydzak
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Manesh B. Shah
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Robert L. Hettich
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- One Bethel Valley Road, Oak Ridge, TN 37831-6038 USA
| |
Collapse
|
243
|
Bao W, Jiang Z. Prediction of Lysine Pupylation Sites with Machine Learning Methods. INTELLIGENT COMPUTING THEORIES AND APPLICATION 2017. [DOI: 10.1007/978-3-319-63312-1_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
244
|
Jones-Dias D, Carvalho AS, Moura IB, Manageiro V, Igrejas G, Caniça M, Matthiesen R. Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes. J Proteomics 2016; 156:20-28. [PMID: 28043878 DOI: 10.1016/j.jprot.2016.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022]
Abstract
Tetracyclines are among the most commonly used antibiotics administrated to farm animals for disease treatment and prevention, contributing to the worldwide increase in antibiotic resistance in animal and human pathogens. Although tetracycline mechanisms of resistance are well known, the role of metabolism in bacterial reaction to antibiotic stress is still an important assignment and could contribute to the understanding of tetracycline related stress response. In this study, spectral counts-based label free quantitative proteomics has been applied to study the response to tetracycline of the environmental-borne Escherichia coli EcAmb278 isolate soluble proteome. A total of 1484 proteins were identified by high resolution mass spectrometry at a false discovery rate threshold of 1%, of which 108 were uniquely identified under absence of tetracycline whereas 126 were uniquely identified in presence of tetracycline. These proteins revealed interesting difference in e.g. proteins involved in peptidoglycan-based cell wall proteins and energy metabolism. Upon treatment, 12 proteins were differentially regulated showing more than 2-fold change and p<0.05 (p value corrected for multiple testing). This integrated study using high resolution mass spectrometry based label-free quantitative proteomics to study tetracycline antibiotic response in the soluble proteome of resistant E. coli provides novel insight into tetracycline related stress. SIGNIFICANCE The lack of new antibiotics to fight infections caused by multidrug resistant microorganisms has motivated the use of old antibiotics, and the search for new drug targets. The evolution of antibiotic resistance is complex, but it is known that agroecosystems play an important part in the selection of antibiotic resistance bacteria. Tetracyclines are still used as phytopharmaceutical agents in crops, selecting resistant bacteria and changing the ecology of farm soil. Little is known about the metabolic response of genetically resistant populations to antibiotic exposure. Indeed, to date there are no quantitative tetracycline resistance studies performed with the latest generation of high resolution mass spectrometers allowing high mass accuracy in both MS and MS/MS scans. Here, we report the proteome profiling of a soil-borne Escherichia coli upon tetracycline stress, so that this new perspective could provide a broaden understanding of the metabolic responses of E. coli to a widely used antibiotic.
Collapse
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Inês Barata Moura
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Gilberto Igrejas
- Functional Genomics and Proteomics Unit, Department of Genetic and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, New University of Lisbon, Monte da Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Heathcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
245
|
Fan B, Li YL, Li L, Peng XJ, Bu C, Wu XQ, Borriss R. Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions. J Proteomics 2016; 154:1-12. [PMID: 27939684 DOI: 10.1016/j.jprot.2016.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Using the combination of affinity enrichment and high-resolution LC-MS/MS analysis, we performed a large-scale lysine malonylation analysis in the model representative of Gram-positive plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens FZB42. Altogether, 809 malonyllysine sites in 382 proteins were identified. The bioinformatic analysis revealed that lysine malonylation occurs on the proteins involved in a variety of biological functions including central carbon metabolism, fatty acid biosynthesis and metabolism, NAD(P) binding and translation machinery. A group of proteins known to be implicated in rhizobacterium-plant interaction were also malonylated; especially, the enzymes responsible for antibiotic production including polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) were highly malonylated. Furthermore, our analysis showed malonylation occurred on proteins structure with higher surface accessibility and appeared to be conserved in many bacteria but not in archaea. The results provide us valuable insights into the potential roles of lysine malonylation in governing bacterial metabolism and cellular processes. BIOLOGICAL SIGNIFICANCE Although in mammalian cells some important findings have been discovered that protein malonylation is related to basic metabolism and chronic disease, few studies have been performed on prokaryotic malonylome. In this study, we determined the malonylation profiles of Bacillus amyloliquefaciens FZB42, a model organism of Gram-positive plant growth-promoting rhizobacteria. FZB42 is known for the extensive investigations on its strong ability of producing antimicrobial polyketides and its potent activities of stimulating plant growth. Our analysis shows that malonylation is highly related to the polyketide synthases and the proteins involved bacterial interactions with plants. The results not only provide one of the first malonylomes for exploring the biochemical nature of bacterial proteins, but also shed light on the better understanding of bacterial antibiotic biosynthesis and plant-microbe interaction.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Yu-Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Lei Li
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany.
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China.
| | - Chen Bu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China.
