201
|
Relationship between type 1 metabotropic glutamate receptors and cerebellar ataxia. J Neurol 2016; 263:2179-2187. [PMID: 27502082 DOI: 10.1007/s00415-016-8248-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/19/2023]
Abstract
Imaging of type 1 metabotropic glutamate receptor (mGluR1) has recently become possible using positron emission tomography (PET). We aimed to examine the relationship between mGluR1 and cerebellar ataxia. Families with spinocerebellar ataxia type 19/22 (SCA19/22) and SCA6, six patients with sporadic SCA, and 26 healthy subjects underwent PET using an mGluR1 radiotracer. Volumes-of-interest were placed on the anterior and posterior lobes and vermis. The binding potential (BPND) was calculated to estimate mGluR1 availability. A partial volume correction was applied to the BPND values. The Scale for the Assessment and Rating of Ataxia (SARA) score were measured. In each patient with SCA19/22 and SCA6, the anterior lobe showed the highest decrease rates in the BPND values, compared with healthy subjects. In the families with SCA19/22 and SCA6, the disease durations and SARA scores were shorter and lower, respectively, in the offspring, compared with the parents. However, the offspring paradoxically showed lower BPND values, especially in the anterior lobe, compared with the parents. The patients with sporadic SCA showed significantly lower BPND values in all subregions than healthy subjects. The BPND values significantly correlated with the SARA scores in all participants. In conclusion, these results showed a decrease in mGluR1 availability in patients with hereditary and sporadic SCA, a correlation between mGluR1 availability and degree of cerebellar ataxia, and paradoxical findings in two families. These results suggest the potential use of mGluR1 imaging as a specific biomarker of cerebellar ataxia.
Collapse
|
202
|
Seidel K, Siswanto S, Fredrich M, Bouzrou M, den Dunnen WFA, Özerden I, Korf HW, Melegh B, de Vries JJ, Brunt ER, Auburger G, Rüb U. On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathol 2016; 27:345-355. [PMID: 27377427 DOI: 10.1111/bpa.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of genetically and clinically heterogeneous neurodegenerative diseases, characterized by the expansion of polyQ sequences in unrelated disease proteins, which form different types of neuronal aggregates. The aim of this study was to characterize the aggregation pathology in the brainstem of spinocerebellar ataxia type 2 (SCA2) and 3 (SCA3) patients. For good recognition of neurodegeneration and rare aggregates, we employed 100 µm PEG embedded brainstem sections, which were immunostained with the 1C2 antibody, targeted at polyQ expansions, or with an antibody against p62, a reliable marker of protein aggregates. Brainstem areas were scored semiquantitatively for neurodegeneration, severity of granular cytoplasmic staining (GCS) and frequency of neuronal nuclear inclusions (NNI). SCA2 and SCA3 tissue exhibited the same aggregate types and similar staining patterns. Several brainstem areas showed statistically significant differences between disease groups, whereby SCA2 showed more severe GCS and SCA3 showed more numerous NNI. We observed a positive correlation between GCS severity and neurodegeneration in SCA2 and SCA3 and an inverse correlation between the frequency of NNI and neurodegeneration in SCA3. Although their respective disease proteins are unrelated, SCA2 and SCA3 showed the same aggregate types. Apparently, the polyQ sequence alone is sufficient as a driver of protein aggregation. This is then modified by protein context and intrinsic properties of neuronal populations. The severity of GCS was the best predictor of neurodegeneration in both disorders, while the inverse correlation of neurodegeneration and NNI in SCA3 tissue implies a protective role of these aggregates.
Collapse
Affiliation(s)
- Kay Seidel
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Sonny Siswanto
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Michaela Fredrich
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Mohamed Bouzrou
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Inci Özerden
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Horst-Werner Korf
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| | - Bela Melegh
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - Jeroen J de Vries
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Ewout R Brunt
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Georg Auburger
- Experimental Neurology, J.W. Goethe University Medical School, Frankfurt, Germany
| | - Udo Rüb
- Institute of Clinical Neuroanatomy, Department of Anatomy II, J.W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
203
|
Matos CA, Nóbrega C, Louros SR, Almeida B, Ferreiro E, Valero J, Pereira de Almeida L, Macedo-Ribeiro S, Carvalho AL. Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. J Cell Biol 2016; 212:465-80. [PMID: 26880203 PMCID: PMC4754714 DOI: 10.1083/jcb.201506025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ataxin-3, the protein involved in spinocerebellar ataxia type 3 or Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded, and mutation of phosphorylation site S12 reduces aggregation, neuronal loss, and synapse loss. Different neurodegenerative diseases are caused by aberrant elongation of repeated glutamine sequences normally found in particular human proteins. Although the proteins involved are ubiquitously distributed in human tissues, toxicity targets only defined neuronal populations. Changes caused by an expanded polyglutamine protein are possibly influenced by endogenous cellular mechanisms, which may be harnessed to produce neuroprotection. Here, we show that ataxin-3, the protein involved in spinocerebellar ataxia type 3, also known as Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded. We report that S12 of ataxin-3 is phosphorylated in neurons and that mutating this residue so as to mimic a constitutive phosphorylated state counters the neuromorphologic defects observed. In rats stereotaxically injected with expanded ataxin-3–encoding lentiviral vectors, mutation of serine 12 reduces aggregation, neuronal loss, and synapse loss. Our results suggest that S12 plays a role in the pathogenic pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protects against toxicity.
Collapse
Affiliation(s)
- Carlos A Matos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Clévio Nóbrega
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Susana R Louros
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bruno Almeida
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Elisabete Ferreiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Ikerbasque Basque Foundation for Science and Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, E-48170 Zamudio, Spain
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Ana Luísa Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
204
|
Klaes A, Reckziegel E, Franca MC, Rezende TJR, Vedolin LM, Jardim LB, Saute JA. MR Imaging in Spinocerebellar Ataxias: A Systematic Review. AJNR Am J Neuroradiol 2016; 37:1405-12. [PMID: 27173364 PMCID: PMC7960281 DOI: 10.3174/ajnr.a4760] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Polyglutamine expansion spinocerebellar ataxias are autosomal dominant slowly progressive neurodegenerative diseases with no current treatment. MR imaging is the best-studied surrogate biomarker candidate for polyglutamine expansion spinocerebellar ataxias, though with conflicting results. We aimed to review quantitative central nervous system MR imaging technique findings in patients with polyglutamine expansion spinocerebellar ataxias and correlations with well-established clinical and molecular disease markers. MATERIALS AND METHODS We searched MEDLINE, LILACS, and Cochrane data bases of clinical trials between January 1995 and January 2016, for quantitative MR imaging volumetric approaches, MR spectroscopy, diffusion tensor imaging, or other quantitative techniques, comparing patients with polyglutamine expansion spinocerebellar ataxias (SCAs) with controls. Pertinent details for each study regarding participants, imaging methods, and results were extracted. RESULTS After reviewing the 706 results, 18 studies were suitable for inclusion: 2 studies in SCA1, 1 in SCA2, 15 in SCA3, 1 in SCA7, 1 in SCA1 and SCA6 presymptomatic carriers, and none in SCA17 and dentatorubropallidoluysian atrophy. Cerebellar hemispheres and vermis, whole brain stem, midbrain, pons, medulla oblongata, cervical spine, striatum, and thalamus presented significant atrophy in SCA3. The caudate, putamen and whole brain stem presented similar sensitivity to change compared with ataxia scales after 2 years of follow-up in a single prospective study in SCA3. MR spectroscopy and DTI showed abnormalities only in cross-sectional studies in SCA3. Results from single studies in other polyglutamine expansion spinocerebellar ataxias should be replicated in different cohorts. CONCLUSIONS Additional cross-sectional and prospective volumetric analysis, MR spectroscopy, and DTI studies are necessary in polyglutamine expansion spinocerebellar ataxias. The properties of preclinical disease biomarkers (presymptomatic) of MR imaging should be targeted in future studies.
