201
|
Kwak KJ, Park SJ, Han JH, Kim MK, Oh SH, Han YS, Kang H. Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4003-11. [PMID: 21511907 PMCID: PMC3134357 DOI: 10.1093/jxb/err101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/16/2011] [Accepted: 03/11/2011] [Indexed: 05/19/2023]
Abstract
Although glycine-rich RNA-binding proteins (GRPs) have been determined to function as RNA chaperones during the cold adaptation process, the structural features relevant to this RNA chaperone activity remain largely unknown. To uncover which structural determinants are necessary for RNA chaperone activity of GRPs, the importance of the N-terminal RNA recognition motif (RRM) and the C-terminal glycine-rich domains of two Arabidopsis thaliana GRPs (AtGRP4 harbouring no RNA chaperone activity and AtGRP7 harbouring RNA chaperone activity) was assessed via domain swapping and mutation analyses. The results of domain swapping and deletion experiments showed that the domain sequences encompassing the N-terminal RRM of GRPs were found to be crucial to the ability to complement cold-sensitive Escherichia coli mutant cells under cold stress, RNA melting ability, and freezing tolerance ability in the grp7 loss-of-function Arabidopsis mutant. In particular, the N-terminal 24 amino acid extension of AtGRP4 impedes the RNA chaperone activity. Collectively, these results reveal that domain sequences and overall folding of GRPs governed by a specific modular arrangement of RRM and glycine-rich sequences are critical to the RNA chaperone activity of GRPs during the cold adaptation process in cells.
Collapse
|
202
|
Sánchez-Pons N, Irar S, García-Muniz N, Vicient CM. Transcriptomic and proteomic profiling of maize embryos exposed to camptothecin. BMC PLANT BIOLOGY 2011; 11:91. [PMID: 21595924 PMCID: PMC3118180 DOI: 10.1186/1471-2229-11-91] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 05/19/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Camptothecin is a plant alkaloid that specifically binds topoisomerase I, inhibiting its activity and inducing double stranded breaks in DNA, activating the cell responses to DNA damage and, in response to severe treatments, triggering cell death. RESULTS Comparative transcriptomic and proteomic analyses of maize embryos that had been exposed to camptothecin were conducted. Under the conditions used in this study, camptothecin did not induce extensive degradation in the genomic DNA but induced the transcription of genes involved in DNA repair and repressed genes involved in cell division. Camptothecin also affected the accumulation of several proteins involved in the stress response and induced the activity of certain calcium-dependent nucleases. We also detected changes in the expression and accumulation of different genes and proteins involved in post-translational regulatory processes. CONCLUSIONS This study identified several genes and proteins that participate in DNA damage responses in plants. Some of them may be involved in general responses to stress, but others are candidate genes for specific involvement in DNA repair. Our results open a number of new avenues for researching and improving plant resistance to DNA injury.
