201
|
Yeh CH, Yang JJ, Yang ML, Li YC, Kuan YH. Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK-NF-κB pathway. Free Radic Biol Med 2014; 69:249-57. [PMID: 24486341 DOI: 10.1016/j.freeradbiomed.2014.01.028] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is a serious disease with unacceptably high mortality and morbidity rates. Up to now, no effective therapeutic strategy for ALI has been established. Rutin, quercetin-3-rhamnosyl glucoside, expresses a wide range of biological activities and pharmacological effects, such as anti-inflammatory, antihypertensive, anticarcinogenic, vasoprotective, and cardioprotective activities. Pretreatment with rutin inhibited not only histopathological changes in lung tissues but also infiltration of polymorphonuclear granulocytes into bronchoalveolar lavage fluid in lipopolysaccharide (LPS)-induced ALI. In addition, LPS-induced inflammatory responses, including increased secretion of proinflammatory cytokines and lipid peroxidation, were inhibited by rutin in a concentration-dependent manner. Furthermore, rutin suppressed phosphorylation of NF-κB and MAPK and degradation of IκB, an NF-κB inhibitor. Decreased activities of antioxidative enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase-1 caused by LPS were reversed by rutin. At the same time, we found that ALI amelioration by chelation of extracellular metal ions with rutin is more efficacious than with deferoxamine. These results indicate that the protective mechanism of rutin is through inhibition of MAPK-NF-κB activation and upregulation of antioxidative enzymes.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
202
|
Xie Z, Liang Z, Xie C, Zhao M, Yu X, Yang M, Huang J, Xu X. Separation and Purification of Rosmarinic Acid and Rutin from Glechoma hederaceaL. using High-Speed Counter-Current Chromatography. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.838968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
203
|
Park SE, Sapkota K, Choi JH, Kim MK, Kim YH, Kim KM, Kim KJ, Oh HN, Kim SJ, Kim S. Rutin from Dendropanax morbifera Leveille Protects Human Dopaminergic Cells Against Rotenone Induced Cell Injury Through Inhibiting JNK and p38 MAPK Signaling. Neurochem Res 2014; 39:707-18. [DOI: 10.1007/s11064-014-1259-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
|
204
|
Motamedshariaty VS, Amel Farzad S, Nassiri-Asl M, Hosseinzadeh H. Effects of rutin on acrylamide-induced neurotoxicity. ACTA ACUST UNITED AC 2014; 22:27. [PMID: 24524427 PMCID: PMC3927829 DOI: 10.1186/2008-2231-22-27] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
Background Rutin is an important flavonoid that is consumed in the daily diet. The cytoprotective effects of rutin, including antioxidative, and neuroprotective have been shown in several studies. Neurotoxic effects of acrylamide (ACR) have been established in humans and animals. In this study, the protective effects of rutin in prevention and treatment of neural toxicity of ACR were studied. Results Rutin significantly reduced cell death induced by ACR (5.46 mM) in time- and dose-dependent manners. Rutin treatment decreased the ACR-induced cytotoxicity significantly in comparison to control (P <0.01, P < 0.001). Rutin (100 and 200 mg/kg) could prevent decrease of body weight in rats. In combination treatments with rutin (50, 100 and 200 mg/kg), vitamin E (200 mg/kg) and ACR, gait abnormalities significantly decreased in a dose-dependent manner (P < 0.01 and P < 0.001). The level of malondialdehyde significantly decreased in the brain tissue of rats in both preventive and therapeutic groups that received rutin (100 and 200 mg/kg). Conclusion It seems that rutin could be effective in reducing neurotoxicity and the neuroprotective effect of it might be mediated via antioxidant activity.
Collapse
Affiliation(s)
| | | | | | - Hossein Hosseinzadeh
- Pharmacodynamics and Toxicological Department, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
205
|
Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, Zhang H, Wang YJ, Liu RT. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 2014; 264:173-80. [PMID: 24512768 DOI: 10.1016/j.bbr.2014.02.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities.
Collapse
Affiliation(s)
- Peng-Xin Xu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Shao-Wei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ya-Jing Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Teng Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Wei Zhou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Jiong Wang
- School of Life Science, Ningxia University, Yinchuan 750021, China.
