201
|
Hayward RJ, Humphrys MS, Huston WM, Myers GSA. Dual RNA-seq analysis of in vitro infection multiplicity and RNA depletion methods in Chlamydia-infected epithelial cells. Sci Rep 2021; 11:10399. [PMID: 34001998 PMCID: PMC8128910 DOI: 10.1038/s41598-021-89921-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dual RNA-seq experiments examining viral and bacterial pathogens are increasing, but vary considerably in their experimental designs, such as infection rates and RNA depletion methods. Here, we have applied dual RNA-seq to Chlamydia trachomatis infected epithelial cells to examine transcriptomic responses from both organisms. We compared two time points post infection (1 and 24 h), three multiplicity of infection (MOI) ratios (0.1, 1 and 10) and two RNA depletion methods (rRNA and polyA). Capture of bacterial-specific RNA were greatest when combining rRNA and polyA depletion, and when using a higher MOI. However, under these conditions, host RNA capture was negatively impacted. Although it is tempting to use high infection rates, the implications on host cell survival, the potential reduced length of infection cycles and real world applicability should be considered. This data highlights the delicate nature of balancing host-pathogen RNA capture and will assist future transcriptomic-based studies to achieve more specific and relevant infection-related biological insights.
Collapse
Affiliation(s)
- Regan J Hayward
- The iThree Institute, Faculty of Science, University of Technology Sydney, Sydney, Australia.
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany.
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Garry S A Myers
- The iThree Institute, Faculty of Science, University of Technology Sydney, Sydney, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
202
|
Connecting the "dots": RNP granule network in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119058. [PMID: 33989700 DOI: 10.1016/j.bbamcr.2021.119058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.
Collapse
|
203
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
204
|
Weissinger R, Heinold L, Akram S, Jansen RP, Hermesh O. RNA Proximity Labeling: A New Detection Tool for RNA-Protein Interactions. Molecules 2021; 26:2270. [PMID: 33919831 PMCID: PMC8070807 DOI: 10.3390/molecules26082270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple cellular functions are controlled by the interaction of RNAs and proteins. Together with the RNAs they control, RNA interacting proteins form RNA protein complexes, which are considered to serve as the true regulatory units for post-transcriptional gene expression. To understand how RNAs are modified, transported, and regulated therefore requires specific knowledge of their interaction partners. To this end, multiple techniques have been developed to characterize the interaction between RNAs and proteins. In this review, we briefly summarize the common methods to study RNA-protein interaction including crosslinking and immunoprecipitation (CLIP), and aptamer- or antisense oligonucleotide-based RNA affinity purification. Following this, we focus on in vivo proximity labeling to study RNA-protein interactions. In proximity labeling, a labeling enzyme like ascorbate peroxidase or biotin ligase is targeted to specific RNAs, RNA-binding proteins, or even cellular compartments and uses biotin to label the proteins and RNAs in its vicinity. The tagged molecules are then enriched and analyzed by mass spectrometry or RNA-Seq. We highlight the latest studies that exemplify the strength of this approach for the characterization of RNA protein complexes and distribution of RNAs in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Orit Hermesh
- Interfaculty Institute for Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany; (R.W.); (L.H.); (S.A.); (R.-P.J.)
| |
Collapse
|
205
|
Ramli S, Sim MS, Guad RM, Gopinath SCB, Subramaniyan V, Fuloria S, Fuloria NK, Choy KW, Rana S, Wu YS. Long Noncoding RNA UCA1 in Gastrointestinal Cancers: Molecular Regulatory Roles and Patterns, Mechanisms, and Interactions. JOURNAL OF ONCOLOGY 2021; 2021:5519720. [PMID: 33936199 PMCID: PMC8055404 DOI: 10.1155/2021/5519720] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
The rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers and may contribute to cancer progression and chemoresistance. They are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer. This review was aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and chemoresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules involved, together with a brief presentation on its diagnostic and prognostic values. The regulatory roles of lncRNA UCA1 are implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic and prognostic marker for GI cancer patients.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rhanye M. Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Subash C. B Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Neeraj K. Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Sungai Buloh 47000, Selangor, Malaysia
| | - Sohel Rana
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore-7400, Bangladesh
| | - Yuan Seng Wu
- Department of Biochemistry, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
206
|
Vasudeva K, Dutta A, Munshi A. Role of lncRNAs in the Development of Ischemic Stroke and Their Therapeutic Potential. Mol Neurobiol 2021; 58:3712-3728. [PMID: 33818737 DOI: 10.1007/s12035-021-02359-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Stroke is a major cause of premature mortality and disability around the world. Therefore, identification of cellular and molecular processes implicated in the pathogenesis and progression of ischemic stroke has become a priority. Long non-coding RNAs (lncRNAs) are emerging as significant players in the pathophysiology of cerebral ischemia. They are involved in different signalling pathways of cellular processes like cell apoptosis, autophagy, angiogenesis, inflammation, and cell death, impacting the progression of cerebral damage. Exploring the functions of these lncRNAs and their mechanism of action may help in the development of promising treatment strategies. In this review, the current knowledge of lncRNAs in ischemic stroke, focusing on the mechanism by which they cause cellular apoptosis, inflammation, and microglial activation, has been summarized. Very few lncRNAs have been functionally annotated. Therefore, the therapies based on lncRNAs still face many hurdles since the potential targets are likely to increase with the identification of new ones. Majority of experiments involving the identification and function of lncRNAs have been carried out in animal models, and the role of lncRNAs in human stroke presents a challenge. However, mitigating these issues through more rational experimental design might lead to the development of lncRNA-based stroke therapies to treat ischemic stroke.
Collapse
Affiliation(s)
- Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anyeasha Dutta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
207
|
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188502. [PMID: 33428963 DOI: 10.1016/j.bbcan.2021.188502] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a widely studied lncRNA in cancer. Although dispensable for normal physiology, MALAT1 is important for cancer-related pathways regulation. It is localized in the nuclear speckles periphery along with centrally located pre-RNA splicing factors. MALAT1 associated cancer signaling pathways include MAPK/ERK, PI3K/AKT, β-catenin/Wnt, Hippo, VEGF, YAP, etc. Molecular tools such as immunoprecipitation, RNA pull-down, reporter assay, Northern blotting, microarray, and q-RT-PCR has been used to elucidate MALAT1's function in cancer pathogenesis. MALAT1 can regulate multiple steps in the development of tumours. The diagnostic and prognostic significance of MALAT1 has been demonstrated in cancers of the breast, cervix, colorectum, gallbladder, lung, ovary, pancreas, prostate, glioma, hepatocellular carcinoma, and multiple myeloma. MALAT1 has also emerged as a novel therapeutic target for solid as well as hematological malignancies. In experimental models, siRNA and antisense oligonucleotide (ASO) based strategy has been used for targeting MALAT1. The lncRNA has also been targeted for the chemosensitization and radiosensitization of cancer cells. However, most studies have been performed in preclinical models. How the cross-talk of MALAT1 with other signaling pathways affect cancer pathogenesis is the focus of this article. The diagnostic, prognostic, and therapeutic significance of MALAT1 in multiple cancer types are discussed.
