201
|
Rosinvil T, Bouvier J, Dubé J, Lafrenière A, Bouchard M, Cyr-Cronier J, Gosselin N, Carrier J, Lina JM. Are age and sex effects on sleep slow waves only a matter of electroencephalogram amplitude? Sleep 2021; 44:5905593. [PMID: 32929490 DOI: 10.1093/sleep/zsaa186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with reduced slow wave (SW) density (number SW/min in nonrapid-eye movement sleep) and amplitude. It has been proposed that an age-related decrease in SW density may be due to a reduction in electroencephalogram (EEG) amplitude instead of a decline in the capacity to generate SW. Here, we propose a data-driven approach to adapt SW amplitude criteria to age and sex. We predicted that the adapted criteria would reduce age and sex differences in SW density and SW characteristics but would not abolish them. A total of 284 healthy younger and older adults participated in one night of sleep EEG recording. We defined age- and sex-adapted SW criteria in a first cohort of younger (n = 97) and older (n = 110) individuals using a signal-to-noise ratio approach. We then used these age- and sex-specific criteria in an independent second cohort (n = 77, 38 younger and 39 older adults) to evaluate age and sex differences on SW density and SW characteristics. After adapting SW amplitude criteria, we showed maintenance of an age-related difference for SW density whereas the sex-related difference vanished. Indeed, older adults produced less SW compared with younger adults. Specifically, the adapted SW amplitude criteria increased the probability of occurrence of low amplitude SW (<80 µV) for older men especially. Our results thereby confirm an age-related decline in SW generation rather than an artifact in the detection amplitude criteria. As for the SW characteristics, the age- and sex-adapted criteria display reproducible effects across the two independent cohorts suggesting a more reliable inventory of the SW.
Collapse
Affiliation(s)
- Thaïna Rosinvil
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada.,Research Center, Institut Universitaire Gériatrique de Montréal, Montreal, Quebec, Canada
| | - Justin Bouvier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada.,Research Center, Institut Universitaire Gériatrique de Montréal, Montreal, Quebec, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada.,Research Center, Institut Universitaire Gériatrique de Montréal, Montreal, Quebec, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada.,Research Center, Institut Universitaire Gériatrique de Montréal, Montreal, Quebec, Canada
| | - Jessica Cyr-Cronier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada.,Research Center, Institut Universitaire Gériatrique de Montréal, Montreal, Quebec, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM-Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Quebec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
202
|
Liang Y, Song C, Liu M, Gong P, Zhou C, Knöpfel T. Cortex-Wide Dynamics of Intrinsic Electrical Activities: Propagating Waves and Their Interactions. J Neurosci 2021; 41:3665-3678. [PMID: 33727333 PMCID: PMC8055070 DOI: 10.1523/jneurosci.0623-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Cortical circuits generate patterned activities that reflect intrinsic brain dynamics that lay the foundation for any, including stimuli-evoked, cognition and behavior. However, the spatiotemporal organization properties and principles of this intrinsic activity have only been partially elucidated because of previous poor resolution of experimental data and limited analysis methods. Here we investigated continuous wave patterns in the 0.5-4 Hz (delta band) frequency range on data from high-spatiotemporal resolution optical voltage imaging of the upper cortical layers in anesthetized mice. Waves of population activities propagate in heterogeneous directions to coordinate neuronal activities between different brain regions. The complex wave patterns show characteristics of both stereotypy and variety. The location and type of wave patterns determine the dynamical evolution when different waves interact with each other. Local wave patterns of source, sink, or saddle emerge at preferred spatial locations. Specifically, "source" patterns are predominantly found in cortical regions with low multimodal hierarchy such as the primary somatosensory cortex. Our findings reveal principles that govern the spatiotemporal dynamics of spontaneous cortical activities and associate them with the structural architecture across the cortex.SIGNIFICANCE STATEMENT Intrinsic brain activities, as opposed to external stimulus-evoked responses, have increasingly gained attention, but it remains unclear how these intrinsic activities are spatiotemporally organized at the cortex-wide scale. By taking advantage of the high spatiotemporal resolution of optical voltage imaging, we identified five wave pattern types, and revealed the organization properties of different wave patterns and the dynamical mechanisms when they interact with each other. Moreover, we found a relationship between the emergence probability of local wave patterns and the multimodal structure hierarchy across cortical areas. Our findings reveal the principles of spatiotemporal wave dynamics of spontaneous activities and associate them with the underlying hierarchical architecture across the cortex.
Collapse
Affiliation(s)
- Yuqi Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- The HKBU Institute of Research and Continuing Education, Shenzhen 518000, People's Republic of China
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney 2006, New South Wales, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney 2001, New South Wales, Australia
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People's Republic of China
- The HKBU Institute of Research and Continuing Education, Shenzhen 518000, People's Republic of China
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
203
|
Deciphering the Interacting Mechanisms of Circadian Disruption and Alzheimer's Disease. Neurochem Res 2021; 46:1603-1617. [PMID: 33871799 DOI: 10.1007/s11064-021-03325-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is one of the crucial causative factors for progressive dementia. Neuropathologically, AD is characterized by the extracellular accumulation of amyloid beta plaques and intracellular neurofibrillary tangles in cortical and limbic regions of the human brain. The circadian system is one of the many affected physiological processes in AD, the dysfunction of which may reflect in the irregularity of the sleep/wake cycle. The interplay of circadian and sleep disturbances inducing AD progression is bidirectional. Sleep-associated pathological alterations are frequently evident in AD. Understanding the interrelation between circadian disruption and AD may allow for earlier identification of AD pathogenesis as well as better suited approaches and potential therapies to combat dementia. In this article, we examine the existing literature related to the molecular mechanisms of the circadian clock and interacting mechanisms of circadian disruption and AD pathogenesis.
Collapse
|
204
|
Ruggiero A, Katsenelson M, Slutsky I. Mitochondria: new players in homeostatic regulation of firing rate set points. Trends Neurosci 2021; 44:605-618. [PMID: 33865626 DOI: 10.1016/j.tins.2021.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Neural circuit functions are stabilized by homeostatic processes at long timescales in response to changes in behavioral states, experience, and learning. However, it remains unclear which specific physiological variables are being stabilized and which cellular or neural network components compose the homeostatic machinery. At this point, most evidence suggests that the distribution of firing rates among neurons in a neuronal circuit is the key variable that is maintained around a set-point value in a process called 'firing rate homeostasis.' Here, we review recent findings that implicate mitochondria as central players in mediating firing rate homeostasis. While mitochondria are known to regulate neuronal variables such as synaptic vesicle release or intracellular calcium concentration, the mitochondrial signaling pathways that are essential for firing rate homeostasis remain largely unknown. We used basic concepts of control theory to build a framework for classifying possible components of the homeostatic machinery that stabilizes firing rate, and we particularly emphasize the potential role of sleep and wakefulness in this homeostatic process. This framework may facilitate the identification of new homeostatic pathways whose malfunctions drive instability of neural circuits in distinct brain disorders.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
205
|
Navarrete M, Schneider J, Ngo HVV, Valderrama M, Casson AJ, Lewis PA. Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep 2021; 43:5686285. [PMID: 31872860 PMCID: PMC7294407 DOI: 10.1093/sleep/zsz315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
Study Objectives Closed-loop auditory stimulation (CLAS) is a method for enhancing slow oscillations (SOs) through the presentation of auditory clicks during sleep. CLAS boosts SOs amplitude and sleep spindle power, but the optimal timing for click delivery remains unclear. Here, we determine the optimal time to present auditory clicks to maximize the enhancement of SO amplitude and spindle likelihood. Methods We examined the main factors predicting SO amplitude and sleep spindles in a dataset of 21 young and 17 older subjects. The participants received CLAS during slow-wave-sleep in two experimental conditions: sham and auditory stimulation. Post-stimulus SOs and spindles were evaluated according to the click phase on the SOs and compared between and within conditions. Results We revealed that auditory clicks applied anywhere on the positive portion of the SO increased SO amplitudes and spindle likelihood, although the interval of opportunity was shorter in the older group. For both groups, analyses showed that the optimal timing for click delivery is close to the SO peak phase. Click phase on the SO wave was the main factor determining the impact of auditory stimulation on spindle likelihood for young subjects, whereas for older participants, the temporal lag since the last spindle was a better predictor of spindle likelihood. Conclusions Our data suggest that CLAS can more effectively boost SOs during specific phase windows, and these differ between young and older participants. It is possible that this is due to the fluctuation of sensory inputs modulated by the thalamocortical networks during the SO.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jules Schneider
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Hong-Viet V Ngo
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Mario Valderrama
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Alexander J Casson
- School of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
206
|
Filon MJ, Wallace E, Wright S, Douglas DJ, Steinberg LI, Verkuilen CL, Westmark PR, Maganti RK, Westmark CJ. Sleep and diurnal rest-activity rhythm disturbances in a mouse model of Alzheimer's disease. Sleep 2021; 43:5830779. [PMID: 32369586 DOI: 10.1093/sleep/zsaa087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES Accumulating evidence suggests a strong association between sleep, amyloid-beta (Aβ) deposition, and Alzheimer's disease (AD). We sought to determine if (1) deficits in rest-activity rhythms and sleep are significant phenotypes in J20 AD mice, (2) metabotropic glutamate receptor 5 inhibitors (mGluR5) could rescue deficits in rest-activity rhythms and sleep, and (3) Aβ levels are responsive to treatment with mGluR5 inhibitors. METHODS Diurnal rest-activity levels were measured by actigraphy and sleep-wake patterns by electroencephalography, while animals were chronically treated with mGluR5 inhibitors. Behavioral tests were performed, and Aβ levels measured in brain lysates. RESULTS J20 mice exhibited a 4.5-h delay in the acrophase of activity levels compared to wild-type littermates and spent less time in rapid eye movement (REM) sleep during the second half of the light period. J20 mice also exhibited decreased non-rapid eye movement (NREM) delta power but increased NREM sigma power. The mGluR5 inhibitor CTEP rescued the REM sleep deficit and improved NREM delta and sigma power but did not correct rest-activity rhythms. No statistically significant differences were observed in Aβ levels, rotarod performance, or the passive avoidance task following chronic mGluR5 inhibitor treatment. CONCLUSIONS J20 mice have disruptions in rest-activity rhythms and reduced homeostatic sleep pressure (reduced NREM delta power). NREM delta power was increased following treatment with a mGluR5 inhibitor. Drug bioavailability was poor. Further work is necessary to determine if mGluR5 is a viable target for treating sleep phenotypes in AD.
