201
|
Sanda P, Malerba P, Jiang X, Krishnan GP, Gonzalez-Martinez J, Halgren E, Bazhenov M. Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep. Cereb Cortex 2021; 31:324-340. [PMID: 32995860 PMCID: PMC8179633 DOI: 10.1093/cercor/bhaa228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/19/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The dialogue between cortex and hippocampus is known to be crucial for sleep-dependent memory consolidation. During slow wave sleep, memory replay depends on slow oscillation (SO) and spindles in the (neo)cortex and sharp wave-ripples (SWRs) in the hippocampus. The mechanisms underlying interaction of these rhythms are poorly understood. We examined the interaction between cortical SO and hippocampal SWRs in a model of the hippocampo-cortico-thalamic network and compared the results with human intracranial recordings during sleep. We observed that ripple occurrence peaked following the onset of an Up-state of SO and that cortical input to hippocampus was crucial to maintain this relationship. A small fraction of ripples occurred during the Down-state and controlled initiation of the next Up-state. We observed that the effect of ripple depends on its precise timing, which supports the idea that ripples occurring at different phases of SO might serve different functions, particularly in the context of encoding the new and reactivation of the old memories during memory consolidation. The study revealed complex bidirectional interaction of SWRs and SO in which early hippocampal ripples influence transitions to Up-state, while cortical Up-states control occurrence of the later ripples, which in turn influence transition to Down-state.
Collapse
Affiliation(s)
- Pavel Sanda
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Computer Science of the Czech Academy of Sciences, Prague 18207, Czech Republic
| | - Paola Malerba
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics and Biophysics Graduate Program, Ohio State University, Columbus, OH 43215, USA
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K4G9, Canada
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Eric Halgren
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
| |
Collapse
|
202
|
Iotchev IB, Reicher V, Kovács E, Kovács T, Kis A, Gácsi M, Kubinyi E. Averaging sleep spindle occurrence in dogs predicts learning performance better than single measures. Sci Rep 2020; 10:22461. [PMID: 33384457 PMCID: PMC7775433 DOI: 10.1038/s41598-020-80417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/17/2020] [Indexed: 11/12/2022] Open
Abstract
Although a positive link between sleep spindle occurrence and measures of post-sleep recall (learning success) is often reported for humans and replicated across species, the test–retest reliability of the effect is sometimes questioned. The largest to date study could not confirm the association, however methods for automatic spindle detection diverge in their estimates and vary between studies. Here we report that in dogs using the same detection method across different learning tasks is associated with observing a positive association between sleep spindle density (spindles/minute) and learning success. Our results suggest that reducing measurement error by averaging across measurements of density and learning can increase the visibility of this effect, implying that trait density (estimated through averaged occurrence) is a more reliable predictor of cognitive performance than estimates based on single measures.
Collapse
Affiliation(s)
| | - Vivien Reicher
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| | - Enikő Kovács
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Kovács
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| |
Collapse
|
203
|
Mau W, Hasselmo ME, Cai DJ. The brain in motion: How ensemble fluidity drives memory-updating and flexibility. eLife 2020; 9:e63550. [PMID: 33372892 PMCID: PMC7771967 DOI: 10.7554/elife.63550] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
While memories are often thought of as flashbacks to a previous experience, they do not simply conserve veridical representations of the past but must continually integrate new information to ensure survival in dynamic environments. Therefore, 'drift' in neural firing patterns, typically construed as disruptive 'instability' or an undesirable consequence of noise, may actually be useful for updating memories. In our view, continual modifications in memory representations reconcile classical theories of stable memory traces with neural drift. Here we review how memory representations are updated through dynamic recruitment of neuronal ensembles on the basis of excitability and functional connectivity at the time of learning. Overall, we emphasize the importance of considering memories not as static entities, but instead as flexible network states that reactivate and evolve across time and experience.
Collapse
Affiliation(s)
- William Mau
- Neuroscience Department, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Denise J Cai
- Neuroscience Department, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
204
|
Eckert MJ, Iyer K, Euston DR, Tatsuno M. Reliable induction of sleep spindles with intracranial electrical pulse stimulation. ACTA ACUST UNITED AC 2020; 28:7-11. [PMID: 33323496 PMCID: PMC7747649 DOI: 10.1101/lm.052464.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/27/2020] [Indexed: 01/19/2023]
Abstract
Neocortical sleep spindles have been shown to occur more frequently following a memory task, suggesting that a method to increase spindle activity could improve memory processing. Stimulation of the neocortex can elicit a slow oscillation (SO) and a spindle, but the feasibility of this method to boost SO and spindles over time has not been tested. In rats with implanted neocortical electrodes, stimulation during slow wave sleep significantly increased SO and spindle rates compared to control rest periods before and after the stimulation session. Coordination between hippocampal sharp-wave ripples and spindles also increased. These effects were reproducible across five consecutive days of testing, demonstrating the viability of this method to increase SO and spindles.
Collapse
Affiliation(s)
- Michael J Eckert
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Kartik Iyer
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - David R Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Masami Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
205
|
Oyanedel CN, Durán E, Niethard N, Inostroza M, Born J. Temporal associations between sleep slow oscillations, spindles and ripples. Eur J Neurosci 2020; 52:4762-4778. [PMID: 32654249 DOI: 10.1111/ejn.14906] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The systems consolidation of memory during slow-wave sleep (SWS) is thought to rely on a dialogue between hippocampus and neocortex that is regulated by an interaction between neocortical slow oscillations (SOs), thalamic spindles and hippocampal ripples. Here, we examined the occurrence rates of and the temporal relationships between these oscillatory events in rats, to identify the possible direction of interaction between these events under natural conditions. To facilitate comparisons with findings in humans, we combined frontal and parietal surface EEG with local field potential (LFP) recordings in medial prefrontal cortex (mPFC) and dorsal hippocampus (dHC). Consistent with a top-down driving influence, EEG SO upstates were associated with an increase in spindles and hippocampal ripples. This increase was missing in SO upstates identified in mPFC recordings. Ripples in dHC recordings always followed the onset of spindles consistent with spindles timing ripple occurrence. Comparing ripple activity during co-occurring SO-spindle events with that during isolated SOs or spindles, suggested that ripple dynamics during SO-spindle events are mainly determined by the spindle, with only the SO downstate providing a global inhibitory signal to both thalamus and hippocampus. As to bottom-up influences, we found an increase in hippocampal ripples ~200 ms before the SO downstate, but no similar increase of spindles preceding SO downstates. Overall, the temporal pattern is consistent with a loop-like scenario where, top-down, SOs can trigger thalamic spindles which, in turn, regulate the occurrence of hippocampal ripples. Ripples, bottom-up, and independent from thalamic spindles, can contribute to the emergence of neocortical SOs.