Collapse
Affiliation(s)
- A Klaes
- From the Departments of Radiology (A.K., L.M.V.)
| | - E Reckziegel
- Medical Genetics Services (E.R., L.B.J., J.A.M.S.), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - M C Franca
- Departments of Neurology (M.C.F., T.J.R.R.)
| | - T J R Rezende
- Departments of Neurology (M.C.F., T.J.R.R.) Cosmic Rays and Chronology (T.J.R.R.), Universidade Estadual de Campinas, Campinas, Brazil
| | - L M Vedolin
- From the Departments of Radiology (A.K., L.M.V.) Department of Internal Medicine (L.M.V., L.B.J.)
| | - L B Jardim
- Medical Genetics Services (E.R., L.B.J., J.A.M.S.), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil Department of Internal Medicine (L.M.V., L.B.J.) Postgraduate Program in Medicine: Medical Sciences (L.B.J.), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - J A Saute
- Medical Genetics Services (E.R., L.B.J., J.A.M.S.), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
205
|
Alves S, Marais T, Biferi MG, Furling D, Marinello M, El Hachimi K, Cartier N, Ruberg M, Stevanin G, Brice A, Barkats M, Sittler A. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener 2016; 11:58. [PMID: 27465358 PMCID: PMC4964261 DOI: 10.1186/s13024-016-0123-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background We used lentiviral vectors (LVs) to generate a new SCA7 animal model overexpressing a truncated mutant ataxin-7 (MUT ATXN7) fragment in the mouse cerebellum, in order to characterize the specific neuropathological and behavioral consequences of the genetic defect in this brain structure. Results LV-mediated overexpression of MUT ATXN7 into the cerebellum of C57/BL6 adult mice induced neuropathological features similar to that observed in patients, such as intranuclear aggregates in Purkinje cells (PC), loss of synaptic markers, neuroinflammation, and neuronal death. No neuropathological changes were observed when truncated wild-type ataxin-7 (WT ATXN7) was injected. Interestingly, the local delivery of LV-expressing mutant ataxin-7 (LV-MUT-ATXN7) into the cerebellum of wild-type mice also mediated the development of an ataxic phenotype at 8 to 12 weeks post-injection. Importantly, our data revealed abnormal levels of the FUS/TLS, MBNL1, and TDP-43 RNA-binding proteins in the cerebellum of the LV-MUT-ATXN7 injected mice. MUT ATXN7 overexpression induced an increase in the levels of the pathological phosphorylated TDP-43, and a decrease in the levels of soluble FUS/TLS, with both proteins accumulating within ATXN7-positive intranuclear inclusions. MBNL1 also co-aggregated with MUT ATXN7 in most PC nuclear inclusions. Interestingly, no MBNL2 aggregation was observed in cerebellar MUT ATXN7 aggregates. Immunohistochemical studies in postmortem tissue from SCA7 patients and SCA7 knock-in mice confirmed SCA7-induced nuclear accumulation of FUS/TLS and MBNL1, strongly suggesting that these proteins play a physiopathological role in SCA7. Conclusions This study validates a novel SCA7 mouse model based on lentiviral vectors, in which strong and sustained expression of MUT ATXN7 in the cerebellum was found sufficient to generate motor defects. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.
| | - Thibaut Marais
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Maria-Grazia Biferi
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Denis Furling
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Martina Marinello
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France
| | - Khalid El Hachimi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France
| | | | - Merle Ruberg
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France.,Département de Génétique et Cytogénétique, AP-HP, G-H Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,Département de Génétique et Cytogénétique, AP-HP, G-H Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Martine Barkats
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Annie Sittler
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.
| |
Collapse
|
206
|
Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet 2016; 90:305-14. [PMID: 27220866 DOI: 10.1111/cge.12808] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia (SCA) comprises a large group of heterogeneous neurodegenerative disorders inherited in an autosomal dominant fashion. It is characterized by progressive cerebellar ataxia with oculomotor dysfunction, dysarthria, pyramidal signs, extrapyramidal signs, pigmentary retinopathy, peripheral neuropathy, cognitive impairment and other symptoms. It is classified according to the clinical manifestations or genetic nosology. To date, 40 SCAs have been characterized, and include SCA1-40. The pathogenic genes of 28 SCAs were identified. In recent years, with the widespread clinical use of next-generation sequencing, the genes underlying SCAs, and the mutants as well as the affected phenotypes were identified. These advances elucidated the phenotype-genotype relationship in SCAs. We reviewed the recent clinical advances, genetic features and phenotype-genotype correlations involving each SCA and its differentiation. The heterogeneity of the disease and the genetic diagnosis might be attributed to the regional distribution and clinical characteristics. Therefore, recognition of the phenotype-genotype relationship facilitates genetic testing, prognosis and monitoring of symptoms.
Collapse
Affiliation(s)
- Y-M Sun
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - C Lu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Z-Y Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China. .,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China.
| |
Collapse
|
207
|
Lee D, Na BS, Hong IK, Ahn TB. Parkinsonism in Spinocerebellar ataxia type 7. J Neurol Sci 2016; 365:151-3. [PMID: 27206895 DOI: 10.1016/j.jns.2016.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/04/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Dokyung Lee
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Boo Suk Na
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Il-Ki Hong
- Department of Nuclear Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Beom Ahn
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
208
|
Keiser MS, Kordasiewicz HB, McBride JL. Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington's disease and spinocerebellar ataxia. Hum Mol Genet 2016; 25:R53-64. [PMID: 26503961 PMCID: PMC4802374 DOI: 10.1093/hmg/ddv442] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/17/2015] [Indexed: 12/17/2022] Open
Abstract
RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic.
Collapse
Affiliation(s)
- Megan S Keiser
- Raymond G. Perlman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jodi L McBride
- Department of Neurology, Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA and Deparment of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
209
|
Alkali NH, Bwala SA, Alimi SA, Oyakhire SI. Spinocerebellar ataxia type-7: Report of a family in Northwest Nigeria. Ann Afr Med 2016; 15:87-90. [PMID: 27044733 PMCID: PMC5402823 DOI: 10.4103/1596-3519.176205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spinocerebellar ataxia type-7 (SCA7) is a cytosine-adenine-guanine (CAG) repeat polyglutamine disorder characterized by progressive degeneration of the cerebellum, brainstem, spinal cord, and retina. Clinical features include progressive ataxia, visual loss, pyramidal weakness, sensory impairment, and dementia. Among the autosomal dominant cerebellar ataxias, SCA7 is relatively common in Scandinavia and South Africa but rare worldwide and is not previously reported in Nigeria. In this study, we describe a family in Katsina State, Northwest Nigeria, with nine individuals across three generations affected by the SCA7 phenotype. Analysis of DNA from proband and two affected relatives revealed 39 CAG repeat expansions in one allele of ataxin-7 in each.
Collapse
|
210
|
Pulido-Valdeolivas I, Gómez-Andrés D, Sanz-Gallego I, Rausell E, Arpa J. Patterns of motor signs in spinocerebellar ataxia type 3 at the start of follow-up in a reference unit. CEREBELLUM & ATAXIAS 2016; 3:4. [PMID: 26909158 PMCID: PMC4763420 DOI: 10.1186/s40673-016-0042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022]
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder that affects the cerebellar system and other subcortical regions of the brain. As for other cerebellar diseases, the severity of this type of ataxia can be assessed with the Scale for Assessment and Rating of Ataxia (SARA) which gives a total score that reflects functional impairment out of 8 cerebellar function tests. SCA3 patients score profile is heterogeneous on at the start of follow up. This study investigates possible patterns in those profiles and analyses the impact of other usually concurrent signs of impairment of extracerebellar motor systems in that profile variability by means of multivariate statistical approaches. Methods Seventeen patients with SCA3 underwent systematic anamnesis, neurological and SARA assessment, visual evaluation of 123I-Ioflupane (DaTSCAN) single-photon emission computed tomography (SPECT) imaging and electrophysiological studies (nerve conduction and electromyography). Patterns in the profiles of SARA item scores were investigated by hierarchical clustering after multivariate correspondence analysis. A network analysis was used to represent relationships between SARA item scores, clinical, genetic and neurological examination parameters as well as abnormalities of DaTSCAN SPECT imaging and electrophysiological studies. Results The most frequently altered SARA items in all patients are gait and stance, and three profiles of SCA3 patients can be distinguished depending mainly on their degree of impairment in those two items. Other SARA items like the score on heel-shin slide contribute less to the classification. Network analysis shows that SARA item scores configure a single domain that is independent of the size of the mutated expanded allele and age of onset, which are, in turn closely and inversely correlated. The severity of cerebellar dysfunction is correlated with longer disease duration, altered visual evaluation of DaTSCAN SPECT imaging and decreased patellar reflexes. Neither the presence of pyramidal or extrapyramidal signs nor the intensity of polyneuropathy is correlated with the SARA items scores. Conclusions Pattern recognition approaches are useful tools to describe clinical phenotypes of ataxias and to identify particular configurations of cerebellar signs. Electronic supplementary material The online version of this article (doi:10.1186/s40673-016-0042-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Pulido-Valdeolivas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain ; Trastornos del Desarrollo y Maduración Neurológica (TRADESMA), IdiPaz-UAM, Madrid, Spain ; Department of Neurology, Hospital Universitario La Paz, Madrid, Spain
| | - David Gómez-Andrés
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain ; Trastornos del Desarrollo y Maduración Neurológica (TRADESMA), IdiPaz-UAM, Madrid, Spain ; Department of Pediatrics, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | - Estrella Rausell
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain ; Trastornos del Desarrollo y Maduración Neurológica (TRADESMA), IdiPaz-UAM, Madrid, Spain
| | - Javier Arpa
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
211
|
Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Mol Cell Proteomics 2016; 15:1728-39. [PMID: 26850065 DOI: 10.1074/mcp.m115.056770] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy.
