201
|
Desuppression of TGF-β signaling via nuclear c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610, and -1048. Oncogene 2018; 38:637-655. [PMID: 30177833 DOI: 10.1038/s41388-018-0481-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023]
Abstract
Protein-tyrosine kinases regulate a broad range of intracellular processes occurring primarily just beneath the plasma membrane. With the greatest care to prevent dephosphorylation, we have shown that nuclear tyrosine phosphorylation regulates global chromatin structural states. However, the roles for tyrosine phosphorylation in the nucleus are poorly understood. Here we identify transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), which suppresses transforming growth factor-β (TGF-β) signaling through the association with Smad2/3 transcription factor, as a new nuclear substrate of c-Abl tyrosine kinase. Replacement of the three tyrosine residues Tyr-524, -610, and -1048 with phenylalanine (3YF) inhibits c-Abl-mediated phosphorylation of TIF1γ and enhances TIF1γ's association with Smad3. Importantly, knockdown-rescue experiments show that 3YF strengthens TIF1γ's ability to suppress TGF-β signaling. Intriguingly, activation of c-Abl by epidermal growth factor (EGF) induces desuppression of TGF-β signaling via enhancing the tyrosine phosphorylation level of TIF1γ. TGF-β together with EGF synergistically provokes desuppressive responses of epithelial-to-mesenchymal transition through tyrosine phosphorylation of TIF1γ. These results suggest that nuclear c-Abl-mediated tyrosine phosphorylation of TIF1γ has a desuppressive role in TGF-β-Smad2/3 signaling.
Collapse
|
202
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42. [PMID: 29901090 PMCID: PMC6089780 DOI: 10.3892/ijmm_2018.3714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020-8505
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate 028-3694,Correspondence to: Dr Akira Ishisaki, Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan, E-mail:
| |
Collapse
|
203
|
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292:76-83. [PMID: 30017632 DOI: 10.1016/j.cbi.2018.07.008] [Citation(s) in RCA: 780] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is considered as a crucial mediator in tissue fibrosis and causes tissue scarring largely by activating its downstream small mother against decapentaplegic (Smad) signaling. Different TGF-β signalings play different roles in fibrogenesis. TGF-β1 directly activates Smad signaling which triggers pro-fibrotic gene overexpression. Excessive studies have demonstrated that dysregulation of TGF-β1/Smad pathway was an important pathogenic mechanism in tissue fibrosis. Smad2 and Smad3 are the two major downstream regulator that promote TGF-β1-mediated tissue fibrosis, while Smad7 serves as a negative feedback regulator of TGF-β1/Smad pathway thereby protects against TGF-β1-mediated fibrosis. This review presents an overview of the molecular mechanisms of TGF-β/Smad signaling pathway in renal, hepatic, pulmonary and cardiac fibrosis, followed by an in-depth discussion of their molecular mechanisms of intervention effects both in vitro and in vivo. The role of TGF-β/Smad signaling pathway in tumor or cancer is also discussed. Additionally, the current advances also highlight targeting TGF-β/Smad signaling pathway for the prevention of tissue fibrosis. The review reveals comprehensive pathophysiological mechanisms of tissue fibrosis. Particular challenges are presented and placed within the context of future applications against tissue fibrosis.
Collapse
Affiliation(s)
- He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
204
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
205
|
Ma JY, You D, Li WY, Lu XL, Sun S, Li HW. Bone morphogenetic proteins and inner ear development. J Zhejiang Univ Sci B 2018; 20:131-145. [PMID: 30112880 DOI: 10.1631/jzus.b1800084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β superfamily, and they play important roles in the development of numerous organs, including the inner ear. The inner ear is a relatively small organ but has a highly complex structure and is involved in both hearing and balance. Here, we discuss BMPs and BMP signaling pathways and then focus on the role of BMP signal pathway regulation in the development of the inner ear and the implications this has for the treatment of human hearing loss and balance dysfunction.
Collapse
Affiliation(s)
- Jiao-Yao Ma
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Dan You
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Wen-Yan Li
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Xiao-Ling Lu
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Shan Sun
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Hua-Wei Li
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China.,Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
206
|
Modulation of TGFβ/Smad signaling by the small GTPase RhoB. Cell Signal 2018; 48:54-63. [DOI: 10.1016/j.cellsig.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
|
207
|
Ohara M, Ohnishi S, Hosono H, Yamamoto K, Fu Q, Maehara O, Suda G, Sakamoto N. Palmitoylethanolamide Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis in Rats. Front Pharmacol 2018; 9:709. [PMID: 30057547 PMCID: PMC6053486 DOI: 10.3389/fphar.2018.00709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Liver fibrosis is a complex inflammatory and fibrogenic process, and the progression of fibrosis leads to cirrhosis. The only therapeutic approaches are the removal of injurious stimuli and liver transplantation. Therefore, the development of anti-fibrotic therapies is desired. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide belonging to the N-acylethanolamines family and contained in foods such as egg yolks and peanuts. PEA has therapeutic anti-inflammatory, analgesic, and neuroprotective effects. However, the effects and roles of PEA in liver fibrosis remain unknown. Here we investigated the therapeutic effects of PEA in rats with liver fibrosis. Methods: We conducted in vitro experiments to investigate the effects of PEA on the activation of hepatic stellate cells (HSCs, LX-2). Liver fibrosis was induced by an intraperitoneal injection of 1.5 mL/kg of 50% carbon tetrachloride twice a week for 4 weeks. Beginning at 3 weeks, PEA (20 mg/kg) was intraperitoneally injected thrice a week for 2 weeks. Then rats were sacrificed and we performed histological and quantitative reverse-transcription polymerase chain reaction analyses. Results: The expression of α-smooth muscle actin (SMA) induced by transforming growth factor (TGF)-β1 in HSCs was significantly downregulated by PEA. PEA treatment inhibited the TGF-β1-induced phosphorylation of SMAD2 in a dose-dependent manner, and upregulated the expression of SMAD7. The reporter gene assay demonstrated that PEA downregulated the transcriptional activity of the SMAD complex upregulated by TGF-β1. Administration of PEA significantly reduced the fibrotic area, deposition of type I collagen, and activation of HSCs and Kupffer cells in rats with liver fibrosis. Conclusion: Activation of HSCs was significantly decreased by PEA through suppression of the TGF-β1/SMAD signaling pathway. Administration of PEA produced significant improvement in a rat model of liver fibrosis, possibly by inhibiting the activation of HSCs and Kupffer cells. PEA may be a potential new treatment for liver fibrosis.
Collapse
Affiliation(s)
- Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidetaka Hosono
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Maehara
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
208
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, Zhou W, Yuan D, Cao J, Li Y, He P, Tang Y. Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Cell Death Dis 2018; 9:779. [PMID: 30006541 PMCID: PMC6045651 DOI: 10.1038/s41419-018-0807-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
High avidity of bone metastasis is an important characteristic in prostate cancer (PCa). Downexpression of miR-133b has been reported to be implicated in the development, progression and recurrence in PCa. However, clinical significance and biological roles of miR-133b in bone metastasis of PCa remain unclear. Here we report that miR-133b is downregulated in PCa tissues and further decreased in bone metastatic PCa tissues. Downexpression of miR-133b positively correlates with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients. Upregulating miR-133b inhibits invasion, migration in vitro and bone metastasis in vivo in PCa cells. Mechanistically, we find that miR-133b suppresses activity of TGF-β signaling via directly targeting TGF-β receptor I and II, which further inhibits bone metastasis of PCa cells. Our results further reveal that overexpression of REST contributes to miR-133b downexpression via transcriptional repression in PCa tissues. Importantly, silencing miR-133b enhances invasion and migration abilities in vitro and bone metastasis ability in vivo in REST-silenced PCa cells. The clinical correlation of miR-133b with TGFBRI, TGFBRII, REST and TGF-β signaling activity is verified in PCa tissues. Therefore, our results uncover a novel mechanism of miR-133b downexpression that REST transcriptionally inhibits miR-133b expression in PCa cells, and meanwhile support the notion that administration of miR-133b may serve as a rational regimen in the treatment of PCa bone metastasis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 563003, Zunyi, China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qiji Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qing Yang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wei Zhou
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Dan Yuan
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yuming Li
- Department of Orthopaedic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Peiheng He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
209
|
Klinbunga S, Janpoom S, Rongmung P, Prasertlux S, Srisuwan V, Menasveta P, Khamnamtong B. Characterization of transforming growth factor beta regulator 1-like and association between its expression levels and growth of the giant tiger shrimp Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:38-47. [PMID: 29981451 DOI: 10.1016/j.cbpb.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022]
Abstract
Molecular markers that allow selection of juveniles and broodstock with improved growth performances are useful for the shrimp industry. Here, the full-length cDNA of transforming growth factor beta regulator 1-like (PmTbrg1-l) in the giant tiger shrimp Penaeus monodon was determined. It was 1184 bp in length and contained an open reading frame (ORF) of 975 bp corresponding to a deduced polypeptide of 324 amino acids. Successful RNA interference (RNAi) carried out using juveniles injected with PmTbrg1-l dsRNA revealed reduced levels of PmTbrg1-l and myostatin (PmMstm) in hemocytes when compared to shrimp injected with saline solution and GFP dsRNA (P < .05). Associations between single-strand conformational polymorphism (SSCP) patterns or single nucleotide polymorphism (SNP) patterns and growth-related parameters (average body weight and total length) were examined. Juveniles with pattern III (corresponding to A/A918; N = 37) showed a trend for greater average body weight and total length than those with patterns II (G/G918; N = 42) and IV (A/G918; N = 75). The expression level of PmTbrg1-l in the hepatopancreas of females was significantly higher than that in males (P < .05) in two sample sets of three-month-old domesticated juveniles (N = 59 and 50; P < .05). Moreover, its expression level in large-size juveniles was significantly higher than that in medium-size and small-size juveniles in both groups of samples (P < .05). Results indicated that PmTbrg1-l is functionally related with growth of P. monodon.
