201
|
Hall B, Nakashima H, Sun ZJ, Sato Y, Bian Y, Husain SR, Puri RK, Kulkarni AB. Targeting of interleukin-13 receptor α2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF-β and PTEN signaling. J Transl Med 2013; 11:45. [PMID: 23421960 PMCID: PMC3598213 DOI: 10.1186/1479-5876-11-45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Background The sixth leading class of cancer worldwide is head and neck cancer, which typically arise within the squamous epithelium of the oral mucosa. Human head and neck squamous cell carcinoma (HNSCC) is known to be difficult to treat and has only a 50% five-year survival rate. With HNSCC, novel therapeutics are needed along with a means of rapidly screening anti-cancer agents in vivo, such as mouse models. Methods In order to develop new animal models of cancer to test safety and efficacy of novel therapeutic agents for human HNSCC, tumors resembling clinical cases of human HNSCC were induced in the head and neck epithelium of a genetically engineered mouse model. This mouse model was generated by conditional deletion of two tumor suppressors, Transforming Growth Factor-β Receptor 1 (TGFβRI) and Phosphatase and Tensin homolog (PTEN), in the oral epithelium. We discovered that the tumors derived from these Tgfbr1/Pten double conditional knockout (2cKO) mice over-expressed IL-13Rα2, a high affinity receptor for IL-13 that can function as a tumor antigen. To demonstrate a proof-of-concept that targeted therapy against IL-13Rα2 expression would have any antitumor efficacy in this spontaneous tumor model, these mice were treated systemically with IL-13-PE, a recombinant immunotoxin consisting of IL-13 fused to the Pseudomonas exotoxin A. Results Tgfbr1/Pten 2cKO mice when treated with IL-13-PE displayed significantly increased survival when compared to the untreated control mice. The untreated mice exhibited weight loss, particularly with the rapid onset of tongue tumors, but the treated mice gained weight while on IL-13-PE therapy and showed no clinical signs of toxicity due to the immunotoxin. Expression of IL-13Rα2 in tumors was significantly decreased with IL-13-PE treatment as compared to the controls and the number of myeloid-derived suppressor cells (MDSC) was also significantly reduced in the spleens of the IL-13-PE treated mice. Conclusions Our study demonstrates that the Tgfbr1/Pten 2cKO mouse model of human HNSCC is a useful model for assessing antitumor activity of new cancer therapeutic agents, and that IL-13-PE has therapeutic potential to treat human head and neck cancer.
Collapse
Affiliation(s)
- Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 130, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
203
|
Giudice FS, Squarize CH. The determinants of head and neck cancer: Unmasking the PI3K pathway mutations. ACTA ACUST UNITED AC 2013; Suppl 5. [PMID: 25126449 DOI: 10.4172/2157-2518.s5-003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies attempting to identify and understand the function of mutated genes and deregulated molecular pathways in cancer have been ongoing for many years. The PI3K-PTEN-mTOR signaling pathway is one of the most frequently deregulated pathways in cancer. PIK3CA mutations are found 11%-33% of head and neck cancer (HNC). The hotspot mutation sites for PIK3CA are E542K, E545K and H1047R/L. The PTEN somatic mutations are in 9-23% of HNC, and they frequently cluster in the phosphatase domain of PTEN protein. PTEN loss of heterozygosity (LOH) ranges from 41%-71% and loss of PTEN protein expression occurs in 31.2% of the HNC samples. PIK3CA and PTEN are key molecules in the PI3K-PTEN-mTOR signaling pathway. In this review, we provided a comprehensive overview of mutations in the PI3K-PTEN-mTOR molecular circuitry in HNC, including PI3K family members, TSC1/TSC2, PTEN, AKT, and mTORC1 and mTORC2 complexes. We discussed how these genetic alterations may affect protein structure and function. We also highlight the latest discoveries in protein kinase and tumor suppressor families, emphasizing how mutations in these families interfere with PI3K signaling. A better understanding of the mechanisms underlying cancer formation, progression and resistance to therapy will inform selection of novel genomic-based personalized therapies for head and neck cancer patients.
Collapse
Affiliation(s)
- Fernanda S Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA ; International Research Center, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-1078, USA
| |
Collapse
|
204
|
Costa C, Santos M, Segrelles C, Dueñas M, Lara MF, Agirre X, Prosper F, García-Escudero R, Paramio JM. A novel tumor suppressor network in squamous malignancies. Sci Rep 2012; 2:828. [PMID: 23145321 PMCID: PMC3494016 DOI: 10.1038/srep00828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/05/2012] [Indexed: 11/24/2022] Open
Abstract
The specific ablation of Rb1 gene in stratified epithelia (RbF/F;K14cre) promotes proliferation and altered differentiation but is insufficient to produce spontaneous tumors. The pRb relative, p107, compensates some of the functions of pRb in these tissues; however, RbF/F;K14cre;p107−/− mice die postnatally. Here we show, using an inducible mouse model (RbF/F;K14creERTM), that p107 exerts specific tumor suppressor functions in the absence of pRb in stratified epithelia. The simultaneous absence of pRb and p107 produces impaired p53 transcriptional functions and reduction of Pten expression, allowing spontaneous squamous carcinoma development. These tumors display significant overlap with human squamous carcinomas, supporting that RbF/F;K14creERTM;p107−/− mice might constitute a new model for these malignancies. Remarkably tumor development in vivo is partially alleviated by mTOR inhibition. These data demonstrate the existence of a previously unreported functional connection between pRb, Pten and p53 tumor suppressors, through p107, of a particular relevance in squamous tumor development.
Collapse
Affiliation(s)
- Clotilde Costa
- Molecular Oncology Unit, Department of Basic Research, CIEMAT (Ed 70A), Ave Complutense 40. 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Masuda M, Toh S, Wakasaki T, Suzui M, Joe AK. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability. Mol Oncol 2012; 7:14-28. [PMID: 23168041 PMCID: PMC5528403 DOI: 10.1016/j.molonc.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of “oncogene addiction”, have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro‐environmental and metabolic stressors, which well explains the major mechanism of “escaping from oncogene addiction”. On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. There is an urgent need to develop a novel conceptual framework for the treatment of HNSCC. The biological robustness of HNSCC was analyzed through a somatic evolution model. This model well explains the mechanism of “escaping from oncogene addiction”. We discuss about the possible approaches to target vulnerability of evolving HNSCC.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Head & Neck Surgery, National Kyushu Cancer Center, 3-1-1, Notame, Minamiku, Fukuoka 811-1395, Japan.
| | | | | | | | | |
Collapse
|
206
|
Rettori MM, de Carvalho AC, Bomfim Longo AL, de Oliveira CZ, Kowalski LP, Carvalho AL, Vettore AL. Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis 2012; 34:20-7. [PMID: 23042095 DOI: 10.1093/carcin/bgs311] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypermethylation in the promoter regions of genes is associated with suppression of gene expression and has been considered a potential molecular marker for several tumor types, including head and neck squamous cell carcinomas (HNSCC). Moreover, hypermethylation can be detected in body fluids such as saliva and can be useful for the diagnosis and prognosis of patients suffering from cancer. To evaluate the hypermethylation profile as a tool for early detection of tumor recurrences, this study determines the methylation status of 24 genes in salivary rinses collected from HNSCC patients at diagnosis, just after the last curative treatment and in the patients' follow-up visit at 6 months after treatment. In the analysis of salivary rinse samples taken at diagnosis of HNSCC patients, five genes (CCNA1, DAPK, DCC, MGMT and TIMP3) showed high specificity and sensitivity. Hypermethylation in any of these five genes was correlated with the presence of tumors in the oral cavity. Patients with TIMP3 methylation in samples collected 6 months after the last curative treatment had lower local recurrence-free survival (P = 0.008). Multivariate analysis confirmed that this hypermethylation pattern remained as an independent prognostic factor for local recurrence (P = 0.025). This study presents, for the first time, the detection of TIMP3 promoter hypermethylation in post-treatment salivary rinse as an independent prognostic maker for local recurrence-free survival in patients with HNSCC, justifying the use of DNA hypermethylation detection in saliva as a tool for identifying and monitoring HNSCC patients' subgroups with high risk of developing local recurrence.