Collapse
Affiliation(s)
- Mikolaj J Filon
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Eli Wallace
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Samantha Wright
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Dylan J Douglas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | | | | | - Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Rama K Maganti
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
207
|
Cucchiara F, Frumento P, Banfi T, Sesso G, Di Galante M, D'Ascanio P, Valvo G, Sicca F, Faraguna U. Electrophysiological features of sleep in children with Kir4.1 channel mutations and Autism-Epilepsy phenotype: a preliminary study. Sleep 2021; 43:5625283. [PMID: 31722434 PMCID: PMC7157183 DOI: 10.1093/sleep/zsz255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Study Objectives Recently, a role for gain-of-function (GoF) mutations of the astrocytic potassium channel Kir4.1 (KCNJ10 gene) has been proposed in subjects with Autism–Epilepsy phenotype (AEP). Epilepsy and autism spectrum disorder (ASD) are common and complexly related to sleep disorders. We tested whether well characterized mutations in KCNJ10 could result in specific sleep electrophysiological features, paving the way to the discovery of a potentially relevant biomarker for Kir4.1-related disorders. Methods For this case–control study, we recruited seven children with ASD either comorbid or not with epilepsy and/or EEG paroxysmal abnormalities (AEP) carrying GoF mutations of KCNJ10 and seven children with similar phenotypes but wild-type for the same gene, comparing period-amplitude features of slow waves detected by fronto-central bipolar EEG derivations (F3-C3, F4-C4, and Fz-Cz) during daytime naps. Results Children with Kir4.1 mutations displayed longer slow waves periods than controls, in Fz-Cz (mean period = 112,617 ms ± SE = 0.465 in mutated versus mean period = 105,249 ms ± SE = 0.375 in controls, p < 0.001). An analog result was found in F3-C3 (mean period = 125,706 ms ± SE = 0.397 in mutated versus mean period = 120,872 ms ± SE = 0.472 in controls, p < 0.001) and F4-C4 (mean period = 127,914 ms ± SE = 0.557 in mutated versus mean period = 118,174 ms ± SE = 0.442 in controls, p < 0.001). Conclusion This preliminary finding suggests that period-amplitude slow wave features are modified in subjects carrying Kir4.1 GoF mutations. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- SONNOLab, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Frumento
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tommaso Banfi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Gianluca Sesso
- Neuropsychiatry Complex Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Di Galante
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Paola D'Ascanio
- SONNOLab, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giulia Valvo
- Child and Adolescent Neuropsychiatric Unit, Azienda USL Toscana Sudest, Grosseto, Italy
| | - Federico Sicca
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Ugo Faraguna
- SONNOLab, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
208
|
Xu W, De Carvalho F, Clarke AK, Jackson A. Communication from the cerebellum to the neocortex during sleep spindles. Prog Neurobiol 2021; 199:101940. [PMID: 33161064 PMCID: PMC7938225 DOI: 10.1016/j.pneurobio.2020.101940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 10/30/2022]
Abstract
Surprisingly little is known about neural activity in the sleeping cerebellum. Using long-term wireless recording, we characterised dynamic cerebro-thalamo-cerebellar interactions during natural sleep in monkeys. Similar sleep cycles were evident in both M1 and cerebellum as cyclical fluctuations in firing rates as well as a reciprocal pattern of slow waves and sleep spindles. Directed connectivity from motor cortex to the cerebellum suggested a neocortical origin of slow waves. Surprisingly however, spindles were associated with a directional influence from the cerebellum to motor cortex, conducted via the thalamus. Furthermore, the relative phase of spindle-band oscillations in the neocortex and cerebellum varied systematically with their changing amplitudes. We used linear dynamical systems analysis to show that this behaviour could only be explained by a system of two coupled oscillators. These observations appear inconsistent with a single spindle generator within the thalamo-cortical system, and suggest instead a cerebellar contribution to neocortical sleep spindles. Since spindles are implicated in the off-line consolidation of procedural learning, we speculate that this may involve communication via cerebello-thalamo-neocortical pathways in sleep.
Collapse
Affiliation(s)
- W Xu
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - F De Carvalho
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - A K Clarke
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - A Jackson
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| |
Collapse
|
209
|
Russo S, Pigorini A, Mikulan E, Sarasso S, Rubino A, Zauli FM, Parmigiani S, d'Orio P, Cattani A, Francione S, Tassi L, Bassetti CLA, Lo Russo G, Nobili L, Sartori I, Massimini M. Focal lesions induce large-scale percolation of sleep-like intracerebral activity in awake humans. Neuroimage 2021; 234:117964. [PMID: 33771696 DOI: 10.1016/j.neuroimage.2021.117964] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
Focal cortical lesions are known to result in large-scale functional alterations involving distant areas; however, little is known about the electrophysiological mechanisms underlying these network effects. Here, we addressed this issue by analysing the short and long distance intracranial effects of controlled structural lesions in humans. The changes in Stereo-Electroencephalographic (SEEG) activity after Radiofrequency-Thermocoagulation (RFTC) recorded in 21 epileptic subjects were assessed with respect to baseline resting wakefulness and sleep activity. In addition, Cortico-Cortical Evoked Potentials (CCEPs) recorded before the lesion were employed to interpret these changes with respect to individual long-range connectivity patterns. We found that small structural ablations lead to the generation and large-scale propagation of sleep-like slow waves within the awake brain. These slow waves match those recorded in the same subjects during sleep, are prevalent in perilesional areas, but can percolate up to distances of 60 mm through specific long-range connections, as predicted by CCEPs. Given the known impact of slow waves on information processing and cortical plasticity, demonstrating their intrusion and percolation within the awake brain add key elements to our understanding of network dysfunction after cortical injuries.
