201
|
Li L, Fu Q, Xia M, Xin L, Shen H, Li G, Ji G, Meng Q, Xie Y. Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:988-998. [PMID: 29282978 DOI: 10.1021/acs.jafc.7b04307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10-5 cm/s in the control group to (3.39 ± 0.417) × 10-5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.
Collapse
Affiliation(s)
- Lujia Li
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200082, China
| | - Qingxue Fu
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Mengxin Xia
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Lei Xin
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200082, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200032, China
| | - Qianchao Meng
- Center for Drug Safety Evaluation, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200032, China
| |
Collapse
|
202
|
Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins? Antioxidants (Basel) 2018; 7:antiox7010010. [PMID: 29329238 PMCID: PMC5789320 DOI: 10.3390/antiox7010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.
Collapse
Affiliation(s)
- Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Lisa Schmölz
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Baker IDI Heart and Diabetes Institute, Melbourne VIC 3004, Australia.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Clinical Biochemistry, University of Perugia, 06123 Perugia, Italy.
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, 36037 Fulda, Germany.
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| |
Collapse
|
203
|
Acharya PC, Fernandes C, Mallik S, Mishra B, Tekade RK. Physiologic Factors Related to Drug Absorption. DOSAGE FORM DESIGN CONSIDERATIONS 2018:117-147. [DOI: 10.1016/b978-0-12-814423-7.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
204
|
Ramos P, Schmitz M, Gama S, Portantiolo A, Durruthy MG, de Souza Votto AP, Cornetet LR, dos Santos Machado K, Werhli A, Tonel MZ, Fagan SB, Yunes JS, Monserrat JM. Cytoprotection of lipoic acid against toxicity induced by saxitoxin in hippocampal cell line HT-22 through in silico modeling and in vitro assays. Toxicology 2018; 393:171-184. [DOI: 10.1016/j.tox.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
205
|
Dei S, Romanelli MN, Manetti D, Chiaramonte N, Coronnello M, Salerno M, Teodori E. Design and synthesis of aminoester heterodimers containing flavone or chromone moieties as modulators of P-glycoprotein-based multidrug resistance (MDR). Bioorg Med Chem 2018; 26:50-64. [DOI: 10.1016/j.bmc.2017.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
206
|
Zhou P, Zhang R, Wang Y, Xu D, Zhang L, Qin J, Su G, Feng Y, Chen H, You S, Rui W, Liu H, Chen S, Chen H, Wang Y. Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget 2017; 8:111144-111160. [PMID: 29340044 PMCID: PMC5762312 DOI: 10.18632/oncotarget.22676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy that is often resistant to therapy. Nowadays, chemotherapy is still one of the main methods for the treatment of ESCC. However, the multidrug resistance (MDR)-mediated chemotherapy resistance is one of the leading causes of death. Exploring agents able to reverse MDR, which thereby increase the sensitivity with clinical first-line chemotherapy drugs, could significantly improve cancer treatment. Cepharanthine hydrochloride (CEH) has the ability to reverse the MDR in ESCC and the mechanism involved have not been reported. The aim of the study was to investigate the potential of CEH to sensitize chemotherapeutic drugs in ESCC and explore the underlying mechanisms by in vitro and in vivo studies. Our data demonstrated that CEH significantly inhibited ESCC cell proliferation in a dose-dependent manner, induced G2/M phase cell cycle arrest and apoptosis, and increased the sensitivity of cell lines resistant to cisplatin (cDDP). Mechanistically, CEH inhibited ESCC cell growth and induced apoptosis through activation of c-Jun, thereby inhibiting the expression of P-gp, and enhancing p21 expression via activation of the p53 signaling pathway. In this study, we observed that growth of xenograft tumors derived from ESCC cell lines in nude mice was also significantly inhibited by combination therapy. To our knowledge, we demonstrate for the first time that CEH is a potentially effective MDR reversal agent for ESCC, based on downregulation of the mRNA expression of MDR1 and P-gp. Together, these results reveal emphasize CEH putative role as a resistance reversal agent for ESCC.
Collapse
Affiliation(s)
- Pengjun Zhou
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, P. R. China
| | - Ying Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Dandan Xu
- Guangdong Food and Drug Vocational College, Guangzhou 510520, Guangdong, P. R. China
| | - Li Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, P. R. China
| | - Jinhong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Guifeng Su
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Yue Feng
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Hongce Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Siyuan You
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Wen Rui
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Huizhong Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shanxi, P. R. China
| | - Suhong Chen
- Guangdong Food and Drug Vocational College, Guangzhou 510520, Guangdong, P. R. China
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| |
Collapse
|
207
|
Santana Machado T, Poitevin S, Paul P, McKay N, Jourde-Chiche N, Legris T, Mouly-Bandini A, Dignat-George F, Brunet P, Masereeuw R, Burtey S, Cerini C. Indoxyl Sulfate Upregulates Liver P-Glycoprotein Expression and Activity through Aryl Hydrocarbon Receptor Signaling. J Am Soc Nephrol 2017; 29:906-918. [PMID: 29222397 DOI: 10.1681/asn.2017030361] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/14/2017] [Indexed: 11/03/2022] Open
Abstract
In patients with CKD, not only renal but also, nonrenal clearance of drugs is altered. Uremic toxins could modify the expression and/or activity of drug transporters in the liver. We tested whether the uremic toxin indoxyl sulfate (IS), an endogenous ligand of the transcription factor aryl hydrocarbon receptor, could change the expression of the following liver transporters involved in drug clearance: SLC10A1, SLC22A1, SLC22A7, SLC47A1, SLCO1B1, SLCO1B3, SLCO2B1, ABCB1, ABCB11, ABCC2, ABCC3, ABCC4, ABCC6, and ABCG2 We showed that IS increases the expression and activity of the efflux transporter P-glycoprotein (P-gp) encoded by ABCB1 in human hepatoma cells (HepG2) without modifying the expression of the other transporters. This effect depended on the aryl hydrocarbon receptor pathway. Presence of human albumin at physiologic concentration in the culture medium did not abolish the effect of IS. In two mouse models of CKD, the decline in renal function associated with the accumulation of IS in serum and the specific upregulation of Abcb1a in the liver. Additionally, among 109 heart or kidney transplant recipients with CKD, those with higher serum levels of IS needed higher doses of cyclosporin, a P-gp substrate, to obtain the cyclosporin target blood concentration. This need associated with serum levels of IS independent of renal function. These findings suggest that increased activity of P-gp could be responsible for increased hepatic cyclosporin clearance. Altogether, these results suggest that uremic toxins, such as IS, through effects on drug transporters, may modify the nonrenal clearance of drugs in patients with CKD.