Collapse
Affiliation(s)
- Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
206
|
The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized clinical trial. Neuropsychopharmacology 2020; 45:2189-2197. [PMID: 32919407 PMCID: PMC7785021 DOI: 10.1038/s41386-020-00833-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Sleep spindles, defining oscillations of stage 2 non-rapid eye movement sleep (N2), mediate memory consolidation. Schizophrenia is characterized by reduced spindle activity that correlates with impaired sleep-dependent memory consolidation. In a small, randomized, placebo-controlled pilot study of schizophrenia, eszopiclone (Lunesta®), a nonbenzodiazepine sedative hypnotic, increased N2 spindle density (number/minute) but did not significantly improve memory. This larger double-blind crossover study that included healthy controls investigated whether eszopiclone could both increase N2 spindle density and improve memory. Twenty-six medicated schizophrenia outpatients and 29 healthy controls were randomly assigned to have a placebo or eszopiclone (3 mg) sleep visit first. Each visit involved two consecutive nights of high density polysomnography with training on the Motor Sequence Task (MST) on the second night and testing the following morning. Patients showed a widespread reduction of spindle density and, in both groups, eszopiclone increased spindle density but failed to enhance sleep-dependent procedural memory consolidation. Follow-up analyses revealed that eszopiclone also affected cortical slow oscillations: it decreased their amplitude, increased their duration, and rendered their phase locking with spindles more variable. Regardless of group or visit, the density of coupled spindle-slow oscillation events predicted memory consolidation significantly better than spindle density alone, suggesting that they are a better biomarker of memory consolidation. In conclusion, sleep oscillations are promising targets for improving memory consolidation in schizophrenia, but enhancing spindles is not enough. Effective therapies also need to preserve or enhance cortical slow oscillations and their coordination with thalamic spindles, an interregional dialog that is necessary for sleep-dependent memory consolidation.
Collapse
|
207
|
Abstract
Abstract
Purpose of Review
This short review article aims at emphasizing interesting and important new insights about investigating sleep and memory in children aged between 6 and 13 years (middle childhood).
Recent Findings
That sleep in comparison to wakefulness benefits the consolidation of memories is well established—especially for the adult population. However, the underlying theoretical frameworks trying to explain the benefits of sleep for memory still strive for more substantiate findings including biological and physiological correlates.
Summary
Based on the most recent literature about sleep-related memory consolidation and its physiological markers during middle childhood, this article provides a review and highlights recent updates in this field.
Collapse
|
208
|
Shao J, Zheng X, Qu L, Zhang H, Yuan H, Hui J, Mi Y, Ma P, Fan D. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model. Food Funct 2020; 11:1245-1257. [PMID: 32052003 DOI: 10.1039/c9fo02248a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the most common sleep disorder, insomnia seriously affects people's everyday lives. Phytochemicals have been shown to have excellent sleep-promoting effects. Therefore, this study was designed to investigate whether Rg5 and Rk1 extracted from ginseng had sleep-promoting effects and to explore their potential mechanisms. The results showed that Rg5 and Rk1 could significantly lessen the locomotor activity of mice and promote the sleep quality index, including increasing the amount of sleep in a pentobarbital sodium experiment with a threshold dose. In parallel, Rg5 and Rk1 could significantly shorten the sleep latency of mice and prolong the sleep time of mice. Furthermore, Rg5 and Rk1 augmented the GABA/Glu ratio, up-regulating the expression of the GABAA receptor and the GABAB receptor, whereas the GABAA receptor antagonist picrotoxin could antagonize the sleep quality of Rg5/Rk1. In addition, 5-HTP, the precursor of 5-HT, could enhance the sleep effect of Rg5 and Rk1 in mice, and both Rg5 and Rk1 could up-regulate the expression of 5-HT1A. These results were also confirmed by the detection of GABA and 5-HT in mouse cecum content. In conclusion, ginsenoside Rg5/Rk1 can exert sedative and hypnotic effects by affecting the GABA nervous system and the serotonin nervous system.
Collapse
Affiliation(s)
- Jingjing Shao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun 2020; 11:5247. [PMID: 33067436 PMCID: PMC7567828 DOI: 10.1038/s41467-020-19076-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep. During NREM sleep, spindles emerge from thalamocortical interactions. Here the authors carry out multisite thalamic and cortical recordings in freely behaving mice, to investigate the role of other non-classical thalamic sites in sleep spindle generation.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas C Gent
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Neurology, Sleep-Wake-Epilepsy Center, Inselspital University Hospital Bern, Bern, Switzerland. .,Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
210
|
Weber FD, Supp GG, Klinzing JG, Mölle M, Engel AK, Born J. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study. Neuroimage 2020; 224:117452. [PMID: 33059050 DOI: 10.1016/j.neuroimage.2020.117452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Sleep spindles are crucial to memory consolidation. Cortical gamma oscillations (30-100 Hz) are considered to reflect processing of memory in local cortical networks. The temporal and regulatory relationship between spindles and gamma activity might therefore provide clues into how sleep strengthens cortical memory representations. Here, combining EEG with MEG recordings during sleep in healthy humans (n = 12), we investigated the temporal relationships of cortical gamma band activity, always measured by MEG, during fast (12-16 Hz) and slow (8-12 Hz) sleep spindles detected in the EEG or MEG. Time-frequency distributions did not show a consistent coupling of gamma to the spindle oscillation, although activity in the low gamma (30-40 Hz) and neighboring beta range (<30 Hz) was generally increased during spindles. However, more fine-grained analyses of cross-frequency interactions revealed that both low and high gamma power (30-100 Hz) was coupled to the phase of slow and fast EEG spindles, importantly, with this coupling at a fixed phase only for the oscillations within an individual spindle, but with variable phase across spindles. We did not observe any coupling of gamma activity for spindles detected solely in the MEG and not in parallel EEG recordings, raising the possibility that these are more local spindles of different quality. Similar to fast spindle activity, low gamma band power followed a ~0.025 Hz infraslow rhythm during sleep whose frequency, however, was significantly faster than that of spindle activity. Our findings suggest a general function of fast and slow spindles that by spanning larger cortical networks might serve to synchronize gamma band activity occurring in more local but distributed networks. Thereby, spindles might help linking local memory processing between distributed networks.
Collapse
Affiliation(s)
- Frederik D Weber
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| | - Gernot G Supp
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jens G Klinzing
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany
| | - Matthias Mölle
- Department of Neuroendocrinology, University of Lübeck, 23538 Lübeck, Ratzeburger Allee 160, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Martinistraße 52, Building N43, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany; Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Otfried-Müller-Str. 25, Germany.
| |
Collapse
|
211
|
Abstract
Abstract. Posttraumatic stress disorder (PTSD) is characterized by intrusive re-experiencing of emotional memories of a traumatic event. Such memories are formed after exposure to trauma in the context of a cascading stress response including high levels of emotional arousal and stress hormone release. Sleep could be a key modulator of early memory formation and re-consolidation processes. Initial studies have investigated this association in this early time period, that is, hours and days after trauma exposure, and its role in modulating trauma memories and PTSD. The time is thus ripe to integrate findings from these studies. The current review consolidated evidence from five experimental and seven naturalistic studies on the association between trauma, sleep, and the development of intrusive emotional memories and PTSD, respectively. Together, the studies point to a potential protective role of sleep after trauma for the development of intrusive memories and PTSD. Findings regarding key sleep architecture features are more mixed and require additional investigation. The findings are important for prevention and intervention science.