Collapse
Affiliation(s)
- Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shashi Ranjan Mani Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sweety Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
208
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
209
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
210
|
Lee J, Wu Y, Harada BT, Li Y, Zhao J, He C, Ma Y, Wu X. N 6 -methyladenosine modification of lncRNA Pvt1 governs epidermal stemness. EMBO J 2021; 40:e106276. [PMID: 33729590 DOI: 10.15252/embj.2020106276] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
Dynamic chemical modifications of RNA represent novel and fundamental mechanisms that regulate stemness and tissue homeostasis. Rejuvenation and wound repair of mammalian skin are sustained by epidermal progenitor cells, which are localized within the basal layer of the skin epidermis. N6 -methyladenosine (m6 A) is one of the most abundant modifications found in eukaryotic mRNA and lncRNA (long noncoding RNA). In this report, we survey changes of m6 A RNA methylomes upon epidermal differentiation and identify Pvt1, a lncRNA whose m6 A modification is critically involved in sustaining stemness of epidermal progenitor cells. With genome-editing and a mouse genetics approach, we show that ablation of m6 A methyltransferase or Pvt1 impairs the self-renewal and wound healing capability of skin. Mechanistically, methylation of Pvt1 transcripts enhances its interaction with MYC and stabilizes the MYC protein in epidermal progenitor cells. Our study presents a global view of epitranscriptomic dynamics that occur during epidermal differentiation and identifies the m6 A modification of Pvt1 as a key signaling event involved in skin tissue homeostasis and wound repair.
Collapse
Affiliation(s)
- Jimmy Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Yuchen Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bryan T Harada
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuanyuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Jing Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
211
|
Li L, Miao H, Chang Y, Yao H, Zhao Y, Wu F, Song X. Multidimensional crosstalk between RNA-binding proteins and noncoding RNAs in cancer biology. Semin Cancer Biol 2021; 75:84-96. [PMID: 33722631 DOI: 10.1016/j.semcancer.2021.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/09/2023]
Abstract
RNA-binding proteins (RBPs) are well-known to bind RNA via a set of RNA-binding domains (RBDs) and determine the fate and function of their RNA targets; inversely, some RBPs, in certain cases, may be modulated by the bound RNAs rather than regulate their RNA partners. Current proteome-wide studies reveal that almost half of RBPs have no canonical RBDs, and the discovery of tens of thousands of noncoding RNAs (ncRNAs), especially those with the size larger than 200 nt (namely long noncoding RNAs, lncRNAs), makes the crosstalk between RBPs and RNAs more complicated. It is clear that macromolecular complexes formed by RBP and RNA are not only a form of existence of their RBP and RNA components in cells, but also represent a functional entity through which those RBPs and regulatory ncRNAs participate in the construction of regulatory networks in organism. In this review, we summarize the multidimensional crosstalk between RBPs and ncRNAs in cancer and discuss how RBPs achieve their function via the bound ncRNAs in different aspects of gene expression as well as how RBPs direct modification and processing of ncRNAs, in order to better understand tumor biology and provide new insights into development of strategies for cancer therapy and early detection.
Collapse
Affiliation(s)
- Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yanbo Chang
- Sichuan Institute for Food and Drug Control, Department of Forensic Analytical Toxicology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Fan Wu
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
212
|
Jacq A, Becquet D, Guillen S, Boyer B, Bello-Goutierrez MM, Franc JL, François-Bellan AM. Direct RNA-RNA interaction between Neat1 and RNA targets, as a mechanism for RNAs paraspeckle retention. RNA Biol 2021; 18:2016-2027. [PMID: 33573434 DOI: 10.1080/15476286.2021.1889253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Paraspeckles are nuclear ribonucleic complex formed of a long non-coding RNA, nuclear-enriched abundant transcript one (Neat1) and associated RNA-binding proteins (RBP) whose cellular known functions are to sequester in the nucleus both proteins and RNAs. However, how RNAs are bound to paraspeckles is largely unknown. It is highly likely that binding of RNAs may occur via interactions with RBPs and accordingly, two structures present in the 3'UTR of some RNAs have been shown to allow their association to paraspeckles via protein binding. However, Neat1 could also be involved in the targeting of RNAs through direct RNA-RNA interactions. Using an RNA pull-down procedure adapted to select only RNAs engaged in direct RNA-RNA interactions and followed by RNA-seq we showed that in a rat pituitary cell line, GH4C1 cells, 1791 RNAs were associated with paraspeckles by direct interaction with Neat1. Neat1 was actually found able to bind more than 30% of the total transcripts targeted by the paraspeckles, we have identified in this cell line in a previous study. Furthermore, given the biological processes in which direct RNAs targets of Neat1 were involved as determined by gene ontology analysis, it was proposed that Neat1 played a major role in paraspeckle functions such as circadian rhythms, mRNA processing, RNA splicing and regulation of cell cycle. Finally, we provided evidence that direct RNA targets of Neat1 were preferentially bound to the 5' end of Neat1 demonstrating that they are located in the shell region of paraspeckles.
Collapse
Affiliation(s)
- Audrey Jacq
- Aix-Marseille Univ, CNRS, INP, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
213
|
Molitor L, Bacher S, Burczyk S, Niessing D. The Molecular Function of PURA and Its Implications in Neurological Diseases. Front Genet 2021; 12:638217. [PMID: 33777106 PMCID: PMC7990775 DOI: 10.3389/fgene.2021.638217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
214
|
Abstract
The subcellular localization of RNAs correlates with their function and how they are regulated. Most protein-coding mRNAs are exported into the cytoplasm for protein synthesis, while some mRNA species, long noncoding RNAs, and some regulatory element-associated unstable transcripts tend to be retained in the nucleus, where they function as a regulatory unit and/or are regulated by nuclear surveillance pathways. While the mechanisms regulating mRNA export and localization have been well summarized, the mechanisms governing nuclear retention of RNAs, especially of noncoding RNAs, are seldomly reviewed. In this review, we summarize recent advances in the mechanistic study of RNA nuclear retention, especially for noncoding RNAs, from the angle of cis-acting elements embedded in RNA transcripts and their interaction with trans-acting factors. We also try to illustrate the general principles of RNA nuclear retention and we discuss potential areas for future investigation.
