201
|
Thomas EH, Bozaoglu K, Rossell SL, Gurvich C. The influence of the glutamatergic system on cognition in schizophrenia: A systematic review. Neurosci Biobehav Rev 2017; 77:369-387. [DOI: 10.1016/j.neubiorev.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
202
|
McLean SL, Harte MK, Neill JC, Young AM. Dopamine dysregulation in the prefrontal cortex relates to cognitive deficits in the sub-chronic PCP-model for schizophrenia: A preliminary investigation. J Psychopharmacol 2017; 31:660-666. [PMID: 28441905 DOI: 10.1177/0269881117704988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Dopamine dysregulation in the prefrontal cortex (PFC) plays an important role in cognitive dysfunction in schizophrenia. Sub-chronic phencyclidine (scPCP) treatment produces cognitive impairments in rodents and is a thoroughly validated animal model for cognitive deficits in schizophrenia. The aim of our study was to investigate the role of PFC dopamine in scPCP-induced deficits in a cognitive task of relevance to the disorder, novel object recognition (NOR). METHODS Twelve adult female Lister Hooded rats received scPCP (2 mg/kg) or vehicle via the intraperitoneal route twice daily for 7 days, followed by 7 days washout. In vivo microdialysis was carried out prior to, during and following the NOR task. RESULTS Vehicle rats successfully discriminated between novel and familiar objects and this was accompanied by a significant increase in dopamine in the PFC during the retention trial ( p < 0.01). scPCP produced a significant deficit in NOR ( p < 0.05 vs. control) and no PFC dopamine increase was observed. CONCLUSIONS These data demonstrate an increase in dopamine during the retention trial in vehicle rats that was not observed in scPCP-treated rats accompanied by cognitive disruption in the scPCP group. This novel finding suggests a mechanism by which cognitive deficits are produced in this animal model and support its use for investigating disorders in which PFC dopamine is central to the pathophysiology.
Collapse
Affiliation(s)
- Samantha L McLean
- 1 School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Michael K Harte
- 2 Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Joanna C Neill
- 2 Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Andrew Mj Young
- 3 Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
203
|
Onaolapo AY, Aina OA, Onaolapo OJ. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed Pharmacother 2017; 92:373-383. [PMID: 28554133 DOI: 10.1016/j.biopha.2017.05.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
Melatonin is a neurohormone that is linked to the aetiopathogenesis of schizophrenia. The aim of this study was to assess the potentials of oral melatonin supplement in the management of induced schizophrenia-like behavioural and brain oxidative status changes, using an animal model. The relative degrees of modulation of ketamine-induced behaviours by haloperidol, olanzapine or melatonin were assessed in the open-field, Y-maze, elevated plus maze and the social interaction tests. 12-week old, male mice were assigned to six groups of ten each (n=10). They were pretreated with daily intraperitoneal ketamine at 15mg/kg (except vehicle) for 10days, before commencement of 14day treatment with standard drug (haloperidol or olanzapine) or melatonin. Ketamine injection also continued alongside melatonin or standard drugs administration for the duration of treatment. Melatonin, haloperidol and olanzapine were administered by gavage. Treatments were given daily, and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for the estimation of glutathione, nitric oxide and malondialdehyde levels. Ketamine injection increased open-field behaviours; while it decreased working-memory, social-interaction and glutathione activity. Nitric oxide and malondialdehyde levels also increased after ketamine injection. Administration of melatonin was associated with variable degrees of reversal of these effects. In conclusion, melatonin may have the potential of a possible therapeutic agent and/or adjunct in the management of schizophrenia.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Olufemi A Aina
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
204
|
Gökhan N, Neuwirth LS, Meehan EF. The effects of low dose MK-801 administration on NMDAR dependent executive functions in pigeons. Physiol Behav 2017; 173:243-251. [DOI: 10.1016/j.physbeh.2017.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/23/2023]
|
205
|
Janardhanan A, Sadanand A, Vanisree AJ. Nardostachys jatamansi Targets BDNF-TrkB to Alleviate Ketamine-Induced Schizophrenia-Like Symptoms in Rats. Neuropsychobiology 2017; 74:104-114. [PMID: 28241130 DOI: 10.1159/000454985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Schizophrenia, a common neurological disorder appearing in the late teens or early adulthood, is characterized by disorganized thinking, behaviour, and perception of emotions. Aberrant N-methyl-D-aspartate (NMDA) receptor-mediated synaptic plasticity is a major pathological event here due to dysfunction of dopamine and glutamate transmission at NMDA receptors. De-regulated brain-derived neurotrophic factor (BDNF), i.e., its signalling through the tropomyosin receptor kinase B (TrkB) receptor, is a major feature of schizophrenia. With recent global awareness of traditional plant medicines in reducing side effects, the aim of our study was to evaluate the efficacy of the ethanolic root extract of a herb belonging to the Valerianacea family, Nardostachys jatamansi, against ketamine-induced schizophrenia-like model in rats. METHODS The effect of the N. jatamansi drug (oral dosage of 500 mg/kg body weight for 14 days) in ketamine-administered male Wistar albino rats (30 mg/kg body weight for 5 days) on modulating behaviour and the level of neurotransmitters like dopamine and glutamate was studied in whole-brain homogenates, and its influence on BDNF and TrkB levels in 2 relevant brain regions, the hippocampus and prefrontal cortex, was assessed. RESULTS We observed that N. jatamansi treatment exhibited encouraging results in the modulation of ketamine-induced schizophrenia-like behaviours, principally the positive symptoms. Our drug both significantly upregulated the glutamate level and downregulated the dopamine level in whole-brain homogenates and retained the normal levels of BDNF (in the hippocampus but not in the prefrontal cortex) and TrkB (in both hippocampus and prefrontal cortex) induced by ketamine in rats. CONCLUSION These findings suggest a neuroprotective effect of the ethanolic root extract of N. jatamansi against ketamine-induced schizophrenia-like symptoms in rats; possibly, regarding its effect on TrkB signalling. Further research is warranted in the treatment of schizophrenic symptoms.
