201
|
Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil 2015; 27:1432-45. [PMID: 26227635 PMCID: PMC4587547 DOI: 10.1111/nmo.12639] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND G protein-coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids. The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action. METHODS Colitis was induced by either 2.5% dextran sulfate sodium (DSS) supplemented in the drinking water of C57BL/6 mice or by a single intrarectal application of trinitrobenzene sulfonic acid (TNBS). KEY RESULTS Daily application of CID16020046 (20 mg/kg) significantly reduced inflammation scores and myeloperoxidase (MPO) activity. In the DSS colitis model, levels of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), and the expression of cyclooxygenase (Cox)-2 and signal transducer and activator of transcription 3 (STAT-3) were reduced in colon tissues while in TNBS-induced colitis, levels of Cox-2, IL-1β and IL-6 were significantly lowered. Evaluation of leukocyte recruitment by flow cytometry indicated reduced presence of lymphocytes and macrophages in the colon following GPR55 inhibition in DSS-induced colitis. In J774A.1 mouse macrophages, inhibition of GPR55 revealed reduced migration of macrophages and decreased CD11b expression, suggesting that direct effects of CID16020046 on macrophages may have contributed to the improvement of colitis. GPR55(-/-) knockout mice showed reduced inflammation scores as compared to wild type mice in the DSS model suggesting a pro-inflammatory role in intestinal inflammation. CONCLUSIONS & INFERENCES Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.
Collapse
Affiliation(s)
- Angela Stančić
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Carina Hasenöhrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Florian Reichmann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Martin Storr
- Department of Medicine II, Klinikum Großhadern, Ludwig-Maximilians University, Munich, Germany
,Co-corresponding author:Martin Storr, MD, PhD Department of Medicine II, Klinikum Großhadern Ludwig-Maximilians University Marchioninistr. 15 81377 Munich Germany Phone: 0049 89-7095-2281 (0) Fax: 0049 89-7095-5281
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
,Corresponding author:Rudolf Schicho, PhD Medical University of Graz Institute of Experimental and Clinical Pharmacology Universitätsplatz 4 8010 Graz Austria Phone: 0043 3163807851 Fax: 0043 3163809645
| |
Collapse
|
202
|
Taschler U, Eichmann TO, Radner FPW, Grabner GF, Wolinski H, Storr M, Lass A, Schicho R, Zimmermann R. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity. Br J Pharmacol 2015; 172:4419-29. [PMID: 26075589 PMCID: PMC4556478 DOI: 10.1111/bph.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2 ). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptor (μ receptor) signalling, a parallel pathway regulating gut motility. EXPERIMENTAL APPROACH Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. KEY RESULTS Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. CONCLUSION AND IMPLICATIONS Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases.
Collapse
MESH Headings
- Animals
- Asialoglycoproteins/deficiency
- Cannabinoids/pharmacology
- Colon/drug effects
- Colon/metabolism
- Gastrointestinal Motility/physiology
- Ileum/metabolism
- Lectins, C-Type/deficiency
- Male
- Membrane Proteins/deficiency
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- U Taschler
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - T O Eichmann
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - F P W Radner
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - G F Grabner
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - H Wolinski
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - M Storr
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of MunichMunich, Germany
| | - A Lass
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - R Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of GrazGraz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| |
Collapse
|
203
|
Response to Utomo et al. Am J Gastroenterol 2015; 110:1245-6. [PMID: 26263368 DOI: 10.1038/ajg.2015.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
204
|
Nettekoven M, Adam JM, Bendels S, Bissantz C, Fingerle J, Grether U, Grüner S, Guba W, Kimbara A, Ottaviani G, Püllmann B, Rogers-Evans M, Röver S, Rothenhäusler B, Schmitt S, Schuler F, Schulz-Gasch T, Ullmer C. Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists as Potential Treatment for Inflammatory Kidney Diseases. ChemMedChem 2015; 11:179-89. [DOI: 10.1002/cmdc.201500218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias Nettekoven
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Jean-Michel Adam
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Stefanie Bendels
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Catarina Bissantz
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Uwe Grether
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Sabine Grüner
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Wolfgang Guba
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Atsushi Kimbara
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Giorgio Ottaviani
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Bernd Püllmann
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Stephan Röver
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Benno Rothenhäusler
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Sebastien Schmitt
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Tanja Schulz-Gasch
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| |
Collapse
|
205
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
206
|
Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol 2015; 172:3099-111. [PMID: 25684407 DOI: 10.1111/bph.13114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids are a family of lipid mediators involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood. Here, we examined the expression, localization and function of the enzyme diacylglycerol lipase-α (DAGLα), which is involved in biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). EXPERIMENTAL APPROACH Cannabinoid CB1 receptor-deficient, wild-type control and C3H/HeJ mice, a genetically constipated strain, were used. The distribution of DAGLα in the enteric nervous system was examined by immunohistochemistry. Effects of the DAGL inhibitors, orlistat and OMDM-188 on pharmacologically induced GI hypomotility were assessed by measuring intestinal contractility in vitro and whole gut transit or faecal output in vivo. Endocannabinoid levels were measured by mass spectrometry. KEY RESULTS DAGLα was expressed throughout the GI tract. In the intestine, unlike DAGLβ, DAGLα immunoreactivity was prominently expressed in the enteric nervous system. In the myenteric plexus, it was colocalized with the vesicular acetylcholine transporter in cholinergic nerves. In normal mice, inhibiting DAGL reversed both pharmacologically reduced intestinal contractility and pharmacologically prolonged whole gut transit. Moreover, inhibiting DAGL normalized faecal output in constipated C3H/HeJ mice. In colons incubated with scopolamine, 2-AG was elevated while inhibiting DAGL normalized 2-AG levels. CONCLUSIONS AND IMPLICATIONS DAGLα was expressed in the enteric nervous system of mice and its inhibition reversed slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor-mediated mechanisms. Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.