Collapse
Affiliation(s)
- Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
215
|
Chaudhary R. Potential of long non-coding RNAs as a therapeutic target and molecular markers in glioblastoma pathogenesis. Heliyon 2021; 7:e06502. [PMID: 33786397 PMCID: PMC7988331 DOI: 10.1016/j.heliyon.2021.e06502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GB) is by far the most hostile type of malignant tumor that primarily affects the brain and spine, derived from star-shaped glial cells that are astrocytes and oligodendrocytes. Despite of significant efforts in recent years in glioblastoma research, the clinical efficacy of existing medical intervention is still limited and very few potential diagnostic markers are available. Long non-coding RNAs (lncRNAs) that lacks protein-coding capabilities were previously thought to be "junk sequences" in mammalian genomes are quite indispensible epigenetic regulators that can positively or negatively regulate gene expression and nuclear architecture, with significant roles in the initiation and development of tumors. Nevertheless, the precise mechanism of these distortedly expressed lncRNAs in glioblastoma pathogenesis is not yet fully understood. Since the advent of high-throughput sequencing technologies, more and more research have elucidated that lncRNAs are one of the most promising prognostic biomarkers and therapeutic targets for glioblastoma. In this paper, I briefly outlined the existing findings of lncRNAs. And also summarizes the profiles of different lncRNAs that have been broadly classified in glioblastoma research, with emphasis on both their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| |
Collapse
|
216
|
Long non-coding RNA NEAT1 functions as a competing endogenous RNA to regulate S100A9 expression by sponging miR-196a-5p in rosacea. J Dermatol Sci 2021; 102:58-67. [PMID: 33678493 DOI: 10.1016/j.jdermsci.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rosacea is a complex, chronic, and recurrent dermatologic condition that adversely affects quality of life and self-esteem. However, clinical relevance and molecular mechanisms underlying NEAT1 influence in rosacea remain unclear. OBJECTIVE The present study aims to investigate the dynamics and influences of lncRNAs, miRNAs, and mRNAs in rosacea patients, and to explore the impacts of NEAT1 treatments on miR-196a-5p and S100A9 expression in LL37-treated HaCaT cells. METHODS RNA-sequencing of skin tissues from rosacea patients and integrative analyses facilitated comprehensive exploration of lncRNA, mRNA, and miRNA networks. We identified differentially expressed lncRNAs in paired rosacea afflicted and non-lesioned tissues by hub lncRNAs in the ceRNA network. The role of NEAT1 in LL37-treated HaCaT cells was identified by in vitro experiments. RESULTS There were 237 lncRNAs, 38 miRNAs, and 1784 mRNAs in lesioned skin compared to non-lesioned skin in six rosacea patients. NEAT1 was upregulated in rosacea skin and in LL37-treated HaCaT cells. Moreover, inflammatory damage was able to be reduced in vitro after knockdown of NEAT1. Finally, NEAT1 was able to directly interact with miR-196a-5p, and downregulating miR-196a-5p was efficient in reversing the influence of NEAT1 siRNA on S100A9. CONCLUSION We have completed the first genome-wide lncRNA profiling of paired lesioned and non-lesioned samples from rosacea afflicted patients. The NEAT1/miR-196a-5p/S100A9 axis may have played an important role in the dynamics underlying inflammatory responses of rosacea. NEAT1 may have functioned as a competing endogenous RNA which regulated inflammatory responses in rosacea by sponging miR-196a-5p and upregulating S100A9 expression.
Collapse
|
217
|
Laha S, Saha C, Dutta S, Basu M, Chatterjee R, Ghosh S, Bhattacharyya NP. In silico analysis of altered expression of long non-coding RNA in SARS-CoV-2 infected cells and their possible regulation by STAT1, STAT3 and interferon regulatory factors. Heliyon 2021; 7:e06395. [PMID: 33688586 PMCID: PMC7914022 DOI: 10.1016/j.heliyon.2021.e06395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Altered expression of long noncoding RNA (lncRNA), longer than 200 nucleotides without potential for coding protein, has been observed in diverse human diseases including viral diseases. It is largely unknown whether lncRNA would deregulate in SARS-CoV-2 infection, causing ongoing pandemic COVID-19. To identify, if lncRNA was deregulated in SARS-CoV-2 infected cells, we analyzed in silico the data in GSE147507. It was revealed that expression of 20 lncRNA like MALAT1, NEAT1 was increased and 4 lncRNA like PART1, TP53TG1 was decreased in at least two independent cell lines infected with SARS-CoV-2. Expression of NEAT1 was also increased in lungs tissue of COVID-19 patients. The deregulated lncRNA could interact with more than 2800 genes/proteins and 422 microRNAs as revealed from the database that catalogs experimentally determined interactions. Analysis with the interacting gene/protein partners of deregulated lncRNAs revealed that these genes/proteins were associated with many pathways related to viral infection, inflammation and immune functions. To find out whether these lncRNAs could be regulated by STATs and interferon regulatory factors (IRFs), we used ChIPBase v2.0 that catalogs experimentally determined binding from ChIP-seq data. It was revealed that any one of the transcription factors IRF1, IRF4, STAT1, STAT3 and STAT5A had experimentally determined binding at regions within -5kb to +1kb of the deregulated lncRNAs in at least 2 independent cell lines/conditions. Our analysis revealed that several lncRNAs could be regulated by IRF1, IRF4 STAT1 and STAT3 in response to SARS-CoV-2 infection and lncRNAs might be involved in antiviral response. However, these in silico observations are necessary to be validated experimentally.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Chinmay Saha
- Department of Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia 741235, India
| | - Susmita Dutta
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| | - Madhurima Basu
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sujoy Ghosh
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| | - Nitai P Bhattacharyya
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| |
Collapse
|
218
|
Gerber AP. RNA-Centric Approaches to Profile the RNA-Protein Interaction Landscape on Selected RNAs. Noncoding RNA 2021; 7:ncrna7010011. [PMID: 33671874 PMCID: PMC7930960 DOI: 10.3390/ncrna7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.
Collapse
Affiliation(s)
- André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
219
|
Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021; 7:6. [PMID: 33450947 PMCID: PMC7838788 DOI: 10.3390/ncrna7010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.C.W.); (P.J.M.); (G.E.S.)
| |
Collapse
|
220
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
221
|
Abstract
K-mer based comparisons have emerged as powerful complements to BLAST-like alignment algorithms, particularly when the sequences being compared lack direct evolutionary relationships. In this chapter, we describe methods to compare k-mer content between groups of long noncoding RNAs (lncRNAs), to identify communities of lncRNAs with related k-mer contents, to identify the enrichment of protein-binding motifs in lncRNAs, and to scan for domains of related k-mer contents in lncRNAs. Our step-by-step instructions are complemented by Python code deposited in Github. Though our chapter focuses on lncRNAs, the methods we describe could be applied to any set of nucleic acid sequences.
Collapse
Affiliation(s)
- Jessime M Kirk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Daniel Sprague
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Flagship Pioneering, Boston, MA, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
222
|
Liao H, Chen Q, Xiao J. Reflections on the Role of Malat1 in Gynecological Cancer. Cancer Manag Res 2020; 12:13489-13500. [PMID: 33408521 PMCID: PMC7779295 DOI: 10.2147/cmar.s286804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have received significant attention over the last few years. Malat1, as one of the most extensively studied ncRNAs, is believed to be not only a potential biomarker for disease diagnosis and prognosis, but also a candidate drug target for gynecological cancers. This potential is supported by a growing body of experimental evidence demonstrating that Malat1 participates in the occurrence, progression, and metastasis of tumors. Research has also shown that Malat1 can influence patient survival by regulating a range of target genes and signaling pathways. However, previous review articles have generally failed to consider the role of Malat1 in gynecological cancer in detail. In the present review, we summarize recent progress in research relating to the clinical relevance of Malat1 and the molecular mechanisms underlying the action of this ncRNA. Besides, we put forward some action points for further research after taking into consideration the sub-location and other essential properties of Malat1, which might enable us to have a better understanding of the potential of this molecule regarding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huiyan Liao
- The 2nd Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Qi Chen
- The 6th Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Jing Xiao
- Department of Gynecology, the University Town Branch, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
223
|
Ono K, Horie T, Baba O, Kimura M, Tsuji S, Rodriguez RR, Miyagawa S, Kimura T. Functional non-coding RNAs in vascular diseases. FEBS J 2020; 288:6315-6330. [PMID: 33340430 PMCID: PMC9292203 DOI: 10.1111/febs.15678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Recently, advances in genomic technology such as RNA sequencing and genome‐wide profiling have enabled the identification of considerable numbers of non‐coding RNAs (ncRNAs). MicroRNAs have been studied for decades, leading to the identification of those with disease‐causing and/or protective effects in vascular disease. Although other ncRNAs such as long ncRNAs have not been fully described yet, recent studies have indicated their important functions in the development of vascular diseases. Here, we summarize the current understanding of the mechanisms and functions of ncRNAs, focusing on microRNAs, circular RNAs and long ncRNAs in vascular diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
224
|
RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends Biotechnol 2020; 39:890-900. [PMID: 33353763 DOI: 10.1016/j.tibtech.2020.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
RNA-protein interactions play an important role in numerous cellular processes in health and disease. In recent years, the global RNA-bound proteome has been extensively studied, uncovering many previously unknown RNA-binding proteins. However, little is known about which particular proteins bind to which specific RNA transcript. In this review, we provide an overview of methods to identify RNA-protein interactions, with a particular focus on strategies that provide insights into the interactome of specific RNA transcripts. Finally, we discuss challenges and future directions, including the potential of CRISPR-RNA targeting systems to investigate endogenous RNA-protein interactions.