Collapse
Affiliation(s)
- Sirawut Klinbunga
- Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirithorn Janpoom
- Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Puttawan Rongmung
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirikan Prasertlux
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Vipawadee Srisuwan
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Piamsak Menasveta
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Bavornlak Khamnamtong
- Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
210
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
211
|
Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A, Kamo M, Joh S, Satoh K, Ishisaki A. IL‑1β and TNF‑α suppress TGF‑β‑promoted NGF expression in periodontal ligament‑derived fibroblasts through inactivation of TGF‑β‑induced Smad2/3‑ and p38 MAPK‑mediated signals. Int J Mol Med 2018; 42:1484-1494. [PMID: 29901090 DOI: 10.3892/ijmm.2018.3714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/11/2018] [Indexed: 01/11/2023] Open
Abstract
Mechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons. In the present study, the effect of pro‑inflammatory cytokines, including interleukin 1β (IL‑1β) and tumor necrosis factor α (TNF‑α), on transforming growth factor β1 (TGF‑β1)‑induced NGF expression was evaluated in rat PDL‑derived SCDC2 cells. It was observed that TGF‑β1 promoted NGF expression via Smad2/3 and p38 mitogen‑activated protein kinase (MAPK) activation. IL‑1β and TNF‑α suppressed the TGF‑β1‑induced activation of Smad2/3 and p38 MAPK, resulting in the abrogation of NGF expression. NGF secreted by TGF‑β1‑treated SCDC2 cells promoted neurite extension and the expression of tyrosine hydroxylase, a rate‑limiting enzyme in dopamine synthesis in rat pheochromocytoma PC12 cells. These results suggested that pro‑inflammatory cytokines suppressed the TGF‑β‑mediated expression of NGF in PDL‑derived fibroblasts through the inactivation of TGF‑β‑induced Smad2/3 and p38 MAPK signaling, possibly resulting in the disturbance of the regeneration of injured PDL neurons.
Collapse
Affiliation(s)
- Maiko Ohta
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Naoto Okubo
- Laboratory of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita‑ku, Sapporo 060‑0812, Japan
| | - Akira Nemoto
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| | - Shigeharu Joh
- Division of Oral and Dysphasia Rehabilitation, Department of Prosthodontics, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Kenichi Satoh
- Division of Dental Anesthesia, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Iwate 020‑8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa‑gun, Iwate 028‑3694, Japan
| |
Collapse
|
212
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018; 101:670-681. [PMID: 29518614 DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has emerged as a major cause of morbidity and mortality worldwide. Interstitial fibrosis, glomerulosclerosis and inflammation play the central role in the pathogenesis and progression of CKD to end stage renal disease (ESRD). Transforming growth factor-β1 (TGF-β1) is the central mediator of renal fibrosis and numerous studies have focused on inhibition of TGF-β1 and its downstream targets for treatment of kidney disease. However, blockade of TGF-β1 has not been effective in the treatment of CKD patients. This may be, in part due to anti-inflammatory effect of TGF-β1. The Smad signaling system plays a central role in regulation of TGF-β1 and TGF-β/Smad pathway plays a key role in progressive renal injury and inflammation. This review provides an overview of the role of TGF-β/Smad signaling pathway in the pathogenesis of renal fibrosis and inflammation and an effective target of anti-fibrotic therapies. Under pathological conditions, Smad2 and Smad3 expression are upregulated, while Smad7 is downregulated. In addition to TGF-β1, other pathogenic mediators such as angiotensin II and lipopolysaccharide activate Smad signaling through both TGF-β-dependent and independent pathways. Smads also interact with other pathways including nuclear factor kappa B (NF-κB) to regulate renal inflammation and fibrosis. In the context of renal fibrosis and inflammation, Smad3 exerts profibrotic effect, whereas Smad2 and Smad7 play renal protective roles. Smad4 performs its dual functions by transcriptionally promoting Smad3-dependent renal fibrosis but simultaneously suppressing NF-κB-mediated renal inflammation via Smad7-dependent mechanism. Furthermore, TGF-β1 induces Smad3 expression to regulate microRNAs and Smad ubiquitination regulatory factor (Smurf) to exert its pro-fibrotic effect. In conclusion, TGF-β/Smad signaling is an important pathway that mediates renal fibrosis and inflammation. Thus, an effective anti-fibrotic therapy via inhibition of Smad3 and upregulation of Smad7 signaling constitutes an attractive approach for treatment of CKD.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Tian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - De-Wen Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hui Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
213
|
Verrecchia F, Rédini F. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment. Front Oncol 2018; 8:133. [PMID: 29761075 PMCID: PMC5937053 DOI: 10.3389/fonc.2018.00133] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcomas are the most frequent form of primary bone tumors and mainly affect children, adolescents, and young adults. Despite encouraging progress in therapeutic management, including the advent of multidrug chemotherapy, the survival rates have remained unchanged for more than four decades: 75% at 5 years for localized disease, but two groups of patients are still at high risk: metastatic at diagnosis (overall survival around 40% at 5 years) and/or poor responders to chemotherapy (20% at 5 years). Because these tumors are classified as “complex genomic,” it is extremely difficult to determine the signaling pathways that might be targeted by specific therapies. A hypothesis has thus emerged, stating that the particular microenvironment of these tumors may interfere with the tumor cells that promote chemoresistance and the dissemination of metastases. The stroma is composed of a large number of cell types (immune cells, endothelial cells, mesenchymal stromal cells, etc.) which secrete growth factors, such as transforming growth factor-β (TGF-β), which favors the development of primary tumors and dissemination of metastases by constituting a permissive niche at primary and distant sites. Rather than targeting the tumor cells themselves, which are very heterogeneous in osteosarcoma, the hypothesis is instead to target the key actors secreted in the microenvironment, such as TGF-βs, which play a part in tumor progression. In the last decade, numerous studies have shown that overexpression of TGF-β is a hallmark of many cancers, including primary bone tumors. In this context, TGF-β signaling has emerged as a crucial factor in the cross talk between tumor cells and stroma cells in poor-prognosis cancers. Secretion of TGF-β by tumor cells or stroma cells can effectively act in a paracrine manner to regulate the phenotype and functions of the microenvironment to stimulate protumorigenic microenvironmental changes. TGF-β can thus exert its protumorigenic function in primary bone tumors by promoting angiogenesis, bone remodeling and cell migration, and by inhibiting immunosurveillance. This review focuses on the involvement of TGF-β signaling in primary bone tumor development, and the related therapeutic options that may be possible for these tumors.