Collapse
Affiliation(s)
- M Bashashati
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Y Nasser
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - C M Keenan
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - W Ho
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - F Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - M Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - K Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - M A Storr
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada.,II Medical Department, Klinikum Groshadern, Ludwig Maximilians University of Munich, Munich, Germany
| | - V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - K A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
207
|
Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, Konje JC, Kunos G, Mechoulam R, Pacher P, Sharkey KA, Zimmer A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015; 36:277-96. [PMID: 25796370 DOI: 10.1016/j.tips.2015.02.008] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
In 1964, the psychoactive ingredient of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995. Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS). eCBs control basic biological processes including cell choice between survival and death and progenitor/stem cell proliferation and differentiation. Unsurprisingly, in the past two decades eCBs have been recognized as key mediators of several aspects of human pathophysiology and thus have emerged to be among the most widespread and versatile signaling molecules ever discovered. Here some of the pioneers of this research field review the state of the art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University, Rome, Italy; Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Itai Bab
- Bone Laboratory, Hebrew University Medical Faculty, Jerusalem, Israel; Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Council of Research, Pozzuoli, Italy
| | - Justin C Konje
- Department of Obstetrics and Gynaecology, Sidra Medical and Research Center, Doha, Qatar
| | - George Kunos
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
208
|
Cannabinoid disposition in oral fluid after controlled vaporizer administration with and without alcohol. Forensic Toxicol 2015. [DOI: 10.1007/s11419-015-0269-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
209
|
Abstract
Fat is a vital macronutrient, and its intake is closely monitored by an array of molecular sensors distributed throughout the alimentary canal. In the mouth, dietary fat constituents such as mono- and diunsaturated fatty acids give rise to taste signals that stimulate food intake, in part by enhancing the production of lipid-derived endocannabinoid messengers in the gut. As fat-containing chyme enters the small intestine, it causes the formation of anorexic lipid mediators, such as oleoylethanolamide, which promote satiety. These anatomically and functionally distinct responses may contribute to the homeostatic control and, possibly, the pathological dysregulation of food intake.
Collapse
Affiliation(s)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Department of Pharmacology, and
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
210
|
Lee LA, Chen J, Yin J. Complementary and alternative medicine for gastroparesis. Gastroenterol Clin North Am 2015; 44:137-50. [PMID: 25667029 DOI: 10.1016/j.gtc.2014.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complementary and alternative medicine is of great interest to patients with gastrointestinal disorders and some will choose to ask their health care providers about those therapies for which some scientific evidence exists. This review focuses on those therapies most commonly used by patients, namely acupuncture/electroacupuncture and various herbal formulations that have been the focus of clinical and laboratory investigation. A discussion of their possible mechanisms of action and the results of clinical studies are summarized.
Collapse
Affiliation(s)
- Linda A Lee
- Division of Gastroenterology and Hepatology, Johns Hopkins Integrative Medicine & Digestive Center, Johns Hopkins University School of Medicine, 2360 West Joppa Road, Suite 200, Lutherville, MD 20193, USA.
| | - Jiande Chen
- Clinical Motility Lab, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 4940 Eastern Avenue, A-505, Baltimore, MD 21224, USA
| | - Jieyun Yin
- Veterans Research and Education Foundation, VA Medical Center, 921 NE 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
211
|
Malik Z, Baik D, Schey R. The role of cannabinoids in regulation of nausea and vomiting, and visceral pain. Curr Gastroenterol Rep 2015; 17:429. [PMID: 25715910 DOI: 10.1007/s11894-015-0429-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marijuana derived from the plant Cannabis sativa has been used for the treatment of many gastrointestinal (GI) disorders, including anorexia, emesis, abdominal pain, diarrhea, and others. However, its psychotropic side effects have often limited its use. Several cannabinoid receptors, which include the cannabinoid receptor 1 (CB1), CB2, and possibly GPR55, have been identified throughout the GI tract. These receptors may play a role in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation, and cell proliferation in the gut. However, the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system has shed new knowledge in this field. Thus far, despite evidence of visceral sensitivity inhibition in animal models, data in irritable bowel syndrome (IBS) patients is scarce and not supportive. Furthermore, many compounds that either act directly at the receptor or increase (or reduce) ligand availability have the potential to affect other brain functions and cause side effects. Novel drug targets such as FAAH and monoacylglycerol lipase (MAGL) inhibitors appear to be promising in animal models, but more studies are necessary to prove their efficiency. The promise of emerging drugs that are more selective and peripherally acting suggest that, in the near future, cannabinoids will play a major role in managing an array of GI diseases.
Collapse
Affiliation(s)
- Zubair Malik
- Section of Gastroenterology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
212
|
Keenan CM, Storr MA, Thakur GA, Wood JT, Wager-Miller J, Straiker A, Eno MR, Nikas SP, Bashashati M, Hu H, Mackie K, Makriyannis A, Sharkey KA. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br J Pharmacol 2015; 172:2406-18. [PMID: 25572435 DOI: 10.1111/bph.13069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid (CB) ligands have been demonstrated to have utility as novel therapeutic agents for the treatment of pain, metabolic conditions and gastrointestinal (GI) disorders. However, many of these ligands are centrally active, which limits their usefulness. Here, we examine a unique novel covalent CB receptor ligand, AM841, to assess its potential for use in physiological and pathophysiological in vivo studies. EXPERIMENTAL APPROACH The covalent nature of AM841 was determined in vitro using electrophysiological and receptor internalization studies on isolated cultured hippocampal neurons. Mouse models were used for behavioural analysis of analgesia, hypothermia and hypolocomotion. The motility of the small and large intestine was assessed in vivo under normal conditions and after acute stress. The brain penetration of AM841 was also determined. KEY RESULTS AM841 behaved as an irreversible CB1 receptor agonist in vitro. AM841 potently reduced GI motility through an action on CB1 receptors in the small and large intestine under physiological conditions. AM841 was even more potent under conditions of acute stress and was shown to normalize accelerated GI motility under these conditions. This compound behaved as a peripherally restricted ligand, showing very little brain penetration and no characteristic centrally mediated CB1 receptor-mediated effects (analgesia, hypothermia or hypolocomotion). CONCLUSIONS AND IMPLICATIONS AM841, a novel peripherally restricted covalent CB1 receptor ligand that was shown to be remarkably potent, represents a new class of potential therapeutic agents for the treatment of functional GI disorders.
Collapse
Affiliation(s)
- C M Keenan
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Martínez-Martínez E, Gómez I, Martín P, Sánchez A, Román L, Tejerina E, Bonilla F, Merino AG, de Herreros AG, Provencio M, García JM. Cannabinoids receptor type 2, CB2, expression correlates with human colon cancer progression and predicts patient survival. Oncoscience 2015; 2:131-41. [PMID: 25859556 PMCID: PMC4381706 DOI: 10.18632/oncoscience.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
Many studies have demonstrated that the endocannabinoid system (ECS) is altered in different tumor types, including colon cancer. However, little is known about the role of the ECS in tumor progression. Here we report the correlation between CB2 expression and pathological data in a series of 175 colorectal cancer patients, as well as the response of the HT29 colon cancer-derived cell line upon CB2 activation. CB2 mRNA was detected in 28.6% of samples tested. It was more frequent in N+ patients and predicts disease free survival and overall survival in colon cancer. In positive samples, CB2 was expressed with great intensity in tumor epithelial cells and correlated with tumor growth. Treatment of HT29 with CB2 agonist revealed membrane loss of E-cadherin and SNAIL1 overexpression. A direct correlation between CB2 and SNAIL1 expression was also found in human tumors. CB2 receptor expression is a poor prognostic marker for colon cancer and the activation of this receptor, with non-apoptotic doses of agonists, could be collaborating with disease progression. These results raise the question whether the activation of CB2 should be considered as anti-tumoral therapy.
