201
|
Wes PD, Sayed FA, Bard F, Gan L. Targeting microglia for the treatment of Alzheimer's Disease. Glia 2016; 64:1710-32. [DOI: 10.1002/glia.22988] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Paul D. Wes
- Neuroinflammation Department; Lundbeck Research USA; Paramus New Jersey
| | - Faten A. Sayed
- Gladstone Institute for Neurodegeneration; San Francisco California
| | | | - Li Gan
- Gladstone Institute for Neurodegeneration; San Francisco California
| |
Collapse
|
202
|
Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol 2016; 15:455-532. [DOI: 10.1016/s1474-4422(16)00062-4] [Citation(s) in RCA: 1127] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/06/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022]
|
203
|
Santin MD, Vandenberghe ME, Herard AS, Pradier L, Cohen C, Debeir T, Delzescaux T, Rooney T, Dhenain M. In Vivo Detection of Amyloid Plaques by Gadolinium-Stained MRI Can Be Used to Demonstrate the Efficacy of an Anti-amyloid Immunotherapy. Front Aging Neurosci 2016; 8:55. [PMID: 27047372 PMCID: PMC4802995 DOI: 10.3389/fnagi.2016.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 01/05/2023] Open
Abstract
Extracellular deposition of β amyloid plaques is an early event associated to Alzheimer’s disease. Here, we have used in vivo gadolinium-stained high resolution (29∗29∗117 μm3) magnetic resonance imaging (MRI) to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952) directed against protofibrillar and fibrillary forms of Aβ. APP/PS1 mice were treated for 5 months between the age of 3.5 and 8.5 months. SAR255952 reduced amyloid load in 8.5-months-old animals, but not in 5.5-months animals compared to mice treated with a control antibody (DM4). Histological evaluation confirmed the reduction of amyloid load and revealed a lower density of amyloid plaques in 8.5-months SAR255952-treated animals. The longitudinal follow-up of individual amyloid plaques by MRI revealed that plaques that were visible at 5.5 months were still visible at 8.5 months in both SAR255952 and DM4-treated mice. This suggests that the amyloid load reduction induced by SAR255952 is related to a slowing down in the formation of new plaques rather than to the clearance of already formed plaques.
Collapse
Affiliation(s)
- Mathieu D Santin
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases LaboratoryFontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut d'Imagerie Biomédicale, MIRCenFontenay-aux-Roses, France
| | - Michel E Vandenberghe
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases LaboratoryFontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut d'Imagerie Biomédicale, MIRCenFontenay-aux-Roses, France
| | - Anne-Sophie Herard
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases LaboratoryFontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut d'Imagerie Biomédicale, MIRCenFontenay-aux-Roses, France
| | - Laurent Pradier
- Sanofi, Neurodegeneration and Pain Unit Chilly-Mazarin, France
| | - Caroline Cohen
- Sanofi, Neurodegeneration and Pain Unit Chilly-Mazarin, France
| | | | - Thierry Delzescaux
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases LaboratoryFontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut d'Imagerie Biomédicale, MIRCenFontenay-aux-Roses, France
| | - Thomas Rooney
- Sanofi, Neurodegeneration and Pain Unit Chilly-Mazarin, France
| | - Marc Dhenain
- Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases LaboratoryFontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction de la Recherche Fondamentale, Institut d'Imagerie Biomédicale, MIRCenFontenay-aux-Roses, France
| |
Collapse
|
204
|
Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and Cognitive failure in Alzheimer's Disease: Benefits of Cardiovascular Therapy. Cell Mol Neurobiol 2016; 36:219-32. [PMID: 26993506 PMCID: PMC11482419 DOI: 10.1007/s10571-015-0285-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada.