Collapse
Affiliation(s)
- Franck Verrecchia
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| | - Françoise Rédini
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| |
Collapse
|
214
|
David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018; 19:419-435. [PMID: 29643418 DOI: 10.1038/s41580-018-0007-0] [Citation(s) in RCA: 599] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Few cell signals match the impact of the transforming growth factor-β (TGFβ) family in metazoan biology. TGFβ cytokines regulate cell fate decisions during development, tissue homeostasis and regeneration, and are major players in tumorigenesis, fibrotic disorders, immune malfunctions and various congenital diseases. The effects of the TGFβ family are mediated by a combinatorial set of ligands and receptors and by a common set of receptor-activated mothers against decapentaplegic homologue (SMAD) transcription factors, yet the effects can differ dramatically depending on the cell type and the conditions. Recent progress has illuminated a model of TGFβ action in which SMADs bind genome-wide in partnership with lineage-determining transcription factors and additionally integrate inputs from other pathways and the chromatin to trigger specific cellular responses. These new insights clarify the operating logic of the TGFβ pathway in physiology and disease.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tsinghua University School of Medicine, Department of Basic Sciences, Beijing, China
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
215
|
Zhang H, Ju B, Nie Y, Song B, Xu Y, Gao P. Adenovirus‑mediated knockdown of activin A receptor type 2A attenuates immune‑induced hepatic fibrosis in mice and inhibits interleukin‑17‑induced activation of primary hepatic stellate cells. Int J Mol Med 2018; 42:279-289. [PMID: 29620144 PMCID: PMC5979935 DOI: 10.3892/ijmm.2018.3600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/08/2018] [Indexed: 01/20/2023] Open
Abstract
Fibrosis induces a progressive loss of liver function, thus leading to organ failure. Activins are secreted proteins that belong to the transforming growth factor (TGF)-β superfamily, which initiate signaling by binding to their two type II receptors: Activin A receptor type 2A (ACVR2A) and activin A receptor type 2B. Previous studies that have explored the mechanisms underlying immune-induced hepatic fibrosis have mainly focused on TGF-β signaling, not activin signaling. To investigate the role of the activin pathway in this disease, adenovirus particles containing short hairpin (sh)RNA targeting ACVR2A mRNA (Ad-ACVR2A shRNA) were administered to mice, which were chronically treated with concanavalin A (Con A). The pathological changes in the liver were evaluated with hematoxylin/eosin staining, Masson trichrome staining and immunohistochemical assay. The results detected an increase in serum activin A and liver ACVR2A in Con A-treated animals. Conversely, liver function was partially restored and fibrotic injury was attenuated when activin signaling was blocked. In addition, the activation of hepatic stellate cells (HSCs) in response to Con A was suppressed by Ad-ACVR2A shRNA, as evidenced by decreased α-smooth muscle actin, and type I and IV collagen expression. Furthermore, primary mouse HSCs (mHSCs) were activated when exposed to interleukin (IL)-17A or IL-17F, which are two major cytokines produced by cluster of differentiation 4+ T helper 17 cells. The levels of activin A, type I and IV collagen were determined with ELISA kits and the expression of fibrotic molecules was determined with western blot analysis. Conversely, blocking activin/ACVR2A impaired the potency of HSCs to produce collagens in response to IL-17s. In addition, C terminus phosphorylation of Smad2 on Ser465 and Ser467, induced by either Con A in the liver or by IL-17s in mHSCs, was partly inhibited when activin A/ACVR2A signaling was suppressed. Collectively, the present study demonstrated an involvement of activated activin A/ACVR2A/Smad2 signaling in immune-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Baoling Ju
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ying Nie
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Baohui Song
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yuanhong Xu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Ping Gao
- Department of Gastroenterology, Mudanjiang Forestry Central Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| |
Collapse
|
216
|
Ponticelli C, Anders HJ. Thrombospondin immune regulation and the kidney. Nephrol Dial Transplant 2018; 32:1084-1089. [PMID: 28088772 DOI: 10.1093/ndt/gfw431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
Most therapeutic attempts to prevent the progression of kidney diseases have been based on interventions to inhibit the production of transforming growth factor-β (TGF-β). Thrombospondins (TSPs) play an important role in activating TGF-β. In the healthy kidney, two TSPs are expressed, TSP1 and TSP2, which exert contrasting effects. While TSP1 is a major activator of TGF-β in renal cells and exerts pro-inflammatory effects both in vitro and in vivo, TSP2 lacks the ability for TGF-β activation but regulates matrix remodeling and inflammation in experimental kidney disease. The effects of TSPs in the kidney have been mostly investigated by using the murine model of unilateral ureteral obstruction. In this model, TSP1 expression is increased along with the development of interstitial fibrosis and TGF-β. Relief of the obstruction gradually improves renal function and decreases the expression in TSP1 and TGF-β1. Several inhibitors of TSP1 prevented progressive interstitial fibrosis in murine models of ureteral obstruction, suggesting that control of latent TGF-β activation by inhibiting TSP1 might represent a novel potential target for preventing renal interstitial fibrosis. However, further studies are needed to assess whether TSP1-mediated TGF-β activation can be safely used in humans. In fact, TSPs normally act to suppress tumors in vivo. Moreover, TGF-β can exert a pivotal function in the immune system, as it may induce the production of regulatory T cells and suppress B cell responses. Knowledge of the molecular mechanisms involved in TGF-β regulation may help in finding effective treatments of tissue fibrosis, cancer and autoimmune disease.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Renal Unit, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
217
|
Pita-Juárez Y, Altschuler G, Kariotis S, Wei W, Koler K, Green C, Tanzi RE, Hide W. The Pathway Coexpression Network: Revealing pathway relationships. PLoS Comput Biol 2018; 14:e1006042. [PMID: 29554099 PMCID: PMC5875878 DOI: 10.1371/journal.pcbi.1006042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/29/2018] [Accepted: 02/19/2018] [Indexed: 02/02/2023] Open
Abstract
A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/. Genes do not function alone, but interact within pathways to carry out specific biological processes. Pathways, in turn, interact at a higher level to affect major cellular activities such as motility, growth and development. We present a pathway coexpression network (PCxN) that systematically maps and quantifies these high-level interactions and establishes a unifying reference for pathway relationships. The method uses 3,207 human microarrays from 72 normal human tissues and 1,330 of the most well established pathway annotations to describe global relationships between pathways. PCxN accounts for shared genes to estimate correlations between pathways with related functions rather than with redundant pathway definitions. PCxN can be used to discover and explore pathways correlated with a pathway of interest. We applied PCxN to identify key processes related to Alzheimer’s disease (AD), interpreting a mixed genetic association and experimental derived set of disease genes in the context of gene co-expression. We expand the known relationships between pathways identified by gene set enrichment analysis in brain tissues affected with AD. PCxN provides a high-level overview of pathway relationships. PCxN is available as a webtool at http://pcxn.org/, and as a Bioconductor package at http://bioconductor.org/packages/pcxn/.