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
206
|
Possible involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress induced anxiety like behaviour, oxidative damage in mice. Pharmacol Rep 2014; 66:15-21. [DOI: 10.1016/j.pharep.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 08/10/2013] [Accepted: 08/20/2013] [Indexed: 10/25/2022]
|
207
|
Possible nitric oxide modulation in the protective effects of rutin against experimental head trauma-induced cognitive deficits: behavioral, biochemical, and molecular correlates. J Surg Res 2014; 188:268-79. [PMID: 24484907 DOI: 10.1016/j.jss.2013.12.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/28/2013] [Accepted: 12/30/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Traumatic head injury is turning out to be a major cause of disability and death. Nitric oxide (NO), an intercellular messenger plays a crucial role in the pathophysiology of several neurologic disorders. Therefore, the present study was designed to investigate the effects of rutin, a well-known flavonoid against cognitive deficits and neuroinflammation associated with traumatic head injury and the probable role of NO pathway in this effect. MATERIALS AND METHODS Wistar rats were exposed to head trauma using weight drop method and kept for a postsurgical rehabilitation period of 2 wk. Later, animals were administered with rutin (20, 40, and 80 mg/kg; per oral) alone and in combination with NO modulators such as N(G)-nitro-L-arginine methyl ester and L-arginine, daily for another 2 wk. RESULTS Head injury caused impaired spatial navigation in Morris water maze test and poor retention in elevated plus maze task. Furthermore, there was a significant rise in acetylcholinesterase activity, oxidative stress, neuroinflammation (tumor necrosis factor α), and neuronal apoptosis (caspase-3) in both cortex and hippocampal regions of traumatized rat brain. Rutin significantly attenuated these behavioral, biochemical, and molecular alterations associated with head trauma. Furthermore, pretreatment of N(G)-nitro-L-arginine methyl ester (10 mg/kg, intraperitoneally), a nonspecific nitric oxide synthase inhibitor, with subeffective dose of rutin (40 mg/kg) potentiated the protective effects; however, pretreatment of L-arginine (100 mg/kg; intraperitoneally), an NO donor, reversed the effects of rutin. CONCLUSIONS The present study suggests that NO modulation could possibly be involved in the neuroprotective effects of rutin against head trauma-induced cognitive deficits, neuroinflammation, and apoptotic signaling cascade.
Collapse
|
208
|
Moghbelinejad S, Nassiri-Asl M, Naserpour Farivar T, Abbasi E, Sheikhi M, Taghiloo M, Farsad F, Samimi A, Hajiali F. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 2014; 224:108-13. [DOI: 10.1016/j.toxlet.2013.10.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/26/2022]
|
209
|
Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice. Behav Pharmacol 2013; 24:307-19. [PMID: 23838966 DOI: 10.1097/fbp.0b013e3283637a51] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.
Collapse
|
210
|
Hosseinzadeh S, Zahmatkesh M, Zarrindast MR, Hassanzadeh GR, Karimian M, Sarrafnejad A. Elevated CSF and plasma microparticles in a rat model of streptozotocin-induced cognitive impairment. Behav Brain Res 2013; 256:503-11. [DOI: 10.1016/j.bbr.2013.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 01/23/2023]
|
211
|
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Farbood Y, Sarkaki A, Bavarsad K. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol Biochem Behav 2013; 111:90-6. [DOI: 10.1016/j.pbb.2013.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 01/08/2023]
|
212
|
Nassiri-Asl M, Naserpour Farivar T, Abbasi E, Sadeghnia HR, Sheikhi M, Lotfizadeh M, Bazahang P. Effects of rutin on oxidative stress in mice with kainic acid-induced seizure. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:337-42. [DOI: 10.3736/jintegrmed2013042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
213
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|
214
|
Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 2013; 22:1063-79. [DOI: 10.1517/13543784.2013.805744] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shrestha Sharma
- Jamia Hamdard University, Faculty of Pharmacy, Department of Pharmaceutics,
New Delhi, India
| | - Asgar Ali
- Professor, Jamia Hamdard, Faculty of Pharmacy, Department of Pharmaceutics,
New Delhi-110062, India
| | - Javed Ali
- Jamia Hamdard, Faculty of Pharmacy, Department of Pharmaceutics,
New Delhi-110062, India
| | - Jasjeet K. Sahni
- Jamia Hamdard, Faculty of Pharmacy, Department of Pharmaceutics,
New Delhi-110062, India
| | - Sanjula Baboota
- Jamia Hamdard, Faculty of Pharmacy, Department of Pharmaceutics,
New Delhi-110062, India
| |
Collapse
|
215
|
Gao M, Ma Y, Liu D. Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. Pharm Res 2013; 30:2940-50. [PMID: 23783345 DOI: 10.1007/s11095-013-1125-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE To elucidate the mechanism of rutin in blocking macrophage-mediated inflammation and high fat diet-induced obesity and fatty liver. METHODS Both in vitro and in vivo approaches were taken in evaluating the effects of rutin on palmitic acids-triggered inflammation in cultured macrophages, and on weight gain and development of fatty liver of mice fed a high fat diet. RESULTS Palmitic acids increase mRNA levels of pro-inflammatory cytokines, and elevate the production of TNFα in cultured macrophages. Pre-exposure of rutin to cells greatly suppressed these elevations. The suppressed inflammation by rutin was correlated with a decrease in transcription of genes responsible for ER stress and production of reactive oxygen species. In vivo, rutin protects mice from high fat diet-induced obesity, fatty liver and insulin resistance. The protective effects were associated with lack of hypertrophy and crown-like structures in the white adipose tissue, decreased mRNA levels of marker genes for macrophages including F4/80, Cd11c and Cd68, and repressed transcription of genes involved in chronic inflammation such as Mcp1 and Tnfα in white adipose tissue. In addition, rutin increases the expression of genes responsible for energy expenditure in brown adipose tissue including Pgc1α and Dio2. Furthermore, rutin suppresses transcription of Srebp1c and Cd36 in the liver, leading to a blockade of fatty liver development. CONCLUSION These results suggest that supplementation of rutin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, 450 Pharmacy South 250 West Green Street, Athens, Georgia, 30602, USA