Collapse
|
206
|
Increased risk of developing schizophrenia in animals exposed to cigarette smoke during the gestational period. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:199-206. [PMID: 28229913 DOI: 10.1016/j.pnpbp.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Cigarette smoking during the prenatal period has been investigated as a causative factor of obstetric abnormalities, which lead to cognitive and behavioural changes associated with schizophrenia. The aim of this study was to investigate behaviour and AChE activity in brain structures in adult rats exposed to cigarette smoke during the prenatal period. Pregnant rats were divided into non-PCSE (non-prenatal cigarette smoke exposure) and PCSE (prenatal cigarette smoke exposure) groups. On post-natal day 60, the rats received saline or ketamine for 7days and were subjected to behavioural tasks. In the locomotor activity task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited increased locomotor activity compared with the saline group. In the social interaction task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited an increased latency compared with the control groups. However, the PCSE+ketamine group exhibited a decreased latency compared with the non-PCSE+ketamine group, which indicates that the cigarette exposure appeared to decrease, the social deficits generated by ketamine. In the inhibitory avoidance task, the non-PCSE+ketamine, PCSE, and PCSE+ketamine groups exhibited impairments in working memory, short-term memory, and long-term memory. In the pre-pulse inhibition (PPI) test, cigarette smoke associated with ketamine resulted in impaired PPI in 3 pre-pulse (PP) intensity groups compared with the control groups. In the biochemical analysis, the AChE activity in brain structures increased in the ketamine groups; however, the PCSE+ketamine group exhibited an exacerbated effect in all brain structures. The present study indicates that exposure to cigarette smoke during the prenatal period may affect behaviour and cerebral cholinergic structures during adulthood.
Collapse
|
207
|
RP5063, an atypical antipsychotic drug with a unique pharmacologic profile, improves declarative memory and psychosis in mouse models of schizophrenia. Behav Brain Res 2017; 332:180-199. [PMID: 28373127 DOI: 10.1016/j.bbr.2017.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Abstract
Various types of atypical antipsychotic drugs (AAPDs) modestly improve the cognitive impairment associated with schizophrenia (CIAS). RP5063 is an AAPD with a diverse and unique pharmacology, including partial agonism at dopamine (DA) D2, D3, D4, serotonin (5-HT)1A, and 5-HT2A receptors (Rs), full agonism at α4β2 nicotinic acetylcholine (ACh)R (nAChR), and antagonism at 5-HT2B, 5-HT6, and 5-HT7Rs. Most atypical APDs are 5-HT2A inverse agonists. The efficacy of RP5063 in mouse models of psychosis and episodic memory were studied. RP5063 blocked acute phencyclidine (PCP)-as well as amphetamine-induced hyperactivity, indicating antipsychotic activity. Acute administration of RP5063 significantly reversed subchronic (sc)PCP-induced impairment in novel object recognition (NOR), a measure of episodic memory, but not reversal learning, a measure of executive function. Co-administration of a sub-effective dose (SED) of RP5063 with SEDs of a 5-HT7R antagonist, a 5-HT1BR antagonist, a 5-HT2AR inverse agonist, or an α4β2 nAChR agonist, restored the ability of RP5063 to ameliorate the NOR deficit in scPCP mice. Pre-treatment with a 5-HT1AR, a D4R, antagonist, but not an α4β2 nAChR antagonist, blocked the ameliorating effect of RP5063. Further, co-administration of scRP5063 prior to each dose of PCP prevented the effect of PCP to produce a deficit in NOR for one week. RP5063, given to scPCP-treated mice for one week restored NOR for one week only. Acute administration of RP5063 significantly increased cortical DA efflux, which may be critical to some of its cognitive enhancing properties. These results indicate that RP5063, by itself, or as an adjunctive treatment has a multifaceted basis for improving some cognitive deficits associated with schizophrenia.
Collapse
|
208
|
Liu W, Wang D, Hong W, Yu Y, Tang J, Wang J, Liu F, Xu X, Tan L, Chen X. Psychotomimetic effects of different doses of MK-801 and the underlying mechanisms in a selective memory impairment model. Behav Brain Res 2017; 320:517-525. [DOI: 10.1016/j.bbr.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/14/2023]
|
209
|
Yavas E, Young AMJ. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro. ACS Chem Neurosci 2017; 8:320-328. [PMID: 28121123 DOI: 10.1021/acschemneuro.6b00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.
Collapse
Affiliation(s)
- Ersin Yavas
- Department of Neuroscience,
Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | - Andrew M. J. Young
- Department of Neuroscience,
Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
210
|
Prades R, Munarriz-Cuezva E, Urigüen L, Gil-Pisa I, Gómez L, Mendieta L, Royo S, Giralt E, Tarragó T, Meana JJ. The prolyl oligopeptidase inhibitor IPR19 ameliorates cognitive deficits in mouse models of schizophrenia. Eur Neuropsychopharmacol 2017; 27:180-191. [PMID: 27986355 DOI: 10.1016/j.euroneuro.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Cognitive deficits are considered a key feature of schizophrenia, and they usually precede the onset of the illness and continue after psychotic symptoms appear. Current antipsychotic drugs have little or no effect on the cognitive deficits of this disorder. Prolyl oligopeptidase (POP) is an 81-kDa monomeric serine protease that is expressed in brain and other tissues. POP inhibitors have shown neuroprotective, anti-amnesic and cognition-enhancing properties. Here we studied the potential of IPR19, a new POP inhibitor, for the treatment of the cognitive symptoms related to schizophrenia. The efficacy of the inhibitor was evaluated in mouse models based on subchronic phencyclidine and acute dizocilpine administration, and in adult offspring from mothers with immune reaction induced by polyinosinic:polycytidylic acid administration during pregnancy. Acute IPR19 administration (5mg/kg, i.p.) reversed the cognitive performance deficits of the three mouse models in the novel object recognition test, T-maze, and eight-arm radial maze. The compound also ameliorates deficits of the prepulse inhibition response. The in vitro inhibitory efficacy and selectivity, brain penetration and exposure time after injection of IPR19 were also addressed. Our results indicate that the inhibition of POP using IPR19 may offer a promising strategy to develop drugs to ameliorate the cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
| | - Eva Munarriz-Cuezva
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Itziar Gil-Pisa
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | | | | | | | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Teresa Tarragó
- Iproteos SL, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|
211
|
Gyertyán I. Cognitive ‘Omics’: Pattern-Based Validation of Potential Drug Targets. Trends Pharmacol Sci 2017; 38:113-126. [DOI: 10.1016/j.tips.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023]
|
212
|
Antidepressant, anxiolytic and procognitive effects of subacute and chronic ketamine in the chronic mild stress model of depression. Behav Pharmacol 2017; 28:1-8. [DOI: 10.1097/fbp.0000000000000259] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
213
|
Liu W, Wang X, Hong W, Wang D, Chen X. Establishment of a schizophrenic animal model through chronic administration of MK-801 in infancy and social isolation in childhood. Infant Behav Dev 2017; 46:135-143. [DOI: 10.1016/j.infbeh.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 01/26/2023]
|
214
|
Gogos A, Kusljic S, Thwaites SJ, van den Buuse M. Sex differences in psychotomimetic-induced behaviours in rats. Behav Brain Res 2017; 322:157-166. [PMID: 28111261 DOI: 10.1016/j.bbr.2017.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies using equal numbers of males and females are sparse in psychiatry research. Given the marked sex differences observed in psychiatric disorders, such as schizophrenia, using both males and females in research studies is an important requirement. Thus the aim of this study was to examine sex differences in psychotomimetic-induced behavioural deficits relevant to psychosis. We therefore compared the acute effect of amphetamine or phencyclidine on locomotor activity and prepulse inhibition in adult male and female Sprague-Dawley rats. The results of this study were that: (1) amphetamine-induced distance travelled was greater in female rats than in male rats, (2) phencyclidine-induced locomotor hyperactivity was similar in male and female rats; (3) there were no sex differences in amphetamine- or phencyclidine-induced disruption of prepulse inhibition; (4) male rats had an increased startle response after amphetamine. These findings suggest that sensitivity to amphetamine, but not phencyclidine, differs between male and female rats, and that this sex difference is selective to locomotor hyperactivity and startle, but not prepulse inhibition. This study used two widely-used, validated preclinical assays relevant to psychosis; the results of this study have implications for psychiatry research, particularly for disorders where marked sex differences in onset and symptomology are observed.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia.
