201
|
Hamilton DJ, White CM, Rees CL, Wheeler DW, Ascoli GA. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach. J Pharm Biomed Anal 2017; 144:269-278. [PMID: 28549853 DOI: 10.1016/j.jpba.2017.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/05/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
Abstract
Neurons are often classified by their morphological and molecular properties. The online knowledge base Hippocampome.org primarily defines neuron types from the rodent hippocampal formation based on their main neurotransmitter (glutamate or GABA) and the spatial distributions of their axons and dendrites. For each neuron type, this open-access resource reports any and all published information regarding the presence or absence of known molecular markers, including calcium-binding proteins, neuropeptides, receptors, channels, transcription factors, and other molecules of biomedical relevance. The resulting chemical profile is relatively sparse: even for the best studied neuron types, the expression or lack thereof of fewer than 70 molecules has been firmly established to date. The mouse genome-wide in situ hybridization mapping of the Allen Brain Atlas provides a wealth of data that, when appropriately analyzed, can substantially augment the molecular marker knowledge in Hippocampome.org. Here we focus on the principal cell layers of dentate gyrus (DG), CA3, CA2, and CA1, which together contain approximately 90% of hippocampal neurons. These four anatomical parcels are densely packed with somata of mostly excitatory projection neurons. Thus, gene expression data for those layers can be justifiably linked to the respective principal neuron types: granule cells in DG and pyramidal cells in CA3, CA2, and CA1. In order to enable consistent interpretation across genes and regions, we screened the whole-genome dataset against known molecular markers of those neuron types. The resulting threshold values allow over 6000 very-high confidence (>99.5%) expressed/not-expressed assignments, expanding the biochemical information content of Hippocampome.org more than five-fold. Many of these newly identified molecular markers are potential pharmacological targets for major neurological and psychiatric conditions. Furthermore, our approach yields reasonable expression/non-expression estimates for every single gene in each of these four neuron types with >90% average confidence, providing a considerably complete genetic characterization of hippocampal principal neurons.
Collapse
Affiliation(s)
- D J Hamilton
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States.
| | - C M White
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - C L Rees
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - D W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - G A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States.
| |
Collapse
|
202
|
Robertson JM, Achua JK, Smith JP, Prince MA, Staton CD, Ronan PJ, Summers TR, Summers CH. Anxious behavior induces elevated hippocampal Cb 2 receptor gene expression. Neuroscience 2017; 352:273-284. [PMID: 28392296 DOI: 10.1016/j.neuroscience.2017.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022]
Abstract
Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced by endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.
Collapse
Affiliation(s)
- James M Robertson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Justin K Achua
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA
| | - Justin P Smith
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Institute of Possibility, 322 E. 8th Street, Suite 302, Sioux Falls, SD 57103, USA; Sanford Health, 2301 E. 60th St. N., Sioux Falls, SD 57104, USA
| | - Melissa A Prince
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Clarissa D Staton
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Department of Psychiatry, University of South Dakota School of Medicine Vermillion, SD, USA; Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
203
|
Dendritic GIRK Channels Gate the Integration Window, Plateau Potentials, and Induction of Synaptic Plasticity in Dorsal But Not Ventral CA1 Neurons. J Neurosci 2017; 37:3940-3955. [PMID: 28280255 DOI: 10.1523/jneurosci.2784-16.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 01/05/2023] Open
Abstract
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation.SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus.
Collapse
|
204
|
A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci 2017; 20:559-570. [PMID: 28263300 DOI: 10.1038/nn.4517] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.
Collapse
|
205
|
Kitanishi T, Ito HT, Hayashi Y, Shinohara Y, Mizuseki K, Hikida T. Network mechanisms of hippocampal laterality, place coding, and goal-directed navigation. J Physiol Sci 2017; 67:247-258. [PMID: 27864684 PMCID: PMC10717435 DOI: 10.1007/s12576-016-0502-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
The hippocampus and associated structures are responsible for episodic memory in humans. In rodents, the most prominent behavioral correlate of hippocampal neural activity is place coding, which is thought to underlie spatial navigation. While episodic memory is considered to be unique to humans in a restricted context, it has been proposed that the same neural circuitry and algorithms that enable spatial coding and navigation also support episodic memory. Here we review the recent progress in neural circuit mechanisms of hippocampal activity by introducing several topics: (1) cooperation and specialization of the bilateral hippocampi, (2) the role of synaptic plasticity in gamma phase-locking of spikes and place cell formation, (3) impaired goal-related activity and oscillations in a mouse model of mental disorders, and (4) a prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation.