Collapse
Affiliation(s)
- Tacy Santana Machado
- Coordination for the Improvement of Higher Education Personnel (CAPES Foundation), Ministry of Education of Brazil, Brasilia, Brazil.,Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Stéphane Poitevin
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Pascale Paul
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Nathalie McKay
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Noémie Jourde-Chiche
- Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | - Tristan Legris
- Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | - Annick Mouly-Bandini
- Department of Cardiac Surgery, Marseille Public University Hospital System (APHM), La Timone Hospital, Marseille, France
| | - Françoise Dignat-George
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Philippe Brunet
- Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France.,European Uraemic Toxin Working Group (EUTox) of The European Society for Artificial Organs (ESAO) endorsed by European Renal Association & European Dialysis and Transplant Assiociation (ERA-EDTA), Krems, Austria; and
| | - Rosalinde Masereeuw
- European Uraemic Toxin Working Group (EUTox) of The European Society for Artificial Organs (ESAO) endorsed by European Renal Association & European Dialysis and Transplant Assiociation (ERA-EDTA), Krems, Austria; and.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Stéphane Burtey
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France.,Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France.,European Uraemic Toxin Working Group (EUTox) of The European Society for Artificial Organs (ESAO) endorsed by European Renal Association & European Dialysis and Transplant Assiociation (ERA-EDTA), Krems, Austria; and
| | - Claire Cerini
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France;
| |
Collapse
|
208
|
Akasov R, Drozdova M, Zaytseva-Zotova D, Leko M, Chelushkin P, Marc A, Chevalot I, Burov S, Klyachko N, Vandamme T, Markvicheva E. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv Pharm Bull 2017; 7:593-601. [PMID: 29399549 PMCID: PMC5788214 DOI: 10.15171/apb.2017.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Multidrug resistance (MDR) of tumors to chemotherapeutics often leads to failure of cancer treatment. The aim of the study was to prepare novel MDR-overcoming chemotherapeutics based on doxorubicin (DOX) derivatives and to evaluate their efficacy in 2D and 3D in vitro models. Methods: To overcome MDR, we synthesized five DOX derivatives, and then obtained non-covalent complexes with human serum albumin (HSA). Drug efficacy was evaluated for two tumor cell lines, namely human breast adenocarcinoma MCF-7 cells and DOX resistant MCF-7/ADR cells. Additionally, MCF-7 cells were entrapped in alginate-oligochitosan microcapsules, and generated tumor spheroids were used as a 3D in vitro model to study cytotoxicity of the DOX derivatives. Results: Due to 3D structure, the tumor spheroids were more resistant to chemotherapy compared to monolayer culture. DOX covalently attached to palmitic acid through hydrazone linkage (DOX-N2H-Palm conjugate) was found to be the most promising derivative. Its accumulation levels within MCF-7/ADR cells was 4- and 10-fold higher than those of native DOX when the conjugate was added to cultivation medium without serum and to medium supplemented with 10% fetal bovine serum, respectively. Non-covalent complex of the conjugate with HSA was found to reduce the IC50 value from 32.9 µM (for free DOX-N2H-Palm) to 16.8 µM (for HSA-DOX-N2H-Palm) after 72 h incubation with MCF-7/ADR cells. Conclusion: Palm-N2H-DOX conjugate was found to be the most promising DOX derivative in this research. The formation of non-covalent complex of Palm-N2H-DOX conjugate with HSA allowed improving its anti-proliferative activity against both MCF-7 and MCF-7/ADR cells.
Collapse
Affiliation(s)
- Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Maria Drozdova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991, Trubetskaya str. 8-2, Moscow, Russia
| | - Daria Zaytseva-Zotova
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Pavel Chelushkin
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Annie Marc
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Isabelle Chevalot
- UMR CNRS 7274, Laboratoire Réactions et Génie des Procédés, Université de Lorraine, 54518, 2 avenue de la Fort de Haye, Vandoeuvre lès Nancy, France
| | - Sergey Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, Bolshoi pr. 31, Saint-Petersburg, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, Moscow, Russia
| |
Collapse
|
209
|
Sun Y, Wang C, Meng Q, Liu Z, Huo X, Sun P, Sun H, Ma X, Peng J, Liu K. Targeting P-glycoprotein and SORCIN: Dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca 2+ -mediated apoptosis pathways in MCF-7/ADR and K562/ADR. J Cell Physiol 2017; 233:3066-3079. [PMID: 28681913 DOI: 10.1002/jcp.26087] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Recently, a new target Ca2+ -binding protein SORCIN was reported to participate in multidrug resistance (MDR) in cancer. Here we aim to investigate whether dihydromyricetin (DMY), a dihydroflavonol compound with anti-inflamatory, anti-oxidant, anti-bacterial and anti-tumor actions, reverses MDR in MCF-7/ADR and K562/ADR and to elucidate its potential molecular mechanism. DMY enhanced cytotoxicity of adriamycin (ADR) by downregulating MDR1 mRNA and P-gp expression through MAPK/ERK pathway and also inhibiting the function of P-gp significantly. Meanwhile, DMY decreased mRNA and protein expression of SORCIN, which resulted in elevating intracellular free Ca2+ . Finally, we investigated co-administration ADR with DMY remarkably increased ADR-induced apoptosis. Further study showed DMY elevated ROS levels and caspase-12 protein expression, which signal apoptosis in endoplasmic reticulum. At the same time, proteins related to mitochondrial apoptosis were also changed such as Bcl-2, Bax, caspase-3, caspase-9, and PARP. Finally, nude mice model also demonstrated that DMY strengthened anti-tumor activity of ADR in vivo. In conclusion, DMY reverses MDR by downregulating P-gp, SORCIN expression and increasing free Ca2+ , as well as, inducing apoptosis in MCF-7/ADR and K562/ADR. These fundamental findings provide evidence for further clinical research in application of DMY as an assistant agent in the treatment of cancer.