Collapse
Affiliation(s)
- David Meierhofer
- From the ‡Max Planck Institute for Molecular Genetics, Ihnestraβe 63-73, 14195 Berlin, Germany;
| | - Melanie Halbach
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nesli Ece Şen
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
212
|
Szmulewicz DJ, Roberts L, McLean CA, MacDougall HG, Halmagyi GM, Storey E. Proposed diagnostic criteria for cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Neurol Clin Pract 2016; 6:61-68. [PMID: 26918204 DOI: 10.1212/cpj.0000000000000215] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Diagnosis of ataxic disorders is an important clinical challenge upon which prognostication, management, patient solace, and, above all, the hope of future treatment all rely. Heritable diseases and the possibility of affected offspring carry the added burden of portending adverse health, social and financial ramifications. RECENT FINDINGS Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited multisystem ataxia compromising cerebellar, vestibular, and sensory function. It is not uncommon, but despite early attempts the genetic defect is yet to be identified. As the search for the causative gene continues, we have found it useful to further define this syndrome in terms of its likely phenotype. SUMMARY We propose staged diagnostic criteria based on the identified pathology in CANVAS. We envisage that these criteria will aid the clinician in diagnosing CANVAS and the researcher in further elucidating this complex disorder.
Collapse
Affiliation(s)
- David J Szmulewicz
- University of Melbourne (DJS), Royal Victorian Eye & Ear Hospital, Melbourne, Australia; Department of Neuroscience (LR), St Vincent's Hospital, Melbourne, Australia; Department of Anatomical Pathology (CAL), Alfred Hospital, Melbourne, Australia; Vestibular Research Laboratory (HGM), School of Psychology, University of Sydney, Australia; Department of Neuroscience (GMH), Monash University, Melbourne, Australia; and Department of Neurology (ES), Royal Prince Alfred Hospital, Sydney, Australia
| | - Leslie Roberts
- University of Melbourne (DJS), Royal Victorian Eye & Ear Hospital, Melbourne, Australia; Department of Neuroscience (LR), St Vincent's Hospital, Melbourne, Australia; Department of Anatomical Pathology (CAL), Alfred Hospital, Melbourne, Australia; Vestibular Research Laboratory (HGM), School of Psychology, University of Sydney, Australia; Department of Neuroscience (GMH), Monash University, Melbourne, Australia; and Department of Neurology (ES), Royal Prince Alfred Hospital, Sydney, Australia
| | - Catriona A McLean
- University of Melbourne (DJS), Royal Victorian Eye & Ear Hospital, Melbourne, Australia; Department of Neuroscience (LR), St Vincent's Hospital, Melbourne, Australia; Department of Anatomical Pathology (CAL), Alfred Hospital, Melbourne, Australia; Vestibular Research Laboratory (HGM), School of Psychology, University of Sydney, Australia; Department of Neuroscience (GMH), Monash University, Melbourne, Australia; and Department of Neurology (ES), Royal Prince Alfred Hospital, Sydney, Australia
| | - Hamish G MacDougall
- University of Melbourne (DJS), Royal Victorian Eye & Ear Hospital, Melbourne, Australia; Department of Neuroscience (LR), St Vincent's Hospital, Melbourne, Australia; Department of Anatomical Pathology (CAL), Alfred Hospital, Melbourne, Australia; Vestibular Research Laboratory (HGM), School of Psychology, University of Sydney, Australia; Department of Neuroscience (GMH), Monash University, Melbourne, Australia; and Department of Neurology (ES), Royal Prince Alfred Hospital, Sydney, Australia
| | - G Michael Halmagyi
- University of Melbourne (DJS), Royal Victorian Eye & Ear Hospital, Melbourne, Australia; Department of Neuroscience (LR), St Vincent's Hospital, Melbourne, Australia; Department of Anatomical Pathology (CAL), Alfred Hospital, Melbourne, Australia; Vestibular Research Laboratory (HGM), School of Psychology, University of Sydney, Australia; Department of Neuroscience (GMH), Monash University, Melbourne, Australia; and Department of Neurology (ES), Royal Prince Alfred Hospital, Sydney, Australia
| | - Elsdon Storey
- University of Melbourne (DJS), Royal Victorian Eye & Ear Hospital, Melbourne, Australia; Department of Neuroscience (LR), St Vincent's Hospital, Melbourne, Australia; Department of Anatomical Pathology (CAL), Alfred Hospital, Melbourne, Australia; Vestibular Research Laboratory (HGM), School of Psychology, University of Sydney, Australia; Department of Neuroscience (GMH), Monash University, Melbourne, Australia; and Department of Neurology (ES), Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
213
|
Markovic V, Dragasevic-Miskovic NT, Stankovic I, Petrovic I, Svetel M, Kostić VS. Dystonia in Patients With Spinocerebellar Ataxia Type 2. Mov Disord Clin Pract 2015; 3:292-295. [PMID: 30713920 DOI: 10.1002/mdc3.12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/08/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022] Open
Abstract
Dystonia has been described in various genetically proven spinocerebellar ataxias (SCAs), most often in SCA3, SCA17, and SCA2 patients. In this report, we describe different types of dystonia observed in 5 of our 11 SCA2 patients. All our patients had cranial and/or cervical dystonia with focal or segmental distribution. Except for 1 case with isolated cervical dystonia, all other patients had lower cranial affection of variable severity. Although it is difficult to describe ataxia-dystonia syndrome that would be highly characteristic for SCA2, we suggest that occurrence of dystonia in a patient with slowly evolving cerebellar disease should, besides SCA3 and SCA17, also suggest SCA2 testing. In patients with lower cranial dystonia, especially jaw and tongue dystonia, SCA2 should be considered during the diagnostic workup.
Collapse
Affiliation(s)
| | - Natasa T Dragasevic-Miskovic
- Neurology Clinic Clinical Center of Serbia Belgrade Serbia.,School of Medicine University of Belgrade Belgrade Serbia
| | - Iva Stankovic
- Neurology Clinic Clinical Center of Serbia Belgrade Serbia
| | - Igor Petrovic
- Neurology Clinic Clinical Center of Serbia Belgrade Serbia.,School of Medicine University of Belgrade Belgrade Serbia
| | - Marina Svetel
- Neurology Clinic Clinical Center of Serbia Belgrade Serbia.,School of Medicine University of Belgrade Belgrade Serbia
| | - Vladimir S Kostić
- Neurology Clinic Clinical Center of Serbia Belgrade Serbia.,School of Medicine University of Belgrade Belgrade Serbia
| |
Collapse
|
214
|
Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. J Neurosci 2015; 35:11292-307. [PMID: 26269637 DOI: 10.1523/jneurosci.1357-15.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.
Collapse
|
215
|
Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. J Hum Genet 2015; 61:215-22. [DOI: 10.1038/jhg.2015.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022]
|
216
|
Ribeiro RS, Pereira MM, Pedroso JL, Braga-Neto P, Barsottini OGP, Manzano GM. Cervical and ocular vestibular evoked potentials in Machado–Joseph disease: Functional involvement of otolith pathways. J Neurol Sci 2015; 358:294-8. [DOI: 10.1016/j.jns.2015.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/21/2015] [Accepted: 09/03/2015] [Indexed: 12/29/2022]
|
217
|
Clinical evaluation of eye movements in spinocerebellar ataxias: a prospective multicenter study. J Neuroophthalmol 2015; 35:16-21. [PMID: 25259863 DOI: 10.1097/wno.0000000000000167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ocular motor abnormalities reflect the varied neuropathology of spinocerebellar ataxias (SCAs) and may serve to clinically distinguish the different SCAs. We analyzed the various eye movement abnormalities detected prospectively at the baseline visit during a large multicenter natural history study of SCAs 1, 2, 3, and 6. METHODS The data were prospectively collected from 12 centers in the United States in patients with SCAs 1, 2, 3, and 6, as part of the Clinical Research Consortium for Spinocerebellar Ataxias (NIH-CRC-SCA). Patient characteristics, ataxia rating scales, the Unified Huntington Disease Rating Scale functional examination, and clinical staging were used. Eye movement abnormalities including nystagmus, disorders of saccades and pursuit, and ophthalmoparesis were recorded, and factors influencing their occurrence were examined. RESULTS A total of 301 patients participated in this study, including 52 patients with SCA 1, 64 with SCA 2, 117 with SCA 3, and 68 with SCA 6. Although no specific ocular motor abnormality was pathognomonic to any SCA, significant differences were noted in their occurrence among different disorders. SCA 6 was characterized by frequent occurrence of nystagmus and abnormal pursuit and rarity of slow saccades and ophthalmoparesis and SCA 2 by the frequent occurrence of slow saccades and infrequent nystagmus and dysmetric saccades. SCA 1 and SCA 3 subjects had a more even distribution of eye movement abnormalities. CONCLUSIONS Prospective data from a large cohort of patients with SCAs 1, 2, 3, and 6 provide statistical validation that the SCAs exhibit distinct eye movement abnormalities that are useful in identifying the genotypes. Many of the abnormalities correlate with greater disease severity measures.