Collapse
|
207
|
Koffler J, Holzinger D, Sanhueza GA, Flechtenmacher C, Zaoui K, Lahrmann B, Grabe N, Plinkert PK, Hess J. Submaxillary gland androgen-regulated protein 3A expression is an unfavorable risk factor for the survival of oropharyngeal squamous cell carcinoma patients after surgery. Eur Arch Otorhinolaryngol 2012; 270:1493-500. [PMID: 23053383 DOI: 10.1007/s00405-012-2201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/19/2012] [Indexed: 11/29/2022]
Abstract
Recently, increased expression of the submaxillary gland androgen-regulated protein 3A (SMR3A) was found in recurrent tumors of an orthotopic floor-of-mouth mouse tumor model after surgery. However, SMR3A expression in the pathogenesis of human malignancy and its correlation with the clinical outcome have not been addressed so far. We analyzed tissue microarrays with specimens from oropharyngeal squamous cell carcinoma (OPSCC) patients (n = 157) by immunohistochemistry and compared SMR3A expression with clinical and pathological features by statistical analysis. Strong SMR3A expression was found in almost 36 % of all primary OPSCCs. Although, SMR3A protein levels were not associated with any clinical or histopathological feature tested, univariate Kaplan-Meier analysis revealed a significant correlation between high SMR3A protein expression and poor progression-free (p = 0.02) and overall survival (p = 0.03). Furthermore, high SMR3A expression was an independent marker for poor clinical outcome [HR (SMR3A(high) vs. SMR3(low)) = 2.32; 95 % CI = 1.03-5.23] concerning overall survival in a multivariate analysis of OPSCC patients with surgery as primary therapy (n = 100). Our data demonstrate for the first time increased SMR3A protein expression in the pathogenesis of OPSCC, which serves as an unfavorable risk factor for patient survival.
Collapse
Affiliation(s)
- Jennifer Koffler
- Experimental Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J 2012; 31:4124-39. [PMID: 23034403 DOI: 10.1038/emboj.2012.270] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/26/2012] [Indexed: 12/12/2022] Open
Abstract
Cancers and tissue stem cells (SCs) share similar molecular pathways for their self-renewal and differentiation. The race is on to identify unique pathways to specifically target the cancer, while sparing normal SCs. Here, we uncover the transcription factor Runx1/AML1, a known haematopoietic and leukaemia factor, albeit dispensable for normal adult SC homeostasis, as being important for some mouse and human epithelial cancers. We implicate Runx1 as a SC-intrinsic gene in mouse hair follicle and oral epithelia by genetic lineage tracing in adulthood. Runx1-expressing SCs, but not other cells that ectopically upregulate Runx1 by injury and inflammation, are at the skin tumour origin. Runx1 loss impairs tumour initiation and maintenance and the growth of oral, skin, and ovarian epithelial human cancer cells. Runx1 stimulates Stat3 signalling via direct transcriptional repression of SOCS3 and SOCS4 and this is essential for cancer cell growth. Thus, Runx1 is a broader epithelial SC and cancer factor than previously recognized, and qualifies as an attractive potential target for both prevention and therapy of several epithelial cancers.
Collapse
|
209
|
Thavarajah R, Vidya K, Joshua E, Rao UK, Ranganathan K. Potential role of septins in oral carcinogenesis: An update and avenues for future research. J Oral Maxillofac Pathol 2012; 16:73-8. [PMID: 22438646 PMCID: PMC3303527 DOI: 10.4103/0973-029x.92977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Septins belong to the GTPase superclass of conserved proteins and have been identified to play a role in diverse aspects of cell biology, from cytokinesis to the maintenance of cellular morphology. At least 14 septins have been identified in humans. With their complex patterns in gene expressions and interaction, it has been reported that alterations in septin expression are observed in human diseases. Although much is not known about the role of human septins in oral carcinogenesis, circumstantial evidence does indicate that it may play a major role. This review intends to summarize the basis of septin biology, with the focus being on the evidence for septin involvement in human oral cancer.
Collapse
Affiliation(s)
- Rooban Thavarajah
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Chennai, India
| | | | | | | | | |
Collapse
|
210
|
Indications for an alternative effective treatment of head and neck squamous cell carcinoma with temsirolimus plus bevacizumab. Anticancer Drugs 2012; 23:874-82. [DOI: 10.1097/cad.0b013e3283538c3d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
211
|
Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind JS, Kulkarni AB. Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically defined head and neck squamous cell carcinoma mouse model. Clin Cancer Res 2012; 18:5304-13. [PMID: 22859719 DOI: 10.1158/1078-0432.ccr-12-1371] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE To assess the efficacy of rapamycin treatment in chemoprevention and chemotherapy of tumorigenesis in a genetically defined mouse model of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN Knockdown of Tgfbr1 and/or Pten using siRNA-mediated RNA interference was carried out in human HNSCC cell lines to analyze molecular changes in the mTOR pathway. Tgfbr1(flox/flox); Pten(flox/flox); K14-CreER(tam) mice were treated with oral gavage of tamoxifen for the conditional deletion of Tgfbr1 and Pten in oral mucosa, resulting in HNSCC. Tgfbr1 and Pten conditonal deletion (2cKO) mice were treated with rapamycin before or after the onset of HNSCC, and the efficacy of this treatment was assessed by determining tumor burden, longevity, and molecular analysis of the mTOR pathway. Molecular changes observed in human HNSCC cell lines and 2cKO mice were compared to identify key alterations in the mTOR pathway. RESULTS Knockdown of Tgfbr1 and/or Pten in human HNSCC cell lines resulted in activation of mTOR activity complex 1 and increased levels of survivin. Furthermore, we observed similar changes in HNSCC of the 2cKO mouse. In the human HNSCC tissue array, a loss of Tgfbr1 expression correlated with increased survivin levels. Chemopreventive rapamycin treatment significantly delayed the onset of the HNSCC tumors and prolonged survival in 2cKO mice. In addition, we also found that rapamycin had a therapeutic effect on squamous cell carcinomas in these mice. In 2cKO HNSCC tongue tumors, rapamycin treatment induced apoptosis, inhibited cell proliferation and phosphorylation of Akt and S6, and decreased survivin expression. CONCLUSIONS These findings indicate that tumorigenesis in 2cKO HNSCC is associated with activation of the Akt/mTOR/survivin pathway, and inhibition of this pathway by rapamycin treatment successfully ameliorates the onset and progression of tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Jun Sun
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
212
|
Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Sobral LM, Uyemura SA, Tajara EH, Silvio Gutkind J, Curti C. SET protein accumulates in HNSCC and contributes to cell survival: antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol 2012; 48:1106-13. [PMID: 22739068 DOI: 10.1016/j.oraloncology.2012.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. MATERIALS AND METHODS SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. RESULTS SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. CONCLUSION SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-930 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Epithelial to mesenchymal transition (EMT) biomarkers--E-cadherin, beta-catenin, APC and Vimentin--in oral squamous cell carcinogenesis and transformation. Oral Oncol 2012; 48:997-1006. [PMID: 22704062 DOI: 10.1016/j.oraloncology.2012.05.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate immunohistochemical (IHC) analysis of E-cadherin, β-catenin, APC and Vimentin for prediction of oral malignant transformation. MATERIALS AND METHODS Immunoreactivity for E-cadherin, β-catenin, APC and Vimentin were determined for 100 oral biopsies classified as normal, mild dysplasia, moderate-severe dysplasia or OSCC, using the IHC scoring or label index scoring systems. Co-expression of biomarkers and correlation with histopathological grading was analysed. Vimentin and E-cadherin results were confirmed by RT-PCR and further investigated in vitro using a novel organotypic cell invasion model based on human dermis. RESULTS A trend for decreased E-cadherin expression but increased Vimentin expression that correlated with increased disease severity was observed. Epithelial β-catenin localisation shifted from being membranous to cytoplasmic/nuclear with increased histopathological grade severity. Relative to normal, APC expression was decreased for mild dysplasia but increased for OSCC. Co-expression of β-catenin, APC and Vimentin (Spearman rank correlation) suggests interdependence of these molecules and involvement of the Wnt pathway in oral malignant transformation. Relative mRNA expression of E-cadherin for dysplasia and OSCC were less than 1% of normal tissue values, and mRNA expression of Vimentin was 3.7 times higher for OSCC than normal. After 63 days of organotypic culture neoplastic oral keratinocytes (PE/CA-PJ15) lost expression of E-cadherin and gained expression of Vimentin relative to their non-invasive counterparts in the epithelium. CONCLUSIONS Trends in the expression of EMT markers - E-cadherin, β-catenin, APC and Vimentin - suggest their involvement in oral carcinogenesis via Wnt pathway dysregulation. Aberrant expression of β-catenin, APC and Vimentin are potential markers of malignant transformation.