Collapse
Affiliation(s)
- Yaoting Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
210
|
Screening of pharmacokinetic properties of fifty dihydropyrimidin(thi)one derivatives using a combo of in vitro and in silico assays. Eur J Pharm Sci 2017; 109:334-346. [DOI: 10.1016/j.ejps.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022]
|
211
|
Zhang X, Xu R, Zhang C, Xu Y, Han M, Huang B, Chen A, Qiu C, Thorsen F, Prestegarden L, Bjerkvig R, Wang J, Li X. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:118. [PMID: 28870216 PMCID: PMC5584019 DOI: 10.1186/s13046-017-0588-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Resistance to adjuvant radiotherapy is a major cause of treatment failure in patients with glioblastoma (GBM). Autophagy inhibitors have been shown to enhance the efficacy of radiotherapy for certain solid tumors. However, current inhibitors do not penetrate the blood-brain-barrier (BBB). Here, we assessed the radiosensitivity effects of the antipsychotic drug trifluoperazine (TFP) on GBM in vitro and in vivo. METHODS U251 and U87 GBM cell lines as well as GBM cells from a primary human biopsy (P3), were used in vitro and in vivo to evaluate the efficacy of TFP treatment. Viability and cytotoxicity was evaluated by CCK-8 and clonogenic formation assays. Molecular studies using immunohistochemistry, western blots, immunofluorescence and qPCR were used to gain mechanistic insight into the biological activity of TFP. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. RESULTS IC50 values of U251, U87 and P3 cells treated with TFP were 16, 15 and 15.5 μM, respectively. TFP increased the expression of LC3B-II and p62, indicating a potential disruption of autophagy flux. These results were further substantiated by a decreased Lysotracker Red uptake, indicating impaired acidification of the lysosomes. We show that TFP and radiation had an additive effect when combined. This effect was in part due to impaired TFP-induced homologous recombination. Mechanistically we show that down-regulation of cathepsin L might explain the radiosensitivity effect of TFP. Finally, combining TFP and radiation resulted in a significant antitumor effect in orthotopic GBM xenograft models. CONCLUSIONS This study provides a strong rationale for further clinical studies exploring the combination therapy of TFP and radiation to treat GBM patients.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,The Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Dermatology, Haukeland University Hospital, 5009, Bergen, Norway
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, L-1526, Strassen, Luxembourg
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China. .,Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
212
|
Duan H, Zhou K, Zhang Y, Yue P, Wang T, Li Y, Qiu D, Wu J, Hua Y, Wang C. HDAC2 was involved in placental P-glycoprotein regulation both in vitro and vivo. Placenta 2017; 58:105-114. [PMID: 28962688 DOI: 10.1016/j.placenta.2017.08.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/02/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Placental P-glycoprotein (P-gp) plays a significant role in regulating drugs' transplacental transfer rates. Investigations on placental P-gp regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the epigenetic regulation of placental P-gp is rare. Our previous study has demonstrated that HDACs inhibition could up-regulate placental P-gp and HDAC1/2/3 might be involved in this process. The present study was carried out to further explore whether HDAC1/2/3 were indeed involved in the regulation of placental P-gp or not and screen out the subtype engaged in this process. METHODS BeWo and JAR cells were transfected with HDAC1/2/3 specific siRNA. After 48 h of transfection, cells were harvested for real-time quantitative PCR (qRT-PCR), Western blot, immunofluorescence and fluorescent dye efflux assay to evaluate P-gp expression, localization, and efflux activity, respectively. Hdac2 siRNA was intraperitoneally injected to pregnant mice every 48 h from E7.5 to E15.5 and digoxin was administered by gavages 1 h prior to euthanasia at E16.5. Placental Hdac1/2/3 and P-gp expression were determined by qRT-PCR and Western blot. Maternal plasma and fetal-unit digoxin concentrations were detected by enzyme-multiplied immunoassay. RESULTS In vitro, HDAC2 inhibition could significantly elevate P-gp expression and reduce intracellular accumulation of P-gp substrates (DiOC2 (3) and Rh 123) both in BeWo and JAR, while knockdown of HDAC1/3 had no influence on P-gp expression and its efflux activity. Additionally, in vivo, Hdac2 silencing in pregnant mice also elevated placental P-gp expression and decreased digoxin transplacental transfer rate. CONCLUSION HDAC2 inhibition could result in induction of placental P-gp expression and functionality both in vitro and in vivo.
Collapse
Affiliation(s)
- Hongyu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Yue
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; West China Medical School of Sichuan University, Chengdu, Sichuan, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dajian Qiu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinlin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China.
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
213
|
McInerney MP, Pan Y, Short JL, Nicolazzo JA. Development and Validation of an In-Cell Western for Quantifying P-Glycoprotein Expression in Human Brain Microvascular Endothelial (hCMEC/D3) Cells. J Pharm Sci 2017; 106:2614-2624. [DOI: 10.1016/j.xphs.2016.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
214
|
Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des 2017; 91:269-276. [PMID: 28782285 DOI: 10.1111/cbdd.13078] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023]
Abstract
Resistance against chemotherapy is still a major problem in successful cancer treatment in the clinic. Therefore, identifying new compounds with lower side-effects and higher efficacy is an important approach to overcome multidrug resistance (MDR). Here, we investigated the activity and possible mechanism of the antidiabetic drug, metformin, in human doxorubicin (DOX)-resistant breast cancer (MCF-7/DOX) cells. The effect of metformin on the cytotoxicity of DOX was evaluated by MTT assay. The P-gp mRNA/protein expression levels following treatment with metformin were determined using real-time polymerase chain reaction and Western blot analysis, respectively. Intracellular rhodamine 123 accumulation assay was performed to evaluate the P-gp function. Cellular ATP content was determined using ATP assay kit. The effect of metformin on DOX-induced apoptosis was evaluated by annexin V/FITC assay. Exposure to metformin considerably enhanced the cytotoxicity of DOX. Metformin had no substantial effect on P-gp expression, while the activity of P-gp and intracellular ATP content decreased with metformin treatment in a dose-dependent manner. Furthermore, metformin significantly increased the DOX-induced apoptosis. These results indicate that metformin could reverse MDR in breast cancer cells by reducing P-gp activity. Therefore, metformin can be suggested as a potent adjuvant in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Vahid Shafiei-Irannejad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
215
|
Ji Y, Wei S, Hou J, Zhang C, Xue P, Wang J, Chen X, Guo X, Yang F. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Oncotarget 2017; 8:13413-13427. [PMID: 28077793 PMCID: PMC5355108 DOI: 10.18632/oncotarget.14542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yanlong Ji
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Wei
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengqian Zhang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xue
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Chen
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
216
|
Jin W, Liao X, Lv Y, Pang Z, Wang Y, Li Q, Liao Y, Ye Q, Chen G, Zhao K, Huang L. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis 2017; 8:e2980. [PMID: 28796259 PMCID: PMC5596566 DOI: 10.1038/cddis.2017.378] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/11/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
Abstract
Chemoresistance contributes to cancer relapse and increased mortality in a variety of cancer types, raising a pressing need to better understand the underlying mechanism. MUC1 is abnormally overexpressed in numerous carcinomas and associated with poor prognosis. However, the functional significance of MUC1 in chemoresistance has not been fully elucidated. Here, we showed that MUC1 expression was considerably induced in cells that had acquired chemoresistance at both transcriptional and post-translational levels. Using gain- and loss-of function approaches, we demonstrated a critical role of MUC1 in induction of drug resistance. Through stimulation of EGFR activation and nuclear translocation, MUC1 increased the expression of ATP-binding cassette transporter B1 (ABCB1). Remarkably, targeted suppression of EGFR or ABCB1 by both shRNAs and inhibitors effectively reversed chemoresistance. Moreover, co-administration of the inhibitors of MUC1-EGFR-ABCB1 with paclitaxel significantly blocked not only tumor growth but also relapse in xenograft mouse model. Our data collectively support a model in which MUC1 induces acquired chemotherapy resistance by upregulating ABCB1 in an EGFR-dependent manner, providing a novel molecular basis of using the EGFR inhibitor in MUC1-positive cancers to prevent chemotherapy resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Chromatin Immunoprecipitation
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- HEK293 Cells
- Humans
- Immunoprecipitation
- In Situ Nick-End Labeling
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mucin-1/genetics
- Mucin-1/metabolism
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Liao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Lv
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Pang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuming Wang
- Department of Cardiothoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanfu Li
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Liao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Ye
- Department of Cardiothoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Huang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
217
|
Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy. Int J Pharm 2017; 529:451-464. [DOI: 10.1016/j.ijpharm.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
|
218
|
Adachi Y, Ishikawa Y, Kiyoi H. Identification of volasertib-resistant mechanism and evaluation of combination effects with volasertib and other agents on acute myeloid leukemia. Oncotarget 2017; 8:78452-78465. [PMID: 29108241 PMCID: PMC5667974 DOI: 10.18632/oncotarget.19632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Volasertib, a selective PLK1 inhibitor, was effective for acute myeloid leukemia (AML) patients in clinical trials. However, its efficacy was limited in mono-therapy, and a higher incidence of fatal events was revealed in the combination with low-dose cytarabine. Thus, optimization of combination therapy with volasertib and other agents is necessary for its clinical development, and the predictive factors for response or resistance to volasertib remain largely unknown. In this study, we investigated the resistance mechanism in volasertib-resistant cell lines and the combination effects with other agents, such as azacitidine (AZA), on AML cells. We identified that mutations in the ATP-binding domain of PLK1 and expression of MDR1 conferred resistance to volasertib. In the combination therapy, the effects of AZA differed among cells, but were prominent in the cells with higher GI50 values of volasertib in mono-therapy. Furthermore, we identified that the cells in G2/M phase were more sensitive to volasertib, and the PI3K/AKT pathway was up-regulated upon administration of volasertib. Combination therapies with the agents that caused cell cycle accumulation in G2/M phase or with PI3K inhibitor were highly potent against AML cells. Our findings provide strategies for further clinical development of volasertib and PLK inhibitors for AML.