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
205
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
206
|
Pietronigro E, Zenaro E, Constantin G. Imaging of Leukocyte Trafficking in Alzheimer's Disease. Front Immunol 2016; 7:33. [PMID: 26913031 PMCID: PMC4753285 DOI: 10.3389/fimmu.2016.00033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/23/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is characterized by a progressive decline of cognitive functions. The neuropathological features of AD include amyloid beta (Aβ) deposition, intracellular neurofibrillary tangles derived from the cytoskeletal hyperphosphorylated tau protein, amyloid angiopathy, the loss of synapses, and neuronal degeneration. In the last decade, inflammation has emerged as a key feature of AD, but most studies have focused on the role of microglia-driven neuroinflammation mechanisms. A dysfunctional blood-brain barrier has also been implicated in the pathogenesis of AD, and several studies have demonstrated that the vascular deposition of Aβ induces the expression of adhesion molecules and alters the expression of tight junction proteins, potentially facilitating the transmigration of circulating leukocytes. Two-photon laser scanning microscopy (TPLSM) has become an indispensable tool to dissect the molecular mechanisms controlling leukocyte trafficking in the central nervous system (CNS). Recent TPLSM studies have shown that vascular deposition of Aβ in the CNS promotes intraluminal neutrophil adhesion and crawling on the brain endothelium and also that neutrophils extravasate in the parenchyma preferentially in areas with Aβ deposits. These studies have also highlighted a role for LFA-1 integrin in neutrophil accumulation in the CNS of AD-like disease models, revealing that LFA-1 inhibition reduces the corresponding cognitive deficit and AD neuropathology. In this article, we consider how current imaging techniques can help to unravel new inflammation mechanisms in the pathogenesis of AD and identify novel therapeutic strategies to treat the disease by interfering with leukocyte trafficking mechanisms.
Collapse
Affiliation(s)
- Enrica Pietronigro
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| |
Collapse
|
207
|
Ulrich JD, Huynh TP, Holtzman DM. Re-evaluation of the Blood-Brain Barrier in the Presence of Alzheimer's Disease Pathology. Neuron 2016; 88:237-9. [PMID: 26494271 DOI: 10.1016/j.neuron.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood-brain barrier disruption is believed to occur in Alzheimer's disease, which could influence the bioavailability of drugs within the brain. However, in this issue of Neuron, Bien-Ly et al. (2015) report no evidence of widespread blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Jason D Ulrich
- Department of Neurology, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA; The Knight Alzheimer's Disease Research Center, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA
| | - Tien-Phat Huynh
- Department of Neurology, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA; The Knight Alzheimer's Disease Research Center, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA; The Knight Alzheimer's Disease Research Center, Washington University, 660 South Euclid Avenue, Box 8111, St. Louis, MO 63110, USA.
| |
Collapse
|
208
|
Zhang C, Lu J, Liu B, Cui Q, Wang Y. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimer's disease. Aging (Albany NY) 2016; 8:272-290. [PMID: 26856603 PMCID: PMC4789582 DOI: 10.18632/aging.100887] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease, and microRNAs (miRNAs) have been linked to its pathogenesis. miR-603, a novel primate-specific miRNA and an intronic miRNA of a human brain highly expressed gene KIAA1217, is implicated in the risk and pathogenesis of AD. The rs11014002 single nucleotide polymorphism (SNP) (C/U), which locates in miR-603 precursor (pre-miR-603), exhibits a protective effect towards AD risk. Additionally, the rs11014002 SNP promotes the biogenesis of mature miR-603. miR-603 downregulates LRPAP1 mRNA and protein levels through directly binding the 3' untranslated region (3'UTR) of LRPAP1. Moreover, miR-603 increases LRP1 protein expression. LRPAP1 and LRP1, playing opposite roles, are involved in Aβ clearance and pathogenesis of AD. Strikingly, miR-603 exhibits a relatively higher expression and there is a loss of a negative correlation between miR-603 and LRPAP1/RND1 mRNA levels in the hippocampi of patients with AD. In addition, miR-603 directly downregulates a key neuronal apoptotic component-E2F1, and prevents HeLa cells from undergoing H2O2-induced apoptosis. This work suggests that miR-603 may be a novel AD-relevant miRNA and that its rs11014002 SNP may serve as a protective factor against AD.