Collapse
Affiliation(s)
- Nuria Sánchez-Pons
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Sami Irar
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Nora García-Muniz
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Carlos M Vicient
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| |
Collapse
|
203
|
Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:459-68. [PMID: 21515434 DOI: 10.1016/j.bbagrm.2011.03.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 01/08/2023]
Abstract
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Austria
| | | | | | | |
Collapse
|
204
|
Zimmer SL, McEvoy SM, Li J, Qu J, Read LK. A novel member of the RNase D exoribonuclease family functions in mitochondrial guide RNA metabolism in Trypanosoma brucei. J Biol Chem 2011; 286:10329-40. [PMID: 21252235 PMCID: PMC3060487 DOI: 10.1074/jbc.m110.152439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 01/18/2011] [Indexed: 12/22/2022] Open
Abstract
RNA turnover and RNA editing are essential for regulation of mitochondrial gene expression in Trypanosoma brucei. RNA turnover is controlled in part by RNA 3' adenylation and uridylation status, with trans-acting factors also impacting RNA homeostasis. However, little is known about the mitochondrial degradation machinery or its regulation in T. brucei. We have identified a mitochondrial exoribonuclease, TbRND, whose expression is highly up-regulated in the insect proliferative stage of the parasite. TbRND shares sequence similarity with RNase D family enzymes but differs from all reported members of this family in possessing a CCHC zinc finger domain. In vitro, TbRND exhibits 3' to 5' exoribonuclease activity, with specificity toward uridine homopolymers, including the 3' oligo(U) tails of guide RNAs (gRNAs) that provide the sequence information for RNA editing. Several lines of evidence generated from RNAi-mediated knockdown and overexpression cell lines indicate that TbRND functions in gRNA metabolism in vivo. First, TbRND depletion results in gRNA tails extended by 2-3 nucleotides on average. Second, overexpression of wild type but not catalytically inactive TbRND results in a substantial decrease in the total gRNA population and a consequent inhibition of RNA editing. The observed effects on the gRNA population are specific as rRNAs, which are also 3'-uridylated, are unaffected by TbRND depletion or overexpression. Finally, we show that gRNA binding proteins co-purify with TbRND. In summary, TbRND is a novel 3' to 5' exoribonuclease that appears to have evolved a function highly specific to the mitochondrion of trypanosomes.
Collapse
Affiliation(s)
- Sara L. Zimmer
- From the Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214 and
| | - Sarah M. McEvoy
- From the Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214 and
| | - Jun Li
- the Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260
| | - Jun Qu
- the Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260
| | - Laurie K. Read
- From the Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214 and
| |
Collapse
|
205
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|
206
|
Latrasse D, Germann S, Houba-Hérin N, Dubois E, Bui-Prodhomme D, Hourcade D, Juul-Jensen T, Le Roux C, Majira A, Simoncello N, Granier F, Taconnat L, Renou JP, Gaudin V. Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1. PLoS One 2011; 6:e16592. [PMID: 21304947 PMCID: PMC3031606 DOI: 10.1371/journal.pone.0016592] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/29/2010] [Indexed: 01/31/2023] Open
Abstract
Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation.
Collapse
Affiliation(s)
- David Latrasse
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Sophie Germann
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- Centre Léon Bérard, Inserm U590, Oncogenèse et progression tumorale, Lyon, France
| | - Nicole Houba-Hérin
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Emeline Dubois
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- Centre de Génétique Moléculaire, CNRS FRE3144, Gif-sur-Yvette, France
| | - Duyen Bui-Prodhomme
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- Biologie du Fruit, UMR 619 INRA Centre de Bordeaux, Villenave-d'Ornon, France
| | - Delphine Hourcade
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Trine Juul-Jensen
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Clémentine Le Roux
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Amel Majira
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Nathalie Simoncello
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Fabienne Granier
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | | | | | - Valérie Gaudin
- Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
207
|
Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Li Q, Zhang YE, Xu Y, Xue Y, Chong K, Bao S. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. THE PLANT CELL 2011; 23:396-411. [PMID: 21258002 PMCID: PMC3051234 DOI: 10.1105/tpc.110.081356] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 01/04/2011] [Indexed: 05/19/2023]
Abstract