Collapse
|
218
|
Keiser MS, Kordower JH, Gonzalez-Alegre P, Davidson BL. Broad distribution of ataxin 1 silencing in rhesus cerebella for spinocerebellar ataxia type 1 therapy. Brain 2015; 138:3555-66. [PMID: 26490326 DOI: 10.1093/brain/awv292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 1 is one of nine polyglutamine expansion diseases and is characterized by cerebellar ataxia and neuronal degeneration in the cerebellum and brainstem. Currently, there are no effective therapies for this disease. Previously, we have shown that RNA interference mediated silencing of ATXN1 mRNA provides therapeutic benefit in mouse models of the disease. Adeno-associated viral delivery of an engineered microRNA targeting ATXN1 to the cerebella of well-established mouse models improved motor phenotypes, neuropathy, and transcriptional changes. Here, we test the translatability of this approach in adult rhesus cerebella. Nine adult male and three adult female rhesus macaque were unilaterally injected with our therapeutic vector, a recombinant adeno-associated virus type 1 (rAAV1) expressing our RNAi trigger (miS1) and co-expressing enhanced green fluorescent protein (rAAV1.miS1eGFP) into the deep cerebellar nuclei using magnetic resonance imaging guided techniques combined with a Stealth Navigation system (Medtronics Inc.). Transduction was evident in the deep cerebellar nuclei, cerebellar Purkinje cells, the brainstem and the ventral lateral thalamus. Reduction of endogenous ATXN1 messenger RNA levels were ≥30% in the deep cerebellar nuclei, the cerebellar cortex, inferior olive, and thalamus relative to the uninjected hemisphere. There were no clinical complications, and quantitative and qualitative analyses suggest that this therapeutic intervention strategy and subsequent reduction of ATXN1 is well tolerated. Collectively the data illustrate the biodistribution and tolerability of rAAV1.miS1eGFP administration to the adult rhesus cerebellum and are supportive of clinical application for spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Megan S Keiser
- 1 The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey H Kordower
- 2 Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | | | - Beverly L Davidson
- 4 The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, and the Department of Pathology and Laboratory Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
219
|
Schöls L, Reimold M, Seidel K, Globas C, Brockmann K, Hauser TK, Auburger G, Bürk K, den Dunnen W, Reischl G, Korf HW, Brunt ER, Rüb U. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain 2015; 138:3316-26. [PMID: 26362908 DOI: 10.1093/brain/awv255] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 11/12/2022] Open
Abstract
See Klockgether (doi:10.1093/awv253) for a scientific commentary on this article.The spinocerebellar ataxias types 2 (SCA2) and 3 (SCA3) are autosomal dominantly inherited cerebellar ataxias which are caused by CAG trinucleotide repeat expansions in the coding regions of the disease-specific genes. Although previous post-mortem studies repeatedly revealed a consistent neurodegeneration of the dopaminergic substantia nigra in patients with SCA2 and with SCA3, parkinsonian motor features evolve only rarely. As the pathophysiological mechanism how SCA2 and SCA3 patients do not exhibit parkinsonism is still enigmatic, we performed a positron emission tomography and a post-mortem study of two independent cohorts of SCA2 and SCA3 patients with and without parkinsonian features. Positron emission tomography revealed a significant reduction of dopamine transporter levels in the striatum as well as largely unaffected postsynaptic striatal D2 receptors. In spite of this remarkable pathology in the motor mesostriatal pathway, only 4 of 19 SCA2 and SCA3 patients suffered from parkinsonism. The post-mortem investigation revealed, in addition to an extensive neuronal loss in the dopaminergic substantia nigra of all patients with spinocerebellar ataxia, a consistent affection of the thalamic ventral anterior and ventral lateral nuclei, the pallidum and the cholinergic pedunculopontine nucleus. With the exception of a single patient with SCA3 who suffered from parkinsonian motor features during his lifetime, the subthalamic nucleus underwent severe neuronal loss, which was clearly more severe in its motor territory than in its limbic or associative territories. Our observation that lesions of the motor territory of the subthalamic nucleus were consistently associated with the prevention of parkinsonism in our SCA2 and SCA3 patients matches the clinical experience that selective targeting of the motor territory of the subthalamic nucleus by focal lesions or deep brain stimulation can ameliorate parkinsonian motor features and is likely to counteract the manifestation of parkinsonism in SCA2 and SCA3 despite a severe neurodegeneration of the dopaminergic substantia nigra.
Collapse
Affiliation(s)
- Ludger Schöls
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany 2 Deutsches Zentrum für Neurodegenerative Erkrankungen, D-72076 Tübingen, Germany
| | - Matthias Reimold
- 3 Department of Nuclear Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Kay Seidel
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Christoph Globas
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Kathrin Brockmann
- 1 Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany 2 Deutsches Zentrum für Neurodegenerative Erkrankungen, D-72076 Tübingen, Germany
| | - Till Karsten Hauser
- 5 Department of Neuroradiology, University of Tübingen, D-72076 Tübingen, Germany
| | - Georg Auburger
- 6 Molecular Neurogenetics, Department of Neurology, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Katrin Bürk
- 7 Department of Neurology, Philipps University of Marburg, D-35039 Marburg, Germany
| | - Wilfred den Dunnen
- 8 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, NL-9700 RB Groningen, The Netherlands
| | - Gerald Reischl
- 9 Radiopharmacy, University of Tübingen, D-72076 Tübingen, Germany
| | - Horst-Werner Korf
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| | - Ewout R Brunt
- 10 Department of Neurology, University Medical Center Groningen, University of Groningen, NL-5970 RB Groningen, The Netherlands
| | - Udo Rüb
- 4 Dr Senckenbergisches Chronomedizinisches Institut, Goethe-University, D-60590 Frankfurt/Main, Germany
| |
Collapse
|
220
|
Aikawa T, Mogushi K, Iijima-Tsutsui K, Ishikawa K, Sakurai M, Tanaka H, Mizusawa H, Watase K. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model. Hum Mol Genet 2015; 24:4780-91. [PMID: 26034136 PMCID: PMC4527484 DOI: 10.1093/hmg/ddv202] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI(118Q/118Q) knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI(118Q/118Q) mice were distinct from those in the Sca1(154Q/2Q) mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI(118Q/118Q) cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI(118Q/118Q) cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease.
Collapse
Affiliation(s)
- Tomonori Aikawa
- Center for Brain Integration Research, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | - Kaoru Mogushi
- Department of Bioinformatics, Medical Research Institute, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan, Center for Genomic and Regenerative Medicine, Juntendo University, Tokyo 113-0033, Japan
| | - Kumiko Iijima-Tsutsui
- Department of Bioinformatics, Medical Research Institute, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan, Department of Social Services and Healthcare Management, International University of Health and Welfare, Tochigi 324-8501, Japan and
| | - Kinya Ishikawa
- Department of Neurology and Neurogical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | | | - Hiroshi Tanaka
- Department of Bioinformatics, Medical Research Institute, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan
| | - Hidehiro Mizusawa
- Center for Brain Integration Research, Department of Neurology and Neurogical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kei Watase
- Center for Brain Integration Research, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology (JST), Tokyo 102-8666, Japan,
| |
Collapse
|
221
|
Zeigelboim BS, de Carvalho HAS, Teive HAG, Liberalesso PBN, Jurkiewicz AL, da Silva Abdulmassih EM, Marques JM, Cordeiro ML. Central auditory processing in patients with spinocerebellar ataxia. Hear Res 2015; 327:235-44. [PMID: 26183435 DOI: 10.1016/j.heares.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Autosomal dominant spinocerebellar ataxias (SCAs) are a group of rare and heterogeneous neurodegenerative diseases characterized by the presence of progressive cerebellar ataxia. Although the symptomatology of SCAs is well known, information regarding central auditory functioning in these patients is lacking. Therefore, we assessed the central auditory processing disorders (CAPD) in patients with different subtypes of SCA. METHODS In a retrospective cross-sectional study, we subjected 43 patients with SCAs to otorhinolaryngological, audiological, Brainstem Auditory Evoked Potential (BAEP) and acoustic immittance evaluations as well as CAPD tests, namely the Standard Spondaic Word (SSW) and the Random Gap Detection Test (RGDT). RESULTS Most patients (83.7%) reported an imbalance when walking; many reported difficulty speaking (48.8%), dizziness (41.8%), and dysphagia (39.5%). In the audiometric test, 14/43 patients (32.5%) presented alterations, including 4/12 patients with SCA3 (33.3%), 1/8 patients with SCA2 (12.5%), 1/1 patient with SCA4 (100%), 1/1 patient with SCA6 (100%), 1/1 patient with SCA7 (100%), 3/6 patients with SCA10 (50%), and 3/14 patients with an undetermined type of SCA (21.4%). In the BAEP test, 20/43 patients (46.5%) presented alterations (11.6% na orelha esquerda e 34.9% bilateralmente), including 7/12 patients with SCA3 (58.3%), 5/8 patients with SCA2 (62.5%), 1/1 patient with SCA4 (100%), 1/1 patient with SCA6 (100%), 1/1 patient with SCA7 (100%), 4/6 patients with SCA10 (66.7%), and 2/14 patients with an undetermined type of SCA (14.2%). In the SSW, 22/40 patients (55%) presented alterations (2.5% in the right ear, 15% in the left ear, and 37.5% bilaterally), including 6/10 patients (60%) with SCA3, 3/8 (37.5%) with SCA2, 1/1 (100%) with SCA4, 1/1 (100%) with SCA6, 1/1 (100%) with SCA7, 4/5 (80%) with SCA10, and 8/14 (57.1%) with an undetermined type SCA. For the RGDT, 30/40 patients (75%) presented alterations, including 8/10 (80%) with SCA3, 6/8 (75%) with SCA2, 1/1 (100%) with SCA4, 1/1 (100%) with SCA6, 1/1 (100%) with SCA7, 4/5 (80%) with SCA10, and 9/14 (64.3%) with an undetermined type of SCA. In immittance testing, 19/43 patients (44.1%) presented alterations, including 6/12 (50%) with SCA3, 4/8 (50%) with SCA2, 1/1 (100%) with SCA4, 1/1 (100%) with SCA6, 1/1 (100%) with SCA7, 2/6 (33.3%) with SCA10, and 4/14 (28.6%) with an undetermined type of SCA. CONCLUSIONS A majority of patients exhibited SSW test deficits, with a predominance of bilateralism, and three-fourths had impaired RGDT performance, pointing to difficulties with binaural integration and temporal resolution. Assessment of CAPD is important for therapeutic follow ups in patients with SCA.