Collapse
Affiliation(s)
- Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
- Center for Brain Science, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Yuichiro Hayashi
- Frontier Research Center for Post-genome Science and Technology, Hokkaido University, Hokkaido, 001-0021, Japan
| | - Yoshiaki Shinohara
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
- Center for Brain Science, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| | - Takatoshi Hikida
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
206
|
Weingarten J, Weingarten M, Wegner M, Volknandt W. APP-A Novel Player within the Presynaptic Active Zone Proteome. Front Mol Neurosci 2017; 10:43. [PMID: 28265241 PMCID: PMC5316543 DOI: 10.3389/fnmol.2017.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The amyloid precursor protein (APP) was discovered in the 1980s as the precursor protein of the amyloid A4 peptide. The amyloid A4 peptide, also known as A-beta (Aβ), is the main constituent of senile plaques implicated in Alzheimer's disease (AD). In association with the amyloid deposits, increasing impairments in learning and memory as well as the degeneration of neurons especially in the hippocampus formation are hallmarks of the pathogenesis of AD. Within the last decades much effort has been expended into understanding the pathogenesis of AD. However, little is known about the physiological role of APP within the central nervous system (CNS). Allocating APP to the proteome of the highly dynamic presynaptic active zone (PAZ) identified APP as a novel player within this neuronal communication and signaling network. The analysis of the hippocampal PAZ proteome derived from APP-mutant mice demonstrates that APP is tightly embedded in the underlying protein network. Strikingly, APP deletion accounts for major dysregulation within the PAZ proteome network. Ca2+-homeostasis, neurotransmitter release and mitochondrial function are affected and resemble the outcome during the pathogenesis of AD. The observed changes in protein abundance that occur in the absence of APP as well as in AD suggest that APP is a structural and functional regulator within the hippocampal PAZ proteome. Within this review article, we intend to introduce APP as an important player within the hippocampal PAZ proteome and to outline the impact of APP deletion on individual PAZ proteome subcommunities.
Collapse
Affiliation(s)
- Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| | - Melanie Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| | - Martin Wegner
- Department of Molecular Bioinformatics, Goethe University Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
207
|
Geiller T, Royer S, Choi JS. Segregated Cell Populations Enable Distinct Parallel Encoding within the Radial Axis of the CA1 Pyramidal Layer. Exp Neurobiol 2017; 26:1-10. [PMID: 28243162 PMCID: PMC5326710 DOI: 10.5607/en.2017.26.1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have implicated the hippocampus in the encoding and storage of declarative and spatial memories. Several models have considered the hippocampus and its distinct subfields to contain homogeneous pyramidal cell populations. Yet, recent studies have led to a consensus that the dorso-ventral and proximo-distal axes have different connectivities and physiologies. The remaining deep-superficial axis of the pyramidal layer, however, remains relatively unexplored due to a lack of techniques that can record from neurons simultaneously at different depths. Recent advances in transgenic mice, two-photon imaging and dense multisite recording have revealed extensive disparities between the pyramidal cells located in the deep and the superficial layers. Here, we summarize differences between the two populations in terms of gene expression and connectivity with other intra-hippocampal subregions and local interneurons that underlie distinct learning processes and spatial representations. A unified picture will emerge to describe how such local segregations can increase the capacity of the hippocampus to compute and process numerous tasks in parallel.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Psychology, Korea University, Seoul 02841, Korea.; Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul 02841, Korea
| |
Collapse
|
208
|
Differential Regulation of NMDA Receptor-Mediated Transmission by SK Channels Underlies Dorsal-Ventral Differences in Dynamics of Schaffer Collateral Synaptic Function. J Neurosci 2017; 37:1950-1964. [PMID: 28093473 DOI: 10.1523/jneurosci.3196-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 11/21/2022] Open
Abstract
Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to θ frequency patterns of stimulation. In contrast to dorsal hippocampus, θ frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K+ channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors.SIGNIFICANCE STATEMENT Differences in short- and long-term plasticity at Schaffer collateral (SC) synapses in the dorsal and ventral hippocampus likely contribute importantly to the distinct roles of these regions in cognition and behavior. Although dorsal and ventral CA1 pyramidal cells exhibit markedly different gene expression profiles, how these differences influence plasticity at SC synapses is unclear. Here we report that increased mRNA levels for the SK3 subunit of SK-type K+ channels in ventral pyramidal cells is associated with an enhanced activation of SK channels that strongly suppresses NMDAR activation at ventral SC synapses. This leads to striking differences in multiple aspects of synaptic transmission at dorsal and ventral SC synapses and underlies the reduced ability of ventral SC synapses to undergo LTP.