Collapse
Affiliation(s)
| | - Irene Gómez
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Paloma Martín
- Department of Pathology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Antonio Sánchez
- Department of Neuroimmunology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Laura Román
- Department of Neuroimmunology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Eva Tejerina
- Department of Pathology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Félix Bonilla
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| | | | | | - Mariano Provencio
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| | - Jose M García
- Department of Medical Oncology, IIS Puerta de Hierro-Majadahonda, Madrid
| |
Collapse
|
214
|
Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases. Inflamm Bowel Dis 2015; 21:419-27. [PMID: 25437822 DOI: 10.1097/mib.0000000000000234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are a large group of ion channels that are prevalent in mammalian tissues. They are widely distributed in the central and peripheral nervous systems, and in nonneuronal cells, where they are implicated in sensing temperature, noxious substances, and pain. TRPs play an important role in immune response and nociception and, therefore, may be involved in the pathogenesis of inflammatory bowel diseases, whose major symptoms include chronic inflammatory state and abdominal pain. In this review, we summarize what is known on TRP channels in inflammatory bowel disease and visceral pain; we focus in particular on TRPV1, TRPV4, TRPA1, and TRPM. We also analyze scientific reports that evidence potential use of TRP regulators in future inflammatory bowel disease treatment.
Collapse
|
215
|
Medical marijuana for digestive disorders: high time to prescribe? Am J Gastroenterol 2015; 110:208-14. [PMID: 25199471 DOI: 10.1038/ajg.2014.245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/03/2014] [Indexed: 12/11/2022]
Abstract
The use of recreational and medical marijuana is increasingly accepted by the general public in the United States. Along with growing interest in marijuana use has come an understanding of marijuana's effects on normal physiology and disease, primarily through elucidation of the human endocannabinoid system. Scientific inquiry into this system has indicated potential roles for marijuana in the modulation of gastrointestinal symptoms and disease. Some patients with gastrointestinal disorders already turn to marijuana for symptomatic relief, often without a clear understanding of the risks and benefits of marijuana for their condition. Unfortunately, that lack of understanding is shared by health-care providers. Marijuana's federal legal status as a Schedule I controlled substance has limited clinical investigation of its effects. There are also potential legal ramifications for physicians who provide recommendations for marijuana for their patients. Despite these constraints, as an increasing number of patients consider marijuana as a potential therapy for their digestive disorders, health-care providers will be asked to discuss the issues surrounding medical marijuana with their patients.
Collapse
|
216
|
Harnett JJ, Dolo C, Viossat I, Auger F, Ferrandis E, Bigg D, Auguet M, Auvin S, Chabrier PE. Novel azoles as potent and selective cannabinoid CB2 receptor agonists. Bioorg Med Chem Lett 2015; 25:88-91. [DOI: 10.1016/j.bmcl.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/01/2023]
|
217
|
Cha JM, Kozarek RA, Lin OS. Case of cannabinoid hyperemesis syndrome with long-term follow-up. World J Clin Cases 2014; 2:930-933. [PMID: 25516874 PMCID: PMC4266847 DOI: 10.12998/wjcc.v2.i12.930] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/24/2014] [Accepted: 09/24/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term cannabis use may be associated with attacks of severe nausea and vomiting, and a characteristic learned behavior of compulsive hot bathing, termed cannabinoid hyperemesis syndrome (CHS). Long-term follow-up and prognosis of CHS have not been reported previously. A 44-year-old Caucasian man with a long history of addiction to marijuana presented with chronic abdominal pain complicated by attacks of uncontrollable vomiting for 16 years. He had a compulsion to take scalding hot showers, as many as 15 times a day, to relieve his symptoms. All previous therapies had been ineffective. However, abstinence from marijuana led to rapid and complete resolution of all symptoms and his compulsive hot showering behavior. He has been followed for nine years, and is still doing well without recurrence of symptoms. Physicians should have a high index of suspicion for this under-recognized condition, as excellent long-term prognosis of CHS can be achieved when abstinence is maintained.
Collapse
|
218
|
Wang J, Zheng J, Kulkarni A, Wang W, Garg S, Prather PL, Hauer-Jensen M. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig Dis Sci 2014; 59:2693-703. [PMID: 24848354 PMCID: PMC4213290 DOI: 10.1007/s10620-014-3212-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/10/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. AIM Because endocannabinoids (eCB) regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell-deficient (Ws/Ws) rat model. METHODS Rats underwent localized, fractionated intestinal irradiation, and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed noninvasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. RESULTS Compared with +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p = 0.01), mucosal damage (p = 0.02), neutrophil infiltration (p = 0.0003), and collagen deposition (p = 0.004). PEA reduced structural radiation injury (p = 0.02), intestinal wall thickness (p = 0.03), collagen deposition (p = 0.03), and intestinal inflammation (p = 0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed nonmast cell-derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. CONCLUSIONS These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The eCB system should be explored as target for mitigating intestinal radiation injury.