Collapse
Affiliation(s)
- S Russo
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - E Mikulan
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - A Rubino
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - F M Zauli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - S Parmigiani
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - P d'Orio
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy; Institute of Neuroscience, CNR, via Volturno 39E, 43125 Parma, Italy
| | - A Cattani
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - S Francione
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - L Tassi
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - C L A Bassetti
- Department of Neurology, Inselspital, University of Bern, Switzerland
| | - G Lo Russo
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - L Nobili
- Child Neuropsychiatry, IRCCS Istituto G. Gaslini, Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - I Sartori
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; IRCCS, Fondazione Don Carlo Gnocchi, Milan 20148, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
210
|
Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. eLife 2021; 10:63329. [PMID: 33729913 PMCID: PMC7968927 DOI: 10.7554/elife.63329] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Non-rapid eye movement (NREM) sleep, characterized by slow-wave electrophysiological activity, underlies several critical functions, including learning and memory. However, NREM sleep is heterogeneous, varying in duration, depth, and spatially across the cortex. While these NREM sleep features are thought to be largely independently regulated, there is also evidence that they are mechanistically coupled. To investigate how cortical NREM sleep features are controlled, we examined the astrocytic network, comprising a cortex-wide syncytium that influences population-level neuronal activity. We quantified endogenous astrocyte activity in mice over natural sleep and wake, then manipulated specific astrocytic G-protein-coupled receptor (GPCR) signaling pathways in vivo. We find that astrocytic Gi- and Gq-coupled GPCR signaling separately control NREM sleep depth and duration, respectively, and that astrocytic signaling causes differential changes in local and remote cortex. These data support a model in which the cortical astrocyte network serves as a hub for regulating distinct NREM sleep features. Sleep has many roles, from strengthening new memories to regulating mood and appetite. While we might instinctively think of sleep as a uniform state of reduced brain activity, the reality is more complex. First, over the course of the night, we cycle between a number of different sleep stages, which reflect different levels of sleep depth. Second, the amount of sleep depth is not necessarily even across the brain but can vary between regions. These sleep stages consist of either rapid eye movement (REM) sleep or non-REM (NREM) sleep. REM sleep is when most dreaming occurs, whereas NREM sleep is particularly important for learning and memory and can vary in duration and depth. During NREM sleep, large groups of neurons synchronize their firing to create rhythmic waves of activity known as slow waves. The more synchronous the activity, the deeper the sleep. Vaidyanathan et al. now show that brain cells called astrocytes help regulate NREM sleep. Astrocytes are not neurons but belong to a group of specialized cells called glia. They are the largest glia cell type in the brain and display an array of proteins on their surfaces called G-protein-coupled receptors (GPCRs). These enable them to sense sleep-wake signals from other parts of the brain and to generate their own signals. In fact, each astrocyte can communicate with thousands of neurons at once. They are therefore well-poised to coordinate brain activity during NREM sleep. Using innovative tools, Vaidyanathan et al. visualized astrocyte activity in mice as the animals woke up or fell asleep. The results showed that astrocytes change their activity just before each sleep–wake transition. They also revealed that astrocytes control both the depth and duration of NREM sleep via two different types of GPCR signals. Increasing one of these signals (Gi-GPCR) made the mice sleep more deeply but did not change sleep duration. Decreasing the other (Gq-GPCR) made the mice sleep for longer but did not affect sleep depth. Sleep problems affect many people at some point in their lives, and often co-exist with other conditions such as mental health disorders. Understanding how the brain regulates different features of sleep could help us develop better – and perhaps more specific – treatments for sleep disorders. The current study suggests that manipulating GPCRs on astrocytes might increase sleep depth, for example. But before work to test this idea can begin, we must first determine whether findings from sleeping mice also apply to people.
Collapse
Affiliation(s)
- Trisha V Vaidyanathan
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Max Collard
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michael E Reitman
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Kira E Poskanzer
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, San Francisco, United States
| |
Collapse
|
211
|
Lechat B, Hansen K, Micic G, Decup F, Dunbar C, Liebich T, Catcheside P, Zajamsek B. K-complexes are a sensitive marker of noise-related sensory processing during sleep: A pilot study. Sleep 2021; 44:6168926. [PMID: 33710307 DOI: 10.1093/sleep/zsab065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The primary aim of this study was to examine dose-response relationships between sound pressure levels (SPLs) and K-complex occurrence probability for wind farm and road traffic noise. A secondary aim was to compare K-complex dose-responses to manually scored EEG arousals and awakenings. METHODS Twenty-five participants underwent polysomnography recordings and noise exposure during sleep in a laboratory. Wind farm and road traffic noise recordings of 20-sec duration were played in random order at 6 SPLs between 33 - 48 dBA during established N2 or deeper sleep. Noise periods were separated with periods of 23 dBA background noise. K-complexes were scored using a validated algorithm. K-complex occurrence probability was compared between noise types controlling for noise SPL, subjective noise sensitivity and measured hearing acuity. RESULTS Noise-induced K-complexes were observed in N2 sleep at SPLs as low as 33 dBA (Odds ratio, 33dBA vs 23 dBA, mean (95% confidence interval); 1.75 (1.16, 2.66)) and increased with SPL. EEG arousals and awakenings were only associated with noise above 39 dBA in N2 sleep. K-complexes were 2 times more likely to occur in response to noise than EEG arousals or awakenings. Subjective noise sensitivity and hearing acuity were associated with K-complex occurrence, but not arousal or awakening. Noise type did not detectably influence K-complexes, EEG arousals or awakening responses. CONCLUSION These findings support that K-complexes are a sensitive marker of sensory processing of environmental noise during sleep and that increased hearing acuity and decreased self-reported noise sensitivity increase K-complex probability.
Collapse
Affiliation(s)
- Bastien Lechat
- Adelaide Institute for Sleep Health, College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, Australia
| | - Kristy Hansen
- Adelaide Institute for Sleep Health, College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, Australia
| | - Gorica Micic
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Felix Decup
- Adelaide Institute for Sleep Health, College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, Australia
| | - Claire Dunbar
- Adelaide Institute for Sleep Health, College of Education, Psychology and Social Work, Flinders University, Bedford Park, Adelaide, Australia
| | - Tessa Liebich
- Adelaide Institute for Sleep Health, College of Education, Psychology and Social Work, Flinders University, Bedford Park, Adelaide, Australia
| | - Peter Catcheside
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Branko Zajamsek
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
212
|
McKillop LE, Fisher SP, Milinski L, Krone LB, Vyazovskiy VV. Diazepam effects on local cortical neural activity during sleep in mice. Biochem Pharmacol 2021; 191:114515. [PMID: 33713641 PMCID: PMC8363939 DOI: 10.1016/j.bcp.2021.114515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
GABA-ergic neurotransmission plays a key role in sleep regulatory mechanisms and in brain oscillations during sleep. Benzodiazepines such as diazepam are known to induce sedation and promote sleep, however, EEG spectral power in slow frequencies is typically reduced after the administration of benzodiazepines or similar compounds. EEG slow waves arise from a synchronous alternation between periods of cortical network activity (ON) and silence (OFF), and represent a sensitive marker of preceding sleep-wake history. Yet it remains unclear how benzodiazepines act on cortical neural activity during sleep. To address this, we obtained chronic recordings of local field potentials and multiunit activity (MUA) from deep cortical layers of the primary motor cortex in freely behaving mice after diazepam injection. We found that the amplitude of individual LFP slow waves was significantly reduced after diazepam injection and was accompanied by a lower incidence and duration of the corresponding neuronal OFF periods. Further investigation suggested that this is due to a disruption in the synchronisation of cortical neurons. Our data suggest that the state of global sleep and local cortical synchrony can be dissociated, and that the brain state induced by benzodiazepines is qualitatively different from spontaneous physiological sleep.
Collapse
Affiliation(s)
- Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Linus Milinski
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford/Sleep and Circadian Neuroscience Institute, United Kingdom.
| |
Collapse
|
213
|
Frohlich J, Toker D, Monti MM. Consciousness among delta waves: a paradox? Brain 2021; 144:2257-2277. [PMID: 33693596 DOI: 10.1093/brain/awab095] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/29/2023] Open
Abstract
A common observation in EEG research is that consciousness vanishes with the appearance of delta (1 - 4 Hz) waves, particularly when those waves are high amplitude. High amplitude delta oscillations are very frequently observed in states of diminished consciousness, including slow wave sleep, anaesthesia, generalised epileptic seizures, and disorders of consciousness such as coma and vegetative state. This strong correlation between loss of consciousness and high amplitude delta oscillations is thought to stem from the widespread cortical deactivation that occurs during the "down states" or troughs of these slow oscillations. Recently, however, many studies have reported the presence of prominent delta activity during conscious states, which casts doubt on the hypothesis that high amplitude delta oscillations are an indicator of unconsciousness. These studies include work in Angelman syndrome, epilepsy, behavioural responsiveness during propofol anaesthesia, postoperative delirium, and states of dissociation from the environment such as dreaming and powerful psychedelic states. The foregoing studies complement an older, yet largely unacknowledged, body of literature that has documented awake, conscious patients with high amplitude delta oscillations in clinical reports from Rett syndrome, Lennox-Gastaut syndrome, schizophrenia, mitochondrial diseases, hepatic encephalopathy, and nonconvulsive status epilepticus. At the same time, a largely parallel body of recent work has reported convincing evidence that the complexity or entropy of EEG and magnetoencephalogram or MEG signals strongly relates to an individual's level of consciousness. Having reviewed this literature, we discuss plausible mechanisms that would resolve the seeming contradiction between high amplitude delta oscillations and consciousness. We also consider implications concerning theories of consciousness, such as integrated information theory and the entropic brain hypothesis. Finally, we conclude that false inferences of unconscious states can be best avoided by examining measures of electrophysiological complexity in addition to spectral power.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA
| | - Daniel Toker
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
214
|
Transcranial Electrical Stimulation targeting limbic cortex increases the duration of human deep sleep. Sleep Med 2021; 81:350-357. [PMID: 33812203 PMCID: PMC8108560 DOI: 10.1016/j.sleep.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Researchers have proposed that impaired sleep may be a causal link in the progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Several recent findings suggest that enhancing deep sleep (N3) may improve neurological health in persons with MCI, and buffer the risk for AD. Specifically, Transcranial Electrical Stimulation (TES) of frontal brain areas, the inferred source of the Slow Oscillations (SOs) of N3 sleep, can extend N3 sleep duration and improve declarative memory for recently learned information. Recent work in our laboratory using dense array Electroencephalography (dEEG) localized the sources of SOs to anterior limbic sites - suggesting that targeting these sites with TES may be more effective for enhancing N3. METHODS For the present study, we recruited 13 healthy adults (M = 42 years) to participate in three all-night sleep EEG recordings where they received low level (0.5 mA) TES designed to target anterior limbic areas and a sham stimulation (placebo). We used a convolutional neural network, trained and tested on professionally scored EEG sleep staging, to predict sleep stages for each recording. RESULTS When compared to the sham session, limbic-targeted TES significantly increased the duration of N3 sleep. TES also significantly increased spectral power in the 0.5-1 Hz frequency band (relative to pre-TES epochs) in left temporoparietal and left occipital scalp regions compared to sham. CONCLUSION These results suggest that even low-level TES, when specifically targeting anterior limbic sites, can increase deep (N3) sleep and thereby contribute to healthy sleep quality.