Collapse
|
209
|
Milior G, Di Castro MA, Sciarria LP, Garofalo S, Branchi I, Ragozzino D, Limatola C, Maggi L. Electrophysiological Properties of CA1 Pyramidal Neurons along the Longitudinal Axis of the Mouse Hippocampus. Sci Rep 2016; 6:38242. [PMID: 27922053 PMCID: PMC5138623 DOI: 10.1038/srep38242] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Evidence for different physiological properties along the hippocampal longitudinal axis is emerging. Here, we examined the electrophysiological features of neurons at different dorso-ventral sites of the mouse CA1 hippocampal region. Cell position was defined with respect to longitudinal coordinates of each slice. We measured variations in neuronal excitability, subthreshold membrane properties and neurotransmitter responses along the longitudinal axis. We found that (i) pyramidal cells of the dorsal hippocampus (DH) were less excitable than those of the ventral hippocampus (VH). Resting Membrane Potential (RMP) was more hyperpolarized and somatic Input Resistance (Ri) was lower in DH compared to VH. (ii) The Paired-pulse ratio (PPR) of focally induced synaptic responses was systematically reduced from the DH to the VH; (iii) Long-term-potentiation was most pronounced in the DH and fell gradually in the intermediate hippocampus and in the VH; (iv) the frequency of miniature GABAergic events was higher in the VH than in the DH; (v) the PPR of evoked inhibitory post-synaptic current (IPSC) was higher in the DH than in the VH. These findings indicate an increased probability of both GABA and glutamate release and a reduced plasticity in the ventral compared to more dorsal regions of the hippocampus.
Collapse
Affiliation(s)
- Giampaolo Milior
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.,Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris 75013, France
| | - Maria Amalia Di Castro
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Livio Pepe' Sciarria
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Stefano Garofalo
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Ragozzino
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Laura Maggi
- Pasteur Institute Rome-Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| |
Collapse
|
210
|
Shah S, Lubeck E, Zhou W, Cai L. In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus. Neuron 2016; 92:342-357. [PMID: 27764670 PMCID: PMC5087994 DOI: 10.1016/j.neuron.2016.10.001] [Citation(s) in RCA: 466] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/21/2016] [Accepted: 09/27/2016] [Indexed: 12/17/2022]
Abstract
Identifying the spatial organization of tissues at cellular resolution from single-cell gene expression profiles is essential to understanding biological systems. Using an in situ 3D multiplexed imaging method, seqFISH, we identify unique transcriptional states by quantifying and clustering up to 249 genes in 16,958 cells to examine whether the hippocampus is organized into transcriptionally distinct subregions. We identified distinct layers in the dentate gyrus corresponding to the granule cell layer and the subgranular zone and, contrary to previous reports, discovered that distinct subregions within the CA1 and CA3 are composed of unique combinations of cells in different transcriptional states. In addition, we found that the dorsal CA1 is relatively homogeneous at the single cell level, while ventral CA1 is highly heterogeneous. These structures and patterns are observed using different mice and different sets of genes. Together, these results demonstrate the power of seqFISH in transcriptional profiling of complex tissues.