| | - Snezana Kusljic
- Hormones in Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia; Department of Nursing, The University of Melbourne, Melbourne, Australia
| | - Shane J Thwaites
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia
| | - Maarten van den Buuse
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Parkville, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
215
|
Donegan JJ, Lodge DJ. Cell-based therapies for the treatment of schizophrenia. Brain Res 2017; 1655:262-269. [PMID: 27544423 PMCID: PMC5474910 DOI: 10.1016/j.brainres.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a devastating psychiatric disorder characterized by positive, negative and cognitive symptoms. While aberrant dopamine system function is typically associated with the positive symptoms of the disease, it is thought that this is secondary to pathology in afferent regions. Indeed, schizophrenia patients show dysregulated activity in the hippocampus and prefrontal cortex, two regions known to regulate dopamine neuron activity. These deficits in hippocampal and prefrontal cortical function are thought to result, in part, from reductions in inhibitory interneuron function in these brain regions. Therefore, it has been hypothesized that restoring interneuron function in the hippocampus and/or prefrontal cortex may be an effective treatment strategy for schizophrenia. In this article, we will discuss the evidence for interneuron pathology in schizophrenia and review recent advances in our understanding of interneuron development. Finally, we will explore how these advances have allowed us to test the therapeutic value of interneuron transplants in multiple preclinical models of schizophrenia. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
216
|
Wang JR, Sun PH, Ren ZX, Meltzer HY, Zhen XC. GSK-3β Interacts with Dopamine D1 Receptor to Regulate Receptor Function: Implication for Prefrontal Cortical D1 Receptor Dysfunction in Schizophrenia. CNS Neurosci Ther 2016; 23:174-187. [PMID: 27996211 DOI: 10.1111/cns.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Impaired dopamine D1 receptor (D1R) function in prefrontal cortex (PFC) is believed to contribute to the PFC hypofunction that has been hypothesized to be associated with negative symptoms and cognitive deficits in schizophrenia. It is therefore critical to understand the mechanisms for modulation of D1R function. AIMS To investigate the physical interaction and functional modulation between D1R and GSK-3β. RESULTS D1R and GSK-3β physically interact in cultured cells and native brain tissues. This direct interaction was found to occur at the S(417)PALS(421) motif in the C-terminus of D1R. Inhibition of GSK-3β impaired D1R activation along with a decrease in D1R-GSK-3β interaction. GSK-3β inhibition reduced agonist-stimulated D1R desensitization and endocytosis, the latter associated with the reduction of membrane translocation of β-arrestin-2. Similarly, inhibition of GSK-3β in rat PFC also resulted in impaired D1R activation and association with GSK-3β. Moreover, in a NMDA antagonist animal model of schizophrenia, we detected a decrease in prefrontal GSK-3β activity and D1R-GSK-3β association and decreased D1R activation in the PFC. CONCLUSIONS The present work identified GSK-3β as a new interacting protein for D1R functional regulation and revealed a novel mechanism for GSK-3β-regulated D1R function which may underlie D1R dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Jing-Ru Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Pei-Hua Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhao-Xiang Ren
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
217
|
Zhu D, Wang H, Wu J, Wang Q, Xu L, Zhao Y, Pang K, Shi Q, Zhao W, Zhang J, Sun J. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler. Mol Neurobiol 2016; 54:8152-8161. [PMID: 27896651 DOI: 10.1007/s12035-016-0291-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P < 0.05). Taken together, our results indicated that administration of MK-801 to postnatal mice induces social interaction deficits possibly due to inhibiting the neuronal excitability and decreasing the levels of SIRT1 and p-PKB in the prefrontal cortex.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Wang
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jintao Wu
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qian Wang
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Xu
- Department of Rehabilitation, Qilu Children's Hospital, Shandong University, Jinan, Shandong, China
| | - Yue Zhao
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kunkun Pang
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qingqing Shi
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenbo Zhao
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zhang
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jinhao Sun
- Department of Anatomy, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
218
|
Piyabhan P, Wannasiri S, Naowaboot J. Bacopa monnieri(Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia. Clin Exp Pharmacol Physiol 2016; 43:1234-1242. [DOI: 10.1111/1440-1681.12658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Pritsana Piyabhan
- Division of Physiology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| | - Supaporn Wannasiri
- Division of Physiology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| |
Collapse
|
219
|
Lin JC, Chan MH, Lee MY, Chen YC, Chen HH. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:7-13. [PMID: 27296677 DOI: 10.1016/j.pnpbp.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023]
Abstract
Ketamine, a dissociative anesthetic, produces rapid and sustained antidepressant effects at subanesthtic doses. However, it still inevitably induces psychotomimetic side effects. N,N-dimethylglycine (DMG) is a derivative of the amino acid glycine and is used as a dietary supplement. Recently, DMG has been found acting at glycine binding site of the N-methyl-d-aspartate receptor (NMDAR). As blockade of NMDARs is one of the main mechanisms responsible for the action of ketamine on central nervous system, DMG might modulate the behavioral responses to ketamine. The present study determined the effects of DMG on the ketamine-induced psychotomimetic, anesthetic and antidepressant-like effects in mice. DMG pretreatment reversed the ketamine-induced locomotor hyperactivity and impairment in the rotarod performance, novel location and novel object recognition tests, and prepulse inhibition. In addition, DMG alone exhibited antidepressant-like effects in the forced swim test and produced additive effects when combined with ketamine. However, DMG did not affect ketamine-induced anesthesia. These results reveal that DMG could antagonize ketamine's psychotomimetic effects, yet produce additive antidepressant-like effects with ketamine, suggesting that DMG might have antipsychotic potential and be suitable as an add-on therapy to ketamine for patients with treatment-resistant depression.