Collapse
Affiliation(s)
- Junru Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junying Zheng
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashwini Kulkarni
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wen Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
219
|
Yang YY, Hsieh SL, Lee PC, Yeh YC, Lee KC, Hsieh YC, Wang YW, Lee TY, Huang YH, Chan CC, Lin HC. Long-term cannabinoid type 2 receptor agonist therapy decreases bacterial translocation in rats with cirrhosis and ascites. J Hepatol 2014; 61:1004-13. [PMID: 24953022 DOI: 10.1016/j.jhep.2014.05.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Intestinal hyperpermeability, impaired peritoneal macrophages (PMs) phagocytosis, and bacterial translocation (BT), resulting in increased systemic and local infection/inflammation such as spontaneous bacterial peritonitis (SBP) together with increased tumor necrosis factor-α (TNFα) levels, are all implicated in the pathogenesis of cirrhosis-related complications. Manipulation of the cannabinoid receptors (CB1R and CB2R), which are expressed on the gut mucosa and PMs, has been reported to modulate intestinal inflammation and systemic inflammatory cytokine release. Our study aims to explore the effects of chronic CB1R/CB2R agonist/antagonist treatments on relevant abnormalities in cirrhotic ascitic rats. METHODS Vehicle, archidonyl-2-chloroethylamide (ACEA, CB1R agonist), JWH133 (CB2R agonist), and AM630 (CB2R antagonist) were given to thioacetamide (TAA) and common bile duct ligation (BDL) cirrhotic rats with ascites for two weeks and various measurement were performed. RESULTS Compared to sham rats, CB2Rs were downregulated in cirrhotic rat intestines and PMs. The two-week JWH133 treatment significantly decreased systemic/intestinal oxidative stress, TNFα and inflammatory mediators, infection, intestinal mucosal damage and hyperpermeability; the JWH133 treatment also decreased bacterial overgrowth/adhesion, BT and SBP, upregulated intestinal tight junctions and downregulated the PM TNFα receptor/NFκBp65 protein expression in cirrhotic rats. Acute and chronic JWH133 treatment corrected the TNFα-induced suppression of phagocytosis of cirrhotic rat PMs, which then could be reversed by concomitant AM630 treatment. CONCLUSIONS Our study suggests that CB2R agonists have the potential to treat BT and various relevant abnormalities through inhibition of systemic/intestinal oxidative stress, inflammatory cytokines and TNFα release in cirrhosis. Overall, the chronic CB2R agonist treatment affects multiple approach mechanisms, and its direct effect on the hyperdynamic circulation is only minor.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Clinical Skill Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Institute of Infection and Immunology Center & Institute of Microbiology and Immunology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Chang Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuei-Chuan Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ying-Wen Wang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Che-Chang Chan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
220
|
Novel orally available salvinorin A analog PR-38 protects against experimental colitis and reduces abdominal pain in mice by interaction with opioid and cannabinoid receptors. Biochem Pharmacol 2014; 92:618-26. [PMID: 25265540 DOI: 10.1016/j.bcp.2014.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Salvinorin A (SA) is a potent anti-inflammatory diterpene isolated from the Mexican plant S. divinorum. Recently we showed that the novel SA analog, PR-38 has an inhibitory effect on mouse gastrointestinal (GI) motility mediated by opioid and cannabinoid (CB) receptors. The aim of the study was to characterize possible anti-inflammatory and antinociceptive action of PR-38 in the mouse GI tract. METHODS Macro- and microscopic colonic damage scores and myeloperoxidase activity were determined after intraperitoneal (i.p.), intracolonic (i.c.), and per os (p.o.) administration of PR-38 in the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis in mice. Additionally, MOP, KOP and CB1 protein expression was determined using Western blot analysis of mouse colon samples. The antinociceptive effect of PR-38 was examined based on the number of behavioral responses to i.c. instillation of mustard oil (MO). RESULTS The i.p. (10 mg/kg, twice daily), i.c. (10 mg/kg, twice daily) and p.o. (20 mg/kg, once daily) administration of PR-38 significantly attenuated TNBS- and DSS-induced colitis in mice. The effect of PR-38 was partially blocked by the KOP antagonist nor-binaltorphimine and CB1 antagonist AM 251. Western blot analysis showed a significant increase of MOP, KOP and CB1 receptor expression during colonic inflammation, which was reversed to the control levels by the administration of PR-38. PR-38 significantly decreased the number of pain responses after i.c. instillation of MO in the TNBS-treated mice. CONCLUSIONS Our results suggest that PR-38 has the potential to become a valuable anti-inflammatory and analgesic therapeutic for the treatment of GI inflammation.
Collapse
|
221
|
Fichna J, Bawa M, Thakur GA, Tichkule R, Makriyannis A, McCafferty DM, Sharkey KA, Storr M. Cannabinoids alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors. PLoS One 2014; 9:e109115. [PMID: 25275313 PMCID: PMC4183544 DOI: 10.1371/journal.pone.0109115] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/08/2014] [Indexed: 01/27/2023] Open
Abstract
Background and Aims In an attempt to further investigate the role of cannabinoid (CB) system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist) and CB13 (a peripherally-restricted CB agonist) to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine. Methods and Results AM841 (0.01, 0.1 and 1 mg/kg, i.p.) significantly decreased inflammation scores in dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg), but significantly decreased inflammation score after central administration (0.1 µg/animal). Conclusions This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research.
Collapse
Affiliation(s)
- Jakub Fichna
- Snyder Institute for Chronic Disease, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Misha Bawa
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ganesh A. Thakur
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Ritesh Tichkule
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Donna-Marie McCafferty
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Disease, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Martin Storr
- Snyder Institute for Chronic Disease, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Division of Gastroenterology, Department of Medicine, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
222
|
Yan XJ, Chen SL. Response to Letter to the Editor. Pain 2014; 155:2205. [DOI: 10.1016/j.pain.2014.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/01/2022]
|
223
|
Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH). J Crohns Colitis 2014; 8:998-1009. [PMID: 24530133 PMCID: PMC4136976 DOI: 10.1016/j.crohns.2014.01.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Pharmacological treatment and/or maintenance of remission in inflammatory bowel diseases (IBD) is currently one of the biggest challenge in the field of gastroenterology. Available therapies are mostly limited to overcoming the symptoms, but not the cause of the disease. Recently, the endocannabinoid system has been proposed as a novel target in the treatment of IBD. Here we aimed to assess the anti-inflammatory action of the novel fatty acid amide hydrolase (FAAH) inhibitor PF-3845 and its effect on the endocannabinoid and related lipid metabolism during the course of experimental colitis. METHODS We used two models of experimental colitis in mice (TNBS- and DSS-induced) and additionally, we employed LC/MS/MS spectrometry to determine the changes in biolipid levels in the mouse colon during inflammation. RESULTS We showed that the FAAH inhibitor PF-3845 reduced experimental TNBS-induced colitis in mice and its anti-inflammatory action is associated with altering the levels of selected biolipids (arachidonic and oleic acid derivatives, prostaglandins and biolipids containing glycine in the mouse colon). CONCLUSIONS We show that FAAH is a promising pharmacological target and the FAAH-dependent biolipids play a major role in colitis. Our results highlight and promote therapeutic strategy based on targeting FAAH-dependent metabolic pathways in order to alleviate intestinal inflammation.