Collapse
Affiliation(s)
| | | | - Hélio Afonso Ghizoni Teive
- Neurology Service, Department of Clinical Medical, Clinical Hospital, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | - Mara Lúcia Cordeiro
- Neurosciences Research Group, Pelé Little Prince Research Institute, Curitiba, Brazil; Faculdades Little Prince, Curitiba, Brazil; Department of Psychiatry and Biobehavioral Sciences of the David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| |
Collapse
|
222
|
Highley JR, Lorente Pons A, Cooper-Knock J, Wharton SB, Ince PG, Shaw PJ, Wood J, Kirby J. Motor neurone disease/amyotrophic lateral sclerosis associated with intermediate-length CAG repeat expansions inAtaxin-2does not have 1C2-positive polyglutamine inclusions. Neuropathol Appl Neurobiol 2015; 42:377-89. [DOI: 10.1111/nan.12254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Affiliation(s)
- John Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Alejandro Lorente Pons
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Stephen B. Wharton
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Paul G. Ince
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Jon Wood
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN); University of Sheffield; Sheffield UK
| |
Collapse
|
223
|
Chen JW, Zhao L, Zhang F, Li L, Gu YH, Zhou JY, Zhang H, Meng M, Zhang KH, Le WD, Dong CB. Clinical Characteristics, Radiological Features and Gene Mutation in 10 Chinese Families with Spinocerebellar Ataxias. Chin Med J (Engl) 2015; 128:1714-23. [PMID: 26112709 PMCID: PMC4733707 DOI: 10.4103/0366-6999.159340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders that primarily cause the degeneration in the cerebellum, spinal cord, and brainstem. We study the clinical characteristics, radiological features and gene mutation in Chinese families with SCAs. Methods: In this study, we investigated 10 SCAs Chinese families with SCA1, SCA3/Machado–Joseph disease (MJD), SCA7, SCA8. There were 27 people who were genetically diagnosed as SCA, of which 21 people showed clinical symptoms, and 6 people had no clinical phenotype that we called them presymptomatic patients. In addition, 3 people with cerebellar ataxia and cataracts were diagnosed according to the Harding diagnostic criteria but failed to be recognized as SCAs on genetic testing. Clinical characteristic analyses of each type of SCAs and radiological examinations were performed. Results: We found that SCA3/MJD was the most common subtype in Han population in China, and the ratio of the pontine tegmentum and the posterior fossa area was negatively correlated with the number of cytosine-adenine-guanine (CAG) repeats; the disease duration was positively correlated with the International Cooperative Ataxia Rating Scale score; and the CAG repeats number of abnormal alleles was negatively correlated with the age of onset. Conclusions: Collectively our study is a systematic research on SCAs in China, which may help for the clinical diagnosis and prenatal screening of this disease, and it may also aid toward better understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chun-Bo Dong
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
224
|
Seidel K, Siswanto S, Fredrich M, Bouzrou M, Brunt ER, van Leeuwen FW, Kampinga HH, Korf HW, Rüb U, den Dunnen WFA. Polyglutamine aggregation in Huntington's disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation. Neuropathol Appl Neurobiol 2015; 42:153-66. [DOI: 10.1111/nan.12253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/14/2015] [Indexed: 01/19/2023]
Affiliation(s)
- K. Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - S. Siswanto
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - M. Fredrich
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - M. Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - E. R. Brunt
- Department of Neurology; University of Groningen; Groningen The Netherlands
| | - F. W. van Leeuwen
- Department of Neuroscience; Maastricht University; Maastricht The Netherlands
| | - H. H. Kampinga
- Cell Biology, Radiation and Stress Cell Biology; University of Groningen; Groningen The Netherlands
| | - H. -W. Korf
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - U. Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut; Goethe University; Frankfurt/Main Germany
| | - W. F. A. den Dunnen
- Department of Pathology and Medical Biology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| |
Collapse
|
225
|
Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology 2015; 85:96-103. [DOI: 10.1212/wnl.0000000000001711] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
|
226
|
Tellmann S, Bludau S, Eickhoff S, Mohlberg H, Minnerop M, Amunts K. Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat 2015; 9:54. [PMID: 26029057 PMCID: PMC4429588 DOI: 10.3389/fnana.2015.00054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/19/2015] [Indexed: 12/22/2022] Open
Abstract
The cerebellar nuclei are involved in several brain functions, including the modulation of motor and cognitive performance. To differentiate their participation in these functions, and to analyze their changes in neurodegenerative and other diseases as revealed by neuroimaging, stereotaxic maps are necessary. These maps reflect the complex spatial structure of cerebellar nuclei with adequate spatial resolution and detail. Here we report on the cytoarchitecture of the dentate, interposed (emboliform and globose) and fastigial nuclei, and introduce 3D probability maps in stereotaxic MNI-Colin27 space as a prerequisite for subsequent meta-analysis of their functional involvement. Histological sections of 10 human post mortem brains were therefore examined. Differences in cell density were measured and used to distinguish a dorsal from a ventral part of the dentate nucleus. Probabilistic maps were calculated, which indicate the position and extent of the nuclei in 3D-space, while considering their intersubject variability. The maps of the interposed and the dentate nuclei differed with respect to their interaction patterns and functions based on meta-analytic connectivity modeling and quantitative functional decoding, respectively. For the dentate nucleus, significant (p < 0.05) co-activations were observed with thalamus, supplementary motor area (SMA), putamen, BA 44 of Broca's region, areas of superior and inferior parietal cortex, and the superior frontal gyrus (SFG). In contrast, the interposed nucleus showed more limited co-activations with SMA, area 44, putamen, and SFG. Thus, the new stereotaxic maps contribute to analyze structure and function of the cerebellum. These maps can be used for anatomically reliable and precise identification of degenerative alteration in MRI-data of patients who suffer from various cerebellar diseases.
Collapse
Affiliation(s)
- Stefanie Tellmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University and JARA-BrainAachen, Germany
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
- Institute for Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Human Brain, Research Centre JülichJülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
227
|
Russo AD, Reckziegel ER, Krum-Santos AC, Augustin MC, Scheeren B, Freitas CD, Torman VL, Saraiva-Pereira ML, Saute JA, Jardim LB. Clinical Scales Predict Significant Videofluoroscopic Dysphagia in Machado Joseph Disease Patients. Mov Disord Clin Pract 2015; 2:260-266. [PMID: 30363545 DOI: 10.1002/mdc3.12173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022] Open
Abstract
Background Although aspiration is one of the main causes of death in SCA, such as SCA3/Machado Joseph disease (SCA3/MJD), clinical studies on dysphagia are lacking for these diseases. The aims of this study were to characterize dysphagia in SCA3/MJD through videofluoroscopy (VF) of swallowing, correlate VF with disease severity criteria and weight loss, and determine the clinical criteria cutoffs for performing VF in the clinical routine, in order to detect aspiration. Methods A cross-sectional study on 34 SCA3/MJD patients was performed. Clinical and molecular data, as well as body mass index (BMI), were obtained. Neurological scales, such as the Scale for the Assessment and Rating of Ataxia (SARA), and the Swallowing Quality of Life (SWAL-QOL) questionnaire were applied. The VF scores, Dysphagia Outcome and Severity Scale (DOSS) and penetration/aspiration scale (PAS), were obtained: Moderate-to-severe scores were grouped as "significant dysphagia." Results Overall, 31 of 34 individuals showed abnormal scores at VF. SARA, BMI, and the domain "eating duration" of SWAL-QOL correlated with VF: Their relation to significant dysphagia (DOSS <4 points or PAS >3) was evaluated through receiver operating characteristic curves. A sensitivity of 100% was equivalent to a cutoff of 15 points on SARA score, 23.72 kg/m2 on BMI, and 60% on eating duration-SWAL-QOL (P < 0.05). Conclusion Significant dysphagia was not related to age at onset, disease duration, or CAG repeat expansion, but with SARA scores, lower BMI, and the domain eating duration of SWAL-QOL. As a guideline for preventing aspiration, we suggest that SARA scores greater than 15 or eating duration-SWAL-QOL lower than 60% should urge VF studies in SCA3/MJD.