Collapse
|
214
|
Schulz BL, Cooper-White J, Punyadeera CK. Saliva proteome research: current status and future outlook. Crit Rev Biotechnol 2012; 33:246-59. [DOI: 10.3109/07388551.2012.687361] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
215
|
Role of phosphatidylinositol-3-kinase pathway in head and neck squamous cell carcinoma. JOURNAL OF ONCOLOGY 2012; 2012:450179. [PMID: 22666248 PMCID: PMC3362130 DOI: 10.1155/2012/450179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/14/2012] [Indexed: 01/04/2023]
Abstract
Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field.
Collapse
|
216
|
Towle R, Garnis C. Methylation-mediated molecular dysregulation in clinical oral malignancy. JOURNAL OF ONCOLOGY 2012; 2012:170172. [PMID: 22645611 PMCID: PMC3356707 DOI: 10.1155/2012/170172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/18/2012] [Accepted: 02/19/2012] [Indexed: 12/11/2022]
Abstract
Herein we provide a concise review of the state of methylation research as it pertains to clinical oral cancerous and precancerous tissues. We provide context for ongoing research efforts in this field and describe technologies that are presently being applied to analyze clinical specimens. We also discuss the various recurrent methylation changes that have been reported for oral malignancy (including those genes frequently silenced by promoter methylation and the small RNAs with activity modulated by methylation changes) and describe surrogate disease markers identified via epigenetic analysis of saliva and blood specimens from patients with oral cancer.
Collapse
Affiliation(s)
- Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- Division of Otolaryngology, Department of Surgery, Faculty of Medicine, University of British Columbia, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| |
Collapse
|
217
|
Salgueiredo-Giudice F, Corrêa-Abrahão A, Fornias-Sperandio F, da-Costa-Dal-Vechio AM, dos-Santos-Pinto-Junior D. An in vitro study showing the three-dimensional microenvironment influence over the behavior of head and neck squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2012; 17:e377-82. [PMID: 22143720 PMCID: PMC3476095 DOI: 10.4317/medoral.17538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/11/2011] [Indexed: 12/15/2022] Open
Abstract
Objectives: The Head and Neck Squamous Cell Carcinoma (HNSCC) ranks sixth worldwide. The mechanisms of growth, invasion and metastasis of this pathology are extensively studied and generally related to specific variations in signaling pathways like the PI3K-Akt; however most of these competent studies have been performed bidimensionally, which may hide important questions. This study sought to analyze the influence of the microenvironment upon the behavior of HNSCC.
Study Design: The status of pAkt, NF-κB and Cyclin D1 proteins was accessed through immunofluorescence and western blot methods in HNSCC cell lines originating from tongue, pharynx and metastatic lymph node when submitted to a three-dimensional culture model utilizing a matrix system. A bidimensional culture model (monolayer) was used as control.
Results: The HNSCC cell lines cultured three-dimensionally exhibited a growth pattern characterized by small isolated islands, different from the control group. When the three-dimensional model was applied, two of the studied cell lines showed the same expression pattern as the bidimensional model regarding nuclear or cytoplasmatic localization, as well as reduction of all protein levels; however, the cell line originated from tongue, which specially has the epidermal growth factor receptor constitutively activated, demonstrated nuclear translocation of pAkt and also an increase in the levels of Cyclin D1.
Conclusions: The results suggest the influence of the microenvironment upon the behavior of HNSCC cells due to the changed expression of proteins related to tumor growth and cellular invasion. Furthermore, intrinsically genetic conditions also played important roles over the cells, despite the culture model employed.
Key words:Carcinoma, squamous cell, head and neck neoplasms, extracellular matrix, cell culture techniques, signal transduction.
Collapse
|
218
|
Degen M, Natarajan E, Barron P, Widlund HR, Rheinwald JG. MAPK/ERK-dependent translation factor hyperactivation and dysregulated laminin γ2 expression in oral dysplasia and squamous cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2462-78. [PMID: 22546478 DOI: 10.1016/j.ajpath.2012.02.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 01/13/2023]
Abstract
Lesions displaying a variety of dysplastic changes precede invasive oral and epidermal squamous cell carcinoma (SCC); however, there are no histopathological criteria for either confirming or staging premalignancy. SCCs and dysplasias frequently contain cells that abnormally express the γ2 subunit of laminin-332. We developed cell culture models to investigate γ2 dysregulation. Normal human keratinocytes displayed density-dependent repression of γ2, whereas premalignant keratinocytes and SCC cells overexpressed γ2 and secreted laminin assembly intermediates. Neoplastic cells had hyperactive EGFR/MAPK(ERK) signaling coordinate with overexpressed γ2, and EGFR and MEK inhibitors normalized γ2 expression. Keratinocytes engineered to express HPV16 E6 or activated mutant HRAS, cRAF1, or MEK1 lost density repression of γ2 and shared with neoplastic cells signaling abnormalities downstream of ERK, including increased phosphorylation of S6 and eIF4 translation factors. Notably, qPCR results revealed that γ2 overexpression was not accompanied by increased γ2 mRNA levels, consistent with ERK-dependent, eIF4B-mediated translation initiation of the stem-looped, 5'-untranslated region of γ2 mRNA in neoplastic cells. Inhibitors of MEK, but not of TORC1/2, blocked S6 and eIF4B phosphorylation and γ2 overexpression. Immunostaining of oral dysplasias identified γ2 overexpression occurring within fields of basal cells that had elevated p-S6 levels. These results reveal a causal relationship between ERK-dependent translation factor activation and laminin γ2 dysregulation and identify new markers of preinvasive neoplastic change during progression to SCC.
Collapse
Affiliation(s)
- Martin Degen
- Department of Dermatology, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
219
|
Kostareli E, Holzinger D, Hess J. New Concepts for Translational Head and Neck Oncology: Lessons from HPV-Related Oropharyngeal Squamous Cell Carcinomas. Front Oncol 2012; 2:36. [PMID: 22655271 PMCID: PMC3356125 DOI: 10.3389/fonc.2012.00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/27/2012] [Indexed: 12/31/2022] Open
Abstract
Human papillomavirus (HPV) infection is well established as an etiological agent responsible for a number of pathologies affecting the stratified epithelia of skin and anogenital sites. More recently, the infection by (mucosal) high-risk HPV types has also been found to be causally associated with squamous cell carcinoma in the head and neck region (HNSCC), especially in the oropharynx. Intriguingly, HPV-related oropharyngeal squamous cell carcinomas (OPSCC) represent a distinct clinical entity compared to HPV-negative tumors with particular regard to treatment–response and survival outcome. The association between HPV infection and OPSCC may therefore have important implications for the prevention and/or treatment of OPSCC. The improved survival of patients with HPV-related tumors also raises the question, as to whether a better understanding of the underlying differences may help to identify new therapeutic concepts that could be used in targeted therapy for HPV-negative and improved therapy for HPV-positive cancers. This review summarizes the most recent advances in our understanding of the molecular principles of HPV-related OPSCC, mainly based on functional genomic approaches, but also emphasizes the significant role played by the tumor microenvironment, especially the immune system, for improved clinical outcome and differential sensitivity of HPV-related tumors to current treatment options.
Collapse
Affiliation(s)
- Efterpi Kostareli
- Department of Otolaryngology, Head and Neck Surgery, Research Group Experimental Head and Neck Oncology, University Hospital Heidelberg Heidelberg, Germany
| | | | | |
Collapse
|
220
|
Vitale-Cross L, Molinolo AA, Martin D, Younis RH, Maruyama T, Patel V, Chen W, Schneider A, Gutkind JS. Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev Res (Phila) 2012; 5:562-73. [PMID: 22467081 DOI: 10.1158/1940-6207.capr-11-0502] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. The recent identification of the mTOR complex 1 (mTORC1) signaling pathway as a highly prevalent molecular signature underlying HNSCC pathogenesis has provided the foundation to search for novel therapeutic approaches to prevent and treat HNSCC. Here, we asked whether metformin, the most widely used medication for the treatment of type II diabetes, which acts in part by stimulating the AMP-activated protein kinase (AMPK) signaling pathway thereby reducing mTORC1 activity, may lower the risk of HNSCC development. Indeed, we show that metformin reduces the growth of HNSCC cells and diminishes their mTORC1 activity by both AMPK-dependent and -independent mechanisms. We also optimized an oral-specific carcinogenesis mouse model that results in the accumulation of multiple oral premalignant lesions at the end of the carcinogen exposure, some of which then spontaneously progress into HNSCC. Using this mouse model, we observed that metformin specifically inhibits mTORC1 in the basal proliferating epithelial layer of oral premalignant lesions. Remarkably, metformin prevented the development of HNSCC by reducing significantly the size and number of carcinogen-induced oral tumoral lesions and by preventing their spontaneous conversion to squamous cell carcinomas. Collectively, our data underscore the potential clinical benefits of using metformin as a targeted chemopreventive agent in the control of HNSCC development and progression.