Collapse
Affiliation(s)
- Yasmine Azza
- Division of Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Sleep & Health Zurich, University of Zurich, Switzerland
| | - Ines Wilhelm
- Division of Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Birgit Kleim
- Division of Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Sleep & Health Zurich, University of Zurich, Switzerland
| |
Collapse
|
212
|
Cell Assemblies in the Cortico-Hippocampal-Reuniens Network during Slow Oscillations. J Neurosci 2020; 40:8343-8354. [PMID: 32994338 DOI: 10.1523/jneurosci.0571-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
The nucleus reuniens (NR) is an important anatomic and functional relay between the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Whether the NR controls neuronal assemblies, a hallmark of information exchange between the HPC and mPFC for memory transfer/consolidation, is not known. Using simultaneous local field potential and unit recordings in NR, HPC, and mPFC in male rats during slow oscillations under anesthesia, we identified a reliable sequential activation of NR neurons at the beginning of UP states, which preceded mPFC ones. NR sequences were spatially organized, from dorsal to ventral NR. Chemical inactivation of the NR disrupted mPFC sequences at the onset of UP states as well as HPC sequences present during sharp-wave ripples. We conclude that the NR contributes to the coordination and stabilization of mPFC and HPC neuronal sequences during slow oscillations, possibly via the early activation of its own sequences.SIGNIFICANCE STATEMENT Neuronal assemblies are believed to be instrumental to code/encode/store information. They can be recorded in different brain regions, suggesting that widely distributed networks of networks are involved in such information processing. The medial prefrontal cortex, the hippocampus, and the thalamic nucleus reuniens constitute a typical example of a complex network involved in memory consolidation. In this study, we show that spatially organized cells assemblies are recruited in the nucleus reuniens at the UP state onset during slow oscillations. Nucleus reuniens activity appears to be necessary to the stability of medial prefrontal cortex and hippocampal cell assembly formation during slow oscillations. This result further highlights the role of the nucleus reuniens as a functional hub for exchanging and processing memories.
Collapse
|
213
|
Mander BA. Local Sleep and Alzheimer's Disease Pathophysiology. Front Neurosci 2020; 14:525970. [PMID: 33071726 PMCID: PMC7538792 DOI: 10.3389/fnins.2020.525970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with β-amyloid (Aβ) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.
Collapse
Affiliation(s)
- Bryce A. Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
214
|
Paller KA, Creery JD, Schechtman E. Memory and Sleep: How Sleep Cognition Can Change the Waking Mind for the Better. Annu Rev Psychol 2020; 72:123-150. [PMID: 32946325 DOI: 10.1146/annurev-psych-010419-050815] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The memories that we retain can serve many functions. They guide our future actions, form a scaffold for constructing the self, and continue to shape both the self and the way we perceive the world. Although most memories we acquire each day are forgotten, those integrated within the structure of multiple prior memories tend to endure. A rapidly growing body of research is steadily elucidating how the consolidation of memories depends on their reactivation during sleep. Processing memories during sleep not only helps counteract their weakening but also supports problem solving, creativity, and emotional regulation. Yet, sleep-based processing might become maladaptive, such as when worries are excessively revisited. Advances in research on memory and sleep can thus shed light on how this processing influences our waking life, which can further inspire the development of novel strategies for decreasing detrimental rumination-like activity during sleep and for promoting beneficial sleep cognition.
Collapse
Affiliation(s)
- Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| | - Jessica D Creery
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| | - Eitan Schechtman
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 60208, USA; , ,
| |
Collapse
|
215
|
Something old, something new: A review of the literature on sleep-related lexicalization of novel words in adults. Psychon Bull Rev 2020; 28:96-121. [PMID: 32939631 DOI: 10.3758/s13423-020-01809-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 11/08/2022]
Abstract
Word learning is a crucial aspect of human development that depends on the formation and consolidation of novel memory traces. In this paper, we critically review the behavioural research on sleep-related lexicalization of novel words in healthy young adult speakers. We first describe human memory systems, the processes underlying memory consolidation, then we describe the complementary learning systems account of memory consolidation. We then review behavioural studies focusing on novel word learning and sleep-related lexicalization in monolingual samples, while highlighting their relevance to three main theoretical questions. Finally, we review the few studies that have investigated sleep-related lexicalization in L2 speakers. Overall, while several studies suggest that sleep promotes the gradual transformation of initially labile traces into more stable representations, a growing body of work suggests a rich variety of time courses for novel word lexicalization. Moreover, there is a need for more work on sleep-related lexicalization patterns in varied populations, such as L2 speakers and bilingual speakers, and more work on individual differences, to fully understand the boundary conditions of this phenomenon.
Collapse
|
216
|
Sawangjit A, Oyanedel CN, Niethard N, Born J, Inostroza M. Deepened sleep makes hippocampal spatial memory more persistent. Neurobiol Learn Mem 2020; 173:107245. [DOI: 10.1016/j.nlm.2020.107245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/28/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
|
217
|
Cox R, Rüber T, Staresina BP, Fell J. Sharp Wave-Ripples in Human Amygdala and Their Coordination with Hippocampus during NREM Sleep. Cereb Cortex Commun 2020; 1:tgaa051. [PMID: 33015623 PMCID: PMC7521160 DOI: 10.1093/texcom/tgaa051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cooperative interactions between the amygdala and hippocampus are widely regarded as critical for overnight emotional processing of waking experiences, but direct support from the human brain for such a dialog is absent. Using overnight intracranial recordings in 4 presurgical epilepsy patients (3 female), we discovered ripples within human amygdala during nonrapid eye movement (NREM) sleep, a brain state known to contribute to affective processing. Like hippocampal ripples, amygdala ripples are associated with sharp waves, linked to sleep spindles, and tend to co-occur with their hippocampal counterparts. Moreover, sharp waves and ripples are temporally linked across the 2 brain structures, with amygdala ripples occurring during hippocampal sharp waves and vice versa. Combined with further evidence of interregional sharp-wave and spindle synchronization, these findings offer a potential physiological substrate for the NREM-sleep-dependent consolidation and regulation of emotional experiences.
Collapse
Affiliation(s)
- Roy Cox
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
| | - Theodor Rüber
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | | | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn 53127, Germany
| |
Collapse
|
218
|
Abstract
The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, is known to regulate thalamocortical interactions critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. Currently, little is known about the organizational principles underlying its divergent functions. We performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that TRN cellular heterogeneity is characterized by a transcriptomic gradient of two negatively correlated gene expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core/shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections to the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. Taken together, our study provides a comprehensive atlas for TRN neurons at the single-cell resolution, and links molecularly defined subnetworks to the functional organization of the thalamo-cortical circuits.
Collapse
|
219
|
Ngo HV, Fell J, Staresina B. Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. eLife 2020; 9:57011. [PMID: 32657268 PMCID: PMC7363445 DOI: 10.7554/elife.57011] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Sleep is pivotal for memory consolidation. According to two-stage accounts, memory traces are gradually translocated from hippocampus to neocortex during non-rapid-eye-movement (NREM) sleep. Mechanistically, this information transfer is thought to rely on interactions between thalamocortical spindles and hippocampal ripples. To test this hypothesis, we analyzed intracranial and scalp Electroencephalography sleep recordings from pre-surgical epilepsy patients. We first observed a concurrent spindle power increase in hippocampus (HIPP) and neocortex (NC) time-locked to individual hippocampal ripple events. Coherence analysis confirmed elevated levels of hippocampal-neocortical spindle coupling around ripples, with directionality analyses indicating an influence from NC to HIPP. Importantly, these hippocampal-neocortical dynamics were particularly pronounced during long-duration compared to short-duration ripples. Together, our findings reveal a potential mechanism underlying active consolidation, comprising a neocortical-hippocampal-neocortical reactivation loop initiated by the neocortex. This hippocampal-cortical dialogue is mediated by sleep spindles and is enhanced during long-duration hippocampal ripples.