Plants adapt their growth and development in response to perceived salt stress. Although DELLA-dependent growth restraint is thought to be an integration of the plant's response to salt stress, little is known about how histone modification confers salt stress and, in turn, affects development. Here, we report that floral initiator Shk1 kinase binding protein1 (SKB1) and histone4 arginine3 (H4R3) symmetric dimethylation (H4R3sme2) integrate responses to plant developmental progress and salt stress. Mutation of SKB1 results in salt hypersensitivity, late flowering, and growth retardation. SKB1 associates with chromatin and thereby increases the H4R3sme2 level to suppress the transcription of FLOWERING LOCUS C (FLC) and a number of stress-responsive genes. During salt stress, the H4R3sme2 level is reduced, as a consequence of SKB1 disassociating from chromatin to induce the expression of FLC and the stress-responsive genes but increasing the methylation of small nuclear ribonucleoprotein Sm-like4 (LSM4). Splicing defects are observed in the skb1 and lsm4 mutants, which are sensitive to salt. We propose that SKB1 mediates plant development and the salt response by altering the methylation status of H4R3sme2 and LSM4 and linking transcription to pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shupei Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiuling Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Minghui Yue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-e Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Shilai Bao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
208
|
Jiang KR, Huang JL, Chen CC, Su HJ, Wu JC. Effect of co-axially hybridized gene targets on hybridization efficiency of microarrayed DNA probes. J Taiwan Inst Chem Eng 2011; 42:5-12. [PMID: 32362954 PMCID: PMC7185593 DOI: 10.1016/j.jtice.2010.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/19/2010] [Accepted: 04/25/2010] [Indexed: 11/25/2022]
Abstract
The effect of relative size of two co-axially hybridized gene targets on the hybridization efficiency was studied for two DNA probe configurations and various probe concentrations. Each of two sets of microarrayed probes contained a pair of DNA probes and a pair of their complementary samples labeled with two distinct fluorescent dyes. The sequence of each probe is especially designed so that two targets are simultaneously complementary to two adjacent sections of the probe. The molecular steric effect on the hybridization efficiency is investigated by comparing the dye signals between configurations of one-target and two-target hybridization scenarios. The results show that a low probe concentration gives better hybridization efficiency and the first-hybridization conducted by a shorter-size DNA target improves the hybridization efficiency of the second target coupling onto the same probe.
Collapse
Affiliation(s)
- Kai Ren Jiang
- Chemical Engineering Department, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan
| | - Jie-Len Huang
- Biomedical Engineering Center, Industrial Technology Research Institute, Chu Tung, Hsin Chu 31040, Taiwan
| | - Chia-Chun Chen
- Biomedical Engineering Center, Industrial Technology Research Institute, Chu Tung, Hsin Chu 31040, Taiwan
| | - Hung-Ju Su
- Biomedical Engineering Center, Industrial Technology Research Institute, Chu Tung, Hsin Chu 31040, Taiwan
| | - Jui-Chuang Wu
- Chemical Engineering Department, Chung Yuan Christian University, Chung Li, Tao Yuan 32023, Taiwan
| |
Collapse
|
209
|
Jouannet V, Crespi M. Long Nonprotein-Coding RNAs in Plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:179-200. [PMID: 21287139 DOI: 10.1007/978-3-642-16502-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, nonprotein-coding RNAs (or npcRNAs) have emerged as a major part of the eukaryotic transcriptome. Many new regulatory npcRNAs or riboregulators riboregulators have been discovered and characterized due to the advent of new genomic approaches. This growing number suggests that npcRNAs could play a more important role than previously believed and significantly contribute to the generation of evolutionary complexity in multicellular organisms. Regulatory npcRNAs range from small RNAs (si/miRNAs) to very large transcripts (or long npcRNAs) and play diverse functions in development and/or environmental stress responses. Small RNAs include an expanding number of 20-40 nt RNAs that function in the regulation of gene expression by affecting mRNA decay and translational inhibition or lead to DNA methylation and gene silencing. They generally involve double-stranded RNA or stem loops and imply transcriptional or posttranscriptional gene silencing (PTGS). RNA silencing besides small interfering RNA and microRNA, gene silencing in plants is also mediated by tasiRNAs (trans-acting siRNAs) and nat-siRNAs (natural antisense mediated siRNAs). In contrast to small RNAs, much less is known about the large and diverse population of long npcRNAs, and only a few have been implicated in diverse functions such as abiotic stress responses, nodulation and flower development, and sex chromosome-specific expression. Moreover, many long npcRNAs act as antisense transcripts or are substrates of the small RNA pathways, thus interfering with a variety of RNA-related metabolisms. An emerging hypothesis is that long npcRNAs, as shown for small si/miRNAs, integrate into ribonucleoprotein particles (RNPs) to modulate their function, localization, or stability to act on target mRNAs. As plants show a remarkable developmental plasticity to adapt their growth to changing environmental conditions, understanding how npcRNAs work may reveal novel mechanisms involved in growth control and differentiation and help to design new tools for biotechnological applications.