Collapse
Affiliation(s)
- Lynn Vitale-Cross
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Yu Z, Sato S, Trackman PC, Kirsch KH, Sonenshein GE. Blimp1 activation by AP-1 in human lung cancer cells promotes a migratory phenotype and is inhibited by the lysyl oxidase propeptide. PLoS One 2012; 7:e33287. [PMID: 22438909 PMCID: PMC3305320 DOI: 10.1371/journal.pone.0033287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/10/2012] [Indexed: 01/04/2023] Open
Abstract
B lymphocyte-induced maturation protein 1 (Blimp1) is a master regulator of B cell differentiation, and controls migration of primordial germ cells. Recently we observed aberrant Blimp1 expression in breast cancer cells resulting from an NF-κB RelB to Ras signaling pathway. In order to address the question of whether the unexpected expression of Blimp1 is seen in other epithelial-derived tumors, we selected lung cancers as they are frequently driven by Ras signaling. Blimp1 was detected in all five lung cancer cell lines examined and shown to promote lung cancer cell migration and invasion. Interrogation of microarray datasets demonstrated elevated BLIMP1 RNA expression in lung adenocarcinoma, pancreatic ductal carcinomas, head and neck tumors as well as in glioblastomas. Involvement of Ras and its downstream kinase c-Raf was confirmed using mutant and siRNA strategies. We next addressed the issue of mechanism of Blimp1 activation in lung cancer. Using knockdown and ectopic expression, the role of the Activator Protein (AP)-1 family of transcription factors was demonstrated. Further, chromatin immunoprecipitation assays confirmed binding to identified AP-1 elements in the BLIMP1 promoter of ectopically expressed c-Jun and of endogenous AP-1 subunits following serum stimulation. The propeptide domain of lysyl oxidase (LOX-PP) was identified as a tumor suppressor, with ability to reduce Ras signaling in lung cancer cells. LOX-PP reduced expression of Blimp1 by binding to c-Raf and inhibiting activation of AP-1, thereby attenuating the migratory phenotype of lung cancer cells. Thus, Blimp1 is a mediator of Ras/Raf/AP-1 signaling that promotes cell migration, and is repressed by LOX-PP in lung cancer.
Collapse
Affiliation(s)
- Ziyang Yu
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Seiichi Sato
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Philip C. Trackman
- Division of Oral Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Kathrin H. Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gail E. Sonenshein
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
222
|
Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S, Patel V, Seiwert TY, Gutkind JS. mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res 2012; 18:2558-68. [PMID: 22409888 DOI: 10.1158/1078-0432.ccr-11-2824] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The incidence of head and neck squamous cell carcinomas (HNSCC) associated with human papillomavirus (HPV) infection has increased over the past decades in the United States. We aimed at examining the global impact of HPV-associated HNSCC and whether the established key role of mTOR activation in HNSCC is also observed in HPV(+) HNSCC lesions, thereby providing novel treatment options for HPV-associated HNSCC patients. EXPERIMENTAL DESIGN An international HNSCC tissue microarray (TMA) was used to analyze the expression of p16(INK4A), a surrogate for HPV infection, and Akt-mTOR pathway activation. Results were confirmed in a large collection of HPV(-) and HPV(+) HNSCC cases and in a cervical cancer (CCSCC) TMA. Observations were validated in HNSCC and CCSCC-derived cell lines, which were xenografted into immunodeficient mice for tumorigenesis assays. RESULTS Approximately 20% of all HNSCC lesions could be classified as HPV(+), irrespective of their country of origin. mTOR pathway activation was observed in most HPV(+) HNSCC and CCSCC lesions and cell lines. The preclinical efficacy of mTOR inhibition by rapamycin and RAD001 was explored in HPV(+) HNSCC and CCSCC tumor xenografts. Both mTOR inhibitors effectively decreased mTOR activity in vivo and caused a remarkable decrease in tumor burden. These results emphasize the emerging global impact of HPV-related HNSCCs and indicate that the activation of the mTOR pathway is a widespread event in both HPV(-) and HPV-associated HNSCC and CCSCC lesions. CONCLUSIONS The emerging results may provide a rationale for the clinical evaluation of mTOR inhibitors as a molecular targeted approach for the treatment of HPV-associated malignancies.
Collapse
Affiliation(s)
- Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
The human HECA interacts with cyclins and CDKs to antagonize Wnt-mediated proliferation and chemoresistance of head and neck cancer cells. Exp Cell Res 2012; 318:489-99. [DOI: 10.1016/j.yexcr.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 01/01/2023]
|
224
|
Acuña Sanhueza GA, Faller L, George B, Koffler J, Misetic V, Flechtenmacher C, Dyckhoff G, Plinkert PP, Angel P, Simon C, Hess J. Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells. BMC Cancer 2012; 12:72. [PMID: 22339894 PMCID: PMC3342895 DOI: 10.1186/1471-2407-12-72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. Methods We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. Results One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFκB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. Conclusion We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.
Collapse
Affiliation(s)
- Gustavo A Acuña Sanhueza
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Monascus purpureus-fermented products and oral cancer: a review. Appl Microbiol Biotechnol 2012; 93:1831-42. [DOI: 10.1007/s00253-012-3891-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 11/26/2022]
|
226
|
Murugan AK, Munirajan AK, Tsuchida N. Ras oncogenes in oral cancer: the past 20 years. Oral Oncol 2012; 48:383-92. [PMID: 22240207 DOI: 10.1016/j.oraloncology.2011.12.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022]
Abstract
Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
227
|
Motahhary P, Baghaie F, Mamishi S, Pourakbari B, Mahmoudi S, Shakib PA. Mutational Status of FGFR3 in Oral Squamous Cell Carcinoma. JOURNAL OF DENTISTRY (TEHRAN, IRAN) 2012; 9:7-13. [PMID: 22924096 PMCID: PMC3422066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/21/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Head and neck squamous cell carcinoma, including oral squamous cell carcinoma (OSCC) is the sixth most common cancer in the human population. Despite significant efforts committed in treatment of OSCC the overall survival rate of OSCC has not improved significantly. Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are responsible for some human cancers, including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Therefore, FGFR3 gene may play a role in epithelial biology and mutations of FGFR3 gene may contribute to the development of OSCC. MATERIALS AND METHODS In this cross-sectional study, DNA was extracted and purified from snap frozen tissue biopsy sections of 20 OSCC cases. Exons 7 and 15 were amplified by polymerase chain reaction (PCR) and sequenced in both directions. RESULTS In three cases silent mutations were identified in exon 7 (882 T to C) which may be introduced as Single Nucleotide Polymorphism (SNP) and no mutation was identified in exon 15. CONCLUSION FGFR3 gene mutation in exon 7 and 15 has no significant role in the development and progression of OSCC. Analyzing other exons or considering other advanced gene mutation assessment techniques may clarify the role of this receptor mutation in OSCC pathogenesis.