Collapse
Affiliation(s)
- Hong-Viet Ngo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Bernhard Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
220
|
Benthem SD, Skelin I, Moseley SC, Stimmell AC, Dixon JR, Melilli AS, Molina L, McNaughton BL, Wilber AA. Impaired Hippocampal-Cortical Interactions during Sleep in a Mouse Model of Alzheimer's Disease. Curr Biol 2020; 30:2588-2601.e5. [PMID: 32470367 PMCID: PMC7356567 DOI: 10.1016/j.cub.2020.04.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
Spatial learning is impaired in humans with preclinical Alzheimer's disease (AD). We reported similar impairments in 3xTg-AD mice learning a spatial reorientation task. Memory reactivation during sleep is critical for learning-related plasticity, and memory consolidation is correlated with hippocampal sharp wave ripple (SWR) density, cortical delta waves (DWs), cortical spindles, and the temporal coupling of these events-postulated as physiological substrates for memory consolidation. Further, hippocampal-cortical discoordination is prevalent in individuals with AD. Thus, we hypothesized that impaired memory consolidation mechanisms in hippocampal-cortical networks could account for spatial memory deficits. We assessed sleep architecture, SWR-DW dynamics, and memory reactivation in a mouse model of tauopathy and amyloidosis implanted with a recording array targeting isocortex and hippocampus. Mice underwent daily recording sessions of rest-task-rest while learning the spatial reorientation task. We assessed memory reactivation by matching activity patterns from the approach to the unmarked reward zone to patterns during slow-wave sleep (SWS). AD mice had more SWS, but reduced SWR density. The increased SWS compensated for reduced SWR density so there was no reduction in SWR number. In control mice, spindles were phase-coupled with DWs, and hippocampal SWR-cortical DW coupling was strengthened in post-task sleep and was correlated with performance on the spatial reorientation task the following day. However, in AD mice, SWR-DW and spindle-DW coupling were impaired. Thus, reduced SWR-DW coupling may cause impaired learning in AD, and spindle-DW coupling during short rest-task-rest sessions may serve as a biomarker for early AD-related changes in these brain dynamics.
Collapse
Affiliation(s)
- Sarah D Benthem
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ivan Skelin
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Shawn C Moseley
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Alina C Stimmell
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Jessica R Dixon
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Andreza S Melilli
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Leonardo Molina
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bruce L McNaughton
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Aaron A Wilber
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
221
|
Wang Q, Ren X, Zhang X, Wang G, Xu H, Deng N, Liu T, Peng Z. Therapeutic Effect of Berberine on Insomnia Rats by ErbB Signaling Pathway. Med Sci Monit 2020; 26:e921831. [PMID: 32623439 PMCID: PMC7393958 DOI: 10.12659/msm.921831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Insomnia seriously affects people’s health and quality of life. Short-term use of Western drugs may also be harmful. Traditional Chinese medicine has been widely used to treat diseases in world. Therefore, this paper aims to study the therapeutic effect of berberine based on the insomnious rat model. Material/Methods The insomnia rat model was established by intragastric administration of caffeine and parachlorophenylalanine (PCPA). Berberine and diazepam were used to treat the established insomnia rats. Then, the pathological changes of insomnia rats were detected. In addition, transcriptome sequencing and data analysis were carried out using rat hippocampus. The expression of key genes was verified by quantitative polymerase chain reaction and western blot. Results After 7 days of intragastric administration of berberine, the body weight, memory, and sleep quality of insomnia rats were significantly improved. The key roles of Erbb4, Erbb2, Ar, and Grin2a in berberine treatment were identified. Through the analysis of biological functions and signaling pathways, berberine was shown to play a salutary role through nervous system development and ErbB signaling pathway. Gene-set enrichment analysis (GSEA) results showed that berberine treatment affected more metabolic pathways. Compared with diazepam, berberine can play a faster role, and also improve the overall health level of insomnia rats. Conclusions These results suggest that berberine can alleviate insomnia in rats through a neuroprotective effect and improved metabolic level. Berberine has great potential in treatment of insomnia and might have better clinical significance.
Collapse
Affiliation(s)
- Qingquan Wang
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xiaojuan Ren
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xingping Zhang
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Guanying Wang
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Hongxia Xu
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Ning Deng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Tao Liu
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Zhipeng Peng
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
222
|
Manoach DS, Mylonas D, Baxter B. Targeting sleep oscillations to improve memory in schizophrenia. Schizophr Res 2020; 221:63-70. [PMID: 32014359 PMCID: PMC7316628 DOI: 10.1016/j.schres.2020.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Although schizophrenia is defined by waking phenomena, a growing literature documents a deficit in sleep spindles, a defining oscillation of stage 2 non-rapid eye movement sleep. Compelling evidence supports an important role for spindles in cognition, and particularly memory. In schizophrenia, although the spindle deficit correlates with impaired sleep-dependent memory consolidation, recent clinical trials find that increasing spindles does not improve memory. This may reflect that sleep-dependent memory consolidation relies not on spindles alone, but also on their precise temporal coordination with cortical slow oscillations and hippocampal sharp-wave ripples. Consequently, interventions to improve memory in schizophrenia must not only increase spindles, but also preserve or enhance slow oscillations, hippocampal ripples and their temporal relations. Because hippocampal ripples and the activity of the thalamic spindle generator are difficult to measure noninvasively, screening potential interventions requires complementary animal and human studies. In this review we (i) propose that sleep oscillations are novel pathophysiological targets for therapy to improve cognition in schizophrenia; (ii) summarize our understanding of how these oscillations interact to consolidate memory; (iii) suggest that a systems neuroscience strategy is essential to selecting and evaluating effective treatments, and illustrate this with findings from clinical trials; and (iv) selectively review the interventional literature relevant to sleep and cognition, covering both pharmacological and noninvasive brain stimulation approaches. We conclude that coordinated sleep oscillations are promising targets for improving cognition in schizophrenia and that effective therapies will need to preserve or enhance sleep oscillatory dynamics and restore function at the network level.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Dimitrios Mylonas
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bryan Baxter
- Department of Psychiatry Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
223
|
Zhang Y, Quiñones GM, Ferrarelli F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: Recent findings and future directions. Schizophr Res 2020; 221:29-36. [PMID: 31753592 PMCID: PMC7231641 DOI: 10.1016/j.schres.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during NREM sleep. Slow waves are ∼1 Hz, high amplitude, negative-positive deflections that are primarily generated and coordinated within the cortex, whereas sleep spindles are 12-16 Hz, waxing and waning oscillations that are initiated within the thalamus and regulated by thalamo-cortical circuits. In healthy subjects, these oscillations are thought to be responsible for the restorative aspects of sleep and have been increasingly shown to be involved in learning, memory and plasticity. Furthermore, deficits in sleep spindles and, to lesser extent, slow waves have been reported in both chronic schizophrenia (SCZ) and early course psychosis patients. In this article, we will first describe sleep spindle and slow wave characteristics, including their putative functional roles in the healthy brain. We will then review electrophysiological, genetic, and cognitive studies demonstrating spindle and slow wave impairments in SCZ and other psychotic disorders, with particularly emphasis on recent findings in early course patients. Finally, we will discuss how future work, including sleep studies in individuals at clinical high risk for psychosis, may help position spindles and slow waves as candidate biomarkers, as well as novel treatment targets, for SCZ and related psychotic disorders.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Psychiatry, University of Pittsburgh, USA
| | | | | |
Collapse
|
224
|
Gomez-Pilar J, Northoff G, Vaquerizo-Villar F, Poza J, Gutierrez-Tobal GC, Hornero R. Intraindividual Characterization of the Sleep Spindle Variability in Healthy Subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3473-3476. [PMID: 33018751 DOI: 10.1109/embc44109.2020.9176315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spatial and frequency characterization of sleep spindles have been extensively addressed using M/EEG or fMRI recordings. However, its intraindividual variability across time has not been addressed. Here we propose to assess the intraindividual variability of sleep spindles in a time-resolved way by means of a trial-to-trial-variability (TTV) measure. For that purpose, the EEG of 26 healthy subjects were recorded overnight. After an exhaustive preprocessing pipeline to remove artifacts, spindles were automatically detected using a complex demodulation-based method. Then, the Wavelet Scalogram was estimated to validate it. Spindle TTV of each participant was also computed for all the conventional EEG frequency bands. Root mean square (RMS) of each TTV signal was calculated as a measure of the total variability of each spindle. Results showed significant differences in the variability between frequencies. Specifically, RMS in the beta-1 frequency band showed higher values as compared to all the other frequency bands (p<0.001). TTV curves showed a dichotomic trend, with lower frequencies showing an increase in the variability before the spindle onset, and higher frequencies showing such increase after the onset. The dependence of the spindle variability with the frequency could be explained by the influence of the multiple cortical generators involved.Clinical Relevance- Sleep spindles are similarly affected in different cognitive-related disorders, which supports the relevance of assessing abnormal sleep patterns as a possible cause for such cognitive deficits.