Collapse
Affiliation(s)
- Yoshiya Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
219
|
Liu Z, Zhang H. LncRNA plasmacytoma variant translocation 1 is an oncogene in bladder urothelial carcinoma. Oncotarget 2017; 8:64273-64282. [PMID: 28969069 PMCID: PMC5610001 DOI: 10.18632/oncotarget.19604] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is the most lethal malignant cancer of the genitourinary system, and bladder urothelial carcinoma (BUC) is the most common type of BC. The long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) is overexpressed in several malignant tumors, including BC. Using a lncRNA array and quantitative real-time PCR, we detected greater expression of PVT1 in BUC tissues and cell lines resistant to doxorubicin (DOX) and cisplatin (DDP) than in DOX- and DDP-sensitive cells. PVT1 knockdown reduced proliferation and invasion by a DOX- and DDP-resistant T24/DR BUC cells, arrested cells in G1 phase, and increased apoptosis. PVT1 knockdown also sensitized T24/DR cells to DOX and DDP, and suppressed expression of multidrug resistance 1 (MDR1) and multidrug resistance associated protein 1 (MRP1). Wnt/β-catenin pathway activation in T24/DR cells reversed the effects of PVT1 knockdown on metastasis-associated behavior and chemoresistance. In sum, lncRNA PVT1 is overexpressed in multidrug resistant BUC tissues and cell lines, and PVT1 knockdown reduces BUC cell proliferation, invasiveness, and chemoresistance by modulating Wnt/β-catenin signaling. These results provide new insight into BUC chemoresistance mechanisms and suggest potential therapeutic targets for anti-BUC therapeutics.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Urinary Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Hui Zhang
- Department of Urinary Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
220
|
Zhang YH, Li J, Yang WZ, Xian ZH, Feng QT, Ruan XC. Mitochondrial expression and activity of P-glycoprotein under oxidative stress in outer blood-retinal barrier. Int J Ophthalmol 2017; 10:1055-1063. [PMID: 28730106 DOI: 10.18240/ijo.2017.07.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/09/2017] [Indexed: 01/30/2023] Open
Abstract
AIM To investigate the role of oxidative stress in regulating the functional expression of P-glycoprotein (P-gp) in mitochondria of D407 cells. METHODS D407 cells were exposed to different ranges of concentrations of H2O2. The mitochondrial location of P-gp in the cells subjected to oxidative stress was detected by confocal analysis. Expression of P-gp in isolated mitochondria was assessed by Western blot. The pump activity of P-gp was evaluated by performing the efflux study on isolated mitochondria with Rhodamine 123 (Rho-123) alone and in the presence of P-gp inhibitor (Tariquidar) using flow cytometry analysis. The cells were pretreated with 10 mmol/L N-acetylcysteine (NAC) for 30min before exposing to H2O2, and analyzed the mitochondrial extracts by Western blot and flow cytometry. RESULTS P-gp was co-localized in the mitochondria by confocal laser scanning microscopy, and it was also detected in the mitochondria of D407 cells using Western blot. Exposure to increasing concentrations of H2O2 led to gradually increased expression and location of P-gp in the mitochondria of cells. Rho-123 efflux assay showed higher uptake of Rho-123 on isolated mitochondria in the presence of Tariquidar both in normal and oxidative stress state. H2O2 up-regulated P-gp in D407 cells, which could be reversed by NAC treatment. CONCLUSION H2O2 could up-regulate the functional expression of P-gp in mitochondria of D407 cells, while antioxidants might suppress oxidative-stress-induced over-expression of functional P-gp. It is indicative that limiting the mitochondrial P-gp transport in retinal pigment epithelium cells would be to improve the effect of mitochondria-targeted antioxidant therapy in age-related macular degeneration-like retinopathy.
Collapse
Affiliation(s)
- Yue-Hong Zhang
- Department of Ophthalmology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong Province, China
| | - Juan Li
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No.4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Wei-Zhong Yang
- Department of Ophthalmology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong Province, China
| | - Zhuan-Hua Xian
- Department of Ophthalmology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong Province, China
| | - Qi-Ting Feng
- Department of Ophthalmology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong Province, China
| | - Xiang-Cai Ruan
- Department of Anesthesiology, First Municipal People's Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
221
|
Dahuang Zhechong Pill Combined with Doxorubicin Induces Cell Death through Regulating Energy Metabolism in Human Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6279576. [PMID: 28785292 PMCID: PMC5529653 DOI: 10.1155/2017/6279576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023]
Abstract
Many physiological activities such as cell survival, proliferation, defense, adaptation, and metabolism need to consume energy. Hepatoma cells can quickly start stress responses like multidrug resistance (MDR) requiring adenosine triphosphate (ATP) consumption after administration of chemotherapeutics. We employed CCK-8 assay to evaluate cell viability and the flow cytometry to confirm apoptosis and necrosis. ELISA kit was used to determine intracellular levels of ATP in lysates. Western blot was employed to analyze the expressions of key enzymes involved in energy metabolism. We found that doxorubicin (DOX) potently stimulated apoptosis at a low dose and even induced necrosis at a high dose in SMMC-7721. DHZCP combined with DOX at low or middle dose enhanced the synergistic antihepatoma effect. Results indicated that Dahuang Zhechong Pill (DHZCP) inhibited the expressions of several key enzymes involved in oxidative phosphorylation and reduced intracellular ATP levels. The combination of DHZCP with DOX reversed the elevation of intracellular ATP levels, and a significantly synergistic antitumor effect was observed. DHZCP could not only strengthen the therapeutic effects of chemotherapeutic drugs but also decrease the doses of chemotherapeutic drugs and the incidences of adverse reactions, providing novel strategies for clinical treatment of liver cancer.