Collapse
Affiliation(s)
- P. Motahhary
- Assistant Professor, Dental Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - F. Baghaie
- Associated Professor, Oral and Maxillofacial Pathology Department, Dental School of Tehran University of Medical Sciences, Tehran, Iran
| | - S. Mamishi
- Professor, Pediatrics Infectious Diseases Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - B. Pourakbari
- Pediatrics Infectious Diseases Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - S. Mahmoudi
- Pediatrics Infectious Diseases Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - P. Amini Shakib
- Assistant Professor, Oral and Maxillofacial Pathology Department, Dental School of Babol University of Medical Sciences, Babol, Iran,Corresponding author: P. Amini Shakib, Department of Oral and Maxillofacial Pathology, Dental School of Babol University of Medical Sciences, Babol, Iran,
| |
Collapse
|
228
|
Kapoor V, Zaharieva MM, Das SN, Berger MR. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 2011; 319:39-48. [PMID: 22202640 DOI: 10.1016/j.canlet.2011.12.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/27/2022]
Abstract
We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
229
|
Allen CT, Judd NP, Bui JD, Uppaluri R. The clinical implications of antitumor immunity in head and neck cancer. Laryngoscope 2011; 122:144-57. [DOI: 10.1002/lary.21913] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
230
|
Gaur P, Mittal M, Mohanti BK, Das SN. Functional genetic variants of TGF-β1 and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Oncol 2011; 47:1117-21. [PMID: 21865076 DOI: 10.1016/j.oraloncology.2011.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/14/2011] [Accepted: 07/29/2011] [Indexed: 11/24/2022]
Abstract
Transforming growth factor (TGF)-β1, the most abundant isoform of TGF-β have been implicated in various stages of carcinogenesis such as epithelial to mesenchymal transition, enhanced expression of metalloproteases, down-regulation of cellular adhesion molecule, increased tumor motility and angiogenesis as well as local and systemic immunosuppression leading to a more aggressive and metastatic behavior. We assessed the association of TGF-β1 functional genetic polymorphisms at codon 10 (869 T>C) and 25 (915 G>C) of exon 1 in 140 patients with tobacco-related oral squamous cell carcinoma (OSCC) and 120 normal subjects by PCR-RFLP. The frequency of 869 CC genotype and C allele were significantly higher in patients as compared to controls (P(c), 0.024 and 0.0004, respectively) while no significant difference was observed in the frequency of 915 CC genotype and C allele. In logistic regression analysis CC genotype (OR, 3.87; 95% CI, 1.78-8.41) and C allele (OR, 2.20; 95% CI 1.51-3.20) appeared as susceptible while TT genotype and T allele as protective. In addition C(869)-C(915) haplotype with OR of 2.48 at 95% CI, 1.51-4.06 significantly (P=0.0003) increased the risk of tobacco-related OSCC in Asian Indians.
Collapse
Affiliation(s)
- Poonam Gaur
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | | | | | | |
Collapse
|
231
|
Judd NP, Winkler AE, Murillo-Sauca O, Brotman JJ, Law JH, Lewis JS, Dunn GP, Bui JD, Sunwoo JB, Uppaluri R. ERK1/2 regulation of CD44 modulates oral cancer aggressiveness. Cancer Res 2011; 72:365-74. [PMID: 22086849 DOI: 10.1158/0008-5472.can-11-1831] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carcinogen-induced oral cavity squamous cell carcinoma (OSCC) incurs significant morbidity and mortality and constitutes a global health challenge. To gain further insight into this disease, we generated cell line models from 7,12-dimethylbenz(a)anthracene-induced murine primary OSCC capable of tumor formation upon transplantation into immunocompetent wild-type mice. Whereas several cell lines grew rapidly and were capable of metastasis, some grew slowly and did not metastasize. Aggressively growing cell lines displayed ERK1/2 activation, which stimulated expression of CD44, a marker associated with epithelial to mesenchymal transition and putative cancer stem cells. MEK (MAP/ERK kinase) inhibition upstream of ERK1/2 decreased CD44 expression and promoter activity and reduced cell migration and invasion. Conversely, MEK1 activation enhanced CD44 expression and promoter activity, whereas CD44 attenuation reduced in vitro migration and in vivo tumor formation. Extending these findings to freshly resected human OSCC, we confirmed a strict relationship between ERK1/2 phosphorylation and CD44 expression. In summary, our findings identify CD44 as a critical target of ERK1/2 in promoting tumor aggressiveness and offer a preclinical proof-of-concept to target this pathway as a strategy to treat head and neck cancer.
Collapse
Affiliation(s)
- Nancy P Judd
- Department of Otolaryngology and John Cochran VA Medical Center, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene 2011; 31:3322-32. [PMID: 22037217 DOI: 10.1038/onc.2011.494] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The molecular mechanisms that contribute to the initiation and progression of head and neck squamous cell carcinoma (HNSCC) have not been completely delineated. Our observations indicate that defects in the transforming growth factor-β and PI3K/Akt signaling pathways are common in human HNSCCs. Conditional activation of the PI3K/Akt pathway due to Pten deletion in the mouse head and neck epithelia gives rise to hyperproliferation, but only a few lesions progress to HNSCC. However, Pten-deficient mice developed full-penetrance HNSCC in combination with type I TGF-β receptor (Tgfbr1) deletion. Molecular analysis revealed enhanced cell proliferation, decreased apoptosis, and increased expression of CCND1 in the basal layer of the head and neck epithelia, as well as in the tumors of Tgfbr1/Pten double conditional knockout (2cKO) mice. Furthermore, neoplastic transformation involves senescence evasion, and is associated with an increased number of putative cancer stem cells. In addition, the nuclear factor-κB pathway activation, myeloid-derived suppressor cell infiltration, angiogenesis and immune suppression in the tumor microenvironment, all of which are characteristics of human HNSCCs, contribute significantly to head and neck carcinogenesis in 2cKO mice. These tumors display pathology and multiple molecular alterations resembling human HNSCCs. This suggests that the Tgfbr1/Pten 2cKO mouse model is suitable for preclinical intervention, and that it has significant implications in the development of diagnostic cancer biomarkers and effective strategies for prevention and treatment of HNSCCs.
Collapse
|
233
|
Kokorina NA, Lewis JS, Zakharkin SO, Krebsbach PH, Nussenbaum B. rhBMP-2 has adverse effects on human oral carcinoma cell lines in vivo. Laryngoscope 2011; 122:95-102. [PMID: 21997819 DOI: 10.1002/lary.22345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/09/2011] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS To establish the relevance of the bone morphogenetic protein (BMP) signaling pathway in human oral squamous cell carcinoma (OSCCA) cell lines and determine if there is a biologic impact of stimulating this pathway with recombinant human (rh) BMP-2. STUDY DESIGN In vitro laboratory investigations and in vivo analysis using an orthotopic animal model for oral cancer. METHODS Gene expression profiles for BMP-2 and components of the BMP-signaling pathway were determined using reverse transcriptase-polymerase chain reaction. In vivo effects were evaluated using Kaplan-Meier survival analysis and studying histopathologic changes in established tumor xenografts with or without rhBMP-2 pretreatment. A phosphokinase array was used to detect levels of activation in signaling kinases. RESULTS The BMP-2 gene was expressed in 90% of the 30 OSCCA cell lines tested. Gene expression of all components of the BMP-signaling pathway was highly conserved. Tumor xenografts established with rhBMP-2-treated cells showed more rapid local growth that resulted in worse animal survival as compared to the control group. These tumors had a more poorly differentiated morphology. Changes in protein kinases suggested interactions of BMP-2 signaling with the Wnt-β-catenin, and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. CONCLUSIONS Human OSCCA cell lines frequently express BMP-2 and all necessary components of the BMP-signaling pathway. Exogenous treatment of human OSCCA cell lines with rhBMP-2 prior to engraftment in an orthotopic animal model caused the subsequent tumors to be more locally aggressive with worse survival. Continued caution should be used for considering rhBMP-2 for reconstruction of bone defects in oral cancer patients.
Collapse
Affiliation(s)
- Natalia A Kokorina
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
234
|
Sommer G, Rossa C, Chi AC, Neville BW, Heise T. Implication of RNA-binding protein La in proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. PLoS One 2011; 6:e25402. [PMID: 22016766 PMCID: PMC3189910 DOI: 10.1371/journal.pone.0025402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 09/02/2011] [Indexed: 01/22/2023] Open
Abstract
The 5-year survival rate for oral cavity cancer is poorer than for breast, colon or prostate cancer, and has improved only slightly in the last three decades. Hence, new therapeutic strategies are urgently needed. Here we demonstrate by tissue micro array analysis for the first time that RNA-binding protein La is significantly overexpressed in oral squamous cell carcinoma (SCC). Within this study we therefore addressed the question whether siRNA-mediated depletion of the La protein may interfere with known tumor-promoting characteristics of head and neck SCC cells. Our studies demonstrate that the La protein promotes cell proliferation, migration and invasion of lymph node-metastasized hypopharyngeal SCC cells. We also reveal that La is required for the expression of β-catenin as well as matrix metalloproteinase type 2 (MMP-2) within these cells. Taken together these data suggest a so far unknown function of the RNA-binding protein La in promoting tumor progression of head and neck SCC.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department of Biochemistry and Molecular Biology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America.