Collapse
Affiliation(s)
- Aline D Russo
- Post-graduate Program of Medical Sciences Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Estela R Reckziegel
- Medical Genetics Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Ana C Krum-Santos
- Medical Genetics Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Marina C Augustin
- Medical Genetics Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Betina Scheeren
- Complexo Hospitalar Santa Casa de Misericordia Porto Alegre Rio Grande do Sul Brazil
| | - Carine D Freitas
- Neurology Services Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Vanessa L Torman
- Post-graduate Program of Epidemiology Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil.,Department of Statistics Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Maria-Luiza Saraiva-Pereira
- Medical Genetics Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil.,Department of Biochemistry Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil.,Laboratorio de Identificação Genetica Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Jonas A Saute
- Post-graduate Program of Medical Sciences Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil.,Medical Genetics Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
| | - Laura B Jardim
- Post-graduate Program of Medical Sciences Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil.,Medical Genetics Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil.,Laboratorio de Identificação Genetica Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil.,Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP) Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
228
|
Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, Schlamann M, Diedrichsen J, Ladd ME, Timmann D. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain 2015; 138:1182-97. [PMID: 25818870 DOI: 10.1093/brain/awv064] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich's ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich's ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich's ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age- and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich's ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values < 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich's ataxia compared to matched controls (P-values < 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia type 3. Within the cerebellar nuclei, reductions were significant when comparing spinocerebellar ataxia type 6 and Friedreich's ataxia to matched controls (P < 0.01, bootstrap-corrected cluster-size threshold; two-sample t-tests). Susceptibility weighted imaging allowed depiction of atrophy of the cerebellar nuclei in patients with Friedreich's ataxia and spinocerebellar ataxia type 3. In spinocerebellar ataxia type 6, pathology was not restricted to the cerebellar cortex but also involved the cerebellar nuclei. Functional magnetic resonance imaging data, on the other hand, revealed that pathology in Friedreich's ataxia and spinocerebellar ataxia type 3 is not restricted to the cerebellar nuclei. There was functional involvement of the cerebellar cortex despite no or little structural changes.
Collapse
Affiliation(s)
- Maria R Stefanescu
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Moritz Dohnalek
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Markus Thürling
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- 3 Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany 4 Department of Neurology, University of Bonn, Bonn, Germany
| | - Andreas Beck
- 5 Department of Computer Sciences, University of Düsseldorf, Düsseldorf, Germany
| | - Marc Schlamann
- 6 Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany
| | - Joern Diedrichsen
- 7 Institute of Cognitive Neuroscience, University College London, London, UK
| | - Mark E Ladd
- 2 Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany 6 Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany 8 Division of Medical Physics in Radiology, University of Heidelberg and German Cancer Research Centre, Heidelberg, Germany
| | - Dagmar Timmann
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
229
|
The role of the immune system in triplet repeat expansion diseases. Mediators Inflamm 2015; 2015:873860. [PMID: 25873774 PMCID: PMC4385693 DOI: 10.1155/2015/873860] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022] Open
Abstract
Trinucleotide repeat expansion disorders (TREDs) are a group of dominantly inherited neurological diseases caused by the expansion of unstable repeats in specific regions of the associated genes. Expansion of CAG repeat tracts in translated regions of the respective genes results in polyglutamine- (polyQ-) rich proteins that form intracellular aggregates that affect numerous cellular activities. Recent evidence suggests the involvement of an RNA toxicity component in polyQ expansion disorders, thus increasing the complexity of the pathogenic processes. Neurodegeneration, accompanied by reactive gliosis and astrocytosis is the common feature of most TREDs, which may suggest involvement of inflammation in pathogenesis. Indeed, a number of immune response markers have been observed in the blood and CNS of patients and mouse models, and the activation of these markers was even observed in the premanifest stage of the disease. Although inflammation is not an initiating factor of TREDs, growing evidence indicates that inflammatory responses involving astrocytes, microglia, and the peripheral immune system may contribute to disease progression. Herein, we review the involvement of the immune system in the pathogenesis of triplet repeat expansion diseases, with particular emphasis on polyglutamine disorders. We also present various therapeutic approaches targeting the dysregulated inflammation pathways in these diseases.
Collapse
|
230
|
|
231
|
Almaguer-Mederos LE, Sarr L, Abascal JV, Aguilera-Rodríquez R, Martín MA, Khalil MIA, Al-Jafari MA, de Jorge López L, Volpini V, Nyan O. Spinocerebellar ataxia type 2 in The Gambia: A case report. J Neurol Sci 2015; 349:269-71. [PMID: 25649479 DOI: 10.1016/j.jns.2015.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Luis E Almaguer-Mederos
- School of Medicine and Allied Health Sciences, Banjul, The Gambia; Centre for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Cuba.
| | - Louise Sarr
- Edward Francis Small Teaching Hospital (EFSTH), Banjul, The Gambia
| | - Jorge Vega Abascal
- School of Medicine and Allied Health Sciences, Banjul, The Gambia; Edward Francis Small Teaching Hospital (EFSTH), Banjul, The Gambia
| | | | | | - M I A Khalil
- Edward Francis Small Teaching Hospital (EFSTH), Banjul, The Gambia
| | | | - Laura de Jorge López
- Institut D'Investigacio Biomedica de Bellvitge Idibell Hospital Duran I Reynals, Spain
| | - Victor Volpini
- Institut D'Investigacio Biomedica de Bellvitge Idibell Hospital Duran I Reynals, Spain
| | - Ousman Nyan
- School of Medicine and Allied Health Sciences, Banjul, The Gambia
| |
Collapse
|
232
|
Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience 2015; 289:289-99. [PMID: 25595967 DOI: 10.1016/j.neuroscience.2015.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/15/2014] [Accepted: 01/01/2015] [Indexed: 11/30/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an incurable, dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ataxin-1 (ATXN1). While analysis of human autopsy material indicates significant glial pathology in SCA1, previous research has focused on characterizing neuronal dysfunction. In this study, we characterized astrocytic and microglial response in SCA1 using a comprehensive array of mouse models. We have discovered that astrocytes and microglia are activated very early in SCA1 pathogenesis even when mutant ATXN1 expression was limited to Purkinje neurons. Glial activation occurred in the absence of neuronal death, suggesting that glial activation results from signals emanating from dysfunctional neurons. Finally, in all different models examined glial activation closely correlated with disease progression, supporting the development of glial-based biomarkers to follow disease progression.
Collapse
Affiliation(s)
- M Cvetanovic
- Department of Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States.