Collapse
Affiliation(s)
- Jen-Cheng Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Sec. 2, Zhinan Road, Wenshan District, Taipei 11605, Taiwan; Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec. 2, Zhinan Road, Wenshan District, Taipei 11605, Taiwan
| | - Mei-Yi Lee
- Department of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Yi-Chyan Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
| | - Hwei-Hsien Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Neuroscience, National Chengchi University, 64, Sec. 2, Zhinan Road, Wenshan District, Taipei 11605, Taiwan; Department of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
220
|
Reynolds GP, Neill JC. Modelling the cognitive and neuropathological features of schizophrenia with phencyclidine. J Psychopharmacol 2016; 30:1141-1144. [PMID: 27624147 DOI: 10.1177/0269881116667668] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, Reynolds and Neill describe the studies that preceded and followed publication of this paper, which reported a deficit in parvalbumin (PV), a calcium-binding protein found in GABA interneurons known to be reduced in schizophrenia patients, in conjunction with a deficit in reversal learning in an animal model for schizophrenia. This publication resulted from common research interests: Reynolds in the neurotransmitter pathology of schizophrenia, and Neill in developing animal models for schizophrenia symptomatology. The animal model, using a sub-chronic dosing regimen (sc) with the non-competitive NMDA receptor antagonist PCP (phencyclidine), evolved from previous work in rats (for PCP) and primates (for cognition). The hypothesis of a PV deficit came from emerging evidence for a GABAergic dysfunction in schizophrenia, in particular a deficit in PV-containing GABA interneurons. Since this original publication, a PV deficit has been identified in other animal models for schizophrenia, and the PV field has expanded considerably. This includes mechanistic work attempting to identify the link between oxidative stress and GABAergic dysfunction using this scPCP model, and assessment of the potential of the PV neuron as a target for new antipsychotic drugs. The latter has included development of a molecule targeting KV3.1 channels located on PV-containing GABA interneurons which can restore both PV expression and cognitive deficits in the scPCP model.
Collapse
Affiliation(s)
- Gavin P Reynolds
- Sheffield Hallam University, Biomolecular Sciences Research Centre, Sheffield, UK
| | - Joanna C Neill
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| |
Collapse
|
221
|
Pinacho R, Vila E, Prades R, Tarragó T, Castro E, Ferrer I, Ramos B. The glial phosphorylase of glycogen isoform is reduced in the dorsolateral prefrontal cortex in chronic schizophrenia. Schizophr Res 2016; 177:37-43. [PMID: 27156240 DOI: 10.1016/j.schres.2016.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Reduced glutamatergic activity and energy metabolism in the dorsolateral prefrontal cortex (DLPFC) have been described in schizophrenia. Glycogenolysis in astrocytes is responsible for providing neurons with lactate as a transient energy supply helping to couple glutamatergic neurotransmission and glucose utilization in the brain. This mechanism could be disrupted in schizophrenia. The aim of this study was to explore whether the protein levels of the astrocyte isoform of glycogen phosphorylase (PYGM), key enzyme of glycogenolysis, and the isoform A of Ras-related C3 botulinum toxin substrate 1 (RAC1), a kinase that regulates PYGM activity, are altered in the postmortem DLPFC of chronic schizophrenia patients (n=23) and matched controls (n=23). We also aimed to test NMDAR blockade effect on these proteins in the mouse cortex and cortical astrocytes and antipsychotic treatments in rats. Here we report a reduction in PYGM and RAC1 protein levels in the DLPFC in schizophrenia. We found that treatment with the NMDAR antagonist dizocilpine in mice as a model of psychosis increased PYGM and reduced RAC1 protein levels. The same result was observed in rat cortical astroglial-enriched cultures. 21-day haloperidol treatment increased PYGM levels in rats. These results show that PYGM and RAC1 are altered in the DLPFC in chronic schizophrenia and are controlled by NMDA signalling in the rodent cortex and cortical astrocytes suggesting an altered NMDA-dependent glycogenolysis in astrocytes in schizophrenia. Together, this study provides evidence of a NMDA-dependent transient local energy deficit in neuron-glia crosstalk in schizophrenia, contributing to energy deficits of the disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Elia Vila
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Elena Castro
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED, Feixa Llarga s/n, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain.
| |
Collapse
|
222
|
Chen XW, Sun YY, Fu L, Li JQ. Synthesis and pharmacological characterization of novel N -( trans -4-(2-(4-(benzo[ d ]isothiazol-3-yl)piperazin-1-yl)ethyl)cyclohexyl)amides as potential multireceptor atypical antipsychotics. Eur J Med Chem 2016; 123:332-353. [DOI: 10.1016/j.ejmech.2016.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022]
|
223
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
224
|
Sahin C, Doostdar N, Neill JC. Towards the development of improved tests for negative symptoms of schizophrenia in a validated animal model. Behav Brain Res 2016; 312:93-101. [DOI: 10.1016/j.bbr.2016.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022]
|
225
|
The selective 5-HT 6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment. Neurobiol Learn Mem 2016; 133:100-117. [DOI: 10.1016/j.nlm.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
|
226
|
A systematic review comparing sex differences in cognitive function in schizophrenia and in rodent models for schizophrenia, implications for improved therapeutic strategies. Neurosci Biobehav Rev 2016; 68:979-1000. [DOI: 10.1016/j.neubiorev.2016.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 01/07/2023]
|
227
|
Fachim HA, Srisawat U, Dalton CF, Harte MK, Marsh S, Neill JC, Reynolds GP. Subchronic administration of phencyclidine produces hypermethylation in the parvalbumin gene promoter in rat brain. Epigenomics 2016; 8:1179-83. [PMID: 27529801 DOI: 10.2217/epi-2016-0050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A deficit in parvalbumin neurons is found in schizophrenia and several animal models of the disease. In this preliminary study, we determined whether one such model, phencyclidine (PCP) administration, results in changes in DNA methylation in the rat Pvalb promoter. MATERIALS & METHODS DNA from hippocampus and prefrontal cortex from rats, which 6 weeks previously received either 2 mg/kg PCP or vehicle for 7 days, underwent bisulphite pyrosequencing to determine methylation. RESULTS PCP administration induced significantly greater methylation at one of two Pvalb CpG sites in both prefrontal cortex and hippocampus, while no significant difference was found in long interspersed nucleotide element-1, a global measure of DNA methylation. CONCLUSION Subchronic PCP administration results in a specific hypermethylation in the Pvalb promoter which may contribute to parvalbumin deficits in this animal model of psychosis.