Collapse
|
225
|
Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer 2020; 19:171. [PMID: 33308223 PMCID: PMC7733260 DOI: 10.1186/s12943-020-01293-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in mammalian cells. However, the disease relevant function of m6A on specific oncogenic long non-coding RNAs (ncRNAs) is not well understood. Methods We analyzed the m6A status using patients samples and bone metastatic PDXs. Through m6A high-throughput sequencing, we identified the m6A sites on NEAT1–1 in prostate bone metastatic PDXs. Mass spec assay showed interaction among NEAT1–1, CYCLINL1 and CDK19. RNA EMSA, RNA pull-down, mutagenesis, CLIP, western blot, ChIP and ChIRP assays were used to investigate the molecular mechanisms underlying the functions of m6A on NEAT1–1. Loss-of function and rescued experiments were executed to detect the biological roles of m6A on NEAT1–1 in the PDX cell phenotypes in vivo. Results In this study, we identified 4 credible m6A sites on long ncRNA NEAT1–1. High m6A level of NEAT1–1 was related to bone metastasis of prostate cancer and m6A level of NEAT1–1 was a powerful predictor of eventual death. Transcribed NEAT1–1 served as a bridge to facility the binding between CYCLINL1 and CDK19 and promoted the Pol II ser2 phosphorylation. Importantly, depletion of NEAT1–1or decreased m6A of NEAT1–1 impaired Pol II Ser-2p level in the promoter of RUNX2. Overexpression of NEAT1–1 induced cancer cell metastasis to lung and bone; xenograft growth and shortened the survival of mice, but NEAT1–1 with m6A site mutation failed to do these. Conclusion Collectively, the findings indicate that m6A on ncRNA NEAT1–1 takes critical role in regulating Pol II ser2 phosphorylation and may be novel specific target for bone metastasis cancer therapy and diagnosis. New complex CYCLINL1/CDK19/NEAT1–1 might provide new insight into the potential mechanism of the pathogenesis and development of bone metastatic prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01293-4.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
| | - Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Chong Zen
- Department of Urology, Central South University, Changsha, 410011, China
| | - Wei Xiong
- Department of Urology, Central South University, Changsha, 410011, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China.
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
226
|
Grosch M, Ittermann S, Shaposhnikov D, Drukker M. Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiation. Stem Cell Reports 2020; 15:1220-1232. [PMID: 33217325 PMCID: PMC7724471 DOI: 10.1016/j.stemcr.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear "membraneless organelles" indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RNA processing factors. Important questions pertain to the involvement of membraneless organelles in determining cell identity through their cell-type-specific composition and function. Paraspeckles provide a prism to these questions because they exhibit striking cell-type-specific patterns and since they are crucial in embryogenesis. Here, we outline known interactions between paraspeckles and chromatin, and postulate how such interactions may be important in regulation of cell fate transitions. Moreover, we propose long non-coding RNAs (lncRNAs) as candidates for similar regulation because many form foci that resemble biocondensates and exhibit dynamic patterns during differentiation. Finally, we outline approaches that could ascertain how chromatin-associated membraneless organelles regulate cellular differentiation.
Collapse
Affiliation(s)
- Markus Grosch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sebastian Ittermann
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC RA Leiden, The Netherlands.
| |
Collapse
|
227
|
Organization and function of paraspeckles. Essays Biochem 2020; 64:875-882. [DOI: 10.1042/ebc20200010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Abstract
Paraspeckles are a type of subnuclear bodies built on the long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1, also known as MEN-ε/β or VINC-1). Paraspeckles are involved in many physiological processes including cellular stress responses, cell differentiation, corpus luteum formation and cancer progression. Recently, ultra-resolution microscopy coupled with multicolor-labeling of paraspeckle components (the NEAT1 RNA and paraspeckle proteins) revealed the exquisite details of paraspeckle structure and function. NEAT1 transcripts are radially arranged to form a core–shell spheroidal structure, while paraspeckle proteins (PSPs) localize within different layers. Functional dissection of NEAT1 shows that the subdomains of NEAT1_2 are important for RNA stability, isoform switching and paraspeckle assembly via a liquid–liquid phase separation (LLPS) mechanism. We review recent progress on structure and organization of paraspeckles as well as how paraspeckles spatiotemporally control gene regulation through sequestration of diverse proteins and RNAs in cells.
Collapse
|
228
|
An emerging role of chromatin-interacting RNA-binding proteins in transcription regulation. Essays Biochem 2020; 64:907-918. [PMID: 33034346 DOI: 10.1042/ebc20200004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) are well-established key factors orchestrating gene transcription, and RNA-binding proteins (RBPs) are mainly thought to participate in post-transcriptional control of gene. In fact, these two steps are functionally coupled, offering a possibility for reciprocal communications between transcription and regulatory RNAs and RBPs. Recently, a series of exploratory studies, utilizing functional genomic strategies, have revealed that RBPs are prevalently involved in transcription control genome-wide through their interactions with chromatin. Here, we present a refined census of RBPs to grope for such an emerging role and discuss the global view of RBP-chromatin interactions and their functional diversities in transcription regulation.
Collapse
|
229
|
Olivero CE, Dimitrova N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J 2020; 34:15630-15646. [PMID: 33058262 PMCID: PMC7756267 DOI: 10.1096/fj.202001951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.