Collapse
|
215
|
Sarasso S, D'Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O, Quarenghi M, Laureys S, Devalle G, Rosanova M, Massimini M. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2021; 143:3672-3684. [PMID: 33188680 PMCID: PMC7805800 DOI: 10.1093/brain/awaa338] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
The functional consequences of focal brain injury are thought to be contingent on neuronal alterations extending beyond the area of structural damage. This phenomenon, also known as diaschisis, has clinical and metabolic correlates but lacks a clear electrophysiological counterpart, except for the long-standing evidence of a relative EEG slowing over the injured hemisphere. Here, we aim at testing whether this EEG slowing is linked to the pathological intrusion of sleep-like cortical dynamics within an awake brain. We used a combination of transcranial magnetic stimulation and electroencephalography (TMS/EEG) to study cortical reactivity in a cohort of 30 conscious awake patients with chronic focal and multifocal brain injuries of ischaemic, haemorrhagic and traumatic aetiology. We found that different patterns of cortical reactivity typically associated with different brain states (coma, sleep, wakefulness) can coexist within the same brain. Specifically, we detected the occurrence of prominent sleep-like TMS-evoked slow waves and off-periods—reflecting transient suppressions of neuronal activity—in the area surrounding focal cortical injuries. These perilesional sleep-like responses were associated with a local disruption of signal complexity whereas complex responses typical of the awake brain were present when stimulating the contralesional hemisphere. These results shed light on the electrophysiological properties of the tissue surrounding focal brain injuries in humans. Perilesional sleep-like off-periods can disrupt network activity but are potentially reversible, thus representing a principled read-out for the neurophysiological assessment of stroke patients, as well as an interesting target for rehabilitation.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Fecchio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Silvia Casarotto
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Alessandro Viganò
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Cristina Landi
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | | | - Olivia Gosseries
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Matteo Quarenghi
- Unità Operativa Radiologia, Azienda Ospedaliera Vizzolo P -Risonanza Magnetica- ASST Melegnano e Martesana, Vizzolo Predabissi, Italy
| | - Steven Laureys
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Guya Devalle
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
216
|
Sulkamo S, Hagström K, Huupponen E, Isokangas S, Lapinlampi AM, Alakuijala A, Saarenpää-Heikkilä O, Himanen SL. Sleep Spindle Features and Neurobehavioral Performance in Healthy School-Aged Children. J Clin Neurophysiol 2021; 38:149-155. [PMID: 31800466 DOI: 10.1097/wnp.0000000000000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE In adults, central fast-frequency sleep spindles are involved in learning and memory functions. The density of local spindles is higher than global spindles, emphasizing the importance of local plastic neural processes. In children, findings on the association of spindles with cognition are more variable. Hence, we aim to study whether the local spindles are also important for neurobehavioral performance in children. METHODS We studied the correlations between local (occurring in only one channel: Fp1, Fp2, C3, or C4), bilateral, and diffuse (occurring in all four channels) spindles and neurobehavioral performance in 17 healthy children (median age 9.6 years). RESULTS Local spindles were not as frequent as bilateral spindles (P-values < 0.05). Central spindle types had significant correlations with sensorimotor and language functions (e.g., the density of bilateral central spindles correlated positively with the Object Assembly in NEPSY, r = 0.490). Interestingly, frontopolar spindles correlated with behavior (e.g., the more bilateral the frontopolar spindles, the less hyperactive the children, r = -0.618). CONCLUSIONS In children, the local spindles, but also more widespread central spindles, seem to be involved in the cognitive processes. Based on our findings, it is important that ageadjusted frequency limits are used in studies evaluating the frequencies of spindles in children.
Collapse
Affiliation(s)
- Saramia Sulkamo
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Kati Hagström
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Eero Huupponen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Sirkku Isokangas
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna-Maria Lapinlampi
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Anniina Alakuijala
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland ; and
| | | | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
217
|
Rosenthal ZP, Raut RV, Bowen RM, Snyder AZ, Culver JP, Raichle ME, Lee JM. Peripheral sensory stimulation elicits global slow waves by recruiting somatosensory cortex bilaterally. Proc Natl Acad Sci U S A 2021; 118:e2021252118. [PMID: 33597303 PMCID: PMC7923673 DOI: 10.1073/pnas.2021252118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Slow waves (SWs) are globally propagating, low-frequency (0.5- to 4-Hz) oscillations that are prominent during sleep and anesthesia. SWs are essential to neural plasticity and memory. However, much remains unknown about the mechanisms coordinating SW propagation at the macroscale. To assess SWs in the context of macroscale networks, we recorded cortical activity in awake and ketamine/xylazine-anesthetized mice using widefield optical imaging with fluorescent calcium indicator GCaMP6f. We demonstrate that unilateral somatosensory stimulation evokes bilateral waves that travel across the cortex with state-dependent trajectories. Under anesthesia, we observe that rhythmic stimuli elicit globally resonant, front-to-back propagating SWs. Finally, photothrombotic lesions of S1 show that somatosensory-evoked global SWs depend on bilateral recruitment of homotopic primary somatosensory cortices. Specifically, unilateral lesions of S1 disrupt somatosensory-evoked global SW initiation from either hemisphere, while spontaneous SWs are largely unchanged. These results show that evoked SWs may be triggered by bilateral activation of specific, homotopically connected cortical networks.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110;
- Graduate Program of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryan V Raut
- Graduate Program of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryan M Bowen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
- Department of Physics, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
218
|
Abstract
Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.
Collapse
|
219
|
Opalka AN, Huang WQ, Liu J, Liang H, Wang DV. Hippocampal Ripple Coordinates Retrosplenial Inhibitory Neurons during Slow-Wave Sleep. Cell Rep 2021; 30:432-441.e3. [PMID: 31940487 PMCID: PMC7007963 DOI: 10.1016/j.celrep.2019.12.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
The hippocampus and retrosplenial cortex (RSC) play indispensable roles in memory formation, and importantly, a hippocampal oscillation known as ripple is key to consolidation of new memories. However, it remains unclear how the hippocampus and RSC communicate and the role of ripple oscillation in coordinating the activity between these two brain regions. Here, we record from the dorsal hippocampus and RSC simultaneously in freely behaving mice during sleep and reveal that the RSC displays a pre-ripple activation associated with slow and fast oscillations. Immediately after ripples, a subpopulation of RSC putative inhibitory neurons increases firing activity, while most RSC putative excitatory neurons decrease activity. Consistently, optogenetic stimulation of this hippocampus-RSC pathway activates and suppresses RSC putative inhibitory and excitatory neurons, respectively. These results suggest that the dorsal hippocampus mainly inhibits RSC activity via its direct innervation of RSC inhibitory neurons, which overshadows the RSC in supporting learning and memory functions. Converging evidence suggests that hippocampal ripple oscillations and their interaction with the neocortex are critical for memory consolidation. By combining electrophysiology and optogenetic techniques in freely behaving mice, Opalka et al. provide direct evidence that hippocampal ripples communicate with retrosplenial cortex (RSC) interneurons and inhibit RSC population activity during sleep-associated memory consolidation.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Qiang Huang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jun Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Hualou Liang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
220
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
221
|
Sanda P, Malerba P, Jiang X, Krishnan GP, Gonzalez-Martinez J, Halgren E, Bazhenov M. Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep. Cereb Cortex 2021; 31:324-340. [PMID: 32995860 PMCID: PMC8179633 DOI: 10.1093/cercor/bhaa228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/19/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The dialogue between cortex and hippocampus is known to be crucial for sleep-dependent memory consolidation. During slow wave sleep, memory replay depends on slow oscillation (SO) and spindles in the (neo)cortex and sharp wave-ripples (SWRs) in the hippocampus. The mechanisms underlying interaction of these rhythms are poorly understood. We examined the interaction between cortical SO and hippocampal SWRs in a model of the hippocampo-cortico-thalamic network and compared the results with human intracranial recordings during sleep. We observed that ripple occurrence peaked following the onset of an Up-state of SO and that cortical input to hippocampus was crucial to maintain this relationship. A small fraction of ripples occurred during the Down-state and controlled initiation of the next Up-state. We observed that the effect of ripple depends on its precise timing, which supports the idea that ripples occurring at different phases of SO might serve different functions, particularly in the context of encoding the new and reactivation of the old memories during memory consolidation. The study revealed complex bidirectional interaction of SWRs and SO in which early hippocampal ripples influence transitions to Up-state, while cortical Up-states control occurrence of the later ripples, which in turn influence transition to Down-state.