| | | | | | | | | |
Collapse
|
235
|
Olthof NC, Straetmans JMJAA, Snoeck R, Ramaekers FCS, Kremer B, Speel EJM. Next-generation treatment strategies for human papillomavirus-related head and neck squamous cell carcinoma: where do we go? Rev Med Virol 2011; 22:88-105. [PMID: 21984561 DOI: 10.1002/rmv.714] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022]
Abstract
Oncogenic human papillomavirus (HPV) is currently recognised as a major risk factor for the development of head and neck squamous cell carcinomas (HNSCC). HPV is mostly detected in tumours arising from the oropharynx and more specifically from the tonsil. HPV-related tumours display clinical and molecular characteristics that are distinct from HPV-unrelated tumours, which are generally induced by alcohol and tobacco abuse. Detection of biologically active HPV in HNSCC has prognostic relevance, which warrants the separate classification of HPV-induced tumours and is a prerequisite for further optimisation of treatment protocols for this distinct group. Current guidelines for the treatment of oropharyngeal squamous cell carcinoma (OPSCC) have not incorporated specific treatment modalities for HPV-related tumours. The development of such treatment options is still in a preclinical phase or in early clinical trials. Recent data on treatment response of OPSCC have been obtained by retrospectively analysing HPV-status and indicate that patients with HPV-related tumours show a favourable prognosis, independent of the type of treatment. These patients may benefit from de-intensified treatment, which should be assessed in prospective clinical trials. The development and future use of new antiviral and immunomodulatory therapeutics may be instrumental in this approach to improve survival rates and decrease disease-and-treatment-related morbidity. In this review we will focus on present therapeutic HPV-targeting strategies and discuss future directions for de-intensified treatment of HPV-positive HNSCC.
Collapse
Affiliation(s)
- Nadine C Olthof
- Departments of Otorhinolaryngology and Head and Neck Surgery, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
236
|
Patel V, Marsh CA, Dorsam RT, Mikelis CM, Masedunskas A, Amornphimoltham P, Nathan CAO, Nathan CA, Singh B, Weigert R, Molinolo AA, Gutkind JS. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 2011; 71:7103-12. [PMID: 21975930 DOI: 10.1158/0008-5472.can-10-3192] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite our improved understanding of cancer, the 5-year survival rate for head and neck squamous cell carcinomas (HNSCC) patients remains relatively unchanged at 50% for the past three decades. HNSCCs often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. Among the multiple dysregulated molecular mechanism in HNSCCs, emerging basic, preclinical, and clinical findings support the importance of the mTOR signaling route in HNSCC progression. Indeed, we observed here that the activation of mTOR is a widespread event in clinical specimens of HNSCCs invading locoregional lymph nodes. We developed an orthotopic model of HNSCC consisting of the implantation of HNSCC cells into the tongues of immunocompromised mice. These orthotopic tumors spontaneously metastasize to the cervical lymph nodes, where the presence of HNSCC cells can be revealed by histologic and immunohistochemical evaluation. Both primary and metastatic experimental HNSCC lesions exhibited elevated mTOR activity. The ability to monitor and quantitate lymph node invasion in this model system enabled us to explore whether the blockade of mTOR could impact HNSCC metastasis. We found that inhibition of mTOR with rapamycin and the rapalog RAD001 diminished lymphangiogenesis in the primary tumors and prevented the dissemination of HNSCC cancer cells to the cervical lymph nodes, thereby prolonging animal survival. These findings may provide a rationale for the future clinical evaluation of mTOR inhibitors, including rapamycin and its analogues, as part of a molecular-targeted metastasis preventive strategy for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Zhang J, Wen HJ, Guo ZM, Zeng MS, Li MZ, Jiang YE, He XG, Sun CZ. TRB3 overexpression due to endoplasmic reticulum stress inhibits AKT kinase activation of tongue squamous cell carcinoma. Oral Oncol 2011; 47:934-9. [DOI: 10.1016/j.oraloncology.2011.06.512] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/19/2011] [Accepted: 06/25/2011] [Indexed: 11/29/2022]
|
238
|
Hoffmann TK, Trellakis S, Okulicz K, Schuler P, Greve J, Arnolds J, Bergmann C, Bas M, Lang S, Lehnerdt G, Brandau S, Mattheis S, Scheckenbach K, Finn OJ, Whiteside TL, Sonkoly E. Cyclin B1 expression and p53 status in squamous cell carcinomas of the head and neck. Anticancer Res 2011; 31:3151-3157. [PMID: 21965721 PMCID: PMC3721303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND The cyclin B1/CDC2 complex governs entry into mitosis by regulating the G(2)/M checkpoint, and it can be repressed by the tumor suppressor p53. We aimed to determine cyclin B1 expression in squamous cell carcinomas of the head and neck (SCCHN) and correlate it with p53 status and clinicopathological parameters. PATIENTS AND METHODS Cyclin B1 and p53 protein expression was analyzed by immunohistochemistry, and p53 mutation analyses were performed. RESULTS Cytoplasmic expression of cyclin B1 was found in all 26 SCCHN studied. In contrast, nuclear staining was seen in the basal layers of normal mucosa. A total of 46% of tumors showed high cyclin B1 expression. p53 was overexpressed in 53.8% of cases, and of these 79% carried a p53 gene mutation. High cyclin B1 expression significantly correlated with the high tumor grade, but not with gender, tumor size, nodal status, local tumor recurrence or p53 expression. CONCLUSION Cyclin B1 is frequently overexpressed in SCCHN, and its high expression is significantly associated with a high tumor grade. These data suggest that cyclin B1 may serve as a potential prognostic biomarker in SCCHN.
Collapse
Affiliation(s)
- Thomas K Hoffmann
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Phillips JM, Clark C, Herman-Ferdinandez L, Moore-Medlin T, Rong X, Gill JR, Clifford JL, Abreo F, Nathan CAO. Curcumin inhibits skin squamous cell carcinoma tumor growth in vivo. Otolaryngol Head Neck Surg 2011; 145:58-63. [PMID: 21493306 DOI: 10.1177/0194599811400711] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Squamous cell carcinoma (SCCa) has increased from 4% to 10% over 4 decades, stimulating interest in developing novel agents that slow sun-damaged skin progression. This is the first study evaluating the naturally occurring bioactive food compound curcumin on skin cancer xenografts. Low bioavailability of curcumin has slowed its transition to clinical trials. It is hypothesized that curcumin has growth-inhibitory effects through the TOR pathway and chemopreventive potential in skin SCCa where local application could bypass bioavailability problems. STUDY DESIGN A randomized experimental animal and laboratory study. SETTING Louisiana State University Health Sciences Center, Shreveport, Louisiana. SUBJECTS AND METHODS SCID mice were pretreated with 0, 5, or 15 mg of curcumin (n = 8 per group), 3 days prior to injecting 10⁶ SRB12-p9 skin SCCa cells in each flank, and were gavaged daily thereafter. Tumor volumes were measured and tumors were harvested on day 24 when mice were sacrificed. Immunohistochemical analysis of pS6 expression (n = 3 per group) and tumor volumes in the 3 groups were compared using 1-way analysis of variance and pairwise comparisons were determined with the Tukey t test if overall comparisons were significant. RESULTS Tumor volume increased 2.3 times faster in control mice compared with the group receiving 15 mg of curcumin (P = .0003). A significant difference in average tumor volumes was seen (P = .0012), especially with treatment of 15 mg of curcumin compared with control P = .0003). Curcumin inhibited S6 phosphorylation (P = .0027), suggest-ing inhibition of the MTOR pathway. CONCLUSION Curcumin appears to inhibit skin SCCa growth and blocks tumor progression by inhibiting pS6 even when gavage is used to deliver curcumin, indicating even more significant effects in future experiments with local application.
Collapse
Affiliation(s)
- Jeffrey M Phillips
- Department of Otolaryngology–Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Lingen MW, Pinto A, Mendes RA, Franchini R, Czerninski R, Tilakaratne WM, Partridge M, Peterson DE, Woo SB. Genetics/epigenetics of oral premalignancy: current status and future research. Oral Dis 2011; 17 Suppl 1:7-22. [PMID: 21382136 DOI: 10.1111/j.1601-0825.2011.01789.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Squamous cell carcinoma (SCC) of the oral and oropharyngeal region is the sixth most common malignancy in the world today. Despite numerous advances in treatment, long-term survival from this disease remains poor. Early detection can decrease both morbidity and mortality associated with this neoplasm. However, screening for potentially malignant disease is typically confounded by difficulty in discriminating between reactive/inflammatory lesions vs those lesions that are premalignant in nature. Furthermore, the histologic diagnosis of dysplasia can be subjective and is thus prone to a considerable range of interpretation. Similarly, no definitive, validated criteria exist for predicting which dysplastic lesions are most likely to progress to cancer over time. Given this state of science, the presence of dysplasia can only be used to indicate that an oral lesion may have an increased risk of malignant transformation. Molecular biomarkers capable of identifying the subset of lesions likely to progress to cancer are required to eliminate this clinical diagnostic dilemma. The purpose of this review is to assess the current state of knowledge regarding genetic/epigenetic alterations observed in oral mucosal premalignancy. In addition, recommendations for future research studies directed at defining the predictive capacity of specific biomarkers in this modeling are presented.