Collapse
Affiliation(s)
- Chi Zhang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education, National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education, National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bing Liu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education, National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| |
Collapse
|
209
|
|
210
|
Current Research Therapeutic Strategies for Alzheimer's Disease Treatment. Neural Plast 2016; 2016:8501693. [PMID: 26881137 PMCID: PMC4735913 DOI: 10.1155/2016/8501693] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.
Collapse
|
211
|
Wu J, Li L. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 2016; 30:361-372. [PMID: 27476881 PMCID: PMC5044708 DOI: 10.7555/jbr.30.20150131] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a prevalent and debilitating neurodegenerative disorder in the elderly. The etiology of AD has not been fully defined and currently there is no cure for this devastating disease. Compelling evidence suggests that the immune system plays a critical role in the pathophysiology of AD. Autoantibodies against a variety of molecules have been associated with AD. The roles of these autoantibodies in AD, however, are not well understood. This review attempts to summarize recent findings on these autoantibodies and explore their potential as diagnostic/ prognostic biomarkers for AD, their roles in the pathogenesis of AD, and their implications in the development of effective immunotherapies for AD.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
212
|
Reimann RR, Sonati T, Hornemann S, Herrmann US, Arand M, Hawke S, Aguzzi A. Differential Toxicity of Antibodies to the Prion Protein. PLoS Pathog 2016; 12:e1005401. [PMID: 26821311 PMCID: PMC4731068 DOI: 10.1371/journal.ppat.1005401] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
Antibodies against the prion protein PrPC can antagonize prion replication and neuroinvasion, and therefore hold promise as possible therapeutics against prion diseases. However, the safety profile of such antibodies is controversial. It was originally reported that the monoclonal antibody D13 exhibits strong target-related toxicity, yet a subsequent study contradicted these findings. We have reported that several antibodies against certain epitopes of PrPC, including antibody POM1, are profoundly neurotoxic, yet antibody ICSM18, with an epitope that overlaps with POM1, was reported to be innocuous when injected into mouse brains. In order to clarify this confusing situation, we assessed the neurotoxicity of antibodies D13 and ICSM18 with dose-escalation studies using diffusion-weighted magnetic resonance imaging and various histological techniques. We report that both D13 and ICSM18 induce rapid, dose-dependent, on-target neurotoxicity. We conclude that antibodies directed to this region may not be suitable as therapeutics. No such toxicity was found when antibodies against the flexible tail of PrPC were administered. Any attempt at immunotherapy or immunoprophylaxis of prion diseases should account for these potential untoward effects.