Collapse
Affiliation(s)
- Yered Pita-Juárez
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Gabriel Altschuler
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Sokratis Kariotis
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wenbin Wei
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katjuša Koler
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Claire Green
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Winston Hide
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States of America
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- National Institute Health Research, Sheffield Biomedical Research Centre, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
218
|
Zhang Y, Zhu M, Sun Y, Li W, Wang Y, Yu W. Upregulation of lncRNA CASC2 Suppresses Cell Proliferation and Metastasis of Breast Cancer via Inactivation of the TGF-β Signaling Pathway. Oncol Res 2018. [PMID: 29523222 PMCID: PMC7848420 DOI: 10.3727/096504018x15199531937158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the major malignancies with a mounting mortality rate in the world. Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) has been identified to regulate the initiation and progression of multiple tumorous diseases according to previous studies. However, its biological role has been rarely reported in breast cancer. In the present study, lncRNA CASC2 was found to be significantly downregulated in breast cancer tissues and cell lines using real-time quantitative PCR. Furthermore, gain-of-function assays demonstrated that overexpression of lncRNA CASC2 significantly repressed breast cancer cell proliferation and metastasis. Moreover, CASC2 induced cell cycle arrest and much more early apoptosis of breast cancer. Additionally, based on the above research, we illustrated that inactivation of the TGF-β signaling pathway was involved in the function of lncRNA CASC2. Collectively, lncRNA CASC2 was a key factor in the tumorigenesis and malignancy of breast cancer, suggesting it may possibly be a potential therapy target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yang Zhang
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Min Zhu
- Department of Imaging, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Yuanbo Sun
- Department of Nephrology, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Wenyuan Li
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Ying Wang
- Research Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| | - Weiguang Yu
- The First Department of General Surgery, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, P.R. China
| |
Collapse
|
219
|
Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018; 145:dev157628. [PMID: 29437830 PMCID: PMC5868993 DOI: 10.1242/dev.157628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers. We observed morphological changes in the seam epithelia, intermingling of cells of epithelial descent into the mesenchyme and molecular signatures of epithelial-mesenchymal transition (EMT). Utilizing mouse lines with cephalic epithelium-specific Pbx loss exhibiting CL/P, we demonstrate that these cellular behaviors are Pbx dependent, as is the transcriptional regulation of the EMT driver Snail1. Furthermore, in the embryo, the majority of epithelial cells expressing high levels of Snail1 do not undergo apoptosis. Pbx1 loss- and gain-of-function in a tractable epithelial culture system revealed that Pbx1 is both necessary and sufficient for EMT induction. This study establishes that Pbx-dependent EMT programs mediate murine upper lip/primary palate morphogenesis and fusion via regulation of Snail1. Of note, the EMT signatures observed in the embryo are mirrored in the epithelial culture system.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Bingsi Li
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Hui Yang
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irene F Choi
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick Lewicki
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Sameer Khan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
| | - C Theresa Vincent
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony M C Brown
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Trevor Williams
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| |
Collapse
|
220
|
Wang X, You B, Chen S, Zhang W, Tian B, Li H. Expression of TGF-beta receptor 1 and Smads in the tissues of primary spontaneous pneumothorax. J Thorac Dis 2018; 10:1765-1774. [PMID: 29707331 PMCID: PMC5906360 DOI: 10.21037/jtd.2018.03.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/10/2018] [Indexed: 08/30/2023]
Abstract
BACKGROUND Primary spontaneous pneumothorax (PSP) is a common disease which is often caused by the rupture of bullae in the lungs. The underlying pathogenesis of PSP remains unclear. Some molecules may be involved in the development of PSP potentially. The aim of this study was to investigate the expression of TGF-beta receptor 1 (TβR1), Smad2, Smad3 and Smad4 in the resected bullae of patients with PSP. METHODS From May 2015 to May 2016, 34 patients with PSP underwent video-assisted thoracoscopic surgery (VATS) bullectomy. Immunohistochemistry was performed to identify the expression of TβR1, Smad2, Smad3 and Smad4 in the resected pulmonary bullae tissues. The levels of these cytokines were calculated by immunoreactivity scoring system (IRS). Ten patients without pneumothorax associated disease were selected as the control group. RESULTS The analysis showed that the expression levels of TβR1, Smad2 and Smad4 were significantly higher in bullae tissues of patients with PSP than that in normal lung tissues (P=0.012, 0.031, 0.000 respectively). There was no significant difference between the expression level of Smad3 in bullae tissue of PSP patients and that in normal lung tissues of the control group (P=0.140). However, the absolute quantity of Smad3 expression in PSP bullae tissues was (4.2529±1.7193), scored by the IRS, which is higher than that in the control lung tissues (3.2600±2.2132). Also, the expression of TβR1, Smad2, Smad3 and Smad4 were not showed correlation with the clinical characteristics of PSP patients, such as age, sex, body mass index (BMI), recurrence and side of pneumothorax. CONCLUSIONS TβR1, Smad2 and Smad4 highly expressed in bullae tissues of PSP patients. Our findings suggested that TβR1, Smad2 and Smad4 may be related to the development of PSP bullae.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bin You
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shuo Chen
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wenqian Zhang
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Tian
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
221
|
Zhu F, Zhang X, Yu Q, Han G, Diao F, Wu C, Zhang Y. LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression. J Cell Biochem 2018; 119:4496-4505. [PMID: 29231261 DOI: 10.1002/jcb.26556] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023]
Abstract
This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Xinjun Zhang
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Qinnan Yu
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Guangye Han
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Fengxia Diao
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Chunlei Wu
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Yan Zhang
- Department of Physiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
222
|
Zhang F, Li T, Han L, Qin P, Wu Z, Xu B, Gao Q, Song Y. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells. Biochem Biophys Res Commun 2018; 496:1169-1175. [DOI: 10.1016/j.bbrc.2018.01.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
|
223
|
Zhou F, Wang A, Li D, Wang Y, Lin L. Pinocembrin from Penthorum chinense Pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway. Toxicol Appl Pharmacol 2018; 341:38-50. [DOI: 10.1016/j.taap.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/18/2023]
|
224
|
Yang HJ, Liu GL, Liu B, Liu T. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway. J Cell Mol Med 2018; 22:1650-1665. [PMID: 29349903 PMCID: PMC5824402 DOI: 10.1111/jcmm.13442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial-mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF-β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected and assigned to blank, negative control (NC), TGF-β, thrombospondin-1 (TSP-1), TGF-β1+ TSP-1, GP73-siRNA-1, GP73-siRNA-2, GP73-siRNA-1+ TSP-1, GP73-siRNA-1+ pcDNA-GP73, WT1-siRNA and WT1-siRNA + GP73-siRNA-1 groups. Expressions of GP73, TGF-β1, Smad2, p-Smad2, E-cadherin and vimentin were detected using RT-qPCR and Western blotting. Cell proliferation, migration and invasion were determined using MTT assay, scratch testing and Transwell assay, respectively. Compared with the blank and NC groups, levels of GP73, TGF-β1, Smad2, p-Smad2, N-cadherin and vimentin decreased, and levels of WT1 and E-cadherin increased in the GP73-siRNA-1 and GP73-siRNA-2 groups, while the opposite results were observed in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups. Cell proliferation, migration and invasion notably decreased in the GP73-siRNA-1 and GP73-siRNA-2 groups in comparison with the blank and NC groups, while in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups, cell migration, invasion and proliferation showed the reduction after the EMT. These results suggest that GP73 promotes bladder cancer invasion and metastasis by inducing the EMT through down-regulating WT1 levels and activating the TGF-β1/Smad2 signalling pathway.
Collapse
Affiliation(s)
- Han-Jie Yang
- Department of Urology, Pingxiang Affiliated, Southern Medical University, Pingxiang, China
| | - Ge-Liang Liu
- Department of Urology, Pingxiang Affiliated, Southern Medical University, Pingxiang, China
| | - Bo Liu
- Department of General Surgery, Xiangya 2nd Hospital of Central South University, Changsha, China
| | - Tian Liu
- Department of General Surgery, Xiangya 2nd Hospital of Central South University, Changsha, China
| |
Collapse
|
225
|
Philip S, Kumarasiri M, Teo T, Yu M, Wang S. Cyclin-Dependent Kinase 8: A New Hope in Targeted Cancer Therapy? J Med Chem 2018; 61:5073-5092. [PMID: 29266937 DOI: 10.1021/acs.jmedchem.7b00901] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating transcription either through its association with the Mediator complex or by phosphorylating transcription factors. Myriads of genetic and biochemical studies have established CDK8 as a key oncogenic driver in many cancers. Specifically, CDK8-mediated activation of oncogenic Wnt-β-catenin signaling, transcription of estrogen-inducible genes, and suppression of super enhancer-associated genes contributes to oncogenesis in colorectal, breast, and hematological malignancies, respectively. However, while most research supports the role of CDK8 as an oncogene, other work has raised the possibility of its contrary function. The diverse biological functions of CDK8 and its seemingly context-specific roles in different types of cancers have spurred a great amount of interest and perhaps an even greater amount of controversy in the development of CDK8 inhibitors as potential cancer therapeutic agents. Herein, we review the latest landscape of CDK8 biology and its involvement in carcinogenesis. We dissect current efforts in discovering CDK8 inhibitors and attempt to provide an outlook at the future of CDK8-targeted cancer therapies.
Collapse
Affiliation(s)
- Stephen Philip
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Malika Kumarasiri
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia 5001 , Australia
| |
Collapse
|
226
|
Bai J, Xi Q. Crosstalk between TGF-β signaling and epigenome. Acta Biochim Biophys Sin (Shanghai) 2018; 50:60-67. [PMID: 29190318 DOI: 10.1093/abbs/gmx122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
The transforming growth factor beta (TGF-β) family of ligands plays major roles in embryonic development, tissue homeostasis, adult immunity, and wound repair. Dysregulation of TGF-β signaling pathway leads to severe diseases. Its key components have been revealed over the past two decades. This family of cytokines acts by activating receptor activated SMAD (R-SMAD) transcription factors, which in turn modulate the expression of specific sets of target genes. Cells of a multicellular organism have the same genetic information, yet they show structural and functional differences owing to differential expression of their genes. Studies have demonstrated that epigenetic regulation, an integral part of the TGF-β signaling, enables cells to sense and respond to TGF-β signaling in a cell context-dependent manner. R-SMAD, as the central transcription factor of TGF-β signaling, can recruit various epigenetic regulators to shape the transcriptome. In this review, we focus on epigenetic regulatory mechanisms in the TGF-β signaling during mammalian development and diseases and discuss the central role of the interaction between R-SMAD and various epigenetic regulators in this epigenetic regulation. The crosstalk between TGF-β signaling and the epigenome could serve as a versatile fine-tuning mechanism for transcriptional regulation during embryonic development and progression of diseases, particularly cancer.