Collapse
|
224
|
Cross-talk between serotonin and cannabinoid signaling in the gut, new insights and future perspectives. Pain 2014; 155:2204-2205. [PMID: 25109671 DOI: 10.1016/j.pain.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/22/2022]
|
225
|
Wang J, Xiao R. G protein-coupled receptors in energy homeostasis. SCIENCE CHINA-LIFE SCIENCES 2014; 57:672-80. [PMID: 24969703 DOI: 10.1007/s11427-014-4694-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/13/2014] [Indexed: 12/25/2022]
Abstract
G-protein coupled receptors (GPCRs) compromise the largest membrane protein superfamily which play vital roles in physiological and pathophysiological processes including energy homeostasis. Moreover, they also represent the up-to-date most successful drug target. The gut hormone GPCRs, such as glucagon receptor and GLP-1 receptor, have been intensively studied for their roles in metabolism and respective drugs have developed for the treatment of metabolic diseases such as type 2 diabetes (T2D). Along with the advances of biomedical research, more GPCRs have been found to play important roles in the regulation of energy homeostasis from nutrient sensing, appetite control to glucose and fatty acid metabolism with various mechanisms. The investigation of their biological functions will not only improve our understanding of how our body keeps the balance of energy intake and expenditure, but also highlight the possible drug targets for the treatment of metabolic diseases. The present review summarizes GPCRs involved in the energy control with special emphasis on their pathophysiological roles in metabolic diseases and hopefully triggers more intensive and systematic investigations in the field so that a comprehensive network control of energy homeostasis will be revealed, and better drugs will be developed in the foreseeable future.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China,
| | | |
Collapse
|
226
|
Abstract
The marijuana plant Cannabis sativa has been used for centuries as a treatment for a variety of ailments. It contains over 60 different cannabinoid compounds. Studies have revealed that the endocannabinoid system is involved in almost all major immune events. Cannabinoids may, therefore, be beneficial in inflammatory disorders. In murine colitis, cannabinoids decrease histologic and microscopic inflammation. In humans, cannabis has been used to treat a plethora of gastrointestinal problems, including anorexia, emesis, abdominal pain, diarrhea, and diabetic gastroparesis. Despite anecdotal reports on medical cannabis in inflammatory bowel disease (IBD), there are few controlled studies. In an observational study in 30 patients with Crohn's disease (CD), we found that medical cannabis was associated with improvement in disease activity and reduction in the use of other medications. In a more recent placebo-controlled study in 21 chronic CD patients, we showed a decrease in the CD activity index >100 in 10 of 11 subjects on cannabis compared to 4 of 10 on placebo. Complete remission was achieved in 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. Yet, in an additional study, low-dose cannabidiol did not have an effect on CD activity. In summary, evidence is gathering that manipulating the endocannabinoid system can have beneficial effects in IBD, but further research is required to declare cannabinoids a medicine. We need to establish the specific cannabinoids, as well as appropriate medical conditions, optimal dose, and mode of administration, to maximize the beneficial effects while avoiding any potential harmful effects of cannabinoid use.
Collapse
Affiliation(s)
- Timna Naftali
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | | | | | | |
Collapse
|
227
|
Gastroesophageal reflux symptoms not responding to proton pump inhibitor: GERD, NERD, NARD, esophageal hypersensitivity or dyspepsia? Can J Gastroenterol Hepatol 2014; 28:335-41. [PMID: 24719900 PMCID: PMC4072238 DOI: 10.1155/2014/904707] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastroesophageal reflux (GER) is a common gastrointestinal process that can generate symptoms of heartburn and chest pain. Proton pump inhibitors (PPIs) are the gold standard for the treatment of GER; however, a substantial group of GER patients fail to respond to PPIs. In the past, it was believed that acid reflux into the esophagus causes all, or at least the majority, of symptoms attributed to GER, with both erosive esophagitis and nonerosive outcomes. However, with modern testing techniques it has been shown that, in addition to acid reflux, the reflux of nonacid gastric and duodenal contents into the esophagus may also induce GER symptoms. It remains unknown how weakly acidic or alkaline refluxate with a pH similar to a normal diet induces GER symptoms. Esophageal hypersensitivity or functional dyspepsia with superimposed heartburn may be other mechanisms of symptom generation, often completely unrelated to GER. Detailed studies investigating the pathophysiology of esophageal hypersensitivity are not conclusive, and definitions of the various disease states may overlap and are often confusing. The authors aim to clarify the pathophysiology, definition, diagnostic techniques and medical treatment of patients with heartburn symptoms who fail PPI therapy.
Collapse
|
228
|
Hillard CJ. Stress regulates endocannabinoid-CB1 receptor signaling. Semin Immunol 2014; 26:380-8. [PMID: 24882055 DOI: 10.1016/j.smim.2014.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 12/17/2022]
Abstract
The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, Medical College of Wisconsin, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, United States.
| |
Collapse
|
229
|
O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:621-8. [DOI: 10.1007/s00210-014-0991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/14/2014] [Indexed: 01/01/2023]
|
230
|
Davis MP. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opin Investig Drugs 2014; 23:1123-40. [PMID: 24836296 DOI: 10.1517/13543784.2014.918603] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Commercially available cannabinoids are subject to psychotomimetic and addiction (cannabinomimetic) adverse effects largely through activation of the cannabinoid 1 receptor (CB1r). The available commercial cannabinoids have a narrow therapeutic index. Recently developed peripherally restricted cannabinoids, regionally administered cannabinoids, bifunctional cannabinoid ligands and cannabinoid enzyme inhibitors, endocannabinoids, which do not interact with classic cannabinoid receptors (CB1r and CB2r), cannabinoid receptor antagonists and selective CB1r agonists hold promise as analgesics. AREAS COVERED This author provides a review of the current investigational cannabinoids currently in development for pain management. The author also provides their perspective on the future of the field. EXPERT OPINION Regional and peripherally restricted cannabinoids will reduce cannabinomimetic side effects. Spinal cannabinoids may increase the therapeutic index by limiting the dose necessary for response and minimize drugs exposure to supraspinal sites where cannabinomimetic side effects originate. Cannabinoid bifunctional ligands should be further explored. The combination of a CB2r agonist with a transient receptor potential vanilloid (TRPV-1) antagonist may improve the therapeutic index of the CB2r agonist. Enzyme inhibitors plus TRPV-1 blockers should be further explored. The development of analgesic tolerance with enzyme inhibitors and the pronociceptive effects of prostamides limit the benefits to cannabinoid hydrolyzing enzyme inhibitors. Most clinically productive development of cannabinoids over the next 5 years will be in the area of selective CB2r agonists. These agents will be tested in various inflammatory, osteoarthritis and neuropathic pains.
Collapse
Affiliation(s)
- Mellar P Davis
- The Cleveland Clinic Taussig Cancer Institute, The Harry R. Horvitz Center for Palliative Medicine, Department of Solid Tumor Oncology , 9500 Euclid Avenue R35, Cleveland, OH 44195 , USA +1 216 445 4622 ; +1 216 636 3179 ;
| |
Collapse
|
231
|
Vu MP, Melmed GY, Targan SR. Weeding out the facts: the reality about cannabis and Crohn's disease. Clin Gastroenterol Hepatol 2014; 12:898-9. [PMID: 24269921 DOI: 10.1016/j.cgh.2013.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Michelle P Vu
- Inflammatory Bowel Disease Center, Cedars-Sinai Medical Center, Los Angeles, California; Department of Digestive Diseases, University of California Los Angeles, Los Angeles, California
| | - Gil Y Melmed
- Inflammatory Bowel Disease Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephan R Targan
- Inflammatory Bowel Disease Center, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
232
|
Nasser Y, Bashashati M, Andrews CN. Toward modulation of the endocannabinoid system for treatment of gastrointestinal disease: FAAHster but not "higher". Neurogastroenterol Motil 2014; 26:447-54. [PMID: 24641009 DOI: 10.1111/nmo.12329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
Abstract
Cannabis has been used to treat various afflictions throughout the centuries, including nausea, vomiting, and pain. It has also been used recreationally for its psychotropic properties, which can include a pleasurable 'high' feeling and a decrease in anxiety and tension; however, other may experience dysphoria. Changes in cognition and psychomotor performance are also well-known with cannabis use. In recent years, our understanding of the endocannabinoid system (ECS) has progressed dramatically; the objective of identifying agents which may allow modulation of the ECS without significant psychotropic side effects may be possible. Inhibition of fatty acid amide hydrolase (FAAH), an important enzyme for the degradation of anandamide and other endogenous cannabinoids, is a promising target to achieve this goal. In this issue of Neurogastroenterology and Motility, Fichna and colleagues report on a novel selective FAAH inhibitor, PF-3845, with potent antinociceptive and antidiarrheal effects in a mouse model. In this context, we briefly review the components of the ECS, discuss pharmacologic targets for indirect cannabinoid receptor stimulation, and describe recent research with cannabinoids for gut disorders.