Collapse
Affiliation(s)
- Pavel Sanda
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Computer Science of the Czech Academy of Sciences, Prague 18207, Czech Republic
| | - Paola Malerba
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics and Biophysics Graduate Program, Ohio State University, Columbus, OH 43215, USA
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K4G9, Canada
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Eric Halgren
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
| |
Collapse
|
222
|
Smith SK, Nguyen T, Labonte AK, Kafashan M, Hyche O, Guay CS, Wilson E, Chan CW, Luong A, Hickman LB, Fritz BA, Emmert D, Graetz TJ, Melby SJ, Lucey BP, Ju YES, Wildes TS, Avidan MS, Palanca BJA. Protocol for the Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography (P-DROWS-E) study: a prospective observational study of delirium in elderly cardiac surgical patients. BMJ Open 2020; 10:e044295. [PMID: 33318123 PMCID: PMC7737109 DOI: 10.1136/bmjopen-2020-044295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Delirium is a potentially preventable disorder characterised by acute disturbances in attention and cognition with fluctuating severity. Postoperative delirium is associated with prolonged intensive care unit and hospital stay, cognitive decline and mortality. The development of biomarkers for tracking delirium could potentially aid in the early detection, mitigation and assessment of response to interventions. Because sleep disruption has been posited as a contributor to the development of this syndrome, expression of abnormal electroencephalography (EEG) patterns during sleep and wakefulness may be informative. Here we hypothesise that abnormal EEG patterns of sleep and wakefulness may serve as predictive and diagnostic markers for postoperative delirium. Such abnormal EEG patterns would mechanistically link disrupted thalamocortical connectivity to this important clinical syndrome. METHODS AND ANALYSIS P-DROWS-E (Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography) is a 220-patient prospective observational study. Patient eligibility criteria include those who are English-speaking, age 60 years or older and undergoing elective cardiac surgery requiring cardiopulmonary bypass. EEG acquisition will occur 1-2 nights preoperatively, intraoperatively, and up to 7 days postoperatively. Concurrent with EEG recordings, two times per day postoperative Confusion Assessment Method (CAM) evaluations will quantify the presence and severity of delirium. EEG slow wave activity, sleep spindle density and peak frequency of the posterior dominant rhythm will be quantified. Linear mixed-effects models will be used to evaluate the relationships between delirium severity/duration and EEG measures as a function of time. ETHICS AND DISSEMINATION P-DROWS-E is approved by the ethics board at Washington University in St. Louis. Recruitment began in October 2018. Dissemination plans include presentations at scientific conferences, scientific publications and mass media. TRIAL REGISTRATION NUMBER NCT03291626.
Collapse
Affiliation(s)
- S Kendall Smith
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Thomas Nguyen
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Alyssa K Labonte
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Orlandrea Hyche
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Christian S Guay
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Elizabeth Wilson
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Courtney W Chan
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Anhthi Luong
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - L Brian Hickman
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Bradley A Fritz
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Daniel Emmert
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Thomas J Graetz
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Spencer J Melby
- Department of Surgery, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Yo-El S Ju
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Troy S Wildes
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Michael S Avidan
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Ben J A Palanca
- Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, Saint Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| |
Collapse
|
223
|
Oyanedel CN, Durán E, Niethard N, Inostroza M, Born J. Temporal associations between sleep slow oscillations, spindles and ripples. Eur J Neurosci 2020; 52:4762-4778. [PMID: 32654249 DOI: 10.1111/ejn.14906] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The systems consolidation of memory during slow-wave sleep (SWS) is thought to rely on a dialogue between hippocampus and neocortex that is regulated by an interaction between neocortical slow oscillations (SOs), thalamic spindles and hippocampal ripples. Here, we examined the occurrence rates of and the temporal relationships between these oscillatory events in rats, to identify the possible direction of interaction between these events under natural conditions. To facilitate comparisons with findings in humans, we combined frontal and parietal surface EEG with local field potential (LFP) recordings in medial prefrontal cortex (mPFC) and dorsal hippocampus (dHC). Consistent with a top-down driving influence, EEG SO upstates were associated with an increase in spindles and hippocampal ripples. This increase was missing in SO upstates identified in mPFC recordings. Ripples in dHC recordings always followed the onset of spindles consistent with spindles timing ripple occurrence. Comparing ripple activity during co-occurring SO-spindle events with that during isolated SOs or spindles, suggested that ripple dynamics during SO-spindle events are mainly determined by the spindle, with only the SO downstate providing a global inhibitory signal to both thalamus and hippocampus. As to bottom-up influences, we found an increase in hippocampal ripples ~200 ms before the SO downstate, but no similar increase of spindles preceding SO downstates. Overall, the temporal pattern is consistent with a loop-like scenario where, top-down, SOs can trigger thalamic spindles which, in turn, regulate the occurrence of hippocampal ripples. Ripples, bottom-up, and independent from thalamic spindles, can contribute to the emergence of neocortical SOs.
Collapse
Affiliation(s)
- Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
224
|
Beed P, de Filippo R, Holman C, Johenning FW, Leibold C, Caputi A, Monyer H, Schmitz D. Layer 3 Pyramidal Cells in the Medial Entorhinal Cortex Orchestrate Up-Down States and Entrain the Deep Layers Differentially. Cell Rep 2020; 33:108470. [DOI: 10.1016/j.celrep.2020.108470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/26/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023] Open
|
225
|
Ujma PP, Hajnal B, Bódizs R, Gombos F, Erőss L, Wittner L, Halgren E, Cash SS, Ulbert I, Fabó D. The laminar profile of sleep spindles in humans. Neuroimage 2020; 226:117587. [PMID: 33249216 PMCID: PMC9113200 DOI: 10.1016/j.neuroimage.2020.117587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Boglárka Hajnal
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; School of P.h.D. studies, Semmelweis University, 1085 Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, 1089 Budapest, Hungary; Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, 1088 Budapest, Hungary; MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, 1088 Budapest, Hungary
| | - Loránd Erőss
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Lucia Wittner
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, 92093 San Diego CA, USA
| | - Sydney S Cash
- Center for Neurotechnology and Neurorecovery (CNTR), Department of Neurology, Massachusetts General Hospital, 02114 Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, 02115 MA, USA
| | - István Ulbert
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network 1117 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, Dept. of Neurology, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| |
Collapse
|
226
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
227
|
Hobson JA, Gott JA, Friston KJ. Minds and Brains, Sleep and Psychiatry. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2020; 3:12-28. [PMID: 35174319 PMCID: PMC8834904 DOI: 10.1176/appi.prcp.20200023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Objective This article offers a philosophical thesis for psychiatric disorders that rests upon some simple truths about the mind and brain. Specifically, it asks whether the dual aspect monism—that emerges from sleep research and theoretical neurobiology—can be applied to pathophysiology and psychopathology in psychiatry. Methods Our starting point is that the mind and brain are emergent aspects of the same (neuronal) dynamics; namely, the brain–mind. Our endpoint is that synaptic dysconnection syndromes inherit the same dual aspect; namely, aberrant inference or belief updating on the one hand, and a failure of neuromodulatory synaptic gain control on the other. We start with some basic considerations from sleep research that integrate the phenomenology of dreaming with the neurophysiology of sleep. Results We then leverage this treatment by treating the brain as an organ of inference. Our particular focus is on the role of precision (i.e., the representation of uncertainty) in belief updating and the accompanying synaptic mechanisms. Conclusions Finally, we suggest a dual aspect approach—based upon belief updating (i.e., mind processes) and its neurophysiological implementation (i.e., brain processes)—has a wide explanatory compass for psychiatry and various movement disorders. This approach identifies the kind of pathophysiology that underwrites psychopathology—and points to certain psychotherapeutic and psychopharmacological targets, which may stand in mechanistic relation to each other. The ‘mind’ emerges from Bayesian belief updating in the ‘brain’ Psychopathology can be read as aberrant belief updating. Aberrant belief updating follows from any neuromodulatory synaptopathy
Collapse
Affiliation(s)
- J. Allan Hobson
- Division of Sleep Medicine Harvard Medical School Boston Massachusetts
| | - Jarrod A. Gott
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen
| | - Karl J. Friston
- The Wellcome Centre for Human Neuroimaging University College London London
| |
Collapse
|
228
|
Signature of consciousness in brain-wide synchronization patterns of monkey and human fMRI signals. Neuroimage 2020; 226:117470. [PMID: 33137478 DOI: 10.1016/j.neuroimage.2020.117470] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
During the sleep-wake cycle, the brain undergoes profound dynamical changes, which manifest subjectively as transitions between conscious experience and unconsciousness. Yet, neurophysiological signatures that can objectively distinguish different consciousness states based are scarce. Here, we show that differences in the level of brain-wide signals can reliably distinguish different stages of sleep and anesthesia from the awake state in human and monkey fMRI resting state data. Moreover, a whole-brain computational model can faithfully reproduce changes in global synchronization and other metrics such as functional connectivity, structure-function relationship, integration and segregation across vigilance states. We demonstrate that the awake brain is close to a Hopf bifurcation, which naturally coincides with the emergence of globally correlated fMRI signals. Furthermore, simulating lesions of individual brain areas highlights the importance of connectivity hubs in the posterior brain and subcortical nuclei for maintaining the model in the awake state, as predicted by graph-theoretical analyses of structural data.