| | - M Ingram
- Department of Laboratory Medicine and Pathology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
| | - H Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
| | - P Opal
- Neurology and Department of Cell and Molecular Biology, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, United States
| |
Collapse
|
233
|
Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2015; 23:441-58. [PMID: 24816443 DOI: 10.3727/096368914x678454] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polyglutamine (polyQ) diseases are a group of neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding a long polyQ tract in the respective proteins. To date, a total of nine polyQ disorders have been described: six spinocerebellar ataxias (SCA) types 1, 2, 6, 7, 17; Machado-Joseph disease (MJD/SCA3); Huntington's disease (HD); dentatorubral pallidoluysian atrophy (DRPLA); and spinal and bulbar muscular atrophy, X-linked 1 (SMAX1/SBMA). PolyQ diseases are characterized by the pathological expansion of CAG trinucleotide repeat in the translated region of unrelated genes. The translated polyQ is aggregated in the degenerated neurons leading to the dysfunction and degeneration of specific neuronal subpopulations. Although animal models of polyQ disease for understanding human pathology and accessing disease-modifying therapies in neurodegenerative diseases are available, there is neither a cure nor prevention for these diseases, and only symptomatic treatments for polyQ diseases currently exist. Long-term pharmacological treatment is so far disappointing, probably due to unwanted complications and decreasing drug efficacy. Cellular transplantation of stem cells may provide promising therapeutic avenues for restoration of the functions of degenerative and/or damaged neurons in polyQ diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Mendonça LS, Nóbrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain 2014; 138:320-35. [DOI: 10.1093/brain/awu352] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
235
|
Chan HYE. RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:431. [PMID: 25565965 PMCID: PMC4271607 DOI: 10.3389/fncel.2014.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Gene transcription produces a wide variety of ribonucleic acid (RNA) species in eukaryotes. Individual types of RNA, such as messenger, structural and regulatory RNA, are known to play distinct roles in the cell. Recently, researchers have identified a large number of RNA-mediated toxicity pathways that play significant pathogenic roles in numerous human disorders. In this article, we describe various common RNA toxicity pathways, namely epigenetic gene silencing, nucleolar stress, nucleocytoplasmic transport, bi-directional gene transcription, repeat-associated non-ATG translation, RNA foci formation and cellular protein sequestration. We emphasize RNA toxicity mechanisms that involve nucleotide repeat expansion, such as those related to polyglutamine (polyQ) disorders and frontotemporal lobar degeneration-amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China ; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
236
|
Alves S, Cormier-Dequaire F, Marinello M, Marais T, Muriel MP, Beaumatin F, Charbonnier-Beaupel F, Tahiri K, Seilhean D, El Hachimi K, Ruberg M, Stevanin G, Barkats M, den Dunnen W, Priault M, Brice A, Durr A, Corvol JC, Sittler A. The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 2014; 128:705-22. [PMID: 24859968 DOI: 10.1007/s00401-014-1289-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 04/18/2014] [Accepted: 04/26/2014] [Indexed: 01/11/2023]
Abstract
There is still no treatment for polyglutamine disorders, but clearance of mutant proteins might represent a potential therapeutic strategy. Autophagy, the major pathway for organelle and protein turnover, has been implicated in these diseases. To determine whether the autophagy/lysosome system contributes to the pathogenesis of spinocerebellar ataxia type 7 (SCA7), caused by expansion of a polyglutamine tract in the ataxin-7 protein, we looked for biochemical, histological and transcriptomic abnormalities in components of the autophagy/lysosome pathway in a knock-in mouse model of the disease, postmortem brain and peripheral blood mononuclear cells (PBMC) from patients. In the mouse model, mutant ataxin-7 accumulated in inclusions immunoreactive for the autophagy-associated proteins mTOR, beclin-1, p62 and ubiquitin. Atypical accumulations of the autophagosome/lysosome markers LC3, LAMP-1, LAMP2 and cathepsin-D were also found in the cerebellum of the SCA7 knock-in mice. In patients, abnormal accumulations of autophagy markers were detected in the cerebellum and cerebral cortex of patients, but not in the striatum that is spared in SCA7, suggesting that autophagy might be impaired by the selective accumulation of mutant ataxin-7. In vitro studies demonstrated that the autophagic flux was impaired in cells overexpressing full-length mutant ataxin-7. Interestingly, the expression of the early autophagy-associated gene ATG12 was increased in PBMC from SCA7 patients in correlation with disease severity. These results provide evidence that the autophagy/lysosome pathway is impaired in neurons undergoing degeneration in SCA7. Autophagy/lysosome-associated molecules might, therefore, be useful markers for monitoring the effects of potential therapeutic approaches using modulators of autophagy in SCA7 and other autophagy/lysosome-associated neurodegenerative disorders.
Collapse
|
237
|
Beh SC, Frohman TC, Frohman EM. Neuro-ophthalmic Manifestations of Cerebellar Disease. Neurol Clin 2014; 32:1009-80. [DOI: 10.1016/j.ncl.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shin C Beh
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
238
|
Kumaran D, Balagopal K, Tharmaraj RGA, Aaron S, George K, Muliyil J, Sivadasan A, Danda S, Alexander M, Hasan G. Genetic characterization of Spinocerebellar ataxia 1 in a South Indian cohort. BMC MEDICAL GENETICS 2014; 15:114. [PMID: 25344417 PMCID: PMC4411758 DOI: 10.1186/s12881-014-0114-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/30/2014] [Indexed: 12/18/2022]
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) is a late onset autosomal dominant cerebellar ataxia, caused by CAG triplet repeat expansion in the ATXN1 gene. The frequency of SCA1 occurrence is more in Southern India than in other regions as observed from hospital-based studies. However there are no reports on variability of CAG repeat expansion, phenotype-genotype association and founder mutations in a homogenous population from India. Methods Genomic DNA isolated from buccal mouthwash of the individuals in the cohort was used for PCR-based diagnosis of SCA1. Subsequently SNP’s found within the ATXN1 loci were identified by Taqman allelic discrimination assays. Significance testing of the genotype-phenotype associations was calculated by Kruskal-Wallis ANOVA test with post-hoc Dunnett’s test and Pearson’s correlation coefficient. Results By genetic analysis of an affected population in Southern India we identified 21 pre-symptomatic individuals including four that were well past the average age of disease onset of 44 years, 16 symptomatic and 63 normal individuals. All pre-symptomatic cases harbor “pure” expansions of greater than 40 CAGs. Genotyping to test for the presence of two previously identified SNPs showed a founder effect of the same repeat carrying allele as in the general Indian population. We show that SCA1 disease onset is significantly delayed when transmission of the disease is maternal. Conclusions Our finding of early disease onset in individuals with a paternally inherited allele could serve as valuable information for clinicians towards early detection of SCA1 in patients with affected fathers. Identification of older pre-symptomatic individuals (n = 4) in our cohort among individuals with a shared genetic and environmental background, suggests that second site genetic or epigenetic modifiers might significantly affect SCA1 disease progression. Moreover, such undetected SCA1 cases could underscore the true prevalence of SCA1 in India.
Collapse
Affiliation(s)
- Dhanya Kumaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India. .,Manipal University, Manipal, 576104, India.
| | - Krishnan Balagopal
- Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | | | - Sanjith Aaron
- Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Kuryan George
- Department of Community Health, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Jayaprakash Muliyil
- Department of Community Health, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Mathew Alexander
- Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.
| |
Collapse
|
239
|
A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics 2014; 16:11-21. [DOI: 10.1007/s10048-014-0424-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/08/2014] [Indexed: 01/26/2023]
|
240
|
Ramani B, Harris GM, Huang R, Seki T, Murphy GG, Costa MDC, Fischer S, Saunders TL, Xia G, McEachin RC, Paulson HL. A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet 2014; 24:1211-24. [PMID: 25320121 DOI: 10.1093/hmg/ddu532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine diseases, including spinocerebellar ataxia type 3 (SCA3), are caused by CAG repeat expansions that encode abnormally long glutamine repeats in the respective disease proteins. While the mechanisms underlying neurodegeneration remain uncertain, evidence supports a proteotoxic role for the mutant protein dictated in part by the specific genetic and protein context. To further define pathogenic mechanisms in SCA3, we generated a mouse model in which a CAG expansion of 82 repeats was inserted into the murine locus by homologous recombination. SCA3 knockin mice exhibit region-specific aggregate pathology marked by intranuclear accumulation of the mutant Atxn3 protein, abundant nuclear inclusions and, in select brain regions, extranuclear aggregates localized to neuritic processes. Knockin mice also display altered splicing of the disease gene, promoting expression of an alternative isoform in which the intron immediately downstream of the CAG repeat is retained. In an independent mouse model expressing the full human ATXN3 disease gene, expression of this alternatively spliced transcript is also enhanced. These results, together with recent findings in other polyglutamine diseases, suggest that CAG repeat expansions can promote aberrant splicing to produce potentially more aggregate-prone isoforms of the disease proteins. This report of a SCA3 knockin mouse expands the repertoire of existing models of SCA3, and underscores the potential contribution of alternative splicing to disease pathogenesis in SCA3 and other polyglutamine disorders.