Collapse
Affiliation(s)
- Regina R. Reimann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tiziana Sonati
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Uli S. Herrmann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Simon Hawke
- Vascular Immunology Laboratory, Department of Pathology, University of Sydney, Camperdown, Australia
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
213
|
Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer's disease. Expert Rev Vaccines 2015; 15:401-15. [PMID: 26577574 PMCID: PMC4940858 DOI: 10.1586/14760584.2016.1121815] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is characterized by an imbalance between the production and clearance of amyloid β (Aβ) and tau proteins. In AD these normal proteins accumulate, leading to aggregation and a conformational change forming oligomeric and fibrillary species with a high β-sheet content. Active and passive immunotherapeutic approaches result in dramatic reduction of Aβ pathology in AD animal models. However, there is much more limited evidence in human studies of significant clinical benefits from these strategies and it is becoming apparent that they may only be effective very early in AD. Vaccination targeting only tau pathology has shown benefits in some mouse studies but human studies are limited. Greater therapeutic efficacy for the next generation of vaccine approaches will likely benefit from specifically targeting the most toxic species of Aβ and tau, ideally simultaneously.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Pathology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| | - Eleanor Drummond
- Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
- Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29 Street, New York, NY 10016
| |
Collapse
|
214
|
Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat Rev Drug Discov 2015; 15:110-24. [DOI: 10.1038/nrd.2015.14] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
215
|
Huang M, Hu M, Song Q, Song H, Huang J, Gu X, Wang X, Chen J, Kang T, Feng X, Jiang D, Zheng G, Chen H, Gao X. GM1-Modified Lipoprotein-like Nanoparticle: Multifunctional Nanoplatform for the Combination Therapy of Alzheimer's Disease. ACS NANO 2015; 9:10801-16. [PMID: 26440073 DOI: 10.1021/acsnano.5b03124] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease (AD) exerts a heavy health burden for modern society and has a complicated pathological background. The accumulation of extracellular β-amyloid (Aβ) is crucial in AD pathogenesis, and Aβ-initiated secondary pathological processes could independently lead to neuronal degeneration and pathogenesis in AD. Thus, the development of combination therapeutics that can not only accelerate Aβ clearance but also simultaneously protect neurons or inhibit other subsequent pathological cascade represents a promising strategy for AD intervention. Here, we designed a nanostructure, monosialotetrahexosylganglioside (GM1)-modified reconstituted high density lipoprotein (GM1-rHDL), that possesses antibody-like high binding affinity to Aβ, facilitates Aβ degradation by microglia, and Aβ efflux across the blood-brain barrier (BBB), displays high brain biodistribution efficiency following intranasal administration, and simultaneously allows the efficient loading of a neuroprotective peptide, NAP, as a nanoparticulate drug delivery system for the combination therapy of AD. The resulting multifunctional nanostructure, αNAP-GM1-rHDL, was found to be able to protect neurons from Aβ(1-42) oligomer/glutamic acid-induced cell toxicity better than GM1-rHDL in vitro and reduced Aβ deposition, ameliorated neurologic changes, and rescued memory loss more efficiently than both αNAP solution and GM1-rHDL in AD model mice following intranasal administration with no observable cytotoxicity noted. Taken together, this work presents direct experimental evidence of the rational design of a biomimetic nanostructure to serve as a safe and efficient multifunctional nanoplatform for the combination therapy of AD.
Collapse
Affiliation(s)
- Meng Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Meng Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Huahua Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Jialin Huang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiaolin Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Jun Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Ting Kang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xingye Feng
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Di Jiang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Gang Zheng
- Department of Medical Biophysics and Ontario Cancer Institute, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| |
Collapse
|
216
|
Fu L, Li Y, Hu Y, Yu B, Zhang H, Wu J, Wu H, Yu X, Kong W. Norovirus P particle: an excellent vaccine platform for antibody production against Alzheimer's disease. Immunol Lett 2015; 168:22-30. [PMID: 26349054 DOI: 10.1016/j.imlet.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023]
Abstract
Active vaccination against amyloid β (Aβ42) is considered a potential therapeutic approach for Alzheimer's disease (AD). However, immunization with synthetic human Aβ1-42 has resulted in meningoencephalitis in 6% of patients and generated only low-titer anti-Aβ42 antibodies. In order to develop a safe and effective vaccine against Alzheimer's disease, the Aβ1-6 peptide was used as the novel immunogen and Norovirus P particles as the vaccine platform in this study. By inserting and presenting Aβ1-6 on the outermost surface of the P particle, we showed that the chimeric P particle-based AD protein vaccine could elicit a strong immune response, inducing highly specific antibody titers against Aβ42 without causing T-cell activation. Furthermore, antibodies induced by the AD protein vaccines were demonstrated to be effective at the cellular level. In addition, we also compared the immunogenicity of the chimeric P particles with different insertional loci in the loop structure domain and demonstrated that insertion of the antigen into all three loops of the P particle at the same time could significantly improve immune responses to the vaccine. In conclusion, the Norovirus P particle is an excellent vaccine platform for stimulating Aβ42 antibody production, and chimeric P particles may be developed as an effective therapy for AD.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingnan Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Hu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
217
|
Abstract
Alzheimer's disease (AD) is an age-related progressive dementia, which is increasing in prevalence world-wide. Typically affecting short-term memory at onset, this devastating illness advances to impair all aspects of cognition, as well as non-cognitive domains. Although much effort has been made in recent years to develop disease-modifying treatments, medications which provided promising results in pre-clinical research have so far faltered in human clinical trials. Attention has recently shifted into trying to identify preventative measures that may delay the onset of the illness. Preventative factors include physical activity, proper diet, cognitive stimulation and the management of conditions such as hypertension, diabetes and obesity. However, it remains imperative to identify approaches that may help patients already diagnosed with the illness. Alongside pharmacological research, much work has been done on uncovering strategies which may slow down the progression of AD. This review aims to summarize evidence supporting or refuting methods impacting on the progression of the disease. AD remains a chronic and serious condition, therefore any intervention delaying the onset of moderate/severe symptoms will have a significant impact on patients and their families.