Collapse
|
225
|
Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep. Sci Rep 2020; 10:10628. [PMID: 32606321 PMCID: PMC7326971 DOI: 10.1038/s41598-020-67392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Regional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. In our study, we tested whether closed-loop auditory stimulation targeting the up-phase of slow waves might not only interact with the main sleep rhythms but also with their coupling within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances delta, theta and sigma power, changes in cross-frequency coupling of these oscillations were more spatially restricted. Importantly, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent neuroplasticity within the brain network of interest.
Collapse
|
226
|
Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife 2020; 9:e53730. [PMID: 32579108 PMCID: PMC7314542 DOI: 10.7554/elife.53730] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Precise temporal coordination of slow oscillations (SO) and sleep spindles is a fundamental mechanism of sleep-dependent memory consolidation. SO and spindle morphology changes considerably throughout development. Critically, it remains unknown how the precise temporal coordination of these two sleep oscillations develops during brain maturation and whether their synchronization indexes the development of memory networks. Here, we use a longitudinal study design spanning from childhood to adolescence, where participants underwent polysomnography and performed a declarative word-pair learning task. Performance on the memory task was better during adolescence. After disentangling oscillatory components from 1/f activity, we found frequency shifts within SO and spindle frequency bands. Consequently, we devised an individualized cross-frequency coupling approach, which demonstrates that SO-spindle coupling strength increases during maturation. Critically, this increase indicated enhanced memory formation from childhood to adolescence. Our results provide evidence that improved coordination between SOs and spindles indexes the development of sleep-dependent memory networks.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|
227
|
Varela C, Wilson MA. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 2020; 9:48881. [PMID: 32525480 PMCID: PMC7319772 DOI: 10.7554/elife.48881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.
Collapse
Affiliation(s)
- Carmen Varela
- Massachusetts Institute of Technology, Cambridge, United States.,Florida Atlantic University, Boca Raton, United States
| | | |
Collapse
|
228
|
Competing Roles of Slow Oscillations and Delta Waves in Memory Consolidation versus Forgetting. Cell 2020; 179:514-526.e13. [PMID: 31585085 DOI: 10.1016/j.cell.2019.08.040] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 01/23/2023]
Abstract
Sleep has been implicated in both memory consolidation and forgetting of experiences. However, it is unclear what governs the balance between consolidation and forgetting. Here, we tested how activity-dependent processing during sleep might differentially regulate these two processes. We specifically examined how neural reactivations during non-rapid eye movement (NREM) sleep were causally linked to consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) and delta (δ) waves have dissociable and competing roles in consolidation versus forgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loop optogenetic methods, we could, respectively, weaken or strengthen consolidation and thereby bidirectionally modulate sleep-dependent performance gains. We further found that changes in the temporal coupling of spindles to SOs relative to δ waves could account for such effects. Thus, our results indicate that neural activity driven by SOs and δ waves have competing roles in sleep-dependent memory consolidation.
Collapse
|
229
|
Crown LM, Bartlett MJ, Wiegand JPL, Eby AJ, Monroe EJ, Gies K, Wohlford L, Fell MJ, Falk T, Cowen SL. Sleep Spindles and Fragmented Sleep as Prodromal Markers in a Preclinical Model of LRRK2-G2019S Parkinson's Disease. Front Neurol 2020; 11:324. [PMID: 32477237 PMCID: PMC7232828 DOI: 10.3389/fneur.2020.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep disturbances co-occur with and precede the onset of motor symptoms in Parkinson's disease (PD). We evaluated sleep fragmentation and thalamocortical sleep spindles in mice expressing the p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene, one of the most common genetic forms of PD. Thalamocortical sleep spindles are oscillatory events that occur during slow-wave sleep that are involved in memory consolidation. We acquired data from electrocorticography, sleep behavioral measures, and a rotarod-based motor enrichment task in 28 LRRK2-G2019S knock-in mice and 27 wild-type controls (8–10 month-old males). Sleep was more fragmented in LRRK2-G2019S mice; sleep bouts were shorter and more numerous, even though total sleep time was similar to controls. LRRK2-G2019S animals expressed more sleep spindles, and individual spindles were longer in duration than in controls. We then chronically administered the LRRK2-inhibitor MLi-2 in-diet to n = 12 LRRK2-G2019S and n = 15 wild-type mice for a within-subject analysis of the effects of kinase inhibition on sleep behavior and physiology. Treatment with MLi-2 did not impact these measures. The data indicate that the LRRK2-G2019S mutation could lead to reduced sleep quality and altered sleep spindle physiology. This suggests that sleep spindles in LRRK2-G2019S animals could serve as biomarkers for underlying alterations in sleep networks resulting from the LRRK2-G2019S mutation, and further evaluation in human LRRK2-G2019S carriers is therefore warranted.