Collapse
Affiliation(s)
- Y Nasser
- Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
233
|
Nogi M, Fergusson D, Chiaco JMC. Mid-ventricular variant takotsubo cardiomyopathy associated with Cannabinoid Hyperemesis Syndrome: a case report. HAWAI'I JOURNAL OF MEDICINE & PUBLIC HEALTH : A JOURNAL OF ASIA PACIFIC MEDICINE & PUBLIC HEALTH 2014; 73:115-118. [PMID: 24765560 PMCID: PMC3998230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A case of the mid-ventricular variant of takotsubo cardiomyopathy is reported, occurring in a patient with Cannabinoid Hyperemesis Syndrome (CHS), and presented with a review of the relevant literature. The patient is a 32-year-old woman who presented with epigastric pain, nausea and vomiting. Her EKG showed dynamic T-wave changes associated with a modest cardiac biomarker elevation. Ventricular wall motion abnormalities suggestive of the mid-ventricular variant of takotsubo cardiomyopathy were demonstrated by echocardiography, ventriculography and cardiac angiography, the latter showing normal coronary arteries. The patient was a previous marijuana user who had recently ingested marijuana after a period of abstinence. Severe epigastric pain, nausea and cyclic vomiting followed this. She had previously experienced similar gastrointestinal symptoms, relieved by compulsive hot water bathing, and resolving after marijuana cessation. Recent resumption of marijuana use was followed by a recurrence of these symptoms, a pattern characteristic of CHS. The association of cardiomyopathy with CHS has been described only once in the literature, and if this is a true relationship, its mechanism is not clearly defined. Animal models have suggested that endocannabinoid receptors are expressed in the myocardium, which could be a pathway for developing cardiac manifestations with cannabinoid use.
Collapse
Affiliation(s)
- Masayuki Nogi
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI (MN)
| | - David Fergusson
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI (MN)
| | - John Michael Chua Chiaco
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI (MN)
| |
Collapse
|
234
|
Fichna J, Sałaga M, Stuart J, Saur D, Sobczak M, Zatorski H, Timmermans JP, Bradshaw HB, Ahn K, Storr MA. Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil 2014; 26:470-81. [PMID: 24460851 DOI: 10.1111/nmo.12272] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/08/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The endogenous cannabinoid system (ECS) plays a crucial role in multiple physiological processes in the central nervous system and in the periphery. The discovery that selective cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain has placed the ECS in the center of attention as a possible target for the treatment of functional GI diseases. However, side effects of CB agonists prompted the search for novel therapeutic targets. Here, the effect of PF-3845, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor in the GI tract was investigated. METHODS The effect of PF-3845 on GI motility was characterized in vitro and in vivo, using mouse models that mimic physiological and pathophysiological conditions. The antinociceptive action of PF-3845 was evaluated on the basis of behavioral pain models. Endocannabinoid degradation product levels after inhibition of FAAH were quantified using HPLC-MS/MS. KEY RESULTS PF-3845 significantly inhibited mouse colonic motility in vitro and in vivo. Selective inhibition of FAAH reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. The effects of PF-3845 were mediated by endogenous CBs and non-CB lipophilic compounds via classical (CB1) and atypical CB receptors. CONCLUSIONS & INFERENCES These data expand our understanding of the ECS function and provide a novel framework for the development of future potential treatments of functional GI disorders.
Collapse
Affiliation(s)
- J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada; Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Sibaev A, Yuece B, Allescher HD, Saur D, Storr M, Kurjak M. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats. Pharmacol Rep 2014; 66:256-63. [DOI: 10.1016/j.pharep.2013.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/19/2013] [Accepted: 09/06/2013] [Indexed: 10/25/2022]
|
236
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
237
|
Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn's disease. Inflamm Bowel Dis 2014; 20:472-80. [PMID: 24407485 DOI: 10.1097/01.mib.0000440982.79036.d6] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cannabinoids are used by patients with inflammatory bowel disease (IBD) to alleviate their symptoms. Little is known on patient motivation, benefit, or risks of this practice. Our aim was to assess the extent and motives for Cannabis use in patients with IBD and the beneficial and adverse effects associated with self-administration of Cannabis. METHODS Consecutive patients with IBD (n = 313) seen in the University of Calgary from July 2008 to March 2009 completed a structured anonymous questionnaire covering motives, pattern of use, and subjective beneficial and adverse effects associated with self-administration of Cannabis. Subjects who had used Cannabis specifically for the treatment of IBD or its symptoms were compared with those who had not. Logistic regression analysis was used to identify variables predictive of poor IBD outcomes, specifically surgery or hospitalization for IBD. RESULTS Cannabis had been used by 17.6% of respondents specifically to relieve symptoms associated with their IBD, the majority by inhalational route (96.4%). Patients with IBD reported that Cannabis improved abdominal pain (83.9%), abdominal cramping (76.8%), joint pain (48.2%), and diarrhea (28.6%), although side effects were frequent. The use of Cannabis for more than 6 months at any time for IBD symptoms was a strong predictor of requiring surgery in patients with Crohn's disease (odds ratio = 5.03, 95% confidence interval = 1.45-17.46) after correcting for demographic factors, tobacco smoking status, time since IBD diagnosis, and biological use. Cannabis was not a predictor for hospitalization for IBD in the previous year. CONCLUSIONS Cannabis use is common in patients with IBD and subjectively improved pain and diarrheal symptoms. However, Cannabis use was associated with higher risk of surgery in patients with Crohn's disease. Patients using Cannabis should be cautioned about potential harm, until clinical trials evaluate efficacy and safety.