Collapse
|
229
|
Mullins AE, Kam K, Parekh A, Bubu OM, Osorio RS, Varga AW. Obstructive Sleep Apnea and Its Treatment in Aging: Effects on Alzheimer's disease Biomarkers, Cognition, Brain Structure and Neurophysiology. Neurobiol Dis 2020; 145:105054. [PMID: 32860945 PMCID: PMC7572873 DOI: 10.1016/j.nbd.2020.105054] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Here we review the impact of obstructive sleep apnea (OSA) on biomarkers of Alzheimer's disease (AD) pathogenesis, neuroanatomy, cognition and neurophysiology, and present the research investigating the effects of continuous positive airway pressure (CPAP) therapy. OSA is associated with an increase in AD markers amyloid-β and tau measured in cerebrospinal fluid (CSF), by Positron Emission Tomography (PET) and in blood serum. There is some evidence suggesting CPAP therapy normalizes AD biomarkers in CSF but since mechanisms for amyloid-β and tau production/clearance in humans are not completely understood, these findings remain preliminary. Deficits in the cognitive domains of attention, vigilance, memory and executive functioning are observed in OSA patients with the magnitude of impairment appearing stronger in younger people from clinical settings than in older community samples. Cognition improves with varying degrees after CPAP use, with the greatest effect seen for attention in middle age adults with more severe OSA and sleepiness. Paradigms in which encoding and retrieval of information are separated by periods of sleep with or without OSA have been done only rarely, but perhaps offer a better chance to understand cognitive effects of OSA than isolated daytime testing. In cognitively normal individuals, changes in EEG microstructure during sleep, particularly slow oscillations and spindles, are associated with biomarkers of AD, and measures of cognition and memory. Similar changes in EEG activity are reported in AD and OSA, such as "EEG slowing" during wake and REM sleep, and a degradation of NREM EEG microstructure. There is evidence that CPAP therapy partially reverses these changes but large longitudinal studies demonstrating this are lacking. A diagnostic definition of OSA relying solely on the Apnea Hypopnea Index (AHI) does not assist in understanding the high degree of inter-individual variation in daytime impairments related to OSA or response to CPAP therapy. We conclude by discussing conceptual challenges to a clinical trial of OSA treatment for AD prevention, including inclusion criteria for age, OSA severity, and associated symptoms, the need for a potentially long trial, defining relevant primary outcomes, and which treatments to target to optimize treatment adherence.
Collapse
Affiliation(s)
- Anna E Mullins
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Korey Kam
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Omonigho M Bubu
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Ricardo S Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
230
|
Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun 2020; 11:5247. [PMID: 33067436 PMCID: PMC7567828 DOI: 10.1038/s41467-020-19076-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep. During NREM sleep, spindles emerge from thalamocortical interactions. Here the authors carry out multisite thalamic and cortical recordings in freely behaving mice, to investigate the role of other non-classical thalamic sites in sleep spindle generation.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas C Gent
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
231
|
Rapid Eye Movement Sleep Sawtooth Waves Are Associated with Widespread Cortical Activations. J Neurosci 2020; 40:8900-8912. [PMID: 33055279 DOI: 10.1523/jneurosci.1586-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 11/21/2022] Open
Abstract
Sawtooth waves (STW) are bursts of frontocentral slow oscillations recorded in the scalp electroencephalogram (EEG) during rapid eye movement (REM) sleep. Little is known about their cortical generators and functional significance. Stereo-EEG performed for presurgical epilepsy evaluation offers the unique possibility to study neurophysiology in situ in the human brain. We investigated intracranial correlates of scalp-detected STW in 26 patients (14 women) undergoing combined stereo-EEG/polysomnography. We visually marked STW segments in scalp EEG and selected stereo-EEG channels exhibiting normal activity for intracranial analyses. Channels were grouped in 30 brain regions. The spectral power in each channel and frequency band was computed during STW and non-STW control segments. Ripples (80-250 Hz) were automatically detected during STW and control segments. The spectral power in the different frequency bands and the ripple rates were then compared between STW and control segments in each brain region. An increase in 2-4 Hz power during STW segments was found in all brain regions, except the occipital lobe, with large effect sizes in the parietotemporal junction, the lateral and orbital frontal cortex, the anterior insula, and mesiotemporal structures. A widespread increase in high-frequency activity, including ripples, was observed concomitantly, involving the sensorimotor cortex, associative areas, and limbic structures. This distribution showed a high spatiotemporal heterogeneity. Our results suggest that STW are associated with widely distributed, but locally regulated REM sleep slow oscillations. By driving fast activities, STW may orchestrate synchronized reactivations of multifocal activities, allowing tagging of complex representations necessary for REM sleep-dependent memory consolidation.SIGNIFICANCE STATEMENT Sawtooth waves (STW) present as scalp electroencephalographic (EEG) bursts of slow waves contrasting with the low-voltage fast desynchronized activity of REM sleep. Little is known about their cortical origin and function. Using combined stereo-EEG/polysomnography possible only in the human brain during presurgical epilepsy evaluation, we explored the intracranial correlates of STW. We found that a large set of regions in the parietal, frontal, and insular cortices shows increases in 2-4 Hz power during scalp EEG STW, that STW are associated with a strong and widespread increase in high frequencies, and that these slow and fast activities exhibit a high spatiotemporal heterogeneity. These electrophysiological properties suggest that STW may be involved in cognitive processes during REM sleep.
Collapse
|
232
|
Henry JP. Comment les neurosciences recherchent la clé des songes. Med Sci (Paris) 2020; 36:929-934. [DOI: 10.1051/medsci/2020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Le sommeil est une succession de deux phases : le sommeil profond d’une part et le sommeil paradoxal d’autre part, qui possède des caractères propres à la veille et au sommeil, ce qui a conduit à proposer que cette phase hébergerait les rêves. Cette hypothèse est maintenant considérée comme simplificatrice, le sommeil profond abritant aussi des rêves aux caractéristiques différentes. Dans ces conditions, déterminer les structures cérébrales associées au rêve est difficile. Le rêve et la veille impliquent les mêmes mécanismes. L’origine des stimulations du cortex, en l’absence de stimulation externe, reste débattue et la fonction du rêve incomprise. Pour certains, le rêve pourrait être un épiphénomène provoqué par le bruit de fond de la transmission synaptique.
Collapse
|
233
|
Dasilva M, Camassa A, Navarro-Guzman A, Pazienti A, Perez-Mendez L, Zamora-López G, Mattia M, Sanchez-Vives MV. Modulation of cortical slow oscillations and complexity across anesthesia levels. Neuroimage 2020; 224:117415. [PMID: 33011419 DOI: 10.1016/j.neuroimage.2020.117415] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
The ability of different groups of cortical neurons to engage in causal interactions that are at once differentiated and integrated results in complex dynamic patterns. Complexity is low during periods of unconsciousness (deep sleep, anesthesia, unresponsive wakefulness syndrome) in which the brain tends to generate a stereotypical pattern consisting of alternating active and silent periods of neural activity-slow oscillations- and is high during wakefulness. But how is cortical complexity built up? Is it a continuum? An open question is whether cortical complexity can vary within the same brain state. Here we recorded with 32-channel multielectrode arrays from the cortical surface of the mouse and used both spontaneous dynamics (wave propagation entropy and functional complexity) and a perturbational approach (a variation of the perturbation complexity index) to measure complexity at different anesthesia levels. Variations in anesthesia level within the bistable regime of slow oscillations (0.1-1.5 Hz) resulted in a modulation of the slow oscillation frequency. Both perturbational and spontaneous complexity increased with decreasing anesthesia levels, in correlation with the decrease in coherence of the underlying network. Changes in complexity level are related to, but not dependent on, changes in excitability. We conclude that cortical complexity can vary within a single brain state dominated by slow oscillations, building up to the higher complexity associated with consciousness.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alessandra Camassa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Navarro-Guzman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Pazienti
- Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Lorena Perez-Mendez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Maurizio Mattia
- Natl. Center for Radioprotection and Computational Physics, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
234
|
Aru J, Siclari F, Phillips WA, Storm JF. Apical drive-A cellular mechanism of dreaming? Neurosci Biobehav Rev 2020; 119:440-455. [PMID: 33002561 DOI: 10.1016/j.neubiorev.2020.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
Dreams are internally generated experiences that occur independently of current sensory input. Here we argue, based on cortical anatomy and function, that dream experiences are tightly related to the workings of a specific part of cortical pyramidal neurons, the apical integration zone (AIZ). The AIZ receives and processes contextual information from diverse sources and could constitute a major switch point for transitioning from externally to internally generated experiences such as dreams. We propose that during dreams the output of certain pyramidal neurons is mainly driven by input into the AIZ. We call this mode of functioning "apical drive". Our hypothesis is based on the evidence that the cholinergic and adrenergic arousal systems, which show different dynamics between waking, slow wave sleep, and rapid eye movement sleep, have specific effects on the AIZ. We suggest that apical drive may also contribute to waking experiences, such as mental imagery. Future studies, investigating the different modes of apical function and their regulation during sleep and wakefulness are likely to be richly rewarded.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Estonia; Institute of Biology, Humboldt University Berlin, Germany.