Collapse
Affiliation(s)
- Christiane E. Olivero
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
230
|
Shulenina LV, Mikhailov VF, Zasukhina GD. Long Noncoding RNAs in Radiation Response. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
231
|
Tsurumi A, Flaherty PJ, Que YA, Ryan CM, Mendoza AE, Almpani M, Bandyopadhaya A, Ogura A, Dhole YV, Goodfield LF, Tompkins RG, Rahme LG. Multi-Biomarker Prediction Models for Multiple Infection Episodes Following Blunt Trauma. iScience 2020; 23:101659. [PMID: 33047099 PMCID: PMC7539926 DOI: 10.1016/j.isci.2020.101659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Severe trauma predisposes patients to multiple independent infection episodes (MIIEs), leading to augmented morbidity and mortality. We developed a method to identify increased MIIE risk before clinical signs appear, which is fundamentally different from existing approaches entailing infections' detection after their establishment. Applying machine learning algorithms to genome-wide transcriptome data from 128 adult blunt trauma patients' (42 MIIE cases and 85 non-cases) leukocytes collected ≤48 hr of injury and ≥3 days before any infection, we constructed a 15-transcript and a 26-transcript multi-biomarker panel model with the least absolute shrinkage and selection operator (LASSO) and Elastic Net, respectively, which accurately predicted MIIE (Area Under Receiver Operating Characteristics Curve [AUROC] [95% confidence intervals, CI]: 0.90 [0.84–0.96] and 0.92 [0.86–0.96]) and significantly outperformed clinical models. Gene Ontology and network analyses found various pathways to be relevant. External validation found our model to be generalizable. Our unique precision medicine approach can be applied to a wide range of patient populations and outcomes. We describe a method for predicting multiple independent infection episodes (MIIEs). We applied machine learning algorithms to transcriptome data to develop models The biomarker prediction models significantly outperformed clinical models External validation in another trauma cohort found evidence of generalizability
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Patrick J. Flaherty
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland, 3010 Bern, Switzerland
| | - Colleen M. Ryan
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - April E. Mendoza
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Marianna Almpani
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
| | - Asako Ogura
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yashoda V. Dhole
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Laura F. Goodfield
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Ronald G. Tompkins
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA 02114, USA
- Corresponding author
| |
Collapse
|
232
|
Toki N, Takahashi H, Sharma H, Valentine MNZ, Rahman FUM, Zucchelli S, Gustincich S, Carninci P. SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies. Nucleic Acids Res 2020; 48:11626-11644. [PMID: 33130894 PMCID: PMC7672464 DOI: 10.1093/nar/gkaa814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
SINEUPs are long non-coding RNAs (lncRNAs) that contain a SINE element, and which up-regulate the translation of target mRNA. They have been studied in a wide range of applications, as both biological and therapeutic tools, although the underpinning molecular mechanism is unclear. Here, we focused on the sub-cellular distribution of target mRNAs and SINEUP RNAs, performing co-transfection of expression vectors for these transcripts into human embryonic kidney cells (HEK293T/17), to investigate the network of translational regulation. The results showed that co-localization of target mRNAs and SINEUP RNAs in the cytoplasm was a key phenomenon. We identified PTBP1 and HNRNPK as essential RNA binding proteins. These proteins contributed to SINEUP RNA sub-cellular distribution and to assembly of translational initiation complexes, leading to enhanced target mRNA translation. These findings will promote a better understanding of the mechanisms employed by regulatory RNAs implicated in efficient protein translation.
Collapse
Affiliation(s)
- Naoko Toki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
- Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
- Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Matthew N Z Valentine
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Ferdous-Ur M Rahman
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Silvia Zucchelli
- Department of Health Sciences, Center for Autoimmune and Allergic Diseases (CAAD) and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
- Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
233
|
NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway in SH-SY5Y cells and APP/PS1 mice. Aging (Albany NY) 2020; 12:23233-23250. [PMID: 33221742 PMCID: PMC7746375 DOI: 10.18632/aging.104098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Nuclear paraspeckles assembly transcript 1 (NEAT1) is a well-known long noncoding RNA (lncRNA) with various functions in different physiological and pathological processes. Notably, aberrant NEAT1 expression is implicated in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD). However, the molecular mechanism of NEAT1 in AD remains poorly understood. In this study, we investigated that NEAT1 regulated microtubules (MTs) polymerization via FZD3/GSK3β/p-tau pathway. Downregulation of NEAT1 inhibited Frizzled Class Receptor 3 (FZD3) transcription activity by suppressing H3K27 acetylation (H3K27Ac) at the FZD3 promoter. Our data also demonstrated that P300, an important histone acetyltransferases (HAT), recruited by NEAT1 to bind to FZD3 promoter and mediated its transcription via regulating histone acetylation. In addition, according to immunofluorescence staining of MTs, metformin, a medicine for the treatment of diabetes mellitus, rescued the reduced length of neurites detected in NEAT1 silencing cells. We suspected that metformin may play a neuroprotective role in early AD by increasing NEAT1 expression and through FZD3/GSK3β/p-tau pathway. Collectively, NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway and influences FZD3 transcription activity in the epigenetic way.
Collapse
|
234
|
Bu FT, Wang A, Zhu Y, You HM, Zhang YF, Meng XM, Huang C, Li J. LncRNA NEAT1: Shedding light on mechanisms and opportunities in liver diseases. Liver Int 2020; 40:2612-2626. [PMID: 32745314 DOI: 10.1111/liv.14629] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
With advances in genome and transcriptome research technology, the function and mechanism of lncRNAs in physiological and pathological states have been gradually revealed. Nuclear Enriched Abundant Transcript 1 (NEAT1, a long non-coding RNA), a vital component of paraspeckles, plays an indispensable role in the formation and integrity of paraspeckles. Throughout the research history, NEAT1 is mostly aberrantly upregulated in various cancers, and high expression of NEAT1 often contributes to poor prognosis of patients. Notably, the role and mechanism of NEAT1 in liver diseases have been increasingly reported. NEAT1 accelerates the progression of non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma, while exerting a protective role in the pathogenesis of acute-on-chronic liver failure by inhibiting the inflammatory response. In this review, we will elaborate on relevant studies on the different casting of NEAT1 in liver diseases, especially focusing on its regulatory mechanisms and new opportunities for alcoholic liver disease.
Collapse
Affiliation(s)
- Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yan Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
235
|
Thakur J, Henikoff S. Architectural RNA in chromatin organization. Biochem Soc Trans 2020; 48:1967-1978. [PMID: 32897323 PMCID: PMC7609026 DOI: 10.1042/bst20191226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
RNA plays a well-established architectural role in the formation of membraneless interchromatin nuclear bodies. However, a less well-known role of RNA is in organizing chromatin, whereby specific RNAs have been found to recruit chromatin modifier proteins. Whether or not RNA can act as an architectural molecule for chromatin remains unclear, partly because dissecting the architectural role of RNA from its regulatory role remains challenging. Studies that have addressed RNA's architectural role in chromatin organization rely on in situ RNA depletion using Ribonuclease A (RNase A) and suggest that RNA plays a major direct architectural role in chromatin organization. In this review, we will discuss these findings, candidate chromatin architectural long non-coding RNAs and possible mechanisms by which RNA, along with RNA binding proteins might be mediating chromatin organization.
Collapse
Affiliation(s)
- Jitendra Thakur
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| |
Collapse
|
236
|
Zapparoli E, Briata P, Rossi M, Brondolo L, Bucci G, Gherzi R. Comprehensive multi-omics analysis uncovers a group of TGF-β-regulated genes among lncRNA EPR direct transcriptional targets. Nucleic Acids Res 2020; 48:9053-9066. [PMID: 32756918 PMCID: PMC7498312 DOI: 10.1093/nar/gkaa628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can affect multiple layers of gene expression to control crucial cellular functions. We have previously demonstrated that the lncRNA EPR, by controlling gene expression at different levels, affects cell proliferation and migration in cultured mammary gland cells and impairs breast tumor formation in an orthotopic transplant model in mice. Here, we used ChIRP-Seq to identify EPR binding sites on chromatin of NMuMG mammary gland cells overexpressing EPR and identified its trans binding sites in the genome. Then, with the purpose of relating EPR/chromatin interactions to the reshaping of the epitranscriptome landscape, we profiled histone activation marks at promoter/enhancer regions by ChIP-Seq. Finally, we integrated data derived from ChIRP-Seq, ChIP-Seq as well as RNA-Seq in a comprehensive analysis and we selected a group of bona fide direct transcriptional targets of EPR. Among them, we identified a subset of EPR targets whose expression is controlled by TGF-β with one of them—Arrdc3—being able to modulate Epithelial to Mesenchymal Transition. This experimental framework allowed us to correlate lncRNA/chromatin interactions with the real outcome of gene expression and to start defining the gene network regulated by EPR as a component of the TGF-β pathway.