Collapse
Affiliation(s)
- Jianbo Bai
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiaoran Xi
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
227
|
Coleman DT, Gray AL, Stephens CA, Scott ML, Cardelli JA. Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation. Oncotarget 2017; 7:32200-9. [PMID: 27058757 PMCID: PMC5078007 DOI: 10.18632/oncotarget.8609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment, primarily composed of myofibroblasts, directly influences the progression of solid tumors. Through secretion of growth factors, extracellular matrix deposition, and contractile mechanotransduction, myofibroblasts, or cancer-associated fibroblasts (CAFs), support angiogenesis and cancer cell invasion and metastasis. The differentiation of fibroblasts to CAFs is primarily induced by TGF-β from cancer cells. To discover agents capable of blocking CAF differentiation, we developed a high content immunofluorescence-based assay to screen repurposed chemical libraries utilizing fibronectin expression as an initial CAF marker. Screening of the Prestwick chemical library and NIH Clinical Collection repurposed drug library, totaling over 1700 compounds, identified cardiac glycosides as particularly potent CAF blocking agents. Cardiac glycosides are traditionally used to regulate intracellular calcium by inhibiting the Na+/K+ ATPase to control cardiac contractility. Herein, we report that multiple cardiac glycoside compounds, including digoxin, are able to inhibit TGF-β-induced fibronectin expression at low nanomolar concentrations without undesirable cell toxicity. We found this inhibition to hold true for multiple fibroblast cell lines. Using real-time qPCR, we determined that digoxin prevented induction of multiple CAF markers. Furthermore, we report that digoxin is able to prevent TGF-β-induced fibroblast contraction of extracellular matrix, a major phenotypic consequence of CAF differentiation. Assessing the mechanism of inhibition, we found digoxin reduced SMAD promoter activity downstream of TGF-β, and we provide data that the effect is through inhibition of its known target, the Na+/K+ ATPase. These findings support a critical role for calcium signaling during CAF differentiation and highlight a novel, repurposable modality for cancer therapy.
Collapse
Affiliation(s)
- David T Coleman
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Alana L Gray
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Charles A Stephens
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Matthew L Scott
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - James A Cardelli
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| |
Collapse
|
228
|
Dickey TH, Pyle AM. The SMAD3 transcription factor binds complex RNA structures with high affinity. Nucleic Acids Res 2017; 45:11980-11988. [PMID: 29036649 PMCID: PMC5714123 DOI: 10.1093/nar/gkx846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/12/2023] Open
Abstract
Several members of the SMAD family of transcription factors have been reported to bind RNA in addition to their canonical double-stranded DNA (dsDNA) ligand. RNA binding by SMAD has the potential to affect numerous cellular functions that involve RNA. However, the affinity and specificity of this RNA binding activity has not been well characterized, which limits the ability to validate and extrapolate functional implications of this activity. Here we perform quantitative binding experiments in vitro to determine the ligand requirements for RNA binding by SMAD3. We find that SMAD3 binds poorly to single- and double-stranded RNA, regardless of sequence. However, SMAD3 binds RNA with large internal loops or bulges with high apparent affinity. This apparent affinity matches that for its canonical dsDNA ligand, suggesting a biological role for RNA binding by SMAD3.
Collapse
Affiliation(s)
- Thayne H Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
229
|
Martin-Malpartida P, Batet M, Kaczmarska Z, Freier R, Gomes T, Aragón E, Zou Y, Wang Q, Xi Q, Ruiz L, Vea A, Márquez JA, Massagué J, Macias MJ. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors. Nat Commun 2017; 8:2070. [PMID: 29234012 PMCID: PMC5727232 DOI: 10.1038/s41467-017-02054-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/03/2017] [Indexed: 11/29/2022] Open
Abstract
Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways. Smad transcription factors are part of the TGF-β signal transduction pathways and are recruited to the genome by cell lineage-defining factors. Here, the authors identify specific Smad binding GC-rich motifs and provide structural information showing Smad3 and Smad4 bound to these motifs.
Collapse
Affiliation(s)
- Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marta Batet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Zuzanna Kaczmarska
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - Regina Freier
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Tiago Gomes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Center for the Science of Therapeutics, Broad Institute of MIT and Harvard , 415 Main St, Cambridge, MA, 02142, USA
| | - Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Qiaoran Xi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Angela Vea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - José A Márquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex 9, France
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain. .,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
230
|
Ma L, Li H, Zhang S, Xiong X, Chen K, Jiang P, Jiang K, Deng G. Emodin ameliorates renal fibrosis in rats via TGF-β1/Smad signaling pathway and function study of Smurf 2. Int Urol Nephrol 2017; 50:373-382. [DOI: 10.1007/s11255-017-1757-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
|
231
|
Seoane J, Gomis RR. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022277. [PMID: 28246180 DOI: 10.1101/cshperspect.a022277] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) induces a pleiotropic pathway that is modulated by the cellular context and its integration with other signaling pathways. In cancer, the pleiotropic reaction to TGF-β leads to a diverse and varied set of gene responses that range from cytostatic and apoptotic tumor-suppressive ones in early stage tumors, to proliferative, invasive, angiogenic, and oncogenic ones in advanced cancer. Here, we review the knowledge accumulated about the molecular mechanisms involved in the dual response to TGF-β in cancer, and how tumor cells evolve to evade the tumor-suppressive responses of this signaling pathway and then hijack the signal, converting it into an oncogenic factor. Only through the detailed study of this complexity can the suitability of the TGF-β pathway as a therapeutic target against cancer be evaluated.
Collapse
Affiliation(s)
- Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
232
|
García-Vizcaíno EM, Liarte S, Alonso-Romero JL, Nicolás FJ. Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription. Cell Commun Signal 2017; 15:50. [PMID: 29187201 PMCID: PMC5706420 DOI: 10.1186/s12964-017-0205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background The simplicity of Transforming Growth Factor ß (TGFβ) signaling pathway, linear and non-amplified, hardly sustains its variety of responses. This is often justified by the complex regulation showed by Smad proteins, TGFβ signaling intracellular transducers, object of post-translational modifications that modulate TGFβ-dependent transcription. Protein acetylation is emerging as a compelling mechanism affecting the activities of significant transcription factors, including p53, FOXO or NF-kB. Smad proteins might be controlled by this mechanism, implying that accessory factors capable of altering Smads-transcriptional complexes acetylation status and hence regulate TGFβ responses remain to be identified. Understanding this interaction may help in the assessment of TGFβ signaling outcomes, extending from healthy physiology to pathological conditions and cancer. Methods A two-hybrid chimera interacting system allowed to identify Sirt1, a NAD+ dependent type III histone deacetylase, as a novel Smad2 interactor. Several well stablished cellular models were applied to characterize this interaction by means of co-immunoprecipitation of tagged proteins and immuno-fluorescence staining. The occurrence of the interaction at Smad2 driven transcriptomic complexes was studied by means of DNA-pull-down and chromatin immunoprecipitation (ChIP), while its effects were assessed by protein over-expression and siRNA applied into a TGFβ-dependent reporter gene assay. Results The interaction was confirmed and observed to be enhanced upon Smad2 acetylation, a known feature of active and nuclear Smad2. However, Sirt1 did not play a major role in Smad2 deacetylation. Anti-Sirt1 ChIP showed increased recovery of promoter regions corresponding to Smad2-driven genes after TGFβ-stimulation, while its occurrence at Smad2-dependent transcriptomic complexes on DNA was found to effectively modulate gene expression. Conclusions Sirt1 presence on Smad2-driven TGFβ-dependent regulatory elements was detected and found to increase after TGFβ treatment. Moreover, Sirt1 overexpression resulted in a decrease of the activity of a Smad2-driven TGFβ-dependent reporter gene, while Sirt1 interference increased its activity. This would confirm the relevance of the discovered Sirt1-Smad2 interaction for the regulation of TGFβ-dependent gene transcription. Electronic supplementary material The online version of this article (10.1186/s12964-017-0205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva María García-Vizcaíno
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain
| | - José Luis Alonso-Romero
- Servicio de Oncología, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
233
|
Rapisarda V, Borghesan M, Miguela V, Encheva V, Snijders AP, Lujambio A, O'Loghlen A. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway. Cell Rep 2017; 18:2480-2493. [PMID: 28273461 PMCID: PMC5357738 DOI: 10.1016/j.celrep.2017.02.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3) is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β) pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS) through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS), independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP) without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.