Collapse
Affiliation(s)
- Lindsey M Crown
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Jean-Paul L Wiegand
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Allison J Eby
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Emily J Monroe
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Kathleen Gies
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Luke Wohlford
- College of Medicine, University of Arizona, Phoenix, AZ, United States
| | | | - Torsten Falk
- Department of Neurology, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Stephen L Cowen
- Department of Psychology, University of Arizona, Tucson, AZ, United States.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
230
|
|
231
|
|
232
|
Ohki T, Matsuda T, Gunji A, Takei Y, Sakuma R, Kaneko Y, Inagaki M, Hanakawa T, Ueda K, Fukuda M, Hiraki K. Timing of phase-amplitude coupling is essential for neuronal and functional maturation of audiovisual integration in adolescents. Brain Behav 2020; 10:e01635. [PMID: 32342667 PMCID: PMC7303405 DOI: 10.1002/brb3.1635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The ability to integrate audiovisual information matures late in adolescents, but its neuronal mechanism is still unknown. Recent studies showed that phase-amplitude coupling (PAC) of neuronal oscillations, which is defined as the modulation of high-frequency amplitude by low-frequency phase, is associated with audiovisual integration in adults. Thus, we investigated how PAC develops in adolescents and whether it is related to the functional maturation of audiovisual integration. In particular, we focused on the timing of PAC (or the coupling phase), which is defined as the low-frequency phase with maximum high-frequency amplitude. METHODS Using magnetoencephalography (MEG) on 15 adults and 14 adolescents while they performed an audiovisual speech integration task, we examined PAC in association cortexes with a trial-by-trial analysis. RESULTS Whereas delta-beta coupling was consistently observed in both adults and adolescents, we found that the timing of delta-beta PAC was delayed by 20-40 milliseconds in adolescents compared with adults. In addition, a logistic regression analysis revealed that the task performance improves as the timing of delta-beta PAC in the right temporal pole (TP) got closer to the trough position (180 degrees). CONCLUSION These results suggest that the timing of PAC is essential for binding audiovisual information and underlies the developmental process in adolescents.
Collapse
Affiliation(s)
- Takefumi Ohki
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Takeru Matsuda
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan.,Mathematical Informatics Collaboration Unit, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsuko Gunji
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,College of Education, Yokohama National University, Yokohama, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ryusuke Sakuma
- Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan.,Clinical Center for Developmental Disorders, Shirayuri College, Tokyo, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Ueda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Masato Fukuda
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuo Hiraki
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
233
|
Hippocampal oscillatory dynamics and sleep atonia are altered in an animal model of fibromyalgia: Implications in the search for biomarkers. J Comp Neurol 2020; 528:1367-1391. [DOI: 10.1002/cne.24829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/07/2022]
|
234
|
Smith D, Fang Z, Thompson K, Fogel S. Sleep and individual differences in intellectual abilities. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
235
|
van der Meij J, Ungurean G, Rattenborg NC, Beckers GJL. Evolution of sleep in relation to memory – a birds’ brain view. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
236
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
237
|
McKenzie S, Nitzan N, English DF. Mechanisms of neural organization and rhythmogenesis during hippocampal and cortical ripples. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190237. [PMID: 32248777 PMCID: PMC7209923 DOI: 10.1098/rstb.2019.0237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Neural activity during ripples has attracted great theoretical and experimental attention over the last three decades. Perhaps one reason for such interest is that ripples occur during quiet waking moments and during sleep, times when we reflect and dream about what has just occurred and what we expect to happen next. The hope is that understanding such 'offline' activity may yield insights into reflection, planning, and the purposes of sleep. This review focuses on the mechanisms by which neurons organize during these high-frequency events. In studying ripples, broader principles have emerged that relate intrinsic neural properties, network topology and synaptic plasticity in controlling neural activity. Ripples, therefore, serve as an excellent model for studying how properties of a neural network relate to neural dynamics. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Sam McKenzie
- NYULMC Neuroscience Institute, New York, NY, USA
| | - Noam Nitzan
- Neuroscience Research Center NWFZ, Berlin, Germany
| | - Daniel F. English
- Virginia Tech School of Neuroscience Blacksburg, Blacksburg, VA, USA
| |
Collapse
|
238
|
Human sleep consolidates allergic responses conditioned to the environmental context of an allergen exposure. Proc Natl Acad Sci U S A 2020; 117:10983-10988. [PMID: 32366650 PMCID: PMC7245114 DOI: 10.1073/pnas.1920564117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Allergies are highly prevalent, and allergic responses can be triggered even in the absence of allergens due to Pavlovian conditioning to a specific cue. Here we show in humans suffering from allergic rhinitis that merely reencountering the environmental context in which an allergen was administered a week earlier is sufficient to trigger an allergic response-but only if participants had slept after allergen exposure. This context-conditioning effect was entirely absent when participants stayed awake the night after allergen exposure or were tested in a different context. Unlike in context conditioning, cue conditioning (to an odor stimulus) occurred independently of sleep, a differential pattern that is likewise observed for conditioning in the behavioral domain. Our findings provide evidence that allergic responses can be conditioned to contextual information alone, even after only a single-trial conditioning procedure, and that sleep is necessary to consolidate this rapidly acquired maladaptive response. The results unravel a mechanism that could explain part of the strong psychological impact on allergic responses.
Collapse
|
239
|
Michon F, Sun JJ, Kim CY, Kloosterman F. A Dual Reward-Place Association Task to Study the Preferential Retention of Relevant Memories in Rats. Front Behav Neurosci 2020; 14:69. [PMID: 32477077 PMCID: PMC7240053 DOI: 10.3389/fnbeh.2020.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Memories of past events and common knowledge are critical to flexibly adjust one's future behavior based on prior experiences. The formation and the transformation of these memories into a long-lasting form are supported by a dialogue between populations of neurons in the cortex and the hippocampus. Not all experiences are remembered equally well or equally long. It has been demonstrated experimentally in humans that memory strength positively relates to the behavioral relevance of the associated experience. Behavioral paradigms that test the selective retention of memory in rodents would enable further investigation of the neuronal mechanisms at play. We developed a novel paradigm to follow the repeated acquisition and retrieval of two contextually distinct, yet concurrently learned, food-place associations in rats. We demonstrated the use of this paradigm by varying the amount of reward associated with the two locations. After delays of 2 h or 20 h, rats showed better memory performance for experience associated with large amount of reward. This effect depends on the level of spatial integration required to retrieve the associated location. Thus, this paradigm is suited to study the preferential retention of relevant experiences in rats.
Collapse
Affiliation(s)
- Frédéric Michon
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Jyh-Jang Sun
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Chae Young Kim
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| |
Collapse
|
240
|
The claustrum coordinates cortical slow-wave activity. Nat Neurosci 2020; 23:741-753. [DOI: 10.1038/s41593-020-0625-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/18/2020] [Indexed: 01/18/2023]
|
241
|
The Degree of Nesting between Spindles and Slow Oscillations Modulates Neural Synchrony. J Neurosci 2020; 40:4673-4684. [PMID: 32371605 DOI: 10.1523/jneurosci.2682-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Spindles and slow oscillations (SOs) both appear to play an important role in memory consolidation. Spindle and SO "nesting," or the temporal overlap between the two events, is believed to modulate consolidation. However, the neurophysiological processes modified by nesting remain poorly understood. We thus recorded activity from the primary motor cortex of 4 male sleeping rats to investigate how SO and spindles interact to modulate the correlation structure of neural firing. During spindles, primary motor cortex neurons fired at a preferred phase, with neural pairs demonstrating greater neural synchrony, or correlated firing, during spindle peaks. We found a direct relationship between the temporal proximity between SO and spindles, and changes to the distribution of neural correlations; nesting was associated with narrowing of the distribution, with a reduction in low- and high-correlation pairs. Such narrowing may be consistent with greater exploration of neural states. Interestingly, after animals practiced a novel motor task, pairwise correlations increased during nested spindles, consistent with targeted strengthening of functional interactions. These findings may be key mechanisms through which spindle nesting supports memory consolidation.SIGNIFICANCE STATEMENT Our analysis revealed changes in cortical spiking structure that followed the waxing and waning of spindles; firing rates increased, spikes were more phase-locked to spindle-band local field potential, and synchrony across units peaked during spindles. Moreover, we showed that the degree of nesting between spindles and slow oscillations modified the correlation structure across units by narrowing the distribution of pairwise correlations. Finally, we demonstrated that engaging in a novel motor task increased pairwise correlations during nested spindles. These phenomena suggest key mechanisms through which the interaction of spindles and slow oscillations may support sensorimotor learning. More broadly, this work helps link large-scale measures of population activity to changes in spiking structure, a critical step in understanding neuroplasticity across multiple scales.