Collapse
Affiliation(s)
- Martin Storr
- *Division of Gastroenterology, Department of Medicine, University of Calgary and; †Division of Gastroenterology, Department of Medicine, University of Munich
| | | | | | | | | |
Collapse
|
238
|
Sałaga M, Sobczak M, Fichna J. Inhibition of fatty acid amide hydrolase (FAAH) as a novel therapeutic strategy in the treatment of pain and inflammatory diseases in the gastrointestinal tract. Eur J Pharm Sci 2014; 52:173-9. [DOI: 10.1016/j.ejps.2013.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 01/26/2023]
|
239
|
Zhang SC, Wang WL, Su PJ, Jiang KL, Yuan ZW. Decreased enteric fatty acid amide hydrolase activity is associated with colonic inertia in slow transit constipation. J Gastroenterol Hepatol 2014; 29:276-283. [PMID: 23926887 DOI: 10.1111/jgh.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Constipation is one of the most common chronic digestive complaints. Gastrointestinal transit studies have divided it into three patterns: normal transit, slow transit constipation (STC), and outlet obstruction. It has been demonstrated that STC patients respond poorly to standard therapies, and the etiology of STC remains poorly understood. Animal studies have also shown that fatty acid amide hydrolase (FAAH) controls intestinal motility through its putative receptors or non-receptor-mediated pathways. However, the role of FAAH in STC has not been elaborated. METHODS A case series was carried out on thirty-two STC patients fulfilling the Rome II criteria and on 24 controls. All of the subjects underwent a laparotomy in Shengjing Hospital. Colonic specimens were obtained and used for FAAH expression analysis, enzyme activity assay, and cannabinoid detection. RESULTS FAAH immunoreactivity occurred in the enteric neurons and in the surface epithelial and glands. The expression level and enzyme activity of FAAH in the STC group were both significantly lower than those in the control group (P < 0.05). The amounts of anandamide, 2-arachidonylglycerol, and palmitoylethanolamide, which are negatively correlated with enzyme activity, were significantly higher in the constipation group than that in the control group. In the STC group, cannabinoid receptor type 1 immunoreactivity occurred predominantly in the submucosal and myenteric fibers that were obviously strong and wave-like in their appearance. Enteric ganglions decreased or disappeared. CONCLUSIONS The tone of the enteric cannabinoids system is disturbed in STC, and the decreased enteric FAAH activity contributes to colonic inertia in STC.
Collapse
Affiliation(s)
- Shu-Cheng Zhang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
240
|
Tourteau A, Leleu-Chavain N, Body-Malapel M, Andrzejak V, Barczyk A, Djouina M, Rigo B, Desreumaux P, Chavatte P, Millet R. Switching cannabinoid response from CB(2) agonists to FAAH inhibitors. Bioorg Med Chem Lett 2014; 24:1322-6. [PMID: 24508127 DOI: 10.1016/j.bmcl.2014.01.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 11/29/2022]
Abstract
A series of 3-carboxamido-5-aryl-isoxazoles designed as CB2 agonists were evaluated as FAAH inhibitors. The pharmacological results led to identify structure-activity relationships enabling to switch cannabinoid response from CB2 agonists to FAAH inhibitors. Two compounds were selected for their FAAH and/or CB2 activity, and evaluated in a colitis model for their anti-inflammatory activity. Results showed that compounds 10 and 11 inhibit the development of DSS-induced acute colitis in mice and then, are interesting leads to explore new drug candidates for IBD.
Collapse
Affiliation(s)
- Aurélien Tourteau
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr. Laguesse, BP83, F-59006 Lille, France
| | - Natascha Leleu-Chavain
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr. Laguesse, BP83, F-59006 Lille, France
| | - Mathilde Body-Malapel
- Université Lille Nord de France, U995 INSERM, Digestive Inflammatory Diseases: Pathophysiology and Development of Therapeutic Targets, IFR114, Amphis J&K, Boulevard du Pr. Leclercq, F-59045 Lille, France
| | - Virginie Andrzejak
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr. Laguesse, BP83, F-59006 Lille, France
| | - Amélie Barczyk
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr. Laguesse, BP83, F-59006 Lille, France
| | - Madjid Djouina
- Université Lille Nord de France, U995 INSERM, Digestive Inflammatory Diseases: Pathophysiology and Development of Therapeutic Targets, IFR114, Amphis J&K, Boulevard du Pr. Leclercq, F-59045 Lille, France
| | - Benoit Rigo
- Université Catholique de Lille, HEI, EA4481, Laboratoire de Pharmacochimie, 13 Rue de Toul, F-59046 Lille, France
| | - Pierre Desreumaux
- Université Lille Nord de France, U995 INSERM, Digestive Inflammatory Diseases: Pathophysiology and Development of Therapeutic Targets, IFR114, Amphis J&K, Boulevard du Pr. Leclercq, F-59045 Lille, France
| | - Philippe Chavatte
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr. Laguesse, BP83, F-59006 Lille, France
| | - Régis Millet
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 rue du Pr. Laguesse, BP83, F-59006 Lille, France.
| |
Collapse
|
241
|
Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol 2014; 722:134-46. [PMID: 24184696 PMCID: PMC3883513 DOI: 10.1016/j.ejphar.2013.09.068] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/22/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
Nausea and vomiting (emesis) are important elements in defensive or protective responses that animals use to avoid ingestion or digestion of potentially harmful substances. However, these neurally-mediated responses are at times manifested as symptoms of disease and they are frequently observed as side-effects of a variety of medications, notably those used to treat cancer. Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Linda A Parker
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
242
|
Andrews PL, Sanger GJ. Nausea and the quest for the perfect anti-emetic. Eur J Pharmacol 2014; 722:108-21. [DOI: 10.1016/j.ejphar.2013.09.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 02/06/2023]
|
243
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
244
|
Schicho R, Storr M. Cannabis finds its way into treatment of Crohn's disease. Pharmacology 2013; 93:1-3. [PMID: 24356243 DOI: 10.1159/000356512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
In ancient medicine, cannabis has been widely used to cure disturbances and inflammation of the bowel. A recent clinical study now shows that the medicinal plant Cannabis sativa has lived up to expectations and proved to be highly efficient in cases of inflammatory bowel diseases. In a prospective placebo-controlled study, it has been shown what has been largely anticipated from anecdotal reports, i.e. that cannabis produces significant clinical benefits in patients with Crohn's disease. The mechanisms involved are not yet clear but most likely include peripheral actions on cannabinoid receptors 1 and 2, and may also include central actions.
Collapse
Affiliation(s)
- Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
245
|
Moynes DM, Lucas GH, Beyak MJ, Lomax AE. Effects of inflammation on the innervation of the colon. Toxicol Pathol 2013; 42:111-7. [PMID: 24159054 DOI: 10.1177/0192623313505929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease lead to altered gastrointestinal (GI) function as a consequence of the effects of inflammation on the tissues that comprise the GI tract. Among these tissues are several types of neurons that detect the state of the GI tract, transmit pain, and regulate functions such as motility, secretion, and blood flow. This review article describes the structure and function of the enteric nervous system, which is embedded within the gut wall, the sympathetic motor innervation of the colon and the extrinsic afferent innervation of the colon, and considers the evidence that colitis alters these important sensory and motor systems. These alterations may contribute to the pain and altered bowel habits that accompany IBD.