Collapse
Affiliation(s)
- Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Paola Briata
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Brondolo
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriele Bucci
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
237
|
Liu J, Zhan Y, Wang J, Wang J, Guo J, Kong D. Long noncoding RNA LINC01578 drives colon cancer metastasis through a positive feedback loop with the NF-κB/YY1 axis. Mol Oncol 2020; 14:3211-3233. [PMID: 33040438 PMCID: PMC7718957 DOI: 10.1002/1878-0261.12819] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease-specific survival, and disease-free survival. Gain-of-function and loss-of-function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF-κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin-bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF-κB signaling. Through activation of NF-κB, LINC01578 further upregulated YY1 expression. Through activation of the NF-κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF-κB/YY1 formed a positive feedback loop. Blocking NF-κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF-κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang Zhan
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiefu Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junfeng Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiansheng Guo
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
238
|
Gharib E, Nazemalhosseini-Mojarad E, Baghdar K, Nayeri Z, Sadeghi H, Rezasoltani S, Jamshidi-Fard A, Larki P, Sadeghi A, Hashemi M, Asadzadeh Aghdaei H. Identification of a stool long non-coding RNAs panel as a potential biomarker for early detection of colorectal cancer. J Clin Lab Anal 2020; 35:e23601. [PMID: 33094859 PMCID: PMC7891513 DOI: 10.1002/jcla.23601] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background The feces of colorectal cancer (CRC) patients contain tumor colonocytes, which constantly shed into the lumen area. Therefore, stool evaluation can be considered as a rapid and low‐risk way to directly determine the colon and rectum status. As long non‐coding RNAs (lncRNAs) alterations are important in cancer cells fate regulation, we aimed to assess the level of a panel of cancer‐related lncRNAs in fecal colonocytes. Methods The population study consisted of 150 subjects, including a training set, a validation set, and a group of 30 colon polyps. The expression levels of lncRNAs were evaluated by quantitative real‐time PCR (qRT‐PCR). The NPInetr and EnrichR tools were used to identify the interactions and functions of lncRNAs. Results A total of 10 significantly dysregulated lncRNAs, including CCAT1, CCAT2, H19, HOTAIR, HULC, MALAT1, PCAT1, MEG3, PTENP1, and TUSC7, were chosen for designing a predictive panel. The diagnostic performance of the panel in distinguishing CRCs from the healthy group was AUC: 0.8554 in the training set and 0.8465 in the validation set. The AUC for early CRCs (I‐II TNM stages) was 0.8554 in the training set and 0.8465 in the validation set, and for advanced CRCs (III‐IV TNM stages) were 0.9281 in the training set and 0.9236 in the validation set. The corresponding AUC for CRCs vs polyps were 0.9228 (I‐IV TNM stages), 0.9042 (I‐II TNM stages), and 0.9362 (III‐IV TNM stages). Conclusions These data represented the application of analysis of fecal colonocytes lncRNAs in early detection of CRC.
Collapse
Affiliation(s)
- Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghdar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Nayeri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Molecular Genetics Department, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sama Rezasoltani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Jamshidi-Fard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Molecular Genetics Department, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
239
|
Duică F, Condrat CE, Dănila CA, Boboc AE, Radu MR, Xiao J, Li X, Creţoiu SM, Suciu N, Creţoiu D, Predescu DV. MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Front Oncol 2020; 10:591181. [PMID: 33194751 PMCID: PMC7646292 DOI: 10.3389/fonc.2020.591181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence on the clinical roles of microRNAs (miRNAs) in cancer prevention and control has revealed the emergence of new genetic techniques that have improved the understanding of the mechanisms essential for pathology induction and progression. Comprehension of the modifications and individual differences of miRNAs and their interactions in the pathogenesis of gynecological malignancies, together with an understanding of the phenotypic variations have considerably improved the management of the diagnosis and personalized treatment for different forms of cancer. In recent years, miRNAs have emerged as signaling molecules in biological pathways involved in different categories of cancer and it has been demonstrated that these molecules could regulate cancer-relevant processes, our focus being on malignancies of the gynecologic tract. The aim of this paper is to summarize novel research findings in the literature regarding the parts that miRNAs play in cancer-relevant processes, specifically regarding gynecological malignancy, while emphasizing their pivotal role in the disruption of cancer-related signaling pathways.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănila
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Sanda Maria Creţoiu
- Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Obstetrics, Gynecology and Neonatology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania.,Cellular and Molecular Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş-Valentin Predescu
- Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
240
|
Taherzadeh-Soureshjani P, Chehelgerdi M. Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-020-00066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract
Background
Breast cancer (BC), as the most widely recognized disease in women worldwide, represents about 30% of all cancers impacting women. This study was aimed to synthesize Cu2O nanoparticles from the cystoseira myrica algae (CM-Cu2O NPs) assess their antimicrobial activity against pathogenic bacteria and fungi. We evaluated the expression levels of lncRNAs (MALAT1 and GAS5) and apoptosis genes (p53, p27, bax, bcl2 and caspase3), their prognostic roles.
Methods
In this study, CM-Cu2O NPs synthesized by cystoseira myrica algae extraction used to evaluate its cytotoxicity and apoptotic properties on MDA-MB-231, SKBR3 and T-47D BC cell lines compared to HDF control cell line. The CM-Cu2O NPs was characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). The antimicrobial activity of CM-Cu2O NPs was assessed against pathogenic bacteria, staphylococcus aureus (S. aureus) PTCC 1112 bacteria as a standard gram-positive bacteria and pseudomonas aeruginosa (P. aeruginosa) PTCC 1310 as a standard gram-negative bacterium. Expression profile of MALAT1 and GAS5 lncRNAs and apoptosis genes, i.e., p27, bax, bcl2 and caspase3 genes, were calculated utilizing qRT-PCR. The changes in the expression levels were determined using the DDCT method.
Results
MALAT1 was upregulated in MDA-MB-231, SKBR3 and T-47D BC (p < 0.01), while GAS5 was downregulated in SKBR3 and T-47D cell lines tested compared with HDF control cell line (p < 0.05) was found. The results revealed that, p27, bax and caspase3 were significantly upregulated in BC cell lines as compared with normal cell line. Bcl2 expression was also significantly increased in MDA-MB-231 and T47D cell lines compared with normal cell line, but bcl2 levels were downregulated in SKBR3 cell line.
Conclusions
Our results confirm the beneficial cytotoxic effects of green-synthesized CM-Cu2O NPs on BC cell lines. This nanoparticle decreased angiogenesis and induces apoptosis, so we conclude that CM-Cu2O NPs can be used as a supplemental drug in cancer treatments. Significantly, elevated circulating lncRNAs were demonstrated to be BC specific and could differentiate BC cell lines from the normal cell lines. It was demonstrated that lncRNAs used in this study and their expression profiles can be created as biomarkers for early diagnosis and prognosis of BC. Further studies utilizing patients would give recognizable identification of lncRNAs as key players in intercellular interactions.
