201
|
|
202
|
Nikiforuk A, Popik P. Neurochemical modulation of stress-induced cognitive inflexibility in a rat model of an attentional set-shifting task. Pharmacol Rep 2013; 65:1479-88. [DOI: 10.1016/s1734-1140(13)71508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/15/2013] [Indexed: 10/25/2022]
|
203
|
Sebastian V, Estil JB, Chen D, Schrott LM, Serrano PA. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus. PLoS One 2013; 8:e79077. [PMID: 24205365 PMCID: PMC3812005 DOI: 10.1371/journal.pone.0079077] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ) and post-synaptic density-95 (PSD-95) are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML) of the dentate gyrus (DG), stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.
Collapse
Affiliation(s)
- Veronica Sebastian
- Department of Psychology, Hunter College, New York, New York, United States of America
| | - Jim Brian Estil
- Department of Psychology, Hunter College, New York, New York, United States of America
| | - Daniel Chen
- Department of Psychology, Hunter College, New York, New York, United States of America
| | - Lisa M. Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Peter A. Serrano
- Department of Psychology, Hunter College, New York, New York, United States of America
- The Graduate Center of CUNY, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
204
|
Kuwajima M, Spacek J, Harris KM. Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy. Neuroscience 2013; 251:75-89. [PMID: 22561733 PMCID: PMC3535574 DOI: 10.1016/j.neuroscience.2012.04.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.
Collapse
Affiliation(s)
- Masaaki Kuwajima
- Center for Learning and Memory, The University of Texas at Austin
| | - Josef Spacek
- Charles University Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Kristen M. Harris
- Center for Learning and Memory, The University of Texas at Austin
- Section of Neurobiology, The University of Texas at Austin
| |
Collapse
|
205
|
Abstract
Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioural domains. A recent literature has identified important structural and functional alterations within the brain's reward circuitry--particularly in the ventral tegmental area-nucleus accumbens pathway--that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This Review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms.
Collapse
Affiliation(s)
- Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. scott.russo@mssm. edu
| | | |
Collapse
|
206
|
Parker CC, Sokoloff G, Leung E, Kirkpatrick SL, Palmer AA. A large QTL for fear and anxiety mapped using an F2 cross can be dissected into multiple smaller QTLs. GENES BRAIN AND BEHAVIOR 2013; 12:714-22. [PMID: 23876074 DOI: 10.1111/gbb.12064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 07/18/2013] [Indexed: 11/26/2022]
Abstract
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS-10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS-10 and B6. We then produced congenic strains to fine-map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121-129.068 Mb; build 37) appeared to account for all the difference between CSS-10 and B6. The smaller congenic strain (Line 2: 127.277-129.068 Mb) was intermediate between CSS-10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis-eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two-stage approaches that seek to use coarse mapping to identify large regions followed by fine-mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine-mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine-mapping QTLs.
Collapse
|
207
|
Orner DA, Chen CC, Orner DE, Brumberg JC. Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex. Brain Struct Funct 2013; 219:1709-20. [PMID: 23779157 DOI: 10.1007/s00429-013-0596-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 06/05/2013] [Indexed: 11/29/2022]
Abstract
Dendritic spines are small protrusions that serve as the principal recipients of excitatory inputs onto cortical pyramidal cells. Alterations in spine and filopodia density and morphology correlate with both developmental maturity and changes in synaptic strength. In order to better understand the developmental profile of dendritic protrusion (dendritic spines + filopodia) morphology and density over the animal's first postnatal year, we used the Golgi staining technique to label neurons and their dendritic protrusions in mice. We focused on quantifying the density per length of dendrite and categorizing the morphology of dendritic protrusions of layer VI pyramidal neurons residing in barrel cortex using the computer assisted reconstruction program Neurolucida. We classified dendritic protrusion densities at seven developmental time points: postnatal day (PND) 15, 30, 60, 90, 180, 270, and 360. Our findings suggest that the dendritic protrusions in layer VI barrel cortex pyramidal neurons are not static, and their density as well as relative morphological distribution change over time. We observed a significant increase in mushroom spines and a decrease in filopodia as the animals matured. Further analyses show that as the animal mature there was a reduction in pyramidal cell dendritic lengths overall, as well as a decrease in overall protrusion densities. The ratio of apical to basilar density decreased as well. Characterizing the profile of cortical layer VI dendritic protrusions within the first postnatal year will enable us to better understand the relationship between the overall developmental maturation profile and dendritic spine functioning.
Collapse
Affiliation(s)
- David A Orner
- Neuroscience Major, Queens College, CUNY, Flushing, NY, USA
| | | | | | | |
Collapse
|
208
|
Blix E, Perski A, Berglund H, Savic I. Long-term occupational stress is associated with regional reductions in brain tissue volumes. PLoS One 2013; 8:e64065. [PMID: 23776438 PMCID: PMC3679112 DOI: 10.1371/journal.pone.0064065] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/11/2013] [Indexed: 12/12/2022] Open
Abstract
There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment.
Collapse
Affiliation(s)
- Eva Blix
- Stockholm Brain Institute, Department of Women's and Children's Health, Division of Pediatric Neurology, Karolinska Institute, Stockholm, Sweden
| | | | - Hans Berglund
- Stockholm Brain Institute, Department of Women's and Children's Health, Division of Pediatric Neurology, Karolinska Institute, Stockholm, Sweden
| | - Ivanka Savic
- Stockholm Brain Institute, Department of Women's and Children's Health, Division of Pediatric Neurology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
209
|
Dwivedi Y. Involvement of brain-derived neurotrophic factor in late-life depression. Am J Geriatr Psychiatry 2013; 21:433-49. [PMID: 23570887 PMCID: PMC3767381 DOI: 10.1016/j.jagp.2012.10.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 10/16/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
210
|
Asan E, Steinke M, Lesch KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 2013; 139:785-813. [DOI: 10.1007/s00418-013-1081-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|