Collapse
Affiliation(s)
- Helene A Fachim
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Umarat Srisawat
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Michael K Harte
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Samuel Marsh
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Joanna C Neill
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| |
Collapse
|
228
|
Nascimento JM, Garcia S, Saia-Cereda VM, Santana AG, Brandao-Teles C, Zuccoli GS, Junqueira DG, Reis-de-Oliveira G, Baldasso PA, Cassoli JS, Martins-de-Souza D. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics Clin Appl 2016; 10:1148-1158. [DOI: 10.1002/prca.201600021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Juliana M. Nascimento
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Sheila Garcia
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Verônica M. Saia-Cereda
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Aline G. Santana
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Caroline Brandao-Teles
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Giuliana S. Zuccoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Danielle G. Junqueira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Paulo A. Baldasso
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Juliana S. Cassoli
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology; Laboratory of Neuroproteomics; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
229
|
Sex differences in animal models of schizophrenia shed light on the underlying pathophysiology. Neurosci Biobehav Rev 2016; 67:41-56. [DOI: 10.1016/j.neubiorev.2015.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
230
|
An Algorithm to Identify Target-Selective Ligands - A Case Study of 5-HT7/5-HT1A Receptor Selectivity. PLoS One 2016; 11:e0156986. [PMID: 27271158 PMCID: PMC4896471 DOI: 10.1371/journal.pone.0156986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/23/2016] [Indexed: 11/19/2022] Open
Abstract
A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance.
Collapse
|
231
|
Zimmermann FF, Gaspary KV, Siebel AM, Bonan CD. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav Brain Res 2016; 311:368-374. [PMID: 27247142 DOI: 10.1016/j.bbr.2016.05.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia.
Collapse
Affiliation(s)
- Fernanda Francine Zimmermann
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Karina Vidarte Gaspary
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
232
|
Barrow P, Parrott N, Alberati D, Paehler A, Koerner A. Preclinical Reproductive and Developmental Toxicity Profile of a Glycine Transporter Type 1 (Glyt1) Inhibitor. ACTA ACUST UNITED AC 2016; 107:148-56. [DOI: 10.1002/bdrb.21179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/12/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Paul Barrow
- Roche Pharmaceutical Research and Early Development; F. Hoffmann-La-Roche; Basel Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development; F. Hoffmann-La-Roche; Basel Switzerland
| | - Daniela Alberati
- Roche Pharmaceutical Research and Early Development; F. Hoffmann-La-Roche; Basel Switzerland
| | - Axel Paehler
- Roche Pharmaceutical Research and Early Development; F. Hoffmann-La-Roche; Basel Switzerland
| | - Annette Koerner
- Roche Pharmaceutical Research and Early Development; F. Hoffmann-La-Roche; Basel Switzerland
| |
Collapse
|
233
|
Wu H, Wang X, Gao Y, Lin F, Song T, Zou Y, Xu L, Lei H. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging. Neuroscience 2016; 322:221-33. [DOI: 10.1016/j.neuroscience.2016.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
|
234
|
Ihalainen J, Savolainen K, Tanila H, Forsberg MM. Comparison of phencyclidine-induced spatial learning and memory deficits and reversal by sertindole and risperidone between Lister Hooded and Wistar rats. Behav Brain Res 2016; 305:140-7. [DOI: 10.1016/j.bbr.2016.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|
235
|
Lafioniatis A, Orfanidou MA, Papadopoulou ES, Pitsikas N. Effects of the inducible nitric oxide synthase inhibitor aminoguanidine in two different rat models of schizophrenia. Behav Brain Res 2016; 309:14-21. [PMID: 27132765 DOI: 10.1016/j.bbr.2016.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Several lines evidence indicate that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including memory impairments and social withdrawal. Nitric oxide (NO) has been proposed to act as an intracellular messenger in the brain and its overproduction is associated with schizophrenia. The current study was designed to investigate the ability of the inducible NO synthase (iNOS) inhibitor aminoguanidine (AG) to counteract schizophrenia-like behavioural deficits produced by ketamine and apomorphine in rats. The efficacy of AG to antagonize extinction of recognition memory, ketamine and apomorphine-induced recognition memory impairments was tested utilizing the novel object recognition task (NORT). Further, the efficacy of AG to attenuate ketamine-induced social withdrawal was examined in the social interaction test. AG (25 and 50mg/kg) antagonized extinction of recognition memory and reversed ketamine (3mg/kg) and apomorphine (1mg/kg)-induced recognition memory deficits. In contrast, AG (50 and 100mg/kg) did not counteract the ketamine (8mg/kg)-induced social isolation. The present data show that the iNOS inhibitor AG counteracted extinction of recognition memory and reversed recognition memory deficits produced by dysfunction of the glutamatergic and the dopaminergic (DAergic) system in rats. Therefore, AG may be efficacious in attenuating memory impairments often observed in schizophrenia patients.
Collapse
Affiliation(s)
- Anastasios Lafioniatis
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Martha A Orfanidou
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia S Papadopoulou
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
236
|
McCammon JM, Sive H. Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish. Dis Model Mech 2016; 8:647-56. [PMID: 26092527 PMCID: PMC4486859 DOI: 10.1242/dmm.019620] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The treatment of psychiatric disorders presents three major challenges to the research and clinical community: defining a genotype associated with a disorder, characterizing the molecular pathology of each disorder and developing new therapies. This Review addresses how cellular and animal systems can help to meet these challenges, with an emphasis on the role of the zebrafish. Genetic changes account for a large proportion of psychiatric disorders and, as gene variants that predispose to psychiatric disease are beginning to be identified in patients, these are tractable for study in cellular and animal systems. Defining cellular and molecular criteria associated with each disorder will help to uncover causal physiological changes in patients and will lead to more objective diagnostic criteria. These criteria should also define co-morbid pathologies within the nervous system or in other organ systems. The definition of genotypes and of any associated pathophysiology is integral to the development of new therapies. Cell culture-based approaches can address these challenges by identifying cellular pathology and by high-throughput screening of gene variants and potential therapeutics. Whole-animal systems can define the broadest function of disorder-associated gene variants and the organismal impact of candidate medications. Given its evolutionary conservation with humans and its experimental tractability, the zebrafish offers several advantages to psychiatric disorder research. These include assays ranging from molecular to behavioural, and capability for chemical screening. There is optimism that the multiple approaches discussed here will link together effectively to provide new diagnostics and treatments for psychiatric patients. Summary: In this review, we discuss strengths and limitations of prevalent laboratory models that are used for understanding psychiatric disorders and developing therapeutics, with emphasis on the zebrafish.