Collapse
|
242
|
Phase-based coordination of hippocampal and neocortical oscillations during human sleep. Commun Biol 2020; 3:176. [PMID: 32313064 PMCID: PMC7170909 DOI: 10.1038/s42003-020-0913-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/25/2020] [Indexed: 01/09/2023] Open
Abstract
During sleep, new memories undergo a gradual transfer from hippocampal (HPC) to neocortical (NC) sites. Precisely timed neural oscillations are thought to mediate this sleep-dependent memory consolidation, but exactly how sleep oscillations instantiate the HPC-NC dialog remains elusive. Employing overnight invasive electroencephalography in ten neurosurgical patients, we identified three broad classes of phase-based communication between HPC and lateral temporal NC. First, we observed interregional phase synchrony for non-rapid eye movement (NREM) spindles, and N2 and rapid eye movement (REM) theta activity. Second, we found asymmetrical N3 cross-frequency phase-amplitude coupling between HPC slow oscillations (SOs) and NC activity spanning the delta to high-gamma/ripple bands, but not in the opposite direction. Lastly, N2 theta and NREM spindle synchrony were themselves modulated by HPC SOs. These forms of interregional communication emphasize the role of HPC SOs in the HPC-NC dialog, and may offer a physiological basis for the sleep-dependent reorganization of mnemonic content.
Collapse
|
243
|
Iotchev IB, Szabó D, Kis A, Kubinyi E. Possible association between spindle frequency and reversal-learning in aged family dogs. Sci Rep 2020; 10:6505. [PMID: 32300165 PMCID: PMC7162895 DOI: 10.1038/s41598-020-63573-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
In both humans and dogs sleep spindle occurrence between acquisition and recall of a specific memory correlate with learning performance. However, it is not known whether sleep spindle characteristics are also linked to performance beyond the span of a day, except in regard to general mental ability in humans. Such a relationship is likely, as both memory and spindle expression decline with age in both species (in dogs specifically the density and amplitude of slow spindles). We investigated if spindle amplitude, density (spindles/minute) and/or frequency (waves/second) correlate with performance on a short-term memory and a reversal-learning task in old dogs (> 7 years), when measurements of behavior and EEG were on average a month apart. Higher frequencies of fast (≥ 13 Hz) spindles on the frontal and central midline electrodes, and of slow spindles (≤ 13 Hz) on the central midline electrode were linked to worse performance on a reversal-learning task. The present findings suggest a role for spindle frequency as a biomarker of cognitive aging across species: Changes in spindle frequency are associated with dementia risk and onset in humans and declining learning performance in the dog.
Collapse
Affiliation(s)
| | - Dóra Szabó
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
244
|
Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190232. [PMID: 32248783 DOI: 10.1098/rstb.2019.0232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sleep spindle activity has repeatedly been found to contribute to brain plasticity and consolidation of both declarative and procedural memories. Here we propose a framework for motor memory consolidation that outlines the essential contribution of the hierarchical and multi-scale periodicity of spindle activity, as well as of the synchronization and interaction of brain oscillations during this sleep-dependent process. We posit that the clustering of sleep spindles in 'trains', together with the temporally organized alternation between spindles and associated refractory periods, is critical for efficient reprocessing and consolidation of motor memories. We further argue that the long-term retention of procedural memories relies on the synchronized (functional connectivity) local reprocessing of new information across segregated, but inter-connected brain regions that are involved in the initial learning process. Finally, we propose that oscillatory synchrony in the spindle frequency band may reflect the cross-structural reactivation, reorganization and consolidation of motor, and potentially declarative, memory traces within broader subcortical-cortical networks during sleep. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405, Orsay, France.,Université d'Orléans, CIAMS, 45067, Orléans, France
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
245
|
Urbain N, Fourcaud-Trocmé N, Laheux S, Salin PA, Gentet LJ. Brain-State-Dependent Modulation of Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus during Natural Sleep. Cell Rep 2020; 26:1443-1457.e5. [PMID: 30726730 DOI: 10.1016/j.celrep.2019.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022] Open
Abstract
The thalamus plays a central role in sleep rhythms in the mammalian brain and, yet, surprisingly little is known about its function and interaction with local cortical oscillations during NREM sleep (NREM). We investigated the neuronal correlates of cortical barrel activity in the two corresponding thalamic nuclei, the ventral posterior medial (VPM), and the posterior medial (Pom) nuclei during natural NREM in mice. Our data reveal (1) distinct modulations of VPM and Pom activity throughout NREM episodes, (2) a thalamic nucleus-specific phase-locking to cortical slow and spindle waves, (3) cell-specific subthreshold spindle oscillations in VPM neurons that only partially overlap with cortical spindles, and (4) that spindle features evolve throughout NREM episodes and vary according to the post-NREM state. Taken together, our results suggest that, during natural sleep, the barrel cortex exerts a leading role in the generation and transfer of slow rhythms to the somatosensory thalamus and reciprocally for spindle oscillations.
Collapse
Affiliation(s)
- Nadia Urbain
- Physiopathology of Sleep Networks, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France.