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, 14195 Berlin, Germany.
| |
Collapse
|
246
|
Proteome-wide identification of lysine propionylation in thermophilic and mesophilic bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus. Extremophiles 2016; 21:283-296. [DOI: 10.1007/s00792-016-0901-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/27/2016] [Indexed: 12/22/2022]
|
247
|
Bergman A, Siewers V, Nielsen J, Chen Y. Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express 2016; 6:115. [PMID: 27848233 PMCID: PMC5110461 DOI: 10.1186/s13568-016-0290-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/08/2016] [Indexed: 01/20/2023] Open
Abstract
Phosphoketolases catalyze an energy- and redox-independent cleavage of certain sugar phosphates. Hereby, the two-carbon (C2) compound acetyl-phosphate is formed, which enzymatically can be converted into acetyl-CoA—a key precursor in central carbon metabolism. Saccharomyces cerevisiae does not demonstrate efficient phosphoketolase activity naturally. In this study, we aimed to compare and identify efficient heterologous phosphoketolase enzyme candidates that in yeast have the potential to reduce carbon loss compared to the native acetyl-CoA producing pathway by redirecting carbon flux directly from C5 and C6 sugars towards C2-synthesis. Nine phosphoketolase candidates were expressed in S. cerevisiae of which seven produced significant amounts of acetyl-phosphate after provision of sugar phosphate substrates in vitro. The candidates showed differing substrate specificities, and some demonstrated activity levels significantly exceeding those of candidates previously expressed in yeast. The conducted studies also revealed that S. cerevisiae contains endogenous enzymes capable of breaking down acetyl-phosphate, likely into acetate, and that removal of the phosphatases Gpp1 and Gpp2 could largely prevent this breakdown. An evaluation of in vivo function of a subset of phosphoketolases was conducted by monitoring acetate levels during growth, confirming that candidates showing high activity in vitro indeed showed increased acetate accumulation, but expression also decreased cellular fitness. The study shows that expression of several bacterial phosphoketolase candidates in S. cerevisiae can efficiently divert intracellular carbon flux toward C2-synthesis, thus showing potential to be used in metabolic engineering strategies aimed to increase yields of acetyl-CoA derived compounds.
Collapse
|
248
|
Okanishi H, Kim K, Fukui K, Yano T, Kuramitsu S, Masui R. Proteome-wide identification of lysine succinylation in thermophilic and mesophilic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:232-242. [PMID: 27888076 DOI: 10.1016/j.bbapap.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
Lysine succinylation, one of post-translational acylations conserved from eukaryotes to bacteria, plays regulatory roles in various cellular processes. However, much remains unknown about the general and specific characteristics of lysine succinylation among bacteria, and about its functions different from those of other acylations. In this study, we characterized lysine succinylation, a newly discovered widespread type of lysine acylation in five bacterial species with different characteristics such as optimal growth temperature and cell wall structure. This study is the first to demonstrate that succinylation is general phenomenon occurring not only in mesophiles but also in thermophiles. Mapping of succinylation sites on protein structures revealed that succinylation occurs at many lysine residues important for protein function. Comparison of the succinylation sites in the five bacterial species provides insights regarding common protein regulation mechanisms utilizing lysine succinylation. Many succinylation sites were conserved among five bacteria, especially between Geobacillus kaustophilus and Bacillus subtilis, some of which are functionally important sites. Furthermore, systematic comparison of the succinyl-proteome results and our previous propionyl-proteome results showed that the abundance of these two types of acylations is considerably different among the five bacteria investigated. Many succinylation and propionylation events were detected in G. kaustophilus, whereas Escherichia coli and B. subtilis exhibited high succinylation and low propionylation; low succinylation and high propionylation were identified in Thermus thermophilus, and low succinylation and propionylation were observed in Rhodothermus marinus. Comparison of the characteristics of lysine succinylation and lysine propionylation suggested these two types of acylation play different roles in cellular processes.
Collapse
Affiliation(s)
- Hiroki Okanishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoji Masui
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
249
|
Qin R, Sang Y, Ren J, Zhang Q, Li S, Cui Z, Yao YF. The Bacterial Two-Hybrid System Uncovers the Involvement of Acetylation in Regulating of Lrp Activity in Salmonella Typhimurium. Front Microbiol 2016; 7:1864. [PMID: 27909434 PMCID: PMC5112231 DOI: 10.3389/fmicb.2016.01864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
N𝜀-lysine acetylation is an abundant and important Post-translational modification in bacteria. We used the bacterial two-hybrid system to screen the genome library of the Salmonella Typhimurium to identify potential proteins involved in acetyltransferase Pat - or deacetylase CobB-mediated acetylation. Then, the in vitro (de)acetylation assays were used to validate the potential targets, such as STM14_1074, NrdF, RhaR. Lrp, a leucine-responsive regulatory protein and global regulator, was shown to interact with Pat. We further demonstrate that Lrp could be acetylated by Pat and deacetylated by NAD+-dependent CobB in vitro. Specifically, the conserved lysine residue 36 (K36) in helix-turn-helix (HTH) DNA-binding domain of Lrp was acetylated. Acetylation of K36 impaired the function of Lrp through altering the affinity with the target promoter. The mutation of K36 in chromosome mimicking acetylation enhanced the transcriptional level of itself and attenuated the mRNA levels of Lrp-regulated genes including fimA, which was confirmed by yeast agglutination assay. These findings demonstrate that the acetylation regulates the DNA-binding activity of Lrp, suggesting that acetylation modification of transcription factors is a conserved regulatory manner to modulate gene expression in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Qiufen Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
250
|
Sun M, Xu J, Wu Z, Zhai L, Liu C, Cheng Z, Xu G, Tao S, Ye BC, Zhao Y, Tan M. Characterization of Protein Lysine Propionylation in Escherichia coli: Global Profiling, Dynamic Change, and Enzymatic Regulation. J Proteome Res 2016; 15:4696-4708. [DOI: 10.1021/acs.jproteome.6b00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingwei Sun
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junyu Xu
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- Lab
of Biosystems and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhixiang Wu
- Pediatric
Surgery Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P. R. China
| | - Linhui Zhai
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengxi Liu
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018, P. R. China
| | - Guofeng Xu
- Pediatric
Surgery Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P. R. China
| | - Shengce Tao
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bang-Ce Ye
- Lab
of Biosystems and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yingming Zhao
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- Ben
May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
| | - Minjia Tan
- The
Chemical Proteomics Center and State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|