Collapse
Affiliation(s)
- Biswarathan Ramani
- Department of Neurology, Medical Scientist Training Program and Neuroscience Graduate Program
| | - Ginny M Harris
- Medical Scientist Training and Cellular and Molecular Biology Graduate Programs, University of Iowa College of Medicine, IA, USA
| | | | | | | | | | | | | | - Guangbin Xia
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Richard C McEachin
- Department of Computational Medicine & Bioinformatics, University of Michigan, MI, USA
| | | |
Collapse
|
241
|
Brendel B, Synofzik M, Ackermann H, Lindig T, Schölderle T, Schöls L, Ziegler W. Comparing speech characteristics in spinocerebellar ataxias type 3 and type 6 with Friedreich ataxia. J Neurol 2014; 262:21-6. [DOI: 10.1007/s00415-014-7511-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
242
|
Katsuno M, Watanabe H, Yamamoto M, Sobue G. Potential therapeutic targets in polyglutamine-mediated diseases. Expert Rev Neurother 2014; 14:1215-28. [PMID: 25190502 DOI: 10.1586/14737175.2014.956727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyglutamine diseases are a group of inherited neurodegenerative disorders that are caused by an abnormal expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in the protein-coding region of the respective disease genes. To date, nine polyglutamine diseases are known, including Huntington's disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and six forms of spinocerebellar ataxia. These diseases share a salient molecular pathophysiology including the aggregation of the mutant protein followed by the disruption of cellular functions such as transcriptional regulation and axonal transport. The intraneuronal accumulation of mutant protein and resulting cellular dysfunction are the essential targets for the development of disease-modifying therapies, some of which have shown beneficial effects in animal models. In this review, the current status of and perspectives on therapy development for polyglutamine diseases will be discussed.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
243
|
Delplanque J, Devos D, Huin V, Genet A, Sand O, Moreau C, Goizet C, Charles P, Anheim M, Monin ML, Buée L, Destée A, Grolez G, Delmaire C, Dujardin K, Dellacherie D, Brice A, Stevanin G, Strubi-Vuillaume I, Dürr A, Sablonnière B. TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain 2014; 137:2657-63. [DOI: 10.1093/brain/awu202] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
244
|
Auburger G, Gispert S, Lahut S, Ömür &O, Damrath E, Heck M, Başak N. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes 2014; 5:316-327. [PMID: 24936253 PMCID: PMC4058736 DOI: 10.4239/wjd.v5.i3.316] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
Genetic linkage analyses, genome-wide association studies of single nucleotide polymorphisms, copy number variation surveys, and mutation screenings found the human chromosomal 12q24 locus, with the genes SH2B3 and ATXN2 in its core, to be associated with an exceptionally wide spectrum of disease susceptibilities. Hematopoietic traits of red and white blood cells (like erythrocytosis and myeloproliferative disease), autoimmune disorders (like type 1 diabetes, coeliac disease, juvenile idiopathic arthritis, rheumatoid arthritis, thrombotic antiphospholipid syndrome, lupus erythematosus, multiple sclerosis, hypothyroidism and vitiligo), also vascular pathology (like kidney glomerular filtration rate deficits, serum urate levels, plasma beta-2-microglobulin levels, retinal microcirculation problems, diastolic and systolic blood pressure and hypertension, cardiovascular infarction), furthermore obesity, neurodegenerative conditions (like the polyglutamine-expansion disorder spinocerebellar ataxia type 2, Parkinson’s disease, the motor-neuron disease amyotrophic lateral sclerosis, and progressive supranuclear palsy), and finally longevity were reported. Now it is important to clarify, in which ways the loss or gain of function of the locally encoded proteins SH2B3/LNK and ataxin-2, respectively, contribute to these polygenic health problems. SH2B3/LNK is known to repress the JAK2/ABL1 dependent proliferation of white blood cells. Its null mutations in human and mouse are triggers of autoimmune traits and leukemia (acute lymphoblastic leukemia or chronic myeloid leukemia-like), while missense mutations were found in erythrocytosis-1 patients. Ataxin-2 is known to act on RNA-processing and trophic receptor internalization. While its polyglutamine-expansion mediated gain-of-function causes neuronal atrophy in human and mouse, its deletion leads to obesity and insulin resistance in mice. Thus, it is conceivable that the polygenic pathogenesis of type 1 diabetes is enhanced by an SH2B3-dysregulation-mediated predisposition to autoimmune diseases that conspires with an ATXN2-deficiency-mediated predisposition to lipid and glucose metabolism pathology.
Collapse
|
245
|
Chen CM, Weng YT, Chen WL, Lin TH, Chao CY, Lin CH, Chen IC, Lee LC, Lin HY, Wu YR, Chen YC, Chang KH, Tang HY, Cheng ML, Lee-Chen GJ, Lin JY. Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2-ARE pathways in cell models of spinocerebellar ataxia 3. Free Radic Biol Med 2014; 71:339-350. [PMID: 24675225 DOI: 10.1016/j.freeradbiomed.2014.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 03/05/2014] [Accepted: 03/15/2014] [Indexed: 12/17/2022]
Abstract
Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17 and dentatorubropallidoluysian atrophy, as well as Huntington disease, are a group of neurodegenerative disorders caused by a CAG triplet-repeat expansion encoding a long polyglutamine (polyQ) tract in the respective mutant proteins. The cytoplasmic and nuclear aggregate formation, a pathological hallmark of polyQ diseases, is probably the initial process triggering the subsequent pathological events. Compromised oxidative stress defense capacity and mitochondrial dysfunction have emerged as contributing factors to the pathogenesis of polyQ diseases. The roots of licorice (Glycyrrhiza species) have long been used as an herbal medicine. In this study, we demonstrate the aggregate-inhibitory effect of Glycyrrhiza inflata herb extract and its constituents licochalcone A and ammonium glycyrrhizinate (AMGZ) in both 293 and SH-SY5Y ATXN3/Q75 cells, SCA3 cell models. The reporter assay showed that G. inflata herb extract, licochalcone A, and AMGZ could enhance the promoter activity of peroxisome proliferator-activated receptor γ, coactivator 1α (PPARGC1A), a known regulator of mitochondrial biogenesis and antioxidative response genes. G. inflata extract, licochalcone A, and AMGZ upregulated PPARGC1A expression and its downstream target genes, SOD2 and CYCS, in the 293 ATXN3/Q75 cell model. The expression of nuclear factor erythroid 2-related factor 2 (NFE2L2), the principal transcription factor that binds to antioxidant-responsive elements (AREs) to promote ARE-dependent gene expression when the cells respond to oxidative stress, and its downstream genes, HMOX1, NQO1, GCLC, and GSTP1, was also increased by G. inflata herb extract, licochalcone A, and AMGZ. Knockdown of PPARGC1A increased aggregates in ATXN3/Q75 cells and also attenuated the aggregate-inhibiting effect of the tested compounds. G. inflata extract and its constituents significantly elevated GSH/GSSG ratio and reduced reactive oxidative species in ATXN3/Q75 cells. The study results suggest that the tested agents activate PPARGC1A activity and NFE2L2-ARE signaling to increase mitochondrial biogenesis, decrease oxidative stress, and reduce aggregate formation in SCA3 cellular models.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yu-Ting Weng
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - I-Cheng Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Li-Ching Lee
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsuan-Yuan Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 11051, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Hsiang-Yu Tang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 11051, Taiwan.
| |
Collapse
|
246
|
Quik M, Zhang D, Perez XA, Bordia T. Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 2014; 144:50-9. [PMID: 24836728 DOI: 10.1016/j.pharmthera.2014.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023]
Abstract
A large body of evidence using experimental animal models shows that the nicotinic cholinergic system is involved in the control of movement under physiological conditions. This work raised the question whether dysregulation of this system may contribute to motor dysfunction and whether drugs targeting nicotinic acetylcholine receptors (nAChRs) may be of therapeutic benefit in movement disorders. Accumulating preclinical studies now show that drugs acting at nAChRs improve drug-induced dyskinesias. The general nAChR agonist nicotine, as well as several nAChR agonists (varenicline, ABT-089 and ABT-894), reduces l-dopa-induced abnormal involuntary movements or dyskinesias up to 60% in parkinsonian nonhuman primates and rodents. These dyskinesias are potentially debilitating abnormal involuntary movements that arise as a complication of l-dopa therapy for Parkinson's disease. In addition, nicotine and varenicline decrease antipsychotic-induced abnormal involuntary movements in rodent models of tardive dyskinesia. Antipsychotic-induced dyskinesias frequently arise as a side effect of chronic drug treatment for schizophrenia, psychosis and other psychiatric disorders. Preclinical and clinical studies also show that the nAChR agonist varenicline improves balance and coordination in various ataxias. Lastly, nicotine has been reported to attenuate the dyskinetic symptoms of Tourette's disorder. Several nAChR subtypes appear to be involved in these beneficial effects of nicotine and nAChR drugs including α4β2*, α6β2* and α7 nAChRs (the asterisk indicates the possible presence of other subunits in the receptor). Overall, the above findings, coupled with nicotine's neuroprotective effects, suggest that nAChR drugs have potential for future drug development for movement disorders.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
247
|
Chopra R, Shakkottai VG. Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. FUTURE NEUROLOGY 2014; 9:187-196. [PMID: 25221437 DOI: 10.2217/fnl.14.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebellum is an important structure for accurate control and timing of movement, and Purkinje neurons in the cerebellar cortex are key players in cerebellar motor control. Cerebellar dysfunction can result in ataxia, a disorder characterized by postural instability, gait disturbances and motor incoordination. Cerebellar ataxia is a symptom of a number of conditions, and the emerging evidence that Purkinje neuron dysfunction, in particular, abnormal Purkinje neuron repetitive firing, is a major driver of motor dysfunction in a subset of dominantly inherited ataxias is dicussed. Abnormalities in Purkinje neuron excitability that are observed in mouse models of each of these disorders, and where appropriate describe studies linking particular ion channels to aberrant excitability are also discussed. Common mechanisms of dysfunction and speculate about potential therapeutic targets, suggesting that Purkinje neuron firing abnormalities are a novel target for improving motor dysfunction in patients with some forms of dominantly inherited ataxia are proposed.
Collapse
Affiliation(s)
- Ravi Chopra
- Department of Neurology, University of Michigan, Alfred A Taubman Biomedical Science Research Building, Room 4009, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Alfred A Taubman Biomedical Science Research Building, Room 4009, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
248
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
249
|
Xia G, McFarland KN, Wang K, Sarkar PS, Yachnis AT, Ashizawa T. Purkinje cell loss is the major brain pathology of spinocerebellar ataxia type 10. J Neurol Neurosurg Psychiatry 2013; 84:1409-11. [PMID: 23813740 PMCID: PMC3923576 DOI: 10.1136/jnnp-2013-305080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Guangbin Xia
- Department of Neurology and The McKnight Brain Institute, College of Medicine, University of Florida, , Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|