Collapse
Affiliation(s)
- Valentina Rapisarda
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Michela Borghesan
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Veronica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Vesela Encheva
- Protein Analysis and Proteomics Group, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Group, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ana O'Loghlen
- Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
234
|
Schwarz E. Cystine knot growth factors and their functionally versatile proregions. Biol Chem 2017; 398:1295-1308. [PMID: 28771427 DOI: 10.1515/hsz-2017-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/16/2017] [Indexed: 12/23/2022]
Abstract
The cystine knot disulfide pattern has been found to be widespread in nature, since it has been detected in proteins from plants, marine snails, spiders and mammals. Cystine knot proteins are secreted proteins. Their functions range from defense mechanisms as toxins, e.g. ion channel or enzyme inhibitors, to hormones, blood factors and growth factors. Cystine knot proteins can be divided into two superordinate groups. (i) The cystine knot peptides, also referred to - with other non-cystine knot proteins - as knottins, with linear and cyclic polypeptide chains. (ii) The cystine knot growth factor family, which is in the focus of this article. The disulfide ring structure of the cystine knot peptides is made up by the half-cystines 1-4 and 2-5, and the threading disulfide bond is formed by the half-cystines, 3-6. In the growth factor group, the disulfides of half-cystines 1 and 4 pass the ring structure formed by the half-cystines 2-5 and 3-6. In this review, special emphasis will be devoted to the growth factor cystine knot proteins and their proregions. The latter have shifted into the focus of scientific interest as their important biological roles are just to be unravelled.
Collapse
|
235
|
Li Y, Zou N, Wang J, Wang KW, Li FY, Chen FX, Sun BY, Sun DJ. TGF-β1/Smad3 Signaling Pathway Mediates T-2 Toxin-Induced Decrease of Type II Collagen in Cultured Rat Chondrocytes. Toxins (Basel) 2017; 9:toxins9110359. [PMID: 29113082 PMCID: PMC5705974 DOI: 10.3390/toxins9110359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/08/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022] Open
Abstract
T-2 toxin can cause damage to the articular cartilage, but the molecular mechanism remains unclear. By employing the culture of rat chondrocytes, we investigated the effect of the TGF-β1/Smad3 signaling pathway on the damage to chondrocytes induced by T-2 toxin. It was found that T-2 toxin could reduce cell viability and increased the number of apoptotic cells when compared with the control group. After the addition of the T-2 toxin, the production of type II collagen was reduced at mRNA and protein levels, while the levels of TGF-β1, Smad3, ALK5, and MMP13 were upregulated. The production of the P-Smad3 protein was also increased. Inhibitors of TGF-β1 and Smad3 were able to reverse the effect of the T-2 toxin on the protein level of above-mentioned signaling molecules. The T-2 toxin could promote the level of MMP13 via the stimulation of TGF-β1 signaling in chondrocytes, resulting in the downregulation of type II collagen and chondrocyte damage. Smad3 may be involved in the degradation of type II collagen, but the Smad3 has no connection with the regulation of MMP13 level. This study provides a new clue to elucidate the mechanism of T-2 toxin-induced chondrocyte damage.
Collapse
Affiliation(s)
- Yang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| | - Ning Zou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| | - Ke-Wei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
- China and Russia Medical Research Center, National Health and Family Planning Commission of the People's Republic of China, Harbin Medical University, Harbin 150081, China.
| | - Fu-Yuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| | - Fu-Xun Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| | - Bing-Yu Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| | - Dian-Jun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
236
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
237
|
Jiang M, Sun Z, Dang E, Li B, Fang H, Li J, Gao L, Zhang K, Wang G. TGFβ/SMAD/microRNA-486-3p Signaling Axis Mediates Keratin 17 Expression and Keratinocyte Hyperproliferation in Psoriasis. J Invest Dermatol 2017. [DOI: 10.1016/j.jid.2017.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
238
|
van den Akker GG, van Beuningen HM, Vitters EL, Koenders MI, van de Loo FA, van Lent PL, Blaney Davidson EN, van der Kraan PM. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells. Cell Signal 2017; 40:190-199. [PMID: 28943409 DOI: 10.1016/j.cellsig.2017.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chondrogenic differentiation of mesenchymal stem cells (MSC) requires transforming growth factor beta (TGFβ) signaling. TGFβ binds to the type I receptor activin-like kinase (ALK)5 and results in C-terminal SMAD2/3 phosphorylation (pSMAD2/3C). In turn pSMAD2/3C translocates to the nucleus and regulates target gene expression. Inflammatory mediators are known to exert an inhibitory effect on MSC differentiation. In this study we investigated the effect of interleukin 1 β (IL1β) on SMAD2/3 signaling dynamics and post-translational modifications. RESULTS Co-stimulation of MSC with TGFβ and IL1β did not affect peak pSMAD2C levels at 1h post-stimulation. Surprisingly, SMAD3 transcriptional activity, as determined by the CAGA12-luciferase reporter construct, was enhanced by co-stimulation of TGFβ and IL1β compared to TGFβ alone. Furthermore, IL1β stimulation induced CAGA12-luciferase activity in a SMAD dependent way. As SMAD function can be modulated independent of canonical TGFβ signaling through the SMAD linker domain, we studied SMAD2 linker phosphorylation at specific threonine and serine residues. SMAD2 linker threonine and serine modifications were observed within 1h following TGFβ, IL1β or TGFβ and IL1β stimulation. Upon co-stimulation linker modified SMAD2 accumulated in the cytoplasm and SMAD2/3 target gene transcription (ID1, JUNB) at 2-4h was inhibited. A detailed time course analysis of IL1β-induced SMAD2 linker modifications revealed a distinct temperospatial pattern compared to TGFβ. Co-stimulation with both factors resulted in a similar kinetic profile as TGFβ alone. Nevertheless, IL1β did subtly alter TGFβ-induced pSMAD2C levels between 8 and 24h post-stimulation, which was reflected by TGFβ target gene expression (PAI1, JUNB). Direct evidence for the importance of SMAD3 linker modifications for the effect of IL1β on TGFβ signaling was obtained by over-expression of SMAD3 or a SMAD3 linker phospho-mutant. Finally, an inhibitor screening was performed to identify kinases involved in SMAD2/3 linker modifications. We identified TAK1 kinase activity as crucial for IL1β-induced SMAD2 linker modifications and CAGA12-luciferase activity. CONCLUSIONS TGFβ and IL1β signaling interact at the SMAD2/3 level in human primary MSC. Down-stream TGFβ target genes were repressed by IL1β independent of C-terminal SMAD2 phosphorylation. We demonstrate that SMAD2/3 linker modifications are required for this interplay and identified TAK1 as a crucial mediator of IL1β-induced TGFβ signal modulation.
Collapse
Affiliation(s)
- Guus G van den Akker
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henk M van Beuningen
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Elly L Vitters
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Marije I Koenders
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Fons A van de Loo
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter L van Lent
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Esmeralda N Blaney Davidson
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Radboud University Medical Center, Department of Rheumatology, Experimental Rheumatology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
239
|
Qin H, Rasul A, Li X, Masood M, Yang G, Wang N, Wei W, He X, Watanabe N, Li J, Li X. CD147-induced cell proliferation is associated with Smad4 signal inhibition. Exp Cell Res 2017; 358:279-289. [DOI: 10.1016/j.yexcr.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/01/2017] [Indexed: 01/01/2023]
|
240
|
Chen Y, Wang DD, Wu YP, Su D, Zhou TY, Gai RH, Fu YY, Zheng L, He QJ, Zhu H, Yang B. MDM2 promotes epithelial-mesenchymal transition and metastasis of ovarian cancer SKOV3 cells. Br J Cancer 2017; 117:1192-1201. [PMID: 28817834 PMCID: PMC5674096 DOI: 10.1038/bjc.2017.265] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Metastasis accounts for the most lethal reason for the death of ovarian cancer patients, but remains largely untreated. Epithelial–mesenchymal transition (EMT) is critical for the conversion of early-stage ovarian tumours into metastatic malignancies. Thus the exploration of the signalling pathways promoting EMT would open potential opportunities for the treatment of metastatic ovarian cancer. Herein, the putative role of MDM2 in regulating EMT and metastasis of ovarian cancer SKOV3 cells was investigated. Methods: The regulatory effects by MDM2 on cell motility was emulated by wound-healing and transwell assays. The effects on EMT transition and Smad pathway were studied by depicting the expression levels of epithelial marker E-cadherin as well as key components of Smad pathway. To evaluate the clinical relevance of our findings, the correlation of MDM2 expression levels with the stages of 104 ovarian cancer patients was investigated by immunohistochemistry assay. Results: We demonstrate that MDM2 functions as a key factor to drive EMT and motility of ovarian SKOV3 cells, by facilitating the activation of TGF-β-Smad pathway, which results in the increased transcription of snail/slug and the subsequent loss of E-cadherin levels. Such induction of EMT is sustained in either E3 ligase-depleted MDM2 or E3 ligase inhibitor HLI-373-treated cells, while being impaired by the N-terminal deletion of MDM2, which is also reflected by the inhibitory effects against EMT by Nutlin-3a, the N-terminal targeting agent. The expression levels of MDM2 is highly correlated with the stages of the ovarian cancer patients, and the higher expression of MDM2 together with TGFB are closely correlated with poor prognosis and predict a high risk of ovarian cancer patients. Conclusions: This study suggests that MDM2 activates Smad pathway to promote EMT in ovarian cancer metastasis, and targeting the N-terminal of MDM2 can reprogram EMT and impede the mobility of cancer cells.