Collapse
|
222
|
Teodori E, Dei S, Bartolucci G, Perrone MG, Manetti D, Romanelli MN, Contino M, Colabufo NA. Structure-Activity Relationship Studies on 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline Derivatives as Multidrug Resistance Reversers. ChemMedChem 2017; 12:1369-1379. [DOI: 10.1002/cmdc.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Elisabetta Teodori
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Dei
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Gianluca Bartolucci
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Dina Manetti
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Maria Novella Romanelli
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| |
Collapse
|
223
|
Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci 2017. [PMID: 28632894 DOI: 10.1111/nyas.13384] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anca Miron
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Adriana Trifan
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine; University of Macau; Taipa Macau
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou Fujian China
| |
Collapse
|
224
|
Ambrož M, Matoušková P, Skarka A, Zajdlová M, Žáková K, Skálová L. The Effects of Selected Sesquiterpenes from Myrica rubra Essential Oil on the Efficacy of Doxorubicin in Sensitive and Resistant Cancer Cell Lines. Molecules 2017. [PMID: 28632185 PMCID: PMC6152637 DOI: 10.3390/molecules22061021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
β-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER) and valencene (VAL) are constituents of the essential oil of Myrica rubra (MEO), which has significant antiproliferative effect in various cancer cell lines. In the present study, we compared the antiproliferative effect of these sesquiterpenes alone and in combination with the cytostatic drug doxorubicin (DOX) in cancer cell lines with different sensitivity to DOX. Two ovarian cancer cell lines (sensitive A2780 and partly resistant SKOV3) and two lymphoblast cancer cell lines (sensitive CCRF/CEM and completely resistant CEM/ADR) were used. The observed effects varied among sesquiterpenes and also differed in individual cell lines, with only VAL being effective in all the cell lines. A strong synergism of DOX with NER was found in the A2780 cells, while DOX acted synergistically with HUM and CAO in the SKOV3 cells. In the CCRF/CEM cells, a synergism of DOX with CAO and NER was observed. In resistant CEM/ADR cells, sesquiterpenes did not increase DOX efficacy, although they significantly increased accumulation of DOX (up to 10-times) and rhodamine-123 (substrate of efflux transporter ABCB1) within cancer cells. In conclusion, the tested sesquiterpenes were able to improve DOX efficacy in the sensitive and partly resistant cancer cells, but not in cells completely resistant to DOX.
Collapse
Affiliation(s)
- Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradecká 1285, 50003 Hradec Králové, Czech Republic.
| | - Martina Zajdlová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Kateřina Žáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
225
|
Ren K, Xu R, Huang J, Zhao J, Shi W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother Pharmacol 2017; 80:243-250. [DOI: 10.1007/s00280-017-3356-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/03/2017] [Indexed: 11/28/2022]
|
226
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
227
|
González ML, Vera DMA, Laiolo J, Joray MB, Maccioni M, Palacios SM, Molina G, Lanza PA, Gancedo S, Rumjanek V, Carpinella MC. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative. Front Pharmacol 2017; 8:205. [PMID: 28487651 PMCID: PMC5403950 DOI: 10.3389/fphar.2017.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.
Collapse
Affiliation(s)
- María L González
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - D Mariano A Vera
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana Maccioni
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Gabriela Molina
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Priscila A Lanza
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Samanta Gancedo
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Vivian Rumjanek
- Institute of Medical Biochemistry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| |
Collapse
|
228
|
Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:molecules22040600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
|
229
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
230
|
Cario E. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers. World J Gastroenterol 2017; 23:1513-1520. [PMID: 28321153 PMCID: PMC5340804 DOI: 10.3748/wjg.v23.i9.1513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/06/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD.
Collapse
|
231
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
232
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
233
|
Chen G, Liu J, Chen W, Xu Q, Xiao M, Hu L, Mao L, Wang X. A 20(S)-protopanoxadiol derivative overcomes multi-drug resistance by antagonizing ATP-binding cassette subfamily B member 1 transporter function. Oncotarget 2017; 7:9388-403. [PMID: 26824187 PMCID: PMC4891047 DOI: 10.18632/oncotarget.7011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/01/2016] [Indexed: 02/04/2023] Open
Abstract
In cancer cells, failure of chemotherapy is often caused by the ATP-binding cassette subfamily B member 1 (ABCB1), and few drugs have been successfully developed to overcome ABCB1-mediated multi-drug resistance (MDR). To suppress ABCB1 activity, we previously designed and synthesized a new series of derivatives based on 20(S)-protopanoxadiol (PPD). In the present study, we investigated the role of PPD derivatives in the function of ABC transporters. Non-toxic concentrations of the PPD derivative PPD12 sensitized ABCB1-overexpressing cells to their anti-cancer substrates better than either the parental PPD or inactive PPD11. PPD12 increased intracellular accumulation of adriamycin and rhodamine123 in resistant cancer cells. Although PPD12 did not suppress the expression of ABCB1 mRNA or protein, it stimulated the activity of ABCB1 ATPase. Because PPD12 is a competitive inhibitor, it was predicted to bind to the large hydrophobic cavity of homology-modeled human ABCB1. PPD12 also enhanced the efficacy of adriamycin against ABCB1-overexpressing KB/VCR xenografts in nude mice. In conclusion, PPD12 enhances the efficacy of substrate drugs in ABCB1-overexpressing cancer cells. These findings suggest that a combination therapy consisting of PPD12 with conventional chemotherapeutic agents may be an effective treatment for ABCB1-mediated MDR cancer patients.
Collapse
Affiliation(s)
- Gang Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Junhua Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Lihong Hu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Li Mao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| |
Collapse
|
234
|
Jing W, Gao X, Han B, Wei B, Hu N, Li S, Yan R, Wang Y. Mori Cortex regulates P-glycoprotein in Caco-2 cells and colons from rats with experimental colitis via direct and gut microbiota-mediated mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra25448a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mori cortex enhances intestinal epithelial barrier function by up-regulating P-glycoproteinviadirect and gut microbiota-mediated mechanisms.