Collapse
|
218
|
Autophagy is involved in oral rAAV/Aβ vaccine-induced Aβ clearance in APP/PS1 transgenic mice. Neurosci Bull 2015; 31:491-504. [PMID: 26254061 DOI: 10.1007/s12264-015-1546-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022] Open
Abstract
The imbalance between ß-amyloid (Aß) generation and clearance plays a fundamental role in the pathogenesis of Alzheimer's disease (AD). The sporadic form of AD is characterized by an overall impairment in Aß clearance. Immunotherapy targeting Aß clearance is believed to be a promising approach and is under active clinical investigation. Autophagy is a conserved pathway for degrading abnormal protein aggregates and is crucial for Aß clearance. We previously reported that oral vaccination with a recombinant AAV/Aß vaccine increased the clearance of Aß from the brain and improved cognitive ability in AD animal models, while the underlying mechanisms were not well understood. In this study, we first demonstrated that oral vaccination with rAAV/Aß decreased the p62 level and up-regulated the LC3B-II/LC3B-I ratio in APP/PS1 mouse brain, suggesting enhanced autophagy. Further, inhibition of the Akt/mTOR pathway may account for autophagy enhancement. We also found increased anti-Aß antibodies in the sera of APP/PS1 mice with oral vaccination, accompanied by elevation of complement factors C1q and C3 levels in the brain. Our results indicate that autophagy is closely involved in oral vaccination-induced Aß clearance, and modulating the autophagy pathway may be an important strategy for AD prevention and intervention.
Collapse
|
219
|
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem Commun (Camb) 2015; 51:13434-50. [DOI: 10.1039/c5cc05264e] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our Feature Article details the physiological role of amyloid beta (Aβ), elaborates its toxic effects and outlines therapeutic molecules designed in the last two years targeting different aspects of Aβ for preventing AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Malabika Chakrabarti
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
220
|
Choi SH, Kim YH, D'Avanzo C, Aronson J, Tanzi RE, Kim DY. Recapitulating amyloid β and tau pathology in human neural cell culture models: clinical implications. ACTA ACUST UNITED AC 2015; 11:102-105. [PMID: 27019672 DOI: 10.17925/usn.2015.11.02.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The "amyloid β hypothesis" of Alzheimer's disease (AD) has been the reigning hypothesis explaining pathogenic mechanisms of AD over the last two decades. However, this hypothesis has not been fully validated in animal models, and several major unresolved issues remain. We recently developed a human neural cell culture model of AD based on a three-dimensional (3D) cell culture system. This unique, cellular model recapitulates key events of the AD pathogenic cascade, including β-amyloid plaques and neurofibrillary tangles. Our 3D human neural cell culture model system provides a premise for a new generation of cellular AD models that can serve as a novel platform for studying pathogenic mechanisms and for high-throughput drug screening in a human brain-like environment.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|