Collapse
|
241
|
Long noncoding RNA nuclear-enriched abundant transcript 1 regulates proliferation and apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through Janus kinase/signal transducer and activator of transcription 3 pathway. Neuroreport 2020; 31:1189-1198. [PMID: 33044324 DOI: 10.1097/wnr.0000000000001538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is a common malignancy and frequently affects children, leading to a low survival rate. Long noncoding RNAs (lncRNAs) are reported to be closely related to cancer progression. The purpose of this study was to explore a novel mechanism of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in neuroblastoma. NEAT1 was upregulated in neuroblastoma cell lines (IMR32 and SK-N-SH). Overexpression of NEAT1 increased proliferation inhibited by cisplatin and decreased apoptosis promoted by cisplatin. MicroRNA-326 (miR-326) was a target of NEAT1 and miR-326 reintroduction abolished the effects of NEAT1 overexpression on cell proliferation and apoptosis. Moreover, NEAT1 overexpression activated Janus kinase/signal transducer and activator of transcription 3 (JAK1/STAT3) signaling pathway through absorbing miR-326. Besides, NEAT1 overexpression promoted tumor growth in vivo through stimulating the expression of p-JAK1 and p-STAT3 but inhibiting miR-326 expression. NEAT1 accelerated proliferation and weakened apoptosis of neuroblastoma cells treated by cisplatin by targeting miR-326 through activating JAK1/STAT3 signaling pathway, suggesting that NEAT1 was a potential biomarker against neuroblastoma.
Collapse
|
242
|
Exosomal Long Non-coding RNAs: Emerging Players in the Tumor Microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1371-1383. [PMID: 33738133 PMCID: PMC7940039 DOI: 10.1016/j.omtn.2020.09.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in exosome biology have uncovered a significant role of exosomes in cancer and make them a determining factor in intercellular communication. Exosomes are types of extracellular vesicles that are involved in the communication between cells by exchanging various signaling molecules between the surrounding cells. Among various signaling molecules, long non-coding RNAs (lncRNAs), a type of non-coding RNA having a size of more than 200 nt in length and lacking protein-coding potential, have emerged as crucial regulators of intercellular communication. Tumor-derived exosomes containing various lncRNAs, known as exosomal lncRNAs, reprogram the microenvironment by regulating numerous cellular functions, including the regulation of gene transcription that favors cancer growth and progression, thus significantly determining the biological effects of exosomes. In addition, deregulated expression of lncRNAs is found in various human cancers and serves as a diagnostic biomarker to predict cancer type. The present review discusses the role of exosomal lncRNAs in the crosstalk between tumor cells and the surrounding cells of the microenvironment. Furthermore, we also discuss the involvement of exosomal lncRNAs within the tumor microenvironment in favoring tumor growth, metabolic reprogramming of tumor cells, and tumor-supportive autophagy. Therefore, lncRNAs can be used as a therapeutic target in the treatment of various human cancers.
Collapse
|
243
|
Daneshvar K, Ardehali MB, Klein IA, Hsieh FK, Kratkiewicz AJ, Mahpour A, Cancelliere SOL, Zhou C, Cook BM, Li W, Pondick JV, Gupta SK, Moran SP, Young RA, Kingston RE, Mullen AC. lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol 2020; 22:1211-1222. [PMID: 32895492 PMCID: PMC8008247 DOI: 10.1038/s41556-020-0572-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2020] [Indexed: 01/19/2023]
Abstract
Cooperation between DNA, RNA and protein regulates gene expression and controls differentiation through interactions that connect regions of nucleic acids and protein domains and through the assembly of biomolecular condensates. Here, we report that endoderm differentiation is regulated by the interaction between the long non-coding RNA (lncRNA) DIGIT and the bromodomain and extraterminal domain protein BRD3. BRD3 forms phase-separated condensates of which the formation is promoted by DIGIT, occupies enhancers of endoderm transcription factors and is required for endoderm differentiation. BRD3 binds to histone H3 acetylated at lysine 18 (H3K18ac) in vitro and co-occupies the genome with H3K18ac. DIGIT is also enriched in regions of H3K18ac, and the depletion of DIGIT results in decreased recruitment of BRD3 to these regions. Our findings show that cooperation between DIGIT and BRD3 at regions of H3K18ac regulates the transcription factors that drive endoderm differentiation and suggest that protein-lncRNA phase-separated condensates have a broader role as regulators of transcription.
Collapse
Affiliation(s)
- Kaveh Daneshvar
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M Behfar Ardehali
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Fu-Kai Hsieh
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Arcadia J Kratkiewicz
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Amin Mahpour
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Wenyang Li
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joshua V Pondick
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sweta K Gupta
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sean P Moran
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
244
|
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77:3769-3779. [PMID: 32219465 PMCID: PMC11104955 DOI: 10.1007/s00018-020-03503-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer's disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
245
|
Reiss RA, Lowe TC, Sena JA, Makhnin O, Connick MC, Illescas PE, Davis CF. Bio-activating ultrafine grain titanium: RNA sequencing reveals enhanced mechano-activation of osteoconduction on nanostructured substrates. PLoS One 2020; 15:e0237463. [PMID: 32970688 PMCID: PMC7514099 DOI: 10.1371/journal.pone.0237463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
Titanium is essentially absent from biological systems yet reliably integrates into bone. To achieve osseointegration, titanium must activate biological processes without entering cells, defining it as a bio-activating material. Nanostructuring bulk titanium reduces grain size, increases strength, and improves other quantifiable physical properties, including cytocompatibility. The biological processes activated by increasing grain boundary availability were detected with total RNA-sequencing in mouse pre-osteoblasts grown for 72 hours on nanometrically smooth substrates of either coarse grain or nanostructured ultrafine grain titanium. The average grain boundary length under cells on the conventional coarse grain substrates is 273.0 μm, compared to 70,881.5 μm for cells adhered to the nanostructured ultrafine grain substrates; a 260-fold difference. Cells on both substrates exhibit similar expression profiles for genes whose products are critical for mechanosensation and transduction of cues that trigger osteoconduction. Biological process Gene Ontology term enrichment analysis of differentially expressed genes reveals that cell cycle, chromatin modification, telomere maintenance, and RNA metabolism processes are upregulated on ultrafine grain titanium. Processes related to immune response, including apoptosis, are downregulated. Tumor-suppressor genes are upregulated while tumor-promoting genes are downregulated. Upregulation of genes involved in chromatin remodeling and downregulation of genes under the control of the peripheral circadian clock implicate both processes in the transduction of mechanosensory information. Non-coding RNAs may also play a role in the response. Merging transcriptomics with well-established mechanobiology principles generates a unified model to explain the bio-activating properties of titanium. The modulation of processes is accomplished through chromatin remodeling in which the nucleus responds like a rheostat to grain boundary concentration. This convergence of biological and materials science reveals a pathway toward understanding the biotic-abiotic interface and will inform the development of effective bio-activating and bio-inactivating materials.
Collapse
Affiliation(s)
- Rebecca A. Reiss
- Biology Department, New Mexico Institution of Mining and Technology, Socorro, New Mexico, United States of America
| | - Terry C. Lowe
- George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, United States of America
| | - Johnny A. Sena
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Oleg Makhnin
- Mathematics Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico, United States of America
| | - Melanie C. Connick
- Biology Department, New Mexico Institution of Mining and Technology, Socorro, New Mexico, United States of America
| | - Patrick E. Illescas
- Biology Department, New Mexico Institution of Mining and Technology, Socorro, New Mexico, United States of America
| | - Casey F. Davis
- George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, United States of America
| |
Collapse
|
246
|
Wu X, Niculite CM, Preda MB, Rossi A, Tebaldi T, Butoi E, White MK, Tudoran OM, Petrusca DN, Jannasch AS, Bone WP, Zong X, Fang F, Burlacu A, Paulsen MT, Hancock BA, Sandusky GE, Mitra S, Fishel ML, Buechlein A, Ivan C, Oikonomopoulos S, Gorospe M, Mosley A, Radovich M, Davé UP, Ragoussis J, Nephew KP, Mari B, McIntyre A, Konig H, Ljungman M, Cousminer DL, Macchi P, Ivan M. Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. Nat Commun 2020; 11:4755. [PMID: 32958772 PMCID: PMC7505984 DOI: 10.1038/s41467-020-18411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.