Collapse
Affiliation(s)
- Jasmine M McCammon
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
237
|
CNS safety pharmacology: A focus on cognitive functions. J Pharmacol Toxicol Methods 2016; 81:286-94. [PMID: 27071953 DOI: 10.1016/j.vascn.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The guidelines from different agencies do not include studies on cognitive functions as part of safety pharmacology. This is unfortunate as it seems important to verify that drugs entering into the central nervous system (CNS) are devoid of detrimental effects on cognition. Our aim is to show examples on how an evaluation of unwanted effects of drugs on cognitive functions may be included in preclinical studies. Rather than a review of the scientific context, the present text is an appeal for a wider consideration of cognition as a safety pharmacology endpoint. METHODS The following procedures provide an index of the ability of substances to induce cognitive deficits in rodents. In the passive avoidance (PA) test, rats receiving an electric shock show on a later occasion an avoidance of the shock-associated environment. In the social recognition (SR) test, rats recognize familiar congeners. In the Morris water maze (MWM) test, rats placed into a tank containing water learn to find an invisible escape platform using extra-maze visual cues. In the delayed alternation (DA) test, rats placed in a Skinner box learn to alternate their pressing behavior between two levers in order to obtain food rewards. In the operant reversal (OR) test, rats adapt their behavior following a change of the reinforcement rule. RESULTS Standard reference agents were used to confirm that the different assays were able to detect pharmacologically induced cognitive impairments. Diazepam decreased associative memory performances in the PA test. MK-801-induced memory deficits in SR. Haloperidol increased escape latencies in the MWM test. Scopolamine decreased the number of correct responses in the DA test, and nicotine decreased the number of correct responses in the OR test. The relationship between the doses administered and the effects observed was also evaluated. DISCUSSION Cognitive assays may provide utility in determining potential undesirable effects or discharging perceived risks with novel CNS drugs under development.
Collapse
|
238
|
Rahati M, Nozari M, Eslami H, Shabani M, Basiri M. Effects of enriched environment on alterations in the prefrontal cortex GFAP- and S100B-immunopositive astrocytes and behavioral deficits in MK-801-treated rats. Neuroscience 2016; 326:105-116. [PMID: 27063100 DOI: 10.1016/j.neuroscience.2016.03.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
A plethora of studies have indicated that enriched environment (EE) paradigm provokes plastic and morphological changes in astrocytes with accompanying increments of their density and positively affects the behavior of rodents. We also previously documented that EE could be employed to preclude several behavioral abnormalities, mainly cognitive deficits, attributed to postnatal N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) treatment, as a rodent model of schizophrenia (SCH) aspects. Given this, the current study quantitatively investigated the number of cells, presumed to be astrocytes, expressing two astroglia-associated proteins (S100B and glial fibrillary acidic protein (GFAP)) by immunohistochemistry in the prefrontal cortex (PFC), along with anxiety and passive avoidance (PA) learning behaviors by utilizing elevated plus maze (EPM) and shuttle-box tests, in MK-801-treated male wistar rats submitted to EE and non-EE rats. Following a treatment regime of sub-chronic MK-801 (1.0mg/kg i.p. daily for five consecutive days from postnatal day (P) 6), S-100B-positive cells and anxiety level were markedly increased, while the GFAP-positive cells and PA learning were notably attenuated. The trend of diminished GFAP-immunopositive cells and elevated S100B-immunostained cells in the PFC was reversed in the SCH-like rats by exposure of animals to EE, commencing from birth up to the time of experiments on P28-85. Additionally, EE exhibited an ameliorating effect on the behavioral abnormalities evoked by MK-801. Overall, present findings support that improper astrocyte functioning and behavioral changes, reminiscent of the many facets of SCH, occur consequential to repetitive administration of MK-801 and that raising rat pups in an EE mitigates these alterations.
Collapse
Affiliation(s)
- M Rahati
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - M Nozari
- Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - H Eslami
- Department of Pharmacology, Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - M Basiri
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
239
|
Hudson MR, Rind G, O'Brien TJ, Jones NC. Reversal of evoked gamma oscillation deficits is predictive of antipsychotic activity with a unique profile for clozapine. Transl Psychiatry 2016; 6:e784. [PMID: 27093066 PMCID: PMC4872409 DOI: 10.1038/tp.2016.51] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 11/09/2022] Open
Abstract
Recent heuristic models of schizophrenia propose that abnormalities in the gamma frequency cerebral oscillations may be closely tied to the pathophysiology of the disorder, with hypofunction of N-methyl-d-aspartate receptors (NMDAr) implicated as having a crucial role. Prepulse inhibition (PPI) is a behavioural measure of sensorimotor gating that is disrupted in schizophrenia. We tested the ability for antipsychotic drugs with diverse pharmacological actions to (1) ameliorate NMDAr antagonist-induced disruptions to gamma oscillations and (2) attenuate NMDAr antagonist-induced disruptions to PPI. We hypothesized that antipsychotic-mediated improvement of PPI deficits would be accompanied by a normalization of gamma oscillatory activity. Wistar rats were implanted with extradural electrodes to facilitate recording of electroencephalogram during PPI behavioural testing. In each session, the rats were administered haloperidol (0.25 mg kg(-1)), clozapine (5 mg kg(-1)), olanzapine (5 mg kg(-1)), LY379268 (3 mg kg(-1)), NFPS (sarcosine, 1 mg kg(-1)), d-serine (1800 mg kg(-1)) or vehicle, followed by the NMDAr antagonists MK-801(0.16 mg kg(-1)), ketamine (5 mg kg(-1)) or vehicle. Outcome measures were auditory-evoked, as well as ongoing, gamma oscillations and PPI. Although treatment with all the clinically validated antipsychotic drugs reduced ongoing gamma oscillations, clozapine was the only compound that prevented the sensory-evoked gamma deficit produced by ketamine and MK-801. In addition, clozapine was also the only antipsychotic that attenuated the disruption to PPI produced by the NMDAr antagonists. We conclude that disruptions to evoked, but not ongoing, gamma oscillations caused by NMDAr antagonists are functionally relevant, and suggest that compounds, which restore sensory-evoked gamma oscillations may improve sensory processing in patients with schizophrenia.