Collapse
Affiliation(s)
- Virginie Jouannet
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, 91198, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
210
|
Peal L, Jambunathan N, Mahalingam R. Phylogenetic and expression analysis of RNA-binding proteins with triple RNA recognition motifs in plants. Mol Cells 2011; 31:55-64. [PMID: 21120628 PMCID: PMC3906871 DOI: 10.1007/s10059-011-0001-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/17/2010] [Accepted: 09/29/2010] [Indexed: 11/27/2022] Open
Abstract
The superfamily of RNA binding proteins (RBPs) is vastly expanded in plants compared to other eukaryotes. A subfamily of RBPs that contain three RNA recognition motifs (RRMs) from the Arabidopsis (24), rice (19) and poplar (37) genomes was analyzed in this study. Phylogenetic analysis with full-length protein sequences of 80 RBPs identified nine clades. The largest clade, comprising 23 members, showed high homology to human RBPs involved in oxidative signaling. Digital northern analysis revealed that Arabidopsis RBPs are transcriptionally responsive to biotic, abiotic and hormonal treatments. Northern blot analysis of eight Arabidopsis RBPs belonging to the tobacco RBP45/47 family showed that these genes respond to ozone stress. AtRBP45b, which shows closest homology to the yeast oxidative stress regulatory protein, CSX1, was expressed in multiple tissues. Two novel splice variant forms of AtRBP45b were identified by 3'RACE analysis. Based on RT-PCR, splice variant AtRBP45b-SV1 was observed only in response to mechanical wounding caused by pathogen or chemical infiltrations and was not detectable in response to salt or temperature stress. Electrophoretic mobility shift assay demonstrated that recombinant full-length and splice variant forms of AtRBP45b bound synthetic RNA. Identifying in vivo RNA targets of AtRBP45b will aid in determining the precise functional role of these proteins during oxidative signaling.
Collapse
Affiliation(s)
- Lila Peal
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
| | - Niranjani Jambunathan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
- Present Address: Monsanto, Saint Louis, USA
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, USA
| |
Collapse
|
211
|
Bedon F, Majada J, Feito I, Chaumeil P, Dupuy JW, Lomenech AM, Barre A, Gion JM, Plomion C. Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:69-76. [PMID: 20974537 DOI: 10.1016/j.plaphy.2010.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 05/30/2023]
Abstract
Eucalyptus globulus (Labill.) is used for pulp and paper production worldwide. In this report we studied changes in protein expression in one osmotically stressed elite clone widely used in industrial plantations in Spain. High molecular weight polyethylene glycol (PEG) was used as an osmoticum in the growing medium. Roots of rooted cuttings were sampled after 3 and 36 h of treatment. Water potential and abscissic acid content were measured in shoot and root apices to characterize the physiological states of the plants. Total soluble proteins from roots were extracted and separated using two-dimensional gel electrophoresis (2-DE). Gels were stained with Coomassie brillant blue for quantitative analysis of protein accumulation. From a total of 406 reproducible spots, 34 were found to be differentially expressed depending on treatment (osmotic versus control condition) and/or stress duration (3 h versus 36 h), and were further characterized by tandem mass spectrometry. Several proteins were reliably identified including adenosine kinase, actin, stress-related proteins as well as proteins associated to cellular processes, among which some residents of the endoplasmic reticulum. This study constitutes the first investigation of the root proteome in this important forest tree genus.
Collapse
Affiliation(s)
- Frank Bedon
- INRA, UMR1202 BIOGECO, Equipe de génétique, 69 route d'Arcachon, F-33612, France
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Qi Y, Tsuda K, Joe A, Sato M, Nguyen LV, Glazebrook J, Alfano JR, Cohen JD, Katagiri F. A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1573-83. [PMID