Collapse
Affiliation(s)
- Sheel Shah
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Lubeck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wen Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
211
|
Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, Hession C, Zhang F, Regev A. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 2016; 353:925-8. [PMID: 27471252 PMCID: PMC5480621 DOI: 10.1126/science.aad7038] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/19/2016] [Indexed: 12/13/2022]
Abstract
Single-cell RNA sequencing (RNA-Seq) provides rich information about cell types and states. However, it is difficult to capture rare dynamic processes, such as adult neurogenesis, because isolation of rare neurons from adult tissue is challenging and markers for each phase are limited. Here, we develop Div-Seq, which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling of proliferating cells by 5-ethynyl-2'-deoxyuridine (EdU) to profile individual dividing cells. sNuc-Seq and Div-Seq can sensitively identify closely related hippocampal cell types and track transcriptional dynamics of newborn neurons within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq to identify and profile rare newborn neurons in the adult spinal cord, a noncanonical neurogenic region. sNuc-Seq and Div-Seq open the way for unbiased analysis of diverse complex tissues.
Collapse
Affiliation(s)
- Naomi Habib
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA 02142, USA. McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yinqing Li
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA 02142, USA. McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthias Heidenreich
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA 02142, USA. McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lukasz Swiech
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA 02142, USA. McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - John J Trombetta
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Cynthia Hession
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Stanley Center for Psychiatric Research, 75 Ames Street, Cambridge, MA 02142, USA. McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
212
|
Hegde S, Ji H, Oliver D, Patel NS, Poupore N, Shtutman M, Kelly MP. PDE11A regulates social behaviors and is a key mechanism by which social experience sculpts the brain. Neuroscience 2016; 335:151-69. [PMID: 27544407 DOI: 10.1016/j.neuroscience.2016.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 01/19/2023]
Abstract
Despite the fact that appropriate social behaviors are vital to thriving in one's environment, little is understood of the molecular mechanisms controlling social behaviors or how social experience sculpts these signaling pathways. Here, we determine if Phosphodiesterase 11A (PDE11A), an enzyme that is enriched in the ventral hippocampal formation (VHIPP) and that breaks down cAMP and cGMP, regulates social behaviors. PDE11 wild-type (WT), heterozygous (HT), and knockout (KO) mice were tested in various social approach assays and gene expression differences were measured by RNA sequencing. The effect of social isolation on PDE11A4 compartmentalization and subsequent social interactions and social memory was also assessed. Deletion of PDE11A triggered age- and sex-dependent deficits in social approach in specific social contexts but not others. Mice appear to detect altered social behaviors of PDE11A KO mice, because C57BL/6J mice prefer to spend time with a sex-matched PDE11A WT vs. its KO littermate; whereas, a PDE11A KO prefers to spend time with a novel PDE11A KO vs. its WT littermate. Not only is PDE11A required for intact social interactions, we found that 1month of social isolation vs. group housing decreased PDE11A4 protein expression specifically within the membrane fraction of VHIPP. This isolation-induced decrease in PDE11A4 expression appears functional because social isolation impairs subsequent social approach behavior and social memory in a PDE11A genotype-dependent manner. Pathway analyses following RNA sequencing suggests PDE11A is a key regulator of the oxytocin pathway and membrane signaling, consistent with its pivotal role in regulating social behavior.
Collapse
Affiliation(s)
- Shweta Hegde
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - David Oliver
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Neema S Patel
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Nicolas Poupore
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| |
Collapse
|
213
|
Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proc Natl Acad Sci U S A 2016; 113:E5222-31. [PMID: 27531958 DOI: 10.1073/pnas.1610155113] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity.
Collapse
|
214
|
Huang L, Yang XJ, Huang Y, Sun EY, Sun M. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD. PLoS One 2016; 11:e0159192. [PMID: 27467732 PMCID: PMC4965035 DOI: 10.1371/journal.pone.0159192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/28/2016] [Indexed: 12/02/2022] Open
Abstract
NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations.