Collapse
Affiliation(s)
- M R Hudson
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - G Rind
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - T J O'Brien
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - N C Jones
- Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia,Department of Medicine, Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3052, Australia. E-mail:
| |
Collapse
|
240
|
Honeycutt JA, Keary Iii KM, Kania VM, Chrobak JJ. Developmental Age Differentially Mediates the Calcium-Binding Protein Parvalbumin in the Rat: Evidence for a Selective Decrease in Hippocampal Parvalbumin Cell Counts. Dev Neurosci 2016; 38:105-14. [PMID: 27002731 DOI: 10.1159/000444447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
Local circuit GABAergic neurons, including parvalbumin (PV)-containing basket cells, likely play a key role in the development, physiology, and pathology of neocortical circuits. Regionally selective and well-defined decreases in PV have been described in human postmortem schizophrenic brain tissue in both the hippocampus and prefrontal cortex. Animal models of schizophreniform dysfunction following acute and/or chronic ketamine treatment have also demonstrated decreases in PV expression. Conflicting reports with respect to PV immunoreactivity following acute and chronic ketamine treatments in rodents question the utility of using PV as a biological marker of pathology-related dysfunction. The current literature lacks sufficient and systematic characterization of normative PV expression in pharmacologically and behaviorally naïve rodent tissue. In order to understand developmental changes in PV and its putative role in neuropathology, we examined the baseline distribution of the number of cells expressing this protein at distinct developmental ages. The present study examined PV cell counts across the septotemporal axis of the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus, as well as within the retrosplenial, somatosensory, and prefrontal cortices, in 1-, 6-, and 12-month-old naïve rats. Our findings suggest that the hippocampal PV+ cell number significantly decreases as a function of age with considerable regional (CA1, CA3, and DG) and septotemporal variation, a finding that was specific to the hippocampus. Additionally, we observed a modest increase in PV cell number within the prefrontal (anterior cingulate) cortex, which is in line with findings indicating a delayed developmental maturation of this region. The present work highlights decreases in PV+ cell counts within the hippocampus across development, and points to the need for a greater understanding of the role of PV and local circuit developmental changes, as well as consideration of their development when modeling developmentally related neuropathological disorders (e.g. schizophrenia, autism).
Collapse
Affiliation(s)
- Jennifer A Honeycutt
- Department of Psychology, Division of Behavioral Neuroscience, University of Connecticut, Storrs, Conn., USA
| | | | | | | |
Collapse
|
241
|
Hirayasu Y, Sato SI, Takahashi H, Iida S, Shuto N, Yoshida S, Funatogawa T, Yamada T, Higuchi T. A double-blind randomized study assessing safety and efficacy following one-year adjunctive treatment with bitopertin, a glycine reuptake inhibitor, in Japanese patients with schizophrenia. BMC Psychiatry 2016; 16:66. [PMID: 26980460 PMCID: PMC4791769 DOI: 10.1186/s12888-016-0778-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bitopertin, a glycine reuptake inhibitor, was investigated as a novel treatment for schizophrenia. We report all the results of a double-blind randomized study assessing safety and efficacy following 52-week adjunctive treatment with bitopertin in Japanese patients with schizophrenia. METHODS This study enrolled Japanese outpatients with schizophrenia who met criteria for either "negative symptoms", i.e., patients with persistent, predominant negative symptoms of schizophrenia even after long-term treatment with antipsychotics or "sub-optimally controlled symptoms", i.e., patients with insufficiently improved symptoms of schizophrenia even after long-term treatment with antipsychotics, respectively. One hundred sixty-one patients were randomly assigned to receive 52-week treatments with bitopertin doses of 5, 10, or 20 mg/day at ratio of 1:5:5, where existing antipsychotics were concomitantly administered. Efficacy endpoints included Positive and Negative Syndrome Scale (PANSS), Clinical Global Impression (CGI), and Personal and Social Performance (PSP). The purpose of the present study is primarily to evaluate the safety, and secondarily to investigate the clinical efficacy of bitopertin. RESULTS One hundred fourteen patients (71 %) completed 52-week treatment with bitopertin. Most of the adverse events were mild or moderate in their severity. The patients in the 20-mg group experienced more adverse events than the patients in the other two groups. Common dose-dependent adverse events were somnolence and insomnia associated with worsening schizophrenia. The blood hemoglobin levels gradually decreased from baseline in a dose-dependent manner, but there were no patients with the decrease below 10 g/dL that would have led to their discontinuation. All the efficacy endpoints gradually improved in all the treatment groups for both of the two symptoms, while there were no clear differences among the three dose groups. CONCLUSIONS Altogether, bitopertin was found to be generally safe and well-tolerated for the treatment of patients with schizophrenia. All three bitopertin treated groups showed improvements in all the efficacy endpoints for both of the two symptoms, i.e., "negative symptoms" and "sub-optimally controlled symptoms", throughout the duration of the study. TRIAL REGISTRATION Japan Pharmaceutical Information Center, number JapicCTI-111627 (registered on September 20, 2011).
Collapse
Affiliation(s)
- Yoshio Hirayasu
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | - Sayaka Iida
- Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
242
|
Vojtechova I, Petrasek T, Hatalova H, Pistikova A, Vales K, Stuchlik A. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation. Behav Brain Res 2016; 305:247-57. [PMID: 26970577 DOI: 10.1016/j.bbr.2016.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/03/2023]
Abstract
The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze.
Collapse
Affiliation(s)
- Iveta Vojtechova
- Charles University in Prague, 1st Faculty of Medicine, Katerinska 32, 12108 Prague 2, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic.
| | - Tomas Petrasek
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Hana Hatalova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Adela Pistikova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Karel Vales
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic.