| | | | | |
Collapse
|
216
|
Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs 2013; 22:863-80. [PMID: 23642183 DOI: 10.1517/13543784.2013.794783] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Natural polyphenols, the non-essential micronutrients, found in array of plant products, are known to affect various physiological and biochemical functions in the body. Studies have shown the protective effect of these polyphenols in different neurological and mental disorders. These polyphenols modulate monoaminergic neurotransmission in the brain and thus possess antidepressant-like activity at least in animal models of depression. AREAS COVERED The present review discusses the use of these natural polyphenols in the treatment of major depression. The review article discusses the antidepressant potential of some important polyphenols such as amentoflavone, apigenin, chlorogenic acid, curcumin, ferulic acid, hesperidin, rutin, quercetin, naringenin, resveratrol, ellagic acid, nobiletin and proanthocyanidins. The mechanism of action of these polyphenols in the treatment of major depression is also discussed in detail. EXPERT OPINION There is an exciting prospect in the discovery of natural polyphenols as therapeutic agents in the treatment of major depression.
Collapse
Affiliation(s)
- Lokesh Pathak
- Gujarat Forensic Sciences University, Institute of Research & Development, DFS Headquarters, Sector 18-A, Gandhinagar, Gujarat-382007, India
| | | | | |
Collapse
|
217
|
Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem Int 2013; 62:492-501. [DOI: 10.1016/j.neuint.2013.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/26/2013] [Accepted: 02/03/2013] [Indexed: 12/18/2022]
|
218
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
219
|
Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 2012; 47:711-25. [PMID: 23150171 DOI: 10.1007/s12035-012-8375-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/29/2012] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and result from multiple etiologic factors, including environmental, genetic, and metabolic factors, whereas FAD is caused by mutations in the presenilins or amyloid-β (Aβ) precursor protein (APP) genes. A commonly used animal model for AD is the 3xTg-AD transgenic mouse model, which harbors mutated presenilin 1, APP, and tau genes and thus represents a model of FAD. There is an unmet need in the field to characterize animal models representing different AD mechanisms, so that potential drugs for SAD can be evaluated preclinically in these animal models. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), the icv-STZ mouse, shows many aspects of SAD. In this study, we compared the non-cognitive and cognitive behaviors as well as biochemical and immunohistochemical alterations between the icv-STZ mouse and the 3xTg-AD mouse. We found that both mouse models showed increased exploratory activity as well as impaired learning and spatial memory. Both models also demonstrated neuroinflammation, altered synaptic proteins and insulin/IGF-1 (insulin-like growth factor-1) signaling, and increased hyperphosphorylated tau in the brain. The most prominent brain abnormality in the icv-STZ mouse was neuroinflammation, and in the 3xTg-AD mouse it was elevation of hyperphosphorylated tau. These observations demonstrate the behavioral and neuropathological similarities and differences between the icv-STZ mouse and the 3xTg-AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Torrão AS, Café-Mendes CC, Real CC, Hernandes MS, Ferreira AF, Santos TO, Chaves-Kirsten GP, Mazucanti CH, Ferro ES, Scavone C, Britto LR. Different Approaches, One Target: Understanding Cellular Mechanisms of Parkinson's and Alzheimer's Diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S194-205. [DOI: 10.1016/j.rbp.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
221
|
Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM, Lunardi PS, Gonçalves CA. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 2012; 236:186-193. [PMID: 22964138 DOI: 10.1016/j.bbr.2012.08.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Intracerebroventricular (ICV) infusion of streptozotocin (STZ) provides a relevant animal model of chronic brain dysfunction that is characterized by long-term and progressive deficits in learning, memory, and cognitive behavior, along with a permanent and ongoing cerebral energy deficit. Numerous studies on green tea epigallocatechin gallate (EGCG) demonstrate its beneficial effects on cognition and memory. As such, this study evaluated, for the first time, the effects of sub-chronic EGCG treatment in rats that were submitted to ICV infusion of STZ (3mg/kg). Male Wistar rats were divided into sham, STZ, sham+EGCG and STZ+EGCG groups. EGCG was administered at a dose of 10mg/kg/day for 4 weeks per gavage. Learning and memory was evaluated using Morris' Water Maze. Oxidative stress markers and involvement of the nitric oxide (NO) system, acetylcholinesterase activity (AChE) and glucose uptake were evaluated as well as glial parameters including S100B content and secretion and GFAP content. Our results show that EGCG was not able to modify glucose uptake and glutathione content, although cognitive deficit, S100B content and secretion, AChE activity, glutathione peroxidase activity, NO metabolites, and reactive oxygen species content were completely reversed by EGCG administration, confirming the neuroprotective potential of this compound. These findings contribute to the understanding of diseases accompanied by cognitive deficits and the STZ-model of dementia.