Collapse
Affiliation(s)
- Derek M Moynes
- 1Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
246
|
Bashashati M, McCallum RW. Neurochemical mechanisms and pharmacologic strategies in managing nausea and vomiting related to cyclic vomiting syndrome and other gastrointestinal disorders. Eur J Pharmacol 2013; 722:79-94. [PMID: 24161560 DOI: 10.1016/j.ejphar.2013.09.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 12/18/2022]
Abstract
Nausea and vomiting are common gastrointestinal complaints which could be triggered by stimuli in both the peripheral and central nervous systems. They may be considered as defense mechanisms when threatening toxins/agents enter the gastrointestinal tract or there is excessive retention of gastrointestinal contents due to obstruction. The pathophysiology of nausea and vomiting is complex and much still remains unknown. Therefore, treatments are restricted or ineffective in many cases. Nausea and vomiting with functional etiologies including cyclic vomiting syndrome are challenging in gastroenterology. In this article, we review potential pathways, neurochemical transmitters, and their receptors which are possibly involved in the pathophysiology of nausea and vomiting including the entity cyclic vomiting syndrome.
Collapse
Affiliation(s)
- Mohammad Bashashati
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Richard W McCallum
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
247
|
Hernandez SL, Sheyner I, Stover KT, Stewart JT. Dronabinol Treatment of Refractory Nausea and Vomiting Related to Peritoneal Carcinomatosis. Am J Hosp Palliat Care 2013; 32:5-7. [DOI: 10.1177/1049909113504240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nausea and vomiting are common and often highly distressing symptoms in advanced cancer and in hospice and palliative medicine practice. Nausea and vomiting generally respond well to correction of the underlying etiology (when possible) and appropriate selection of antiemetic medication, but up to 7% of patients will have refractory symptoms. Dronabinol is extensively studied for chemotherapy-related nausea and vomiting, but there are only a few case reports of its use in nausea and vomiting unrelated to chemotherapy. We report a patient with end-stage ovarian cancer with peritoneal carcinomatosis and refractory nausea and vomiting who responded dramatically to addition of dronabinol. Dronabinol is usually well tolerated and may have several novel mechanisms of antiemetic action; further study of its scope of efficacy is warranted.
Collapse
Affiliation(s)
| | - Inna Sheyner
- University of South Florida College of Medicine, Tampa, FL, USA
- Hospice and Palliative Care Unit, James A. Haley VA Hospital, Tampa, FL, USA
| | - Karen T. Stover
- Hospice and Palliative Care Unit, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jonathan T. Stewart
- University of South Florida College of Medicine, Tampa, FL, USA
- Hospice and Palliative Care Unit, James A. Haley VA Hospital, Tampa, FL, USA
| |
Collapse
|
248
|
Iannotti FA, Piscitelli F, Martella A, Mazzarella E, Allarà M, Palmieri V, Parrella C, Capasso R, Di Marzo V. Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats. Prostaglandins Leukot Essent Fatty Acids 2013; 89:127-35. [PMID: 23830028 DOI: 10.1016/j.plefa.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity.
Collapse
Affiliation(s)
- F A Iannotti
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Aguilera M, Vergara P, Martínez V. Environment-related adaptive changes of gut commensal microbiota do not alter colonic toll-like receptors but modulate the local expression of sensory-related systems in rats. MICROBIAL ECOLOGY 2013; 66:232-243. [PMID: 23666270 DOI: 10.1007/s00248-013-0241-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Pathogenic and protective roles have been attributed to gut commensal microbiota (GCM) in gastrointestinal inflammatory and functional disorders. We have shown that the adaptation to a new environment implies specific changes in the composition of GCM. Here we assessed if environment-related adaptive changes of GCM modulate the expression of colonic Toll-like receptors (TLRs) and sensory-related systems in rats. Adult male SD rats were maintained under different environmental conditions: barrier-breed-and-maintained, barrier-breed adapted to conventional conditions or conventional-breed-and-maintained. Fluorescent in situ hybridization and real-time quantitative PCR (qPCR) were used to characterize luminal ceco-colonic microbiota. Colonic expression of TLR2, TLR4, TLR5, and TLR7, cannabinoid receptors (CB1/CB2), μ-opioid receptor (MOR), transient receptor potential vanilloid (TRPV1, TRPV3, and TRPV4), protease-activated receptor 2 (PAR-2), and calcitonin gene-related peptide were quantified by RT-qPCR. CB1, CB2 and MOR expression, was evaluated also by immunohistochemistry. In rats, housing-related environmental conditions induce specific changes of GCM, without impact on the expression of TLR-dependent bacterial recognition systems. Expression of sensory-related markers (MOR, TRPV3, PAR-2, and CB2) decreased with the adaptation to a conventional environment, correlating with changes in Bacteroides spp., Lactobacillus spp., and Bifidobacterium spp. counts. This suggests an interaction between GCM and visceral sensory mechanisms, which might be part of the mechanisms underlying the beneficial effects of some bacterial groups on functional and inflammatory gastrointestinal disorders.
Collapse
Affiliation(s)
- M Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
250
|
Tourteau A, Andrzejak V, Body-Malapel M, Lemaire L, Lemoine A, Mansouri R, Djouina M, Renault N, El Bakali J, Desreumaux P, Muccioli GG, Lambert DM, Chavatte P, Rigo B, Leleu-Chavain N, Millet R. 3-Carboxamido-5-aryl-isoxazoles as new CB2 agonists for the treatment of colitis. Bioorg Med Chem 2013; 21:5383-94. [PMID: 23849204 DOI: 10.1016/j.bmc.2013.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023]
Abstract
Recent investigations showed that anandamide, the main endogenous ligand of CB1 and CB2 cannabinoid receptors, possesses analgesic, antidepressant and anti-inflammatory effects. In the perspective to treat inflammatory bowel disease (IBD), our approach was to develop new selective CB2 receptor agonists without psychotropic side effects associated to CB1 receptors. In this purpose, a new series of 3-carboxamido-5-aryl-isoxazoles, never described previously as CB2 receptor agonists, was designed, synthesized and evaluated for their biological activity. The pharmacological results have identified great selective CB2 agonists with in vivo anti-inflammatory activity in a DSS-induced acute colitis mouse model.
Collapse
Affiliation(s)
- Aurélien Tourteau
- Université Lille Nord de France, EA4481, Institut de Chimie Pharmaceutique Albert Lespagnol, IFR114, 3 Rue du Pr. Laguesse, BP83, F-59006 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|