Collapse
Affiliation(s)
- M W Lingen
- Department of Pathology, The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Shinriki S, Jono H, Ueda M, Ota K, Ota T, Sueyoshi T, Oike Y, Ibusuki M, Hiraki A, Nakayama H, Shinohara M, Ando Y. Interleukin-6 signalling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma. J Pathol 2011; 225:142-50. [DOI: 10.1002/path.2935] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 12/23/2022]
|
242
|
Marshall ME, Hinz TK, Kono SA, Singleton KR, Bichon B, Ware KE, Marek L, Frederick BA, Raben D, Heasley LE. Fibroblast growth factor receptors are components of autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin Cancer Res 2011; 17:5016-25. [PMID: 21673064 DOI: 10.1158/1078-0432.ccr-11-0050] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that a fibroblast growth factor (FGF) receptor (FGFR) signaling pathway drives growth of lung cancer cell lines of squamous and large cell histologies. Herein, we explored FGFR dependency in cell lines derived from the tobacco-related malignancy, head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN FGF and FGFR mRNA and protein expression was assessed in nine HNSCC cell lines. Dependence on secreted FGF2 for cell growth was tested with FP-1039, an FGFR1-Fc fusion protein. FGFR and epidermal growth factor receptor (EGFR) dependence was defined by sensitivity to multiple inhibitors selective for FGFRs or EGFR. RESULTS FGF2 was expressed in eight of the nine HNSCC cell lines examined. Also, FGFR2 and FGFR3 were frequently expressed, whereas only two lines expressed FGFR1. FP-1039 inhibited growth of HNSCC cell lines expressing FGF2, identifying FGF2 as an autocrine growth factor. FGFR inhibitors selectively reduced in vitro growth and extracellular signal-regulated kinase signaling in three HNSCC cell lines, whereas three distinct lines exhibited responsiveness to both EGFR and FGFR inhibitors. Combinations of these drugs yielded additive growth inhibition. Finally, three cell lines were highly sensitive to EGFR tyrosine kinase inhibitors (TKI) with no contribution from FGFR pathways. CONCLUSIONS FGFR signaling was dominant or codominant with EGFR in six HNSCC lines, whereas three lines exhibited little or no role for FGFRs and were highly EGFR dependent. Thus, the HNSCC cell lines can be divided into subsets defined by sensitivity to EGFR and FGFR-specific TKIs. FGFR inhibitors may represent novel therapeutics to deploy alone or in combination with EGFR inhibitors in HNSCC.
Collapse
Affiliation(s)
- Marianne E Marshall
- Departments of Craniofacial Biology and Radiation Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Ambrosio EP, Drigo SA, Bérgamo NA, Rosa FE, Bertonha FB, de Abreu FB, Kowalski LP, Rogatto SR. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas. Histopathology 2011; 59:81-9. [PMID: 21668474 DOI: 10.1111/j.1365-2559.2011.03885.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS This study aimed to evaluate the copy number alteration on 2q24, its association with ACVR1 transcript expression and the prognostic value of these data in head and neck squamous cell carcinomas. METHODS AND RESULTS Twenty-eight samples of squamous cell carcinoma were evaluated by fluorescence in situ hybridization (FISH) using the probes RP11-546J1 (2q24) and RP11-21P18 (internal control). Significant gains at 2q24 were detected in most cases at frequencies varying from 3 to 35%. ACVR1 gains and amplifications were associated with longer overall survival (P = 0.022). ACVR1 mRNA expression analysis in 78 cases revealed overexpression in 44% (34 of 78) of these tumours, suggesting that gene copy number alterations could be involved in gene overexpression. In laryngeal carcinomas, overexpression of ACVR1 mRNA levels was associated with longer overall survival (P = 0.013). Multivariate analysis revealed that ACVR1 is an independent prognostic marker in laryngeal carcinomas (P = 0.012, hazard ratio = 0.165, 95% confidence interval =0.041-0.668). CONCLUSIONS These findings suggest that copy number alterations at 2q24 can be involved in ACVR1 overexpression, which is associated with longer overall survival in laryngeal carcinomas. To our knowledge, this is the first report indicating the relevance of ACVR1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Eliane P Ambrosio
- Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Receptor-tyrosine-kinase-targeted therapies for head and neck cancer. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:982879. [PMID: 21776391 PMCID: PMC3135278 DOI: 10.1155/2011/982879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/05/2011] [Indexed: 02/01/2023]
Abstract
Molecular therapeutics for treating epidermal growth factor receptor-(EGFR-) expressing cancers are a specific method for treating cancers compared to general cell loss with standard cytotoxic therapeutics. However, the finding that resistance to such therapy is common in clinical trials now dampens the initial enthusiasm over this targeted treatment. Yet an improved molecular understanding of other receptor tyrosine kinases known to be active in cancer has revealed a rich network of cross-talk between receptor pathways with a key finding of common downstream signaling pathways. Such cross talk may represent a key mechanism for resistance to EGFR-directed therapy. Here we review the interplay between EGFR and Met and the type 1 insulin-like growth factor receptor (IGF-1R) tyrosine kinases, as well as their contribution to anti-EGFR therapeutic resistance in the context of squamous cell cancer of the head and neck, a tumor known to be primarily driven by EGFR-related oncogenic signals.
Collapse
|
245
|
Schafer JM, Peters DE, Morley T, Liu S, Molinolo AA, Leppla SH, Bugge TH. Efficient targeting of head and neck squamous cell carcinoma by systemic administration of a dual uPA and MMP-activated engineered anthrax toxin. PLoS One 2011; 6:e20532. [PMID: 21655226 PMCID: PMC3105081 DOI: 10.1371/journal.pone.0020532] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/04/2011] [Indexed: 01/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although considerable progress has been made in elucidating the etiology of the disease, the prognosis for individuals diagnosed with HNSCC remains poor, underscoring the need for development of additional treatment modalities. HNSCC is characterized by the upregulation of a large number of proteolytic enzymes, including urokinase plasminogen activator (uPA) and an assortment of matrix metalloproteinases (MMPs) that may be expressed by tumor cells, by tumor-supporting stromal cells or by both. Here we explored the use of an intercomplementing anthrax toxin that requires combined cell surface uPA and MMP activities for cellular intoxication and specifically targets the ERK/MAPK pathway for the treatment of HNSCC. We found that this toxin displayed strong systemic anti-tumor activity towards a variety of xenografted human HNSCC cell lines by inducing apoptotic and necrotic tumor cell death, and by impairing tumor cell proliferation and angiogenesis. Interestingly, the human HNSCC cell lines were insensitive to the intercomplementing toxin when cultured ex vivo, suggesting that either the toxin targets the tumor-supporting stromal cell compartment or that the tumor cell requirement for ERK/MAPK signaling differs in vivo and ex vivo. This intercomplementing toxin warrants further investigation as an anti-HNSCC agent.
Collapse
Affiliation(s)
- Jeffrey M. Schafer
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diane E. Peters
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas Morley
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shihui Liu
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alfredo A. Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
246
|
Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. Odontology 2011; 100:156-63. [PMID: 21607591 DOI: 10.1007/s10266-011-0033-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 04/28/2011] [Indexed: 12/15/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is associated with resistance to chemotherapy and radiotherapy, advanced tumor stage, invasion, metastasis and poor prognosis in malignant tumors. EGFR, therefore, has been an attractive molecular target for chemotherapy. However, the results of clinical studies using inhibitors of its kinase activity have not been promising because the response rates were at most 20%. Sodium-glucose co-transporter 1 (SGLT1) is a membrane protein that mediates the transport of glucose across cellular membranes. EGFR physically associates with and stabilizes SGLT1 to promote glucose uptake into cancer cells through a kinase-independent process. The purpose of this study was to investigate the coexpression of SGLT1 and EGFR and its relationships with clinicopathological features in oral squamous cell carcinoma (OSCC). SGLT1 and EGFR were detected in all OSCC cell lines, and the expression levels of SGLT1 were significantly correlated with those of EGFR. Pearson product-moment correlation coefficient of SGLT1 and EGFR was 0.89 (P = 0.016). The immunohistochemical study using the surgical specimens in 52 patients with tongue SCC also showed a significant correlation between SGLT1 and EGFR. Moreover, SGLT1/EGFR expression was inversely related to tumor differentiation among the 5 clinicopathological factors (P = 0.004). SGLT1/EGFR coexpression might be required in the de-differentiation of OSCC, but further study is needed to clarify the implication of these proteins in the manifestation of malignancy and clinical significance.