Collapse
Affiliation(s)
- Regina Biasibetti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ana Carolina Tramontina
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ana Paula Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Márcio Ferreira Dutra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Caren Luciane Bernardi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Krista Minéia Wartchow
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Paula Santana Lunardi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
222
|
What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm (Vienna) 2012; 120:233-52. [DOI: 10.1007/s00702-012-0877-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/26/2012] [Indexed: 12/30/2022]
|
223
|
Thomas CM, Wood RC, Wyatt JE, Pendleton MH, Torrenegra RD, Rodriguez OE, Harirforoosh S, Ballester M, Lightner J, Krishnan K, Ramsauer VP. Anti-neoplastic activity of two flavone isomers derived from Gnaphalium elegans and Achyrocline bogotensis. PLoS One 2012; 7:e39806. [PMID: 22768128 PMCID: PMC3387256 DOI: 10.1371/journal.pone.0039806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/26/2012] [Indexed: 02/06/2023] Open
Abstract
Over 4000 flavonoids have been identified so far and among these, many are known to have antitumor activities. The basis of the relationships between chemical structures, type and position of substituent groups and the effects these compounds exert specifically on cancer cells are not completely elucidated. Here we report the differential cytotoxic effects of two flavone isomers on human cancer cells from breast (MCF7, SK-BR-3), colon (Caco-2, HCT116), pancreas (MIA PaCa, Panc 28), and prostate (PC3, LNCaP) that vary in differentiation status and tumorigenic potential. These flavones are derived from plants of the family Asteraceae, genera Gnaphalium and Achyrocline reputed to have anti-cancer properties. Our studies indicate that 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone) displays potent activity against more differentiated carcinomas of the colon (Caco-2), and pancreas (Panc28), whereas 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone) cytototoxic action is observed on poorly differentiated carcinomas of the colon (HCT116), pancreas (Mia PaCa), and breast (SK-BR3). Both flavones induced cell death (>50%) as proven by MTT cell viability assay in these cancer cell lines, all of which are regarded as highly tumorigenic. At the concentrations studied (5-80 µM), neither flavone demonstrated activity against the less tumorigenic cell lines, breast cancer MCF-7 cells, androgen-responsive LNCaP human prostate cancer line, and androgen-unresponsive PC3 prostate cancer cells. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone) displays activity against more differentiated carcinomas of the colon and pancreas, but minimal cytotoxicity on poorly differentiated carcinomas of these organs. On the contrary, 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone) is highly cytotoxic to poorly differentiated carcinomas of the colon, pancreas, and breast with minimal activity against more differentiated carcinomas of the same organs. These differential effects suggest activation of distinct apoptotic pathways. In conclusion, the specific chemical properties of these two flavone isomers dictate mechanistic properties which may be relevant when evaluating biological responses to flavones.
Collapse
Affiliation(s)
- Christan M. Thomas
- Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Robert C. Wood
- Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jarrett E. Wyatt
- Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Morgan H. Pendleton
- Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | | | | | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Maria Ballester
- Division of Math Science and Technology, Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Janet Lightner
- Division of Hematology-Oncology, Department of Internal Medicine, James Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Koyamangalath Krishnan
- Division of Hematology-Oncology, Department of Internal Medicine, James Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Victoria P. Ramsauer
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
- Division of Hematology-Oncology, Department of Internal Medicine, James Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|