Collapse
Affiliation(s)
- Lanting Huang
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Xiu-Juan Yang
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
| | - Ying Huang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eve Y. Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Mu Sun
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
- * E-mail:
| |
Collapse
|
215
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
216
|
Vargish GA, McBain CJ. The Hyperpolarization-Activated Cation Current Ih: The Missing Link Connecting Cannabinoids to Cognition. Neuron 2016; 89:889-91. [PMID: 26938438 DOI: 10.1016/j.neuron.2016.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Neuron, Maroso et al. (2016) describe a novel link between cannabinoids and cognition. They show that CB1Rs bidirectionally modulate HCN-mediated Ih in a subset of CA1 pyramidal neurons to influence both short- and long-term circuit dynamics and alter spatial working memory in behaving mice.
Collapse
Affiliation(s)
- Geoffrey A Vargish
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
217
|
Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1. Neuron 2016; 91:652-65. [PMID: 27397517 DOI: 10.1016/j.neuron.2016.06.020] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023]
Abstract
The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment, while their counterparts in the deep sublayer provide a more flexible representation that is shaped by learning about salient features in the environment. VIDEO ABSTRACT.
Collapse
|
218
|
Tushev G, Schuman EM. Rethinking Functional Segregation: Gradients of Gene Expression in Area CA1. Neuron 2016; 89:242-3. [PMID: 26796687 DOI: 10.1016/j.neuron.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An emerging view, based on gene expression patterns, is that discrete cell types occupy different regions in the hippocampus. In this issue of Neuron, Cembrowski et al. (2016) challenge this concept by identifying gradients of gene expression that suggest a molecular continuum of excitatory neurons and provide insights for organizational motifs at hippocampal poles.
Collapse
Affiliation(s)
- Georgi Tushev
- Scientific Computing, Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt am Main, Germany; Synaptic Plasticity, Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt am Main, Germany
| | - Erin M Schuman
- Synaptic Plasticity, Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
219
|
Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 2016; 5:e14997. [PMID: 27113915 PMCID: PMC4846374 DOI: 10.7554/elife.14997] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus. DOI:http://dx.doi.org/10.7554/eLife.14997.001 Both mouse and human brains are made up of many millions of cells called neurons that are interconnected to form circuits. These neurons are not all the same, because different classes of neurons express different complements of genes. Neurons that express similar genes tend to look and act alike, whereas neurons that express different genes tend to be dissimilar. Cembrowski et al. have used a technique called next-generation RNA sequencing (RNA-seq) to determine which genes are expressed in groups of neurons that represent the main cell types found in a part of the brain called the hippocampus. This brain region is important for memory, and was chosen because the location and appearance of the main cell types in the hippocampus were already well understood. The approach revealed that the main types of neurons in the mouse hippocampus are all very different from each other in terms of gene expression, and that even neurons of the same type can exhibit large differences across the hippocampus. Cembrowski et al. created a website that will allow other researchers to easily navigate, analyze, and visualize gene expression data in these populations of neurons. Future work could next make use of recent technological advances to analyze gene expression in individual neurons, rather than groups of cells, to provide an even more detailed picture. It is also hoped that understanding the differences in gene expression will guide examination of how the hippocampus contributes to memory and what goes wrong in diseases that affect this region of the brain. DOI:http://dx.doi.org/10.7554/eLife.14997.002
Collapse
Affiliation(s)
- Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brenda C Shields
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
220
|
Churchland AK, Abbott LF. Conceptual and technical advances define a key moment for theoretical neuroscience. Nat Neurosci 2016; 19:348-9. [PMID: 26906500 PMCID: PMC5558605 DOI: 10.1038/nn.4255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Theoretical approaches have long shaped neuroscience, but current needs for theory are elevated and prospects for advancement are bright. Advances in measuring and manipulating neurons demand new models and analyses to guide interpretation. Advances in theoretical neuroscience offer new insights into how signals evolve across areas and new approaches for connecting population activity with behavior. These advances point to a global understanding of brain function based on a hybrid of diverse approaches.
Collapse
Affiliation(s)
| | - L F Abbott
- Department of Neuroscience, and Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
221
|
Sosa M, Gillespie AK, Frank LM. Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Curr Top Behav Neurosci 2016; 37:43-100. [PMID: 27885550 DOI: 10.1007/7854_2016_462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hippocampus is well known as a central site for memory processing-critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.
Collapse
Affiliation(s)
- Marielena Sosa
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA
| | | | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA. .,Howard Hughes Medical Institute, Maryland, USA.
| |
Collapse
|