Collapse
Affiliation(s)
- Ying Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ye-Ping Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Su
- Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Tian-Yi Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ren-Hua Gai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Ying Fu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology &Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
241
|
Hu B, Yi P, Li Z, Zhang M, Wen C, Jian S, Yang G. Molecular characterization of two distinct Smads gene and their roles in the response to bacteria change and wound healing from Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2017; 67:129-140. [PMID: 28546027 DOI: 10.1016/j.fsi.2017.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/14/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
The proteins of Smad family are critical components of the TGF-β superfamily signal pathway. In this paper, we cloned two intracellular mediators of TGF-β signaling, Smad3 and Smad5, from the pearl mussel Hyriopsis cumingii. The full length cDNA of HcSmad3 and HcSmad5 were 2052 bp and 1908 bp and encoded two polypeptides of 418 and 461amino acid residues, respectively. The deduced amino acid of HcSmad3 and HcSmad5 possessed two putative conserved domains, MH1 and MH2, a conserved phosphorylation motif SSXS at the carboxyl-terminal. The two Smad genes were detected muscle, mantle, hepatopancreas and gill, but with a very low level in heamocytes. The transcripts of Smad3 and Smad5 were up-regulated in hemocytes and hepatopancreas after A. hydrophila and PGN stimulation. However, the expression of Smad3 and Smad5 were only up-regulated in hepatopancreas after A. hydrophila stimulation. The transcripts of Smad3 and Smad5 had a slight change in hepatopancreas after PGN stimulation. The transcripts of HcSmad3 showed very little increase and HcSmad5 mRNA significantly up-regulated after wounding.
Collapse
Affiliation(s)
- Baoqing Hu
- Institute of Life Science, Nanchang University, Nanchang 330031, China.
| | - Peipei Yi
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhenfang Li
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Ming Zhang
- College of Jiangxi Biotech Vocational, Nanchang 330200, China
| | - Chungen Wen
- Institute of Life Science, Nanchang University, Nanchang 330031, China.
| | - Shaoqing Jian
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- Institute of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
242
|
Lourenço AR, Coffer PJ. SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition? Trends Cancer 2017; 3:571-582. [PMID: 28780934 DOI: 10.1016/j.trecan.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/03/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental program exploited by cancer cells to gain mesenchymal features. Transcription factors globally regulating processes during EMT are often referred as 'master regulators' of EMT, and include members of the Snail and ZEB transcription factor families. The SRY-related HMG box (SOX) 4 transcription factor can promote tumorigenesis by endowing cells with migratory and invasive properties, stemness, and resistance to apoptosis, thereby regulating key aspects of the EMT program. We propose here that SOX4 should also be considered as a master regulator of EMT, and we review the molecular mechanisms underlying its function.
Collapse
Affiliation(s)
- Ana Rita Lourenço
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands.
| |
Collapse
|
243
|
Zhang HR, Wang XD, Yang X, Chen D, Hao J, Cao R, Wu XZ. An FGFR inhibitor converts the tumor promoting effect of TGF-β by the induction of fibroblast-associated genes of hepatoma cells. Oncogene 2017; 36:3831-3841. [PMID: 28263980 DOI: 10.1038/onc.2016.512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022]
Abstract
Tumors consistently mimic wound-generating chronic inflammation; however, why they do not heal like wounds with fibrotic scars remains unknown. The components of the tumor microenvironment, such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGFs), may account for this phenomenon. Tumor formation involves continuous activation of the FGF pathway, whereas the repair of tissue injury is a self-limiting process accompanied with controlled activation of the FGF pathway. In the tumor microenvironment TGF-β increases the secretion of FGFs, further promoting the malignant biological properties of tumors. However, during wound healing, sufficient TGF-β together with moderate FGFs lead to matrix deposition and the formation of fibrotic scars. In the present study, TGF-β1 combined with AZD4547, an FGF receptor (FGFR) inhibitor, transformed hepatoma cells into less malignant fibroblast-like cells with respect to morphology, physiological properties, and gene expression profiles. In vivo experiments showed that TGF-β1 combined with AZD4547 not only inhibited tumor growth but also promoted tumor parenchyma fibrosis. Our results indicate that FGFR inhibitor treatment converts the effect of TGF-β on the hepatocellular carcinoma cells from tumor promotion into tumor inhibition by enhancing the induction effect of TGF-β on some fibroblast-associated genes. Converting human liver cancer cells into less malignant fibroblast-like cells and inducing tumor parenchyma cell fibrosis provides an alternative strategy for limiting tumor progression.
Collapse
Affiliation(s)
- H-R Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - X-D Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - X Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - D Chen
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - J Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - R Cao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - X-Z Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
244
|
Fathi S, Nayak CR, Feld JJ, Zilman AG. Absolute Ligand Discrimination by Dimeric Signaling Receptors. Biophys J 2017; 111:917-20. [PMID: 27602720 DOI: 10.1016/j.bpj.2016.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/15/2016] [Accepted: 07/15/2016] [Indexed: 01/30/2023] Open
Abstract
Many signaling pathways act through shared components, where different ligand molecules bind the same receptors or activate overlapping sets of response regulators downstream. Nevertheless, different ligands acting through cross-wired pathways often lead to different outcomes in terms of the target cell behavior and function. Although a number of mechanisms have been proposed, it still largely remains unclear how cells can reliably discriminate different molecular ligands under such circumstances. Here we show that signaling via ligand-induced receptor dimerization-a very common motif in cellular signaling-naturally incorporates a mechanism for the discrimination of ligands acting through the same receptor.
Collapse
Affiliation(s)
- Sepehr Fathi
- Physics Department, University of Toronto, Toronto, Canada
| | - Chitra R Nayak
- Physics Department, University of Toronto, Toronto, Canada
| | - Jordan J Feld
- Toronto Center for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Anton G Zilman
- Physics Department, University of Toronto, Toronto, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
245
|
Elshafei A, Shaker O, Abd El-Motaal O, Salman T. The expression profiling of serum miR-92a, miR-375, and miR-760 in colorectal cancer: An Egyptian study. Tumour Biol 2017; 39:1010428317705765. [PMID: 28618945 DOI: 10.1177/1010428317705765] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dysregulation in microRNA expression is a common feature in colorectal cancer. Due to the inconsistent results regarding serum miR-92a expression pattern and the insufficient studies on serum miR-375 and miR-760, we aimed in this study to investigate their expression profile and diagnostic and prognostic power in Egyptian colorectal cancer patients. The expression profile of miR-92a, miR-375, and miR-760 was determined in the sera of 64 colorectal cancer patients using quantitative real-time reverse transcription polymerase chain reaction in comparison to 27 healthy control subjects. The expression fold change of the studied microRNAs was correlated with patients' clinicopathological features. Receiver operating characteristic curve analysis was done to determine the role of these microRNAs in colorectal cancer diagnosis and follow-up according to the yielded area under the curve. The expression pattern of miR-92a was significantly upregulated (3.38 ± 2.52, p < 0.0001), while both of miR-375 and 760 were significantly downregulated (-1.250 ± 1.80, p< 0.0001; -1.710 ± 1.88, p < 0.0001, respectively) in colorectal cancer than the control. MiR-92a was positively correlated ( r = 0.671, p = 0.0001), while miR-375 and miR-760 were inversely correlated ( r = -0.414, p = 0.001; r = -0.644, p = 0.0001) with advanced colorectal cancer stages. Receiver operating characteristic curve analysis disclosed the highest diagnostic potential for miR-760 to discriminate colorectal cancer patients and early-stage colorectal cancer from the control (area under the curve = 0.922 and 0.875, respectively), while the highest prognostic potential for discrimination between colorectal cancer stages was for miR-92a. In conclusion, serum level of miR-92a, miR-375, and miR-760 may serve as biomarkers of colorectal cancer in Egyptian patients with high diagnostic power for miR-760 and high prognostic power for miR-92a.