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
243
|
Cascio MG, Zamberletti E, Marini P, Parolaro D, Pertwee RG. The phytocannabinoid, Δ⁹-tetrahydrocannabivarin, can act through 5-HT₁A receptors to produce antipsychotic effects. Br J Pharmacol 2016; 172:1305-18. [PMID: 25363799 DOI: 10.1111/bph.13000] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to address the questions of whether Δ(9)-tetrahydrocannabivarin (THCV) can (i) enhance activation of 5-HT1 A receptors in vitro and (ii) induce any apparent 5-HT₁A receptor-mediated antipsychotic effects in vivo. EXPERIMENTAL APPROACH In vitro studies investigated the effect of THCV on targeting by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) of 5-HT₁A receptors in membranes obtained from rat brainstem or human 5-HT₁A CHO cells, using [(35)S]-GTPγS and 8-[(3)H]-OH-DPAT binding assays. In vivo studies investigated whether THCV induces signs of 5-HT₁A receptor-mediated antipsychotic effects in rats. KEY RESULTS THCV (i) potently, albeit partially, displaced 8-[(3) H]-OH-DPAT from specific binding sites in rat brainstem membranes; (ii) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of receptors in these membranes; (iii) produced concentration-related increases in 8-[(3)H]-OH-DPAT binding to specific sites in membranes of human 5-HT₁A receptor-transfected CHO cells; and (iv) at 100 nM, significantly enhanced 8-OH-DPAT-induced activation of these human 5-HT₁A receptors. In phencyclidine-treated rats, THCV, like clozapine (i) reduced stereotyped behaviour; (ii) decreased time spent immobile in the forced swim test; and (iii) normalized hyperlocomotor activity, social behaviour and cognitive performance. Some of these effects were counteracted by the 5-HT₁A receptor antagonist, WAY100635, or could be reproduced by the CB₁ antagonist, AM251. CONCLUSIONS AND IMPLICATIONS Our findings suggest that THCV can enhance 5-HT₁A receptor activation, and that some of its apparent antipsychotic effects may depend on this enhancement. We conclude that THCV has therapeutic potential for ameliorating some of the negative, cognitive and positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
244
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|
245
|
Terry AV, Plagenhoef M, Callahan PM. Effects of the nicotinic agonist varenicline on the performance of tasks of cognition in aged and middle-aged rhesus and pigtail monkeys. Psychopharmacology (Berl) 2016; 233:761-71. [PMID: 26612616 PMCID: PMC4752862 DOI: 10.1007/s00213-015-4154-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Due to the rising costs of drug development especially in the field of neuropsychiatry, there is increasing interest in efforts to identify new clinical uses for existing approved drugs (i.e., drug repurposing). OBJECTIVES The purpose of this work was to evaluate in animals the smoking cessation agent, varenicline, a partial agonist at α4β2 and full agonist at α7 nicotinic acetylcholine receptors, for its potential as a repurposed drug for disorders of cognition. METHODS Oral doses of varenicline ranging from 0.01 to 0.3 mg/kg were evaluated in aged and middle-aged monkeys for effects on the following: working/short-term memory in a delayed match to sample (DMTS) task, distractibility in a distractor version of the DMTS (DMTS-D), and cognitive flexibility in a ketamine-impaired reversal learning task. RESULTS In dose-effect studies in the DMTS and DMTS-D tasks, varenicline was not associated with statistically significant effects on performance. However, individualized "optimal doses" were effective when repeated on a separate occasion (i.e., improving DMTS accuracy at long delays and DMTS-D accuracy at short delays by approximately 13.6 and 19.6 percentage points above baseline, respectively). In reversal learning studies, ketamine impaired accuracy and increased perseverative responding, effects that were attenuated by all three doses of varenicline that were evaluated. CONCLUSIONS While the effects of varenicline across the different behavioral tasks were modest, these data suggest that varenicline may have potential as a repurposed drug for disorders of cognition associated with aging (e.g., Alzheimer's disease), as well as those not necessarily associated with advanced age (e.g., schizophrenia).
Collapse
|
246
|
Shiraishi E, Suzuki K, Harada A, Suzuki N, Kimura H. The Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions Associated with Schizophrenia in Rodent Models. J Pharmacol Exp Ther 2016; 356:587-95. [PMID: 26675680 DOI: 10.1124/jpet.115.230482] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 03/08/2025] Open
Abstract
Cognitive deficits in various domains, including recognition memory, attention, impulsivity, working memory, and executive function, substantially affect functional outcomes in patients with schizophrenia. TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one] is a potent and selective phosphodiesterase 10A inhibitor that produces antipsychotic-like effects in rodent models of schizophrenia. We evaluated the effects of TAK-063 on multiple cognitive functions associated with schizophrenia using naïve and drug-perturbed rodents. TAK-063 at 0.1 and 0.3 mg/kg p.o. improved time-dependent memory decay in object recognition in naïve rats. TAK-063 at 0.1 and 0.3 mg/kg p.o. increased accuracy rate, and TAK-063 at 0.3 mg/kg p.o. reduced impulsivity in a five-choice serial reaction time task in naïve rats. N-methyl-d-aspartate receptor antagonists, such as phencyclidine and MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], were used to induce working memory deficits relevant to schizophrenia in animals. TAK-063 at 0.3 mg/kg p.o. attenuated both phencyclidine-induced working memory deficits in a Y-maze test in mice and MK-801-induced working memory deficits in an eight-arm radial maze task in rats. An attentional set-shifting task using subchronic phencyclidine-treated rats was used to assess the executive function. TAK-063 at 0.3 mg/kg p.o. reversed cognitive deficits in extradimensional shifts. These findings suggest that TAK-063 has a potential to ameliorate deficits in multiple cognitive domains impaired in schizophrenia.
Collapse
Affiliation(s)
- Eri Shiraishi
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kazunori Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Akina Harada
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Noriko Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
247
|
Koh MT, Shao Y, Sherwood A, Smith DR. Impaired hippocampal-dependent memory and reduced parvalbumin-positive interneurons in a ketamine mouse model of schizophrenia. Schizophr Res 2016; 171:187-94. [PMID: 26811256 PMCID: PMC4762714 DOI: 10.1016/j.schres.2016.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 01/23/2023]
Abstract
The hippocampus of patients with schizophrenia displays aberrant excess neuronal activity which affects cognitive function. Animal models of the illness have recapitulated the overactivity in the hippocampus, with a corresponding regionally localized reduction of inhibitory interneurons, consistent with that observed in patients. To better understand whether cognitive function is similarly affected in these models of hippocampal overactivity, we tested a ketamine mouse model of schizophrenia for cognitive performance in hippocampal- and medial prefrontal cortex (mPFC)-dependent tasks. We found that adult mice exposed to ketamine during adolescence were impaired on a trace fear conditioning protocol that relies on the integrity of the hippocampus. Conversely, the performance of the mice was normal on a delayed response task that is sensitive to mPFC damage. We confirmed that ketamine-exposed mice had reduced parvalbumin-positive interneurons in the hippocampus, specifically in the CA1, but not in the mPFC in keeping with the behavioral findings. These results strengthened the utility of the ketamine model for preclinical investigations of hippocampal overactivity in schizophrenia.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
248
|
Horiguchi M, Miyauchi M, Neugebauer NM, Oyamada Y, Meltzer HY. Prolonged reversal of the phencyclidine-induced impairment in novel object recognition by a serotonin (5-HT)1A-dependent mechanism. Behav Brain Res 2016; 301:132-41. [DOI: 10.1016/j.bbr.2015.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
|
249
|
Nicotinic receptors and lurasidone-mediated reversal of phencyclidine-induced deficit in novel object recognition. Behav Brain Res 2016; 301:204-12. [DOI: 10.1016/j.bbr.2015.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
|
250
|
The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats. Psychopharmacology (Berl) 2016; 233:1045-54. [PMID: 26685991 DOI: 10.1007/s00213-015-4181-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. OBJECTIVES The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. METHODS The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. RESULTS SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. CONCLUSIONS Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.
Collapse
|