Collapse
|
247
|
Frederick MJ, VanMeter AJ, Gadhikar MA, Henderson YC, Yao H, Pickering CC, Williams MD, El-Naggar AK, Sandulache V, Tarco E, Myers JN, Clayman GL, Liotta LA, Petricoin EF, Calvert VS, Fodale V, Wang J, Weber RS. Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:548-71. [PMID: 21281788 DOI: 10.1016/j.ajpath.2010.10.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/02/2010] [Accepted: 10/28/2010] [Indexed: 12/22/2022]
Abstract
Molecular targeted therapy represents a promising new strategy for treating cancers because many small-molecule inhibitors targeting protein kinases have recently become available. Reverse-phase protein microarrays (RPPAs) are a useful platform for identifying dysregulated signaling pathways in tumors and can provide insight into patient-specific differences. In the present study, RPPAs were used to examine 60 protein end points (predominantly phosphoproteins) in matched tumor and nonmalignant biopsy specimens from 23 patients with head and neck squamous cell carcinoma to characterize the cancer phosphoproteome. RPPA identified 18 of 60 analytes globally elevated in tumors versus healthy tissue and 17 of 60 analytes that were decreased. The most significantly elevated analytes in tumor were checkpoint kinase (Chk) 1 serine 345 (S345), Chk 2 S33/35, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) S65, protein kinase C (PKC) ζ/ι threonine 410/412 (T410/T412), LKB1 S334, inhibitor of kappaB alpha (IκB-α) S32, eukaryotic translation initiation factor 4E (eIF4E) S209, Smad2 S465/67, insulin receptor substrate 1 (IRS-1) S612, mitogen-activated ERK kinase 1/2 (MEK1/2) S217/221, and total PKC ι. To our knowledge, this is the first report of elevated PKC ι in head and neck squamous cell carcinoma that may have significance because PKC ι is an oncogene in several other tumor types, including lung cancer. The feasibility of using RPPA for developing theranostic tests to guide personalized therapy is discussed in the context of these data.
Collapse
Affiliation(s)
- Mitchell J Frederick
- Department of Head and Neck Surgery, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Yan M, Wang L, Zuo H, Zhang Z, Chen W, Mao L, Zhang P. HH/GLI signalling as a new therapeutic target for patients with oral squamous cell carcinoma. Oral Oncol 2011; 47:504-9. [PMID: 21536478 DOI: 10.1016/j.oraloncology.2011.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/13/2011] [Accepted: 03/26/2011] [Indexed: 01/08/2023]
Abstract
Aberrant activation of HH/GLI has recently been reported in multiple cancer types, yet its role in oral squamous cell carcinoma (OSCC) has not been investigated. In this study, we aimed to determine the role of HH/GLI in OSCC. Expression of GLI1 and GLI2 was examined in OSCC samples from 136 patients by immunohistochemistry and correlated with clinicopathology parameters and clinical outcomes of the patients. Two HH/GLI specific small molecule inhibitors cyclopamine and GANT61, were used to test the potential role of HH/GLI in OSCC. We found that GLI2, one of the main transcriptional activators of HH/GLI signalling, was expressed in 60 (44%) of the 136 OSCC samples and the expression was significantly associated with poor clinical outcomes. Only 44% of the patients whose tumours expressed GLI2 survived at 5years after surgery compared to 77% of those whose tumours lacked the GLI2 expression (P<0.0001). Both cyclopamine and GANT61 effectively inhibited GLI expression, slowed cell growth, promoted G1 arrest, increased apoptosis and inhibited migration of OSCC cells. Our results demonstrate that activation of HH/GLI pathway plays an important role in OSCC progression. Together with the finding that expression of GLI2 is strongly associated with a poor clinic outcome of OSCC patients, the data suggest that a subset of OSCC patients may benefit from anti-HH/GLI therapies.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | | | | | | | | | | | | |
Collapse
|
249
|
Jun R, Gui-he Z, Xing-xing S, Hui Z, Li-xian X. Isoflurane enhances malignancy of head and neck squamous cell carcinoma cell lines: a preliminary study in vitro. Oral Oncol 2011; 47:329-33. [PMID: 21441066 DOI: 10.1016/j.oraloncology.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/22/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022]
Abstract
The objective of this study was to explore the influence of isoflurane on the cell proliferation, apoptosis, and invasion of Tca8113 and HSC2 cell lines in vitro. MTT test was used to detect the cell proliferation. It was performed 72h after exposure to isoflurane to make sure that a time for normal cell cycle progression was allowed. The cell apoptosis of Tca8113 and HSC2 cell lines were detected by flow cytometry. We used transwell chamber to detect the cell invasion of Tca8113 and HSC2 cell lines. There was a statistically significant increase of cell proliferation in Tca8113 and HSC2 cell lines after exposure to 2% isoflurane for 3 and 6h. The difference between 3 and 6h group is statistically significant in Tca8113 and HSC2 cell lines. Flow cytometry showed that there was a decrease of cell apoptosis in Tca8113 and HSC2 cell lines after exposure to 2% isoflurane for 3 and 6h. Transwell test showed there was a statistically significant increase of cell invasion in Tca8113 and HSC2 cell lines after exposure to 2% isoflurane for 3 and 6h, and it showed a significant difference between 3h group and 6h group of Tca8113 cell line. Our results demonstrated that isoflurane increased malignancy of head and neck squamous cell carcinoma cell lines in vitro. Isoflurane might enhance tumor development and promote metastasis of tumor cells in HNSCC patients. It is suggested that it might be more suitable to choose total intravenous anesthesia for HNSCC patients.
Collapse
Affiliation(s)
- Ren Jun
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | |
Collapse
|
250
|
Aberrant expression in multiple components of the transforming growth factor-β1-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene-induced hamster buccal-pouch squamous-cell carcinogenesis. Oral Oncol 2011; 47:262-7. [PMID: 21356605 DOI: 10.1016/j.oraloncology.2011.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/22/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED Transforming growth factor (TGF)-β1 signaling controls a plethora of cellular processes including tumorigenesis. The TGF-β1 ligand initiates signaling by binding to TGF-βreceptor II (TβRII) and allowing heterodimerization with TGF-βreceptor I (TβRI); thus, TβRI is phosphorylated by TβRII. After phosphorylation, Smad2 and Smad3 heterodimerize with Smad4, and this complex migrates to the nucleus to regulate the expression of specific target genes. However, Smad7 interrupts above signal transduction by preventing phosphorylation of Smad2 or Smad3. The objective of this study was to examine the TGF-β1-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal-pouch squamous-cell carcinogenesis. Fifty 6-week-old male Syrian golden hamsters were divided into three experimental and two control groups (10 animals in each). Both pouches of each animal in the experimental groups were painted with 0.5% DMBA solution, and both pouches of each animal of one of the control groups were similarly treated with mineral oil; the other control group remained untreated throughout the experiment. Animals from three experimental groups were sacrificed at the end of 3rd, 9th, and 14th-weeks after DMBA treatment, respectively, and animals from two control groups were all sacrificed at 14th-weeks after the treatment. Immunohistochemical staining for TGF-β1, TβRI, TβRII, Smad2-4 and Smad7 were performed. RESULTS A significant increase in the expression of Smad7 and significant decreases in the expression of TβRII, Smad 2, Smad3 and Smad4 were noted during hamster buccal-pouch carcinogenesis induced by DMBA. Our findings indicate that a disruption in TGF-β1-induced Smad signaling occurs as a result of aberrant expression of multiple components in the TGF-β1 signaling pathway during DMBA-induced hamster buccal-pouch carcinogenesis, leading to loss of TGF-β1 growth-suppressive effects on transformed pouch keratinocytes.
Collapse
|