Collapse
Affiliation(s)
- Ahmed Elshafei
- 1 Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Olfat Shaker
- 2 Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ossama Abd El-Motaal
- 1 Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarek Salman
- 1 Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
246
|
Gao S, Wang Z, Wang W, Hu X, Chen P, Li J, Feng X, Wong J, Du JX. The lysine methyltransferase SMYD2 methylates the kinase domain of type II receptor BMPR2 and stimulates bone morphogenetic protein signaling. J Biol Chem 2017; 292:12702-12712. [PMID: 28588028 DOI: 10.1074/jbc.m117.776278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Lysine methylation of chromosomal and nuclear proteins is a well-known mechanism of epigenetic regulation, but relatively little is known about the role of this protein modification in signal transduction. Using an RNAi-based functional screening of the SMYD family of lysine methyltransferases (KMTs), we identified SMYD2 as a KMT essential for robust bone morphogenic protein (BMP)- but not TGFβ-induced target gene expression in HaCaT keratinocyte cells. A role for SMYD2 in BMP-induced gene expression was confirmed by shRNA knockdown and CRISPR/Cas9-mediated knock-out of SMYD2 We further demonstrate that SMYD2 knockdown or knock-out impairs BMP-induced phosphorylation of the signal-transducing protein SMAD1/5 and SMAD1/5 nuclear localization and interaction with SMAD4. The SMYD2 KMT activity was required to facilitate BMP-mediated signal transduction, as treatment with the SMYD2 inhibitor AZ505 suppressed BMP2-induced SMAD1/5 phosphorylation. Furthermore, we present evidence that SMYD2 likely modulates the BMP response through its function in the cytosol. We show that, although SMYD2 interacted with multiple components in the BMP pathway, it specifically methylated the kinase domain of BMP type II receptor BMPR2. Taken together, our findings suggest that SMYD2 may promote BMP signaling by directly methylating BMPR2, which, in turn, stimulates BMPR2 kinase activity and activation of the BMP pathway.
Collapse
Affiliation(s)
- Shuman Gao
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiqiang Wang
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wencai Wang
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peilin Chen
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinhua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China; Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Joint Research Center for Translational Medicine, East China Normal University and Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
247
|
Abstract
Transforming growth factor β (TGF-β) and related ligands have potent effects on an enormous diversity of biological functions in all animals examined. Because of the strong conservation of TGF-β family ligand functions and signaling mechanisms, studies from multiple animal systems have yielded complementary and synergistic insights. In the nematode Caenorhabditis elegans, early studies were instrumental in the elucidation of TGF-β family signaling mechanisms. Current studies in C. elegans continue to identify new functions for the TGF-β family in this organism as well as new conserved mechanisms of regulation.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Department of Biology, Queens College, and the Graduate Center, New York, New York 11367
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020
| |
Collapse
|
248
|
Kongphat W, Pudgerd A, Sridurongrit S. Hepatocyte-specific expression of constitutively active Alk5 exacerbates thioacetamide-induced liver injury in mice. Heliyon 2017; 3:e00305. [PMID: 28560358 PMCID: PMC5440359 DOI: 10.1016/j.heliyon.2017.e00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/30/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
While Transforming growth factor-βs (Tgf-βs) have been known to play an important role in liver fibrosis through an activation of Hepatic Stellate Cells (HSC), their fibrotic role on hepatocytes in liver damage has not been addressed thoroughly. To shed more light on the hepatocyte-specific role of Tgf-β signaling during liver fibrosis, we generated transgenic mice expressing constitutively active Tgf-β type I receptor Alk5 under the control of albumin promoter. Uninjured mice with increased Tgf-β/Alk5 signaling in hepatocytes (caAlk5/Alb-Cre mice) did not show characteristics related to hepatocyte death, fibrosis and inflammation. When subjected to thioacetamide (TAA) treatment, caAlk5/Alb-Cre mice exhibited more severe liver injury, when compared to control littermates. After TAA administration for 12 weeks, an increase in pathological changes was evident in caAlk5/Alb-Cre livers, with higher number of infiltrating cells in the portal and periportal area. Immunohistochemistry for F4/80, myeloperoxidase and CD3 showed that there was an increased accumulation of macrophages, neutrophils and T-lymphocytes, respectively, in caAlk5/Alb-Cre livers. Coincidently, we observed an exacerbated liver damage as seen by increases in serum aminotransferase level and number of apoptotic hepatocytes in caAlk5/Alb-Cre mice. Sirius staining of collagen demonstrated that the fibrotic response was worsened in caAlk5/Alb-Cre mice. The enhanced fibrosis in mutant livers was associated with marked production of α-SMA-positive myofibroblast. Hepatic expression of genes indicative of HSC activation was greater in caAlk5/Alb-Cre mice. In conclusion, our data indicated that elevation of Tgf-β signaling via Alk5 in hepatocytes is not sufficient to induce liver pathology but plays an important role in amplifying TAA-induced liver damage.
Collapse
Affiliation(s)
- Wanthita Kongphat
- Graduate Program of Toxicology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arnon Pudgerd
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somyoth Sridurongrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
249
|
Kang JH, Jung MY, Yin X, Andrianifahanana M, Hernandez DM, Leof EB. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling. J Clin Invest 2017; 127:2541-2554. [PMID: 28530637 DOI: 10.1172/jci88696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
TGF-β is considered a master switch in the pathogenesis of organ fibrosis. The primary mediators of this activity are the SMAD proteins, particularly SMAD3. In the current study, we have developed a cell-penetrating peptide (CPP) conjugate of the HIV TAT protein that is fused to an aminoterminal sequence of sorting nexin 9 (SNX9), which was previously shown to bind phosphorylated SMAD3 (pSMAD3). We determined that specifically preventing the nuclear import of pSMAD3 using the TAT-SNX9 peptide inhibited profibrotic TGF-β activity in murine cells and human lung fibroblasts as well as in vivo with no demonstrable toxicity. TGF-β signaling mediated by pSMAD2, bone morphogenetic protein 4 (BMP4), EGF, or PDGF was unaffected by the TAT-SNX9 peptide. Furthermore, while the TAT-SNX9 peptide prevented TGF-β's profibrotic activity in vitro as well as in 2 murine treatment models of pulmonary fibrosis, a 3-amino acid point mutant that was unable to bind pSMAD3 proved ineffective. These findings indicate that specifically targeting pSMAD3 can ameliorate both the direct and indirect fibroproliferative actions of TGF-β.
Collapse
Affiliation(s)
| | - Mi-Yeon Jung
- Departments of Pulmonary and Critical Care Medicine and
| | - Xueqian Yin
- Departments of Pulmonary and Critical Care Medicine and
| | | | | | - Edward B Leof
- Departments of Pulmonary and Critical Care Medicine and.,Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
250
|
Kaisers W, Boukamp P, Stark HJ, Schwender H, Tigges J, Krutmann J, Schaal H. Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts. PLoS One 2017; 12:e0175657. [PMID: 28475575 PMCID: PMC5419556 DOI: 10.1371/journal.pone.0175657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ageing, the progressive functional decline of virtually all tissues, affects numerous living organisms. Main phenotypic alterations of human skin during the ageing process include reduced skin thickness and elasticity which are related to extracellular matrix proteins. Dermal fibroblasts, the main source of extracellular fibrillar proteins, exhibit complex alterations during in vivo ageing and any of these are likely to be accompanied or caused by changes in gene expression. We investigated gene expression of short term cultivated in vivo aged human dermal fibroblasts using RNA-seq. Therefore, fibroblast samples derived from unaffected skin were obtained from 30 human donors. The donors were grouped by gender and age (Young: 19 to 25 years, Middle: 36 to 45 years, Old: 60 to 66 years). Two samples were taken from each donor, one from a sun-exposed and one from a sun-unexposed site. In our data, no consistently changed gene expression associated with donor age can be asserted. Instead, highly correlated expression of a small number of genes associated with transforming growth factor beta signalling was observed. Also, known gene expression alterations of in vivo aged dermal fibroblasts seem to be non-detectable in cultured fibroblasts.
Collapse
Affiliation(s)
- Wolfgang Kaisers
- Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Holger Schwender
- Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Mathematical Institute, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|