Collapse
Affiliation(s)
- Wanghui Jing
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Beilei Han
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
235
|
Structure−activity relationship study of novel 2-aminobenzofuran derivatives as P-glycoprotein inhibitors. Eur J Med Chem 2017; 125:1023-1035. [DOI: 10.1016/j.ejmech.2016.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
|
236
|
Lopes-Rodrigues V, Oliveira A, Correia-da-Silva M, Pinto M, Lima RT, Sousa E, Vasconcelos MH. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells. Bioorg Med Chem 2017; 25:581-596. [DOI: 10.1016/j.bmc.2016.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/22/2016] [Accepted: 11/13/2016] [Indexed: 01/05/2023]
|
237
|
Duan H, Wang C, Zhou K, Wang T, Li Y, Qiu D, Li Q, Zhang Y, Hua Y. The effect of histone deacetylase inhibition on the expression of P-glycoprotein in human placental trophoblast cell lines. Placenta 2017; 49:37-47. [DOI: 10.1016/j.placenta.2016.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022]
|
238
|
Podszun MC, Jakobi M, Birringer M, Weiss J, Frank J. The long chain α-tocopherol metabolite α-13'-COOH and γ-tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS 180. Mol Nutr Food Res 2016; 61. [PMID: 27714977 DOI: 10.1002/mnfr.201600605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022]
Abstract
SCOPE Members of the vitamin E family or their metabolites may induce the xenobiotic transporter P-glycoprotein (P-gp), which can limit the bioavailability of drugs and phytochemicals. This study aimed to investigate if α- and γ-tocopherol, α- and γ-tocotrienol, the long chain metabolite α-tocopherol-13'-COOH, the short chain metabolites α- and γ-carboxyethylhydroxychromanol and plastochromanol-8 activate the pregnane X receptor (PXR) and thereby modulate P-gp expression and/or activity. METHODS AND RESULTS P-gp protein expression and activity were studied in LS 180 cells incubated with the respective test compound for 48 h. Furthermore, we determined if the compounds activate PXR in LS 180 cells, as PXR regulates P-gp expression. Neither P-gp protein expression and activity, nor PXR activity were influenced by α-tocopherol, γ-tocopherol and plastochromanol-8. α-Tocotrienol activated PXR in the reporter gene assay but did not induce protein expression or activity of P-gp. γ-Tocotrienol and α-13'-COOH activated PXR and induced protein expression and transporter activity of P-gp. CONCLUSION Because the induction of P-gp in the intestine may limit the systemic bioavailability of its substrates, the concurrent intake of drugs and γ-tocotrienol and, if ever applicable, α-13'-COOH should be avoided.
Collapse
Affiliation(s)
- Maren C Podszun
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Metta Jakobi
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer, University of Applied Sciences, Fulda, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
239
|
Krupa A, Descamps M, Willart JF, Strach B, Wyska E, Jachowicz R, Danède F. High-Energy Ball Milling as Green Process To Vitrify Tadalafil and Improve Bioavailability. Mol Pharm 2016; 13:3891-3902. [PMID: 27618666 DOI: 10.1021/acs.molpharmaceut.6b00688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, the suitability of high-energy ball milling was investigated with the aim to vitrify tadalafil (TD) and improve its bioavailability. To achieve this goal, pure TD as well as binary mixtures composed of the drug and Soluplus (SL) were coprocessed by high-energy ball milling. Modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD) demonstrated that after such coprocessing, the crystalline form of TD was transformed into an amorphous form. The presence of a single glass transition (Tg) for all the comilled formulations indicated that TD was dispersed into SL at the molecular level, forming amorphous molecular alloys, regardless of the drug concentration. The high values of Tg determined for amorphous formulations, ranging from 70 to 147 °C, foreshow their high stability during storage at room temperature, which was verified by XRD and MDSC studies. The stabilizing effect of SL on the amorphous form of TD in comilled formulations was confirmed. Dissolution tests showed immediate drug release with sustained supersaturation in either simulated gastric fluid of pH 1.2 or in phosphate buffer of pH 7.2. The beneficial effect of both amorphization and coamorphization on the bioavailability of TD was found. In comparison to aqueous suspension, the relative bioavailability of TD was only 11% for its crystalline form and 53% for the crystalline physical mixture, whereas the bioavailability of milled amorphous TD and the comilled solid dispersion was 128% and 289%, respectively. Thus, the results provide evidence that not only the presence of polymeric surfactant but also the vitrification of TD is necessary to improve bioavailability.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum , 9 Medyczna Street, Cracow, Poland
| | - Marc Descamps
- UMET, Unité Matériaux et Transformations, CNRS, INRA, University of Lille , F 59 000 Lille, France
| | - Jean-François Willart
- UMET, Unité Matériaux et Transformations, CNRS, INRA, University of Lille , F 59 000 Lille, France
| | - Beata Strach
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Collegium Medicum , 9 Medyczna Street, Cracow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Collegium Medicum , 9 Medyczna Street, Cracow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum , 9 Medyczna Street, Cracow, Poland
| | - Florence Danède
- UMET, Unité Matériaux et Transformations, CNRS, INRA, University of Lille , F 59 000 Lille, France
| |
Collapse
|
240
|
Ferreira AF, Ponte F, Silva R, Rocha-Pereira C, Sousa E, Pinto M, Bastos MDL, Remião F. Quantification of 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5), a newly synthetized P-glycoprotein inducer/activator, in biological samples: method development and validation. Biomed Chromatogr 2016; 31. [PMID: 27465355 DOI: 10.1002/bmc.3802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/06/2016] [Accepted: 07/23/2016] [Indexed: 01/23/2023]
Abstract
A simple, rapid and economical method was developed and validated for the analysis and quantification of 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5), a P-glycoprotein inducer/activator, in biological samples, using reverse-phase high-performance liquid chromatography (HPLC). A C18 column and a mobile phase composed of methanol-water (90/10, v/v) with 1% (v/v) triethylamine, at a flow rate of 1 mL/min, were used for chromatographic separation. TX5 standards (0.5-150 μm) were prepared in human serum. Methanol was used for TX5 extraction and serum protein precipitation. After filtration, samples were injected into the HPLC apparatus and TX5 was quantified by a conventional UV detector at 255 nm. The TX5 retention time was 13 min in this isocratic system. The method was validated according to ICH guidelines for specificity/selectivity, linearity, accuracy, precision, limits of detection and quantification (LOD and LOQ) and recovery. The method was proved to be selective, as there were no interferences of endogenous compounds with the same retention time of TX5. Also, the developed method was linear (r2 ≥ 0.99) for TX5 concentrations between 0.5 and 150 μm and the LOD and LOQ were 0.08 and 0.23 μm, respectively. The results indicated that the reported method could meet the requirements for TX5 analysis in the trace amounts expected to be present in biological samples.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Ponte
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Madalena Pinto
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
241
|
Kim HJ, Kim HK, Kwon JT, Lee SH, El Park S, Gil HW, Song HY, Hong SY. Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients. Sci Rep 2016; 6:31765. [PMID: 27545861 PMCID: PMC4992846 DOI: 10.1038/srep31765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 01/11/2023] Open
Abstract
Paraquat is a fatal herbicide following acute exposure. Previous studies have suggested that multidrug resistance protein 1 (MDR1) might help remove paraquat from the lungs and the kidney. MDR1 single-nucleotide polymorphisms (SNPs) are involved in the pharmacokinetics of many drugs. The purpose of this study was to determine whether MDR1 SNPs were associated with the mortality in paraquat intoxicated patients. We recruited 109 patients admitted with acute paraquat poisoning. They were genotyped for C1236T, G2677T/A, and C3435T single-nucleotide polymorphisms (SNPs) of MDR1 gene. Their effects on mortality of paraquat intoxicated patients were evaluated. Overall mortality rate was 66.1%. Regarding the C1236T of the MDR1 gene polymorphism, 21 (19.3%) had the wild type MDR1 while 88 (80.7%) had homozygous mutation. Regarding the C3435T MDR1 gene polymorphism, 37(33.9%) patients had the wild type, 23 (21.1%) had heterozygous mutation, and 49 (45.0%) had homozygous mutation. Regarding the G2677T/A MDR1 gene polymorphism, 38 (34.9%) patients had the wild type, 57 (52.3%) had heterozygous mutation, and 14 (12.8%) had homozygous mutation. None of the individual mutations or combination of mutations (two or three) of MDR1 SNP genotypes altered the morality rate. The mortality rate was not significantly different among SNP groups of patients with <4.0 μg/mL paraquat. In conclusion, MDR1 SNPs have no effect on the mortality rate of paraquat intoxicated patients.