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - William A Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - Johan F Storm
- Brain Signalling Group, Section for Physiology, Faculty of Medicine, Domus Medica, University of Oslo, PB 1104 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
235
|
Mander BA. Local Sleep and Alzheimer's Disease Pathophysiology. Front Neurosci 2020; 14:525970. [PMID: 33071726 PMCID: PMC7538792 DOI: 10.3389/fnins.2020.525970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with β-amyloid (Aβ) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.
Collapse
Affiliation(s)
- Bryce A. Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
236
|
Paller KA, Creery JD, Schechtman E. Memory and Sleep: How Sleep Cognition Can Change the Waking Mind for the Better. Annu Rev Psychol 2020; 72:123-150. [PMID: 32946325 DOI: 10.1146/annurev-psych-010419-050815] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The memories that we retain can serve many functions. They guide our future actions, form a scaffold for constructing the self, and continue to shape both the self and the way we perceive the world. Although most memories we acquire each day are forgotten, those integrated within the structure of multiple prior memories tend to endure. A rapidly growing body of research is steadily elucidating how the consolidation of memories depends on their reactivation during sleep. Processing memories during sleep not only helps counteract their weakening but also supports problem solving, creativity, and emotional regulation. Yet, sleep-based processing might become maladaptive, such as when worries are excessively revisited. Advances in research on memory and sleep can thus shed light on how this processing influences our waking life, which can further inspire the development of novel strategies for decreasing detrimental rumination-like activity during sleep and for promoting beneficial sleep cognition.
Collapse
Affiliation(s)
- Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| | - Jessica D Creery
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| | - Eitan Schechtman
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| |
Collapse
|
237
|
Something old, something new: A review of the literature on sleep-related lexicalization of novel words in adults. Psychon Bull Rev 2020; 28:96-121. [PMID: 32939631 DOI: 10.3758/s13423-020-01809-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 11/08/2022]
Abstract
Word learning is a crucial aspect of human development that depends on the formation and consolidation of novel memory traces. In this paper, we critically review the behavioural research on sleep-related lexicalization of novel words in healthy young adult speakers. We first describe human memory systems, the processes underlying memory consolidation, then we describe the complementary learning systems account of memory consolidation. We then review behavioural studies focusing on novel word learning and sleep-related lexicalization in monolingual samples, while highlighting their relevance to three main theoretical questions. Finally, we review the few studies that have investigated sleep-related lexicalization in L2 speakers. Overall, while several studies suggest that sleep promotes the gradual transformation of initially labile traces into more stable representations, a growing body of work suggests a rich variety of time courses for novel word lexicalization. Moreover, there is a need for more work on sleep-related lexicalization patterns in varied populations, such as L2 speakers and bilingual speakers, and more work on individual differences, to fully understand the boundary conditions of this phenomenon.
Collapse
|
238
|
Affiliation(s)
- Igor Timofeev
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, Québec, Canada. .,CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada.
| | - Sylvain Chauvette
- CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
239
|
Ballesteros JJ, Briscoe JB, Ishizawa Y. Neural signatures of α2-Adrenergic agonist-induced unconsciousness and awakening by antagonist. eLife 2020; 9:57670. [PMID: 32857037 PMCID: PMC7455241 DOI: 10.7554/elife.57670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
How the brain dynamics change during anesthetic-induced altered states of consciousness is not completely understood. The α2-adrenergic agonists are unique. They generate unconsciousness selectively through α2-adrenergic receptors and related circuits. We studied intracortical neuronal dynamics during transitions of loss of consciousness (LOC) with the α2-adrenergic agonist dexmedetomidine and return of consciousness (ROC) in a functionally interconnecting somatosensory and ventral premotor network in non-human primates. LOC, ROC and full task performance recovery were all associated with distinct neural changes. The early recovery demonstrated characteristic intermediate dynamics distinguished by sustained high spindle activities. Awakening by the α2-adrenergic antagonist completely eliminated this intermediate state and instantaneously restored awake dynamics and the top task performance while the anesthetic was still being infused. The results suggest that instantaneous functional recovery is possible following anesthetic-induced unconsciousness and the intermediate recovery state is not a necessary path for the brain recovery.
Collapse
Affiliation(s)
- Jesus Javier Ballesteros
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Jessica Blair Briscoe
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
240
|
Sarasso S, Zubler F, Pigorini A, Sartori I, Castana L, Nobili L. Thalamic and neocortical differences in the relationship between the time course of delta and sigma power during NREM sleep in humans. J Sleep Res 2020; 30:e13166. [PMID: 32830381 DOI: 10.1111/jsr.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Sleep spindles and slow waves are the hallmarks of non-rapid eye movement (NREM) sleep and are produced by the dynamic interplay between thalamic and cortical regions. Several studies in both human and animal models have focused their attention on the relationship between electroencephalographic (EEG) spindles and slow waves during NREM, using the power in the sigma and delta bands as a surrogate for the production of spindles and slow waves. A typical report is an overall inverse relationship between the time course of sigma and delta power as measured by a single correlation coefficient both within and across NREM episodes. Here we analysed stereotactically implanted intracerebral electrode (Stereo-EEG [SEEG]) recordings during NREM simultaneously acquired from thalamic and from several neocortical sites in six neurosurgical patients. We investigated the relationship between the time course of delta and sigma power and found that, although at the cortical level it shows the expected inverse relationship, these two frequency bands follow a parallel time course at the thalamic level. Both these observations were consistent across patients and across different cortical as well as thalamic regions. These different temporal dynamics at the neocortical and thalamic level are discussed, considering classical as well as more recent interpretations of the neurophysiological determinants of sleep spindles and slow waves. These findings may also help understanding the regulatory mechanisms of these fundamental sleep EEG graphoelements across different brain compartments.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche ''L. Sacco'', Università degli Studi di Milano, Milan, Italy
| | - Frederic Zubler
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Pigorini
- Dipartimento di Scienze Biomediche e Cliniche ''L. Sacco'', Università degli Studi di Milano, Milan, Italy
| | - Ivana Sartori
- Claudio Munari" Centre for Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Laura Castana
- Claudio Munari" Centre for Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
241
|
Cox R, Rüber T, Staresina BP, Fell J. Sharp Wave-Ripples in Human Amygdala and Their Coordination with Hippocampus during NREM Sleep. Cereb Cortex Commun 2020; 1:tgaa051. [PMID: 33015623 PMCID: PMC7521160 DOI: 10.1093/texcom/tgaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cooperative interactions between the amygdala and hippocampus are widely regarded as critical for overnight emotional processing of waking experiences, but direct support from the human brain for such a dialog is absent. Using overnight intracranial recordings in 4 presurgical epilepsy patients (3 female), we discovered ripples within human amygdala during nonrapid eye movement (NREM) sleep, a brain state known to contribute to affective processing. Like hippocampal ripples, amygdala ripples are associated with sharp waves, linked to sleep spindles, and tend to co-occur with their hippocampal counterparts. Moreover, sharp waves and ripples are temporally linked across the 2 brain structures, with amygdala ripples occurring during hippocampal sharp waves and vice versa. Combined with further evidence of interregional sharp-wave and spindle synchronization, these findings offer a potential physiological substrate for the NREM-sleep-dependent consolidation and regulation of emotional experiences.