Collapse
Affiliation(s)
- Xue Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cristina M Niculite
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,"Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mattie K White
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Daniela N Petrusca
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber S Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - William P Bone
- Department of Genetics, Department of Systems Pharmacology and Translational Therapeutics, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xingyue Zong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fang Fang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brad A Hancock
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sumegha Mitra
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa L Fishel
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, 47405, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Spyros Oikonomopoulos
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Milan Radovich
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Utpal P Davé
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Kenneth P Nephew
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Bernard Mari
- CNRS, IPMC, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Alan McIntyre
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heiko Konig
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Centre for Cancer Sciences, Biodiscovery Institute, Nottingham University, Nottingham, UK
| | - Diana L Cousminer
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Mircea Ivan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
247
|
Briata P, Gherzi R. Long Non-Coding RNA-Ribonucleoprotein Networks in the Post-Transcriptional Control of Gene Expression. Noncoding RNA 2020; 6:ncrna6030040. [PMID: 32957640 PMCID: PMC7549350 DOI: 10.3390/ncrna6030040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Although mammals possess roughly the same number of protein-coding genes as worms, it is evident that the non-coding transcriptome content has become far broader and more sophisticated during evolution. Indeed, the vital regulatory importance of both short and long non-coding RNAs (lncRNAs) has been demonstrated during the last two decades. RNA binding proteins (RBPs) represent approximately 7.5% of all proteins and regulate the fate and function of a huge number of transcripts thus contributing to ensure cellular homeostasis. Transcriptomic and proteomic studies revealed that RBP-based complexes often include lncRNAs. This review will describe examples of how lncRNA-RBP networks can virtually control all the post-transcriptional events in the cell.
Collapse
|
248
|
The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020; 11:749. [PMID: 32929060 PMCID: PMC7490374 DOI: 10.1038/s41419-020-02954-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most significant threat to female health. Breast cancer metastasis is the major cause of mortality in breast cancer patients. To fully unravel the molecular mechanisms that underlie the breast cancer cell metastasis is critical for developing strategies to improve survival and prognosis in breast cancer patients. Recent studies have revealed that the long noncoding RNAs (lncRNAs) are involved in breast cancer metastasis through a variety of molecule mechanisms, though the precise functional details of these lncRNAs are yet to be clarified. In the present review, we focus on the functions of lncRNAs in breast cancer invasion and metastasis, with particular emphasis on the functional properties, the regulatory factors, the therapeutic promise, as well as the future challenges in studying these lncRNA.
Collapse
|
249
|
Zhang H, Ji N, Gong X, Ni S, Wang Y. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease. Acta Biochim Biophys Sin (Shanghai) 2020; 52:967-974. [PMID: 32844995 DOI: 10.1093/abbs/gmaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that long non-coding RNAs (lncRNA) play critical roles in coronary atherosclerotic heart disease (CAD). However, the function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in CAD is unclear. In this study, we aimed to investigate the functions of lncRNA NEAT1 in CAD. RT-PCR and western blot analysis were carried out to examine the expressions of related RNAs. Colony formation assay, cell proliferation assay, apoptosis assay, and dual-luciferase reporter assay were conducted to investigate the abilities of colony migration, cell proliferation, apoptosis, and targeting. The results showed that NEAT1 was up-regulated in CAD blood samples and in human coronary endothelial cells (HCAECs). Transfection of pcNEAT1 significantly inhibited the survival rate of HCAECs and induced apoptosis of HCAECs. MiR-140-3p was down-regulated in HCAECs. NEAT1 directly targeted miR-140-3p, and the expression of miR-140-3p was inversely correlated with the expression of NEAT1 in CAD patients. In addition, co-transfection of NEAT1 with miR-140-3p mimic reversed the effect of pcNEAT1 on cell viability and apoptosis. mitogen-activated protein kinase 1 (MAPK1) was proved to be a target gene of miR-140-3p, and the miR-140-3p mimic was shown to reduce the expression of MAPK1 in HCAECs. pcNEAT1 significantly increased the expression level of MAPK1, while shNEAT1 significantly reduced the expression level of MAPK1. Our results revealed that lncRNA NEAT1 increased cell viability and inhibited CAD cell apoptosis possibly by activating the miR-140-3p/MAPK1 pathway, and lncRNA NEAT1 might serve as a potential therapeutic target for CAD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Xinyan Gong
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Shimao Ni
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| |
Collapse
|
250
|
Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep 2020; 3:100177. [PMID: 33294829 PMCID: PMC7689550 DOI: 10.1016/j.jhepr.2020.100177] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carcinoma and cholangiocarcinoma. In this review, we summarise our current understanding of the function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could be used to target these non-coding transcripts for therapeutic purposes.
Collapse
Key Words
- ABCA1, ATP-binding cassette transporter A1
- ACTA2/ɑ-SMA, α-smooth muscle actin
- APO, apolipoprotein
- ASO, antisense oligonucleotides
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- COL1A1, collagen type I α 1
- CYP, cytochrome P450
- Cholangiocarcinoma
- DANCR, differentiation antagonising non-protein coding RNA
- DE, definitive endoderm
- DEANR1, definitive endoderm-associated lncRNA1
- DIGIT, divergent to goosecoid, induced by TGF-β family signalling
- DILC, downregulated in liver cancer stem cells
- EST, expression sequence tag
- EpCAM, epithelial cell adhesion molecule
- FBP1, fructose-bisphosphatase 1
- FENDRR, foetal-lethal non-coding developmental regulatory RNA
- FXR, farnesoid X receptor
- GAS5, growth arrest-specific transcript 5
- H3K18ac, histone 3 lysine 18 acetylation
- H3K36me3, histone 3 lysine 36 trimethylation
- H3K4me3, histone 3 lysine 4 trimethylation
- HCC, hepatocellular carcinoma
- HEIH, high expression In HCC
- HNRNPA1, heterogenous nuclear protein ribonucleoprotein A1
- HOTAIR, HOX transcript antisense RNA
- HOTTIP, HOXA transcript at the distal tip
- HSC, hepatic stellate cells
- HULC, highly upregulated in liver cancer
- Hepatocellular carcinoma
- HuR, human antigen R
- LCSC, liver cancer stem cell
- LSD1, lysine-specific demethylase 1
- LXR, liver X receptors
- LeXis, liver-expressed LXR-induced sequence
- Liver cancer
- Liver fibrosis
- Liver metabolism
- Liver-specific lncRNAs
- LncLSTR, lncRNA liver-specific triglyceride regulator
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- NAT, natural antisense transcript
- NEAT1, nuclear enriched abundant transcript 1
- ORF, open reading frame
- PKM2, pyruvate kinase muscle isozyme M2
- PPAR-α, peroxisome proliferator-activated receptor-α
- PRC, polycomb repressive complex
- RACE, rapid amplification of cDNA ends
- RNA Pol, RNA polymerase
- S6K1, S6 kinase 1
- SHP, small heterodimer partner
- SREBPs, steroid response binding proteins
- SREs, sterol response elements
- TGF-β, transforming growth factor-β
- TTR, transthyretin
- XIST, X-inactive specific transcript
- ZEB1, zinc finger E-box-binding homeobox 1
- ceRNA, competing endogenous RNA
- eRNA, enhancer RNAs
- lincRNA, long intervening non-coding RNA
- lncRNA
- lncRNA, long non-coding RNA
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
|