Collapse
Affiliation(s)
- Hak Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Choongcheongnam-do 330-930, Republic of Korea
| | - Sun-Hyo Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Sam El Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sae-Yong Hong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
242
|
Stefanachi A, Mangiatordi GF, Tardia P, Alberga D, Leonetti F, Niso M, Colabufo NA, Adamo C, Nicolotti O, Cellamare S. Design, synthesis, biological evaluation, NMR and DFT studies of structurally simplified trimethoxy benzamides as selective P-glycoprotein inhibitors: the role of molecular flatness. Chem Biol Drug Des 2016; 88:820-831. [DOI: 10.1111/cbdd.12811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/31/2016] [Accepted: 06/18/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco; Università di Bari Aldo Moro; Bari Italy
| | | | - Piero Tardia
- Dipartimento di Farmacia - Scienze del Farmaco; Università di Bari Aldo Moro; Bari Italy
| | - Domenico Alberga
- Chimie ParisTech-CNRS; Institut de Recherche de Chimie Paris; PSL Research University; Paris France
- Institut Universitaire de France; Paris France
| | - Francesco Leonetti
- Dipartimento di Farmacia - Scienze del Farmaco; Università di Bari Aldo Moro; Bari Italy
| | - Mauro Niso
- Dipartimento di Farmacia - Scienze del Farmaco; Università di Bari Aldo Moro; Bari Italy
| | | | - Carlo Adamo
- Chimie ParisTech-CNRS; Institut de Recherche de Chimie Paris; PSL Research University; Paris France
- Institut Universitaire de France; Paris France
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco; Università di Bari Aldo Moro; Bari Italy
- Dipartimento di Fisica; INFN & TIRES; Università di Bari Aldo Moro; Bari Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia - Scienze del Farmaco; Università di Bari Aldo Moro; Bari Italy
| |
Collapse
|
243
|
Zheng X, Andruska N, Lambrecht MJ, He S, Parissenti A, Hergenrother PJ, Nelson ER, Shapiro DJ. Targeting multidrug-resistant ovarian cancer through estrogen receptor α dependent ATP depletion caused by hyperactivation of the unfolded protein response. Oncotarget 2016; 9:14741-14753. [PMID: 29599904 PMCID: PMC5871075 DOI: 10.18632/oncotarget.10819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancers often recur and tumors acquire resistance to chemotherapy due to overexpression of the ATP-dependent efflux pump, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1). Nontoxic small molecule inhibitors targeting MDR1 have remained largely elusive. Instead, in a novel application of our recently described estrogen receptor α (ERα) biomodulator, BHPI, we targeted MDR1’s substrate, ATP. BHPI depletes intracellular ATP and nearly blocks MDR1-mediated drug efflux in ovarian cancer cells by inducing toxic hyperactivation of the endoplasmic reticulum stress sensor, the unfolded protein response (UPR). BHPI increased sensitivity of MDR1 overexpressing multidrug resistant OVCAR-3 ovarian cancer cells to killing by paclitaxel by >1,000 fold. BHPI also restored doxorubicin sensitivity in OVCAR-3 cells and in MDR1 overexpressing breast cancer cells. In an orthotopic OVCAR-3 xenograft model, paclitaxel was ineffective and the paclitaxel-treated group was uniquely prone to form large secondary tumors in adjacent tissue. BHPI alone strongly reduced tumor growth. Notably, tumors were undetectable in mice treated with BHPI plus paclitaxel. Compared to control ovarian tumors, after the combination therapy, levels of the plasma ovarian cancer biomarker CA125 were at least several hundred folds lower; moreover, CA125 levels progressively declined to undetectable. Targeting MDR1 through UPR-dependent ATP depletion represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Biochemistry University of Illinois, Urbana, IL, USA
| | - Neal Andruska
- Department of Biochemistry University of Illinois, Urbana, IL, USA.,College of Medicine, University of Illinois, Urbana, IL, USA
| | | | - Sisi He
- Department of Molecular Integrative Physiology, University of Illinois, Urbana, IL, USA
| | - Amadeo Parissenti
- Cancer Research Program, Advanced Medical Research Institute of Canada, Sudbury, ON, Canada
| | | | - Erik R Nelson
- Department of Molecular Integrative Physiology, University of Illinois, Urbana, IL, USA.,University of Illinois Cancer Center, Urbana, IL, USA
| | - David J Shapiro
- Department of Biochemistry University of Illinois, Urbana, IL, USA.,University of Illinois Cancer Center, Urbana, IL, USA.,College of Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
244
|
Fusi F, Durante M, Spiga O, Trezza A, Frosini M, Floriddia E, Teodori E, Dei S, Saponara S. In vitro and in silico analysis of the vascular effects of asymmetrical N,N-bis(alkanol)amine aryl esters, novel multidrug resistance-reverting agents. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1033-43. [PMID: 27351883 DOI: 10.1007/s00210-016-1266-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Asymmetrical N,N-bis(alkanol)amine aryl esters (FRA77, GDE6, and GDE19) are potent multidrug resistance (MDR) reversers. Their structures loosely remind that of the Ca(2+) antagonist verapamil. Therefore, the aim of this study was to investigate their vascular activity in vitro. Their effects on the mechanical activity of fresh and cultured rat aorta rings on Cav1.2 channel current (I Ca1.2) of A7r5 cells and their cytotoxicity on A7r5 and EA.hy926 cells were analyzed. Docking at the rat α1C subunit of the Cav1.2 channel was simulated in silico. Compounds tested were cytotoxic at concentrations >1 μM (FRA77, GDE6, GDE19) and >10 μM (verapamil) in EA.hy926 cells, or >10 μM (FRA77, GDE6, GDE19) and at 100 μM (verapamil) in A7r5 cells. In fresh rings, the three compounds partly antagonized phenylephrine and 60 mM K(+) (K60)-induced contraction at concentrations ≥1 and ≥3 μM, respectively. On the contrary, verapamil fully relaxed rings pre-contracted with both agents. In cultured rings, 10 μM GDE6, GDE19, FRA77, and verapamil significantly reduced the contractile response to both phenylephrine and K60. Similarly to verapamil, the three compounds docked at the α1C subunit, interacting with the same amino acids residues. FRA77, GDE6, and GDE19 inhibited I Ca1.2 with IC50 values 1 order of magnitude higher than that of verapamil. FRA77-, GDE6-, and GDE19-induced vascular effects occurred at concentrations that are at least 1 order of magnitude higher than those effectively reverting MDR. Though an unambiguous divergence between MDR reverting and vascular activity is of overwhelming importance, these findings consistently contribute to the design and synthesis of novel and potent chemosensitizers.