| | - Nicolas Fourcaud-Trocmé
- Coding in Memory and Olfaction, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Samuel Laheux
- Physiopathology of Sleep Networks, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Paul A Salin
- Forgetting Processes and Cortical Dynamics, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Luc J Gentet
- Integrated Physiology of Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| |
Collapse
|
246
|
Local Targeted Memory Reactivation in Human Sleep. Curr Biol 2020; 30:1435-1446.e5. [DOI: 10.1016/j.cub.2020.01.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
|
247
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Lee Shing Y, Werkle-Bergner M. Memory quality modulates the effect of aging on memory consolidation during sleep: Reduced maintenance but intact gain. Neuroimage 2020; 209:116490. [PMID: 31883456 PMCID: PMC7068706 DOI: 10.1016/j.neuroimage.2019.116490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Successful consolidation of associative memories relies on the coordinated interplay of slow oscillations and sleep spindles during non-rapid eye movement (NREM) sleep. This enables the transfer of labile information from the hippocampus to permanent memory stores in the neocortex. During senescence, the decline of the structural and functional integrity of the hippocampus and neocortical regions is paralleled by changes of the physiological events that stabilize and enhance associative memories during NREM sleep. However, the currently available evidence is inconclusive as to whether and under which circumstances memory consolidation is impacted during aging. To approach this question, 30 younger adults (19-28 years) and 36 older adults (63-74 years) completed a memory task based on scene-word associations. By tracing the encoding quality of participants' individual memory associations, we demonstrate that previous learning determines the extent of age-related impairments in memory consolidation. Specifically, the detrimental effects of aging on memory maintenance were greatest for mnemonic contents of intermediate encoding quality, whereas memory gain of poorly encoded memories did not differ by age. Ambulatory polysomnography (PSG) and structural magnetic resonance imaging (MRI) data were acquired to extract potential predictors of memory consolidation from each participant's NREM sleep physiology and brain structure. Partial Least Squares Correlation was used to identify profiles of interdependent alterations in sleep physiology and brain structure that are characteristic for increasing age. Across age groups, both the 'aged' sleep profile, defined by decreased slow-wave activity (0.5-4.5 Hz), and a reduced presence of slow oscillations (0.5-1 Hz), slow, and fast spindles (9-12.5 Hz; 12.5-16 Hz), as well as the 'aged' brain structure profile, characterized by gray matter reductions in the medial prefrontal cortex, thalamus, entorhinal cortex, and hippocampus, were associated with reduced memory maintenance. However, inter-individual differences in neither sleep nor structural brain integrity alone qualified as the driving force behind age differences in sleep-dependent consolidation in the present study. Our results underscore the need for novel and age-fair analytic tools to provide a mechanistic understanding of age differences in memory consolidation.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Rue P.-A.-de-Faucigny 2, 1701, Fribourg, Switzerland
| | - Yee Lee Shing
- Department of Developmental Psychology, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629, Frankfurt Am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| |
Collapse
|
248
|
Uygun DS, Katsuki F, Bolortuya Y, Aguilar DD, McKenna JT, Thankachan S, McCarley RW, Basheer R, Brown RE, Strecker RE, McNally JM. Validation of an automated sleep spindle detection method for mouse electroencephalography. Sleep 2020; 42:5185635. [PMID: 30476300 DOI: 10.1093/sleep/zsy218] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 11/12/2022] Open
Abstract
Study Objectives Sleep spindles are abnormal in several neuropsychiatric conditions and have been implicated in associated cognitive symptoms. Accordingly, there is growing interest in elucidating the pathophysiology behind spindle abnormalities using rodent models of such disorders. However, whether sleep spindles can reliably be detected in mouse electroencephalography (EEG) is controversial necessitating careful validation of spindle detection and analysis techniques. Methods Manual spindle detection procedures were developed and optimized to generate an algorithm for automated detection of events from mouse cortical EEG. Accuracy and external validity of this algorithm were then assayed via comparison to sigma band (10-15 Hz) power analysis, a proxy for sleep spindles, and pharmacological manipulations. Results We found manual spindle identification in raw mouse EEG unreliable, leading to low agreement between human scorers as determined by F1-score (0.26 ± 0.07). Thus, we concluded it is not possible to reliably score mouse spindles manually using unprocessed EEG data. Manual scoring from processed EEG data (filtered, cubed root-mean-squared), enabled reliable detection between human scorers, and between human scorers and algorithm (F1-score > 0.95). Algorithmically detected spindles correlated with changes in sigma-power and were altered by the following conditions: sleep-wake state changes, transitions between NREM and REM sleep, and application of the hypnotic drug zolpidem (10 mg/kg, intraperitoneal). Conclusions Here we describe and validate an automated paradigm for rapid and reliable detection of spindles from mouse EEG recordings. This technique provides a powerful tool to facilitate investigations of the mechanisms of spindle generation, as well as spindle alterations evident in mouse models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- David S Uygun
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Fumi Katsuki
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Yunren Bolortuya
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - David D Aguilar
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - James T McKenna
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Stephen Thankachan
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Robert W McCarley
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Radhika Basheer
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Ritchie E Brown
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - Robert E Strecker
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| | - James M McNally
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| |
Collapse
|
249
|
Spanò G, Weber FD, Pizzamiglio G, McCormick C, Miller TD, Rosenthal CR, Edgin JO, Maguire EA. Sleeping with Hippocampal Damage. Curr Biol 2020; 30:523-529.e3. [PMID: 31956024 PMCID: PMC6997880 DOI: 10.1016/j.cub.2019.11.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
The hippocampus plays a critical role in sleep-related memory processes [1-3], but it is unclear which specific sleep features are dependent upon this brain structure. The examination of sleep physiology in patients with focal bilateral hippocampal damage and amnesia could supply important evidence regarding these links. However, there is a dearth of such studies, despite these patients providing compelling insights into awake cognition [4, 5]. Here, we sought to identify the contribution of the hippocampus to the sleep phenotype by characterizing sleep via comprehensive qualitative and quantitative analyses in memory-impaired patients with selective bilateral hippocampal damage and matched control participants using in-home polysomnography on 4 nights. We found that, compared to control participants, patients had significantly reduced slow-wave sleep-likely due to decreased density of slow waves-as well as slow-wave activity. In contrast, slow and fast spindles were indistinguishable from those of control participants. Moreover, patients expressed slow oscillations (SOs), and SO-fast spindle coupling was observed. However, on closer scrutiny, we noted that the timing of spindles within the SO cycle was delayed in the patients. The shift of patients' spindles into the later phase of the up-state within the SO cycle may indicate a mismatch in timing across the SO-spindle-ripple events that are associated with memory consolidation [6, 7]. The substantial effect of selective bilateral hippocampal damage on large-scale oscillatory activity in the cortex suggests that, as with awake cognition, the hippocampus plays a significant role in sleep physiology, which may, in turn, be necessary for efficacious episodic memory.
Collapse
Affiliation(s)
- Goffredina Spanò
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen 6525 EN, the Netherlands
| | - Gloria Pizzamiglio
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Cornelia McCormick
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn 53127, Germany
| | - Thomas D Miller
- Department of Neurology, Royal Free Hospital, London NW3 2QG, UK
| | - Clive R Rosenthal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jamie O Edgin
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| |
Collapse
|
250
|
van der Meij J, Rattenborg NC, Beckers GJL. Divergent neuronal activity patterns in the avian hippocampus and nidopallium. Eur J Neurosci 2020; 52:3124-3139. [PMID: 31944434 DOI: 10.1111/ejn.14675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep-related brain activity occurring during non-rapid eye-movement (NREM) sleep is proposed to play a role in processing information acquired during wakefulness. During mammalian NREM sleep, the transfer of information from the hippocampus to the neocortex is thought to be mediated by neocortical slow-waves and their interaction with thalamocortical spindles and hippocampal sharp-wave ripples (SWRs). In birds, brain regions composed of pallial neurons homologous to neocortical (pallial) neurons also generate slow-waves during NREM sleep, but little is known about sleep-related activity in the hippocampus and its possible relationship to activity in other pallial regions. We recorded local field potentials (LFP) and analogue multiunit activity (AMUA) using a 64-channel silicon multi-electrode probe simultaneously inserted into the hippocampus and medial part of the nidopallium (i.e., caudal medial nidopallium; NCM) or separately into the caudolateral nidopallium (NCL) of adult female zebra finches (Taeniopygia guttata) anesthetized with isoflurane, an anesthetic known to induce NREM sleep-like slow-waves. We show that slow-waves in NCM and NCL propagate as waves of neuronal activity. In contrast, the hippocampus does not show slow-waves, nor sharp-wave ripples, but instead displays localized gamma activity. In conclusion, neuronal activity in the avian hippocampus differs from that described in mammals during NREM sleep, suggesting that hippocampal memories are processed differently during sleep in birds and mammals.
Collapse
Affiliation(s)
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gabriël J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|