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
| |
Collapse
|
242
|
Bourdillon P, Hermann B, Guénot M, Bastuji H, Isnard J, King JR, Sitt J, Naccache L. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci Rep 2020; 10:14037. [PMID: 32820188 PMCID: PMC7441406 DOI: 10.1038/s41598-020-70447-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Long-range cortico-cortical functional connectivity has long been theorized to be necessary for conscious states. In the present work, we estimate long-range cortical connectivity in a series of intracranial and scalp EEG recordings experiments. In the two first experiments intracranial-EEG (iEEG) was recorded during four distinct states within the same individuals: conscious wakefulness (CW), rapid-eye-movement sleep (REM), stable periods of slow-wave sleep (SWS) and deep propofol anaesthesia (PA). We estimated functional connectivity using the following two methods: weighted Symbolic-Mutual-Information (wSMI) and phase-locked value (PLV). Our results showed that long-range functional connectivity in the delta-theta frequency band specifically discriminated CW and REM from SWS and PA. In the third experiment, we generalized this original finding on a large cohort of brain-injured patients. FC in the delta-theta band was significantly higher in patients being in a minimally conscious state (MCS) than in those being in a vegetative state (or unresponsive wakefulness syndrome). Taken together the present results suggest that FC of cortical activity in this slow frequency band is a new and robust signature of conscious states.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurophysiology, Hospital for Neurology and Neurosurgery, Hospices Civils de Lyon, Lyon, France.
- Faculté de médecine Claude Bernard, Université de Lyon, Lyon, France.
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - Bertrand Hermann
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
- Neuro Intensive Care Unit, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marc Guénot
- Department of Neurophysiology, Hospital for Neurology and Neurosurgery, Hospices Civils de Lyon, Lyon, France
- Faculté de médecine Claude Bernard, Université de Lyon, Lyon, France
- Neuropain Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, Lyon, France
| | - Hélène Bastuji
- Neuropain Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, Lyon, France
- Functional Neurology Department and Sleep Center, Hospices Civils de Lyon, Lyon, France
| | - Jean Isnard
- Functional Neurology Department and Sleep Center, Hospices Civils de Lyon, Lyon, France
| | - Jean-Rémi King
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Jacobo Sitt
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Lionel Naccache
- Brain and Spine Institue, INSERM U1127, CNRS 7225, 47 boulevard de l'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
- Department of Neurophysiology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
243
|
Miller SM. Fluctuations of consciousness, mood, and science: The interhemispheric switch and sticky switch models two decades on. J Comp Neurol 2020; 528:3171-3197. [DOI: 10.1002/cne.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Steven M. Miller
- Perceptual and Clinical Neuroscience Laboratory, Department of Physiology Monash Biomedicine Discovery Institute, School of Biomedical Sciences, Monash University Melbourne Victoria Australia
- Monash Alfred Psychiatry Research Centre Central Clinical School, Monash University and Alfred Health Melbourne Victoria Australia
| |
Collapse
|
244
|
Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev 2020; 101:995-1046. [PMID: 32790576 DOI: 10.1152/physrev.00046.2019] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While insomnia is the second most common mental disorder, progress in our understanding of underlying neurobiological mechanisms has been limited. The present review addresses the definition and prevalence of insomnia and explores its subjective and objective characteristics across the 24-hour day. Subsequently, the review extensively addresses how the vulnerability to develop insomnia is affected by genetic variants, early life stress, major life events, and brain structure and function. Further supported by the clear mental health risks conveyed by insomnia, the integrated findings suggest that the vulnerability to develop insomnia could rather be found in brain circuits regulating emotion and arousal than in circuits involved in circadian and homeostatic sleep regulation. Finally, a testable model is presented. The model proposes that in people with a vulnerability to develop insomnia, the locus coeruleus is more sensitive to-or receives more input from-the salience network and related circuits, even during rapid eye movement sleep, when it should normally be sound asleep. This vulnerability may ignite a downward spiral of insufficient overnight adaptation to distress, resulting in accumulating hyperarousal, which, in turn, impedes restful sleep and moreover increases the risk of other mental health adversity. Sensitized brain circuits are likely to be subjectively experienced as "sleeping with one eye open". The proposed model opens up the possibility for novel intervention studies and animal studies, thus accelerating the ignition of a neuroscience of insomnia, which is direly needed for better treatment.
Collapse
Affiliation(s)
- Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands; and Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
245
|
Romanella SM, Roe D, Paciorek R, Cappon D, Ruffini G, Menardi A, Rossi A, Rossi S, Santarnecchi E. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev 2020; 61:101067. [PMID: 32380212 PMCID: PMC8363192 DOI: 10.1016/j.arr.2020.101067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-β (Aβ) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.
Collapse
Affiliation(s)
- Sara M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Daniel Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Padova Neuroscience Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
246
|
Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, Larsson PG, Knight RT. An electrophysiological marker of arousal level in humans. eLife 2020; 9:e55092. [PMID: 32720644 PMCID: PMC7394547 DOI: 10.7554/elife.55092] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, 'wake-like' EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from REM sleep solely based on the neurophysiological brain state. Taken together, our findings describe a common electrophysiological marker that tracks states of reduced arousal, including different sleep stages as well as anesthesia in humans.
Collapse
Affiliation(s)
- Janna D Lendner
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center TuebingenTuebingenGermany
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain ResearchTuebingenGermany
- Department of Neurology and Epileptology, University Medical Center TuebingenTuebingenGermany
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, IrvineIrvineUnited States
| | - Luis Romundstad
- Department of Anesthesiology, University of Oslo Medical CenterOsloNorway
| | - Jack J Lin
- Department of Neurology, University of California, IrvineIrvineUnited States
| | - Matthew P Walker
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Pal G Larsson
- Department of Neurosurgery, University of Oslo Medical CenterOsloNorway
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
247
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
248
|
Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep. Sci Rep 2020; 10:10628. [PMID: 32606321 PMCID: PMC7326971 DOI: 10.1038/s41598-020-67392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Regional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. In our study, we tested whether closed-loop auditory stimulation targeting the up-phase of slow waves might not only interact with the main sleep rhythms but also with their coupling within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances delta, theta and sigma power, changes in cross-frequency coupling of these oscillations were more spatially restricted. Importantly, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent neuroplasticity within the brain network of interest.
Collapse
|
249
|
Aedo-Jury F, Schwalm M, Hamzehpour L, Stroh A. Brain states govern the spatio-temporal dynamics of resting-state functional connectivity. eLife 2020; 9:53186. [PMID: 32568067 PMCID: PMC7329332 DOI: 10.7554/elife.53186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Previously, using simultaneous resting-state functional magnetic resonance imaging (fMRI) and photometry-based neuronal calcium recordings in the anesthetized rat, we identified blood oxygenation level-dependent (BOLD) responses directly related to slow calcium waves, revealing a cortex-wide and spatially organized correlate of locally recorded neuronal activity (Schwalm et al., 2017). Here, using the same techniques, we investigate two distinct cortical activity states: persistent activity, in which compartmentalized network dynamics were observed; and slow wave activity, dominated by a cortex-wide BOLD component, suggesting a strong functional coupling of inter-cortical activity. During slow wave activity, we find a correlation between the occurring slow wave events and the strength of functional connectivity between different cortical areas. These findings suggest that down-up transitions of neuronal excitability can drive cortex-wide functional connectivity. This study provides further evidence that changes in functional connectivity are dependent on the brain's current state, directly linked to the generation of slow waves.
Collapse
Affiliation(s)
- Felipe Aedo-Jury
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Miriam Schwalm
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Lara Hamzehpour
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
250
|
Frohlich J, Bird LM, Dell'Italia J, Johnson MA, Hipp JF, Monti MM. High-voltage, diffuse delta rhythms coincide with wakeful consciousness and complexity in Angelman syndrome. Neurosci Conscious 2020; 2020:niaa005. [PMID: 32551137 PMCID: PMC7293820 DOI: 10.1093/nc/niaa005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 11/23/2022] Open
Abstract
Abundant evidence from slow wave sleep, anesthesia, coma, and epileptic seizures links high-voltage, slow electroencephalogram (EEG) activity to loss of consciousness. This well-established correlation is challenged by the observation that children with Angelman syndrome (AS), while fully awake and displaying volitional behavior, display a hypersynchronous delta (1–4 Hz) frequency EEG phenotype typical of unconsciousness. Because the trough of the delta oscillation is associated with down-states in which cortical neurons are silenced, the presence of volitional behavior and wakefulness in AS amidst diffuse delta rhythms presents a paradox. Moreover, high-voltage, slow EEG activity is generally assumed to lack complexity, yet many theories view functional brain complexity as necessary for consciousness. Here, we use abnormal cortical dynamics in AS to assess whether EEG complexity may scale with the relative level of consciousness despite a background of hypersynchronous delta activity. As characterized by multiscale metrics, EEGs from 35 children with AS feature significantly greater complexity during wakefulness compared with sleep, even when comparing the most pathological segments of wakeful EEG to the segments of sleep EEG least likely to contain conscious mentation and when factoring out delta power differences across states. These findings (i) warn against reverse inferring an absence of consciousness solely on the basis of high-amplitude EEG delta oscillations, (ii) corroborate rare observations of preserved consciousness under hypersynchronization in other conditions, (iii) identify biomarkers of consciousness that have been validated under conditions of abnormal cortical dynamics, and (iv) lend credence to theories linking consciousness with complexity.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, CA, USA.,Division of Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - John Dell'Italia
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA
| | - Micah A Johnson
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|