Collapse
Affiliation(s)
- F Fusi
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - M Durante
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - A Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | - M Frosini
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - E Floriddia
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica, Università di Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - E Teodori
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica, Università di Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - S Dei
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica, Università di Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - S Saponara
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
245
|
Yuan X, Ji W, Chen S, Bao Y, Tan S, Lu S, Wu K, Chu Q. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomedicine 2016; 11:2119-31. [PMID: 27307727 PMCID: PMC4887048 DOI: 10.2147/ijn.s92271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(d,l-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(d,l-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficiently load PTX and release the drug gradually. There was an increased level of uptake of PLGA-Tween 80 in PTX-resistant lung cancer cell line A549/T, which achieved a significantly higher level of cytotoxicity than both PLGA NP formulation and Taxol®. The in vivo antitumor efficacy also showed that PLGA-Tween 80 NP was more effective than Taxol®, indicating that PLGA-Tween 80 copolymer was a promising carrier for PTX in resistant lung cancer.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenxiang Ji
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Si Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuling Bao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shun Lu
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
246
|
Chen Z, Chen Y, Xu M, Chen L, Zhang X, To KKW, Zhao H, Wang F, Xia Z, Chen X, Fu L. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo. Mol Cancer Ther 2016; 15:1845-58. [DOI: 10.1158/1535-7163.mct-15-0939] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
|
247
|
Vrzal R. Anthocyanidins but not anthocyanins inhibit P-glycoprotein-mediated calcein extrusion - possible implication for orally administered drugs. Fundam Clin Pharmacol 2016; 30:248-52. [DOI: 10.1111/fcp.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/29/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics; Faculty of Science; Palacky University; Slechtitelu 27 783 71 Olomouc Czech Republic
| |
Collapse
|
248
|
Callies O, Sánchez-Cañete MP, Gamarro F, Jiménez IA, Castanys S, Bazzocchi IL. Optimization by Molecular Fine Tuning of Dihydro-β-agarofuran Sesquiterpenoids as Reversers of P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2016; 59:1880-90. [DOI: 10.1021/acs.jmedchem.5b01429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Oliver Callies
- Instituto Universitario
de Bio-Orgánica “Antonio González”, Departamento
de Química Orgánica, and Instituto Canario de Investigación
del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco
Sánchez 2, 38206 La Laguna, Tenerife Spain
| | - María P. Sánchez-Cañete
- Instituto de Parasitología y Biomedicina López-Neyra,
Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina López-Neyra,
Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada Spain
| | - Ignacio A. Jiménez
- Instituto Universitario
de Bio-Orgánica “Antonio González”, Departamento
de Química Orgánica, and Instituto Canario de Investigación
del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco
Sánchez 2, 38206 La Laguna, Tenerife Spain
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina López-Neyra,
Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada Spain
| | - Isabel L. Bazzocchi
- Instituto Universitario
de Bio-Orgánica “Antonio González”, Departamento
de Química Orgánica, and Instituto Canario de Investigación
del Cáncer, Universidad de La Laguna, Avenida Astrofísico Francisco
Sánchez 2, 38206 La Laguna, Tenerife Spain
| |
Collapse
|
249
|
Matuskova Z, Anzenbacher P, Vecera R, Siller M, Tlaskalova-Hogenova H, Strojil J, Anzenbacherova E. Effect of Lactobacillus casei on the Pharmacokinetics of Amiodarone in Male Wistar Rats. Eur J Drug Metab Pharmacokinet 2016; 42:29-36. [DOI: 10.1007/s13318-015-0315-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
250
|
Xue C, Wang C, Liu Q, Meng Q, Sun H, Huo X, Ma X, Liu Z, Ma X, Peng J, Liu K. Targeting P-glycoprotein expression and cancer cell energy metabolism: combination of metformin and 2-deoxyglucose reverses the multidrug resistance of K562/Dox cells to doxorubicin. Tumour Biol 2016; 37:8587-97. [PMID: 26733176 DOI: 10.1007/s13277-015-4478-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/19/2015] [Indexed: 12/29/2022] Open
Abstract
P-glycoprotein (P-gp) is one of the major obstacles to efficiency of cancer chemotherapy. Here, we investigated whether combination of metformin and 2-deoxyglucose reverses the multidrug resistance (MDR) of K562/Dox cells and tried to elucidate the possible mechanisms. The combination of metformin and 2-deoxyglucose selectively enhanced the cytotoxicity of doxorubicin against K562/Dox cells. Metformin was not a substrate of P-gp but suppressed the elevated level of P-gp in K562/Dox cells. The downregulation of P-gp may be partly attributed to the inhibition of extracellular signal-regulated kinase pathway. The addition of 2-deoxyglucose to metformin initiated a strong metabolic stress in both K562 and K562/Dox cells. Combination of metformin and 2-deoxyglucose inhibited glucose uptake and lactate production in K562 and K562/Dox cells leading to a severe depletion in ATP and a enhanced autophagy. Above all, P-gp substrate selectively aggravated this ATP depletion effect and increased cell apoptosis in K562/Dox cells. In conclusion, metformin decreases P-gp expression in K562/Dox cells via blocking phosphorylation of extracellular signal-regulated kinase. P-gp substrate increases K562/Dox cell apoptosis via aggravating ATP depletion induced by combination of metformin and 2-deoxyglucose. Our observations highlight the importance of combination of metformin and 2-deoxyglucose in reversing multidrug resistance.
Collapse
Affiliation(s)
- Chaojun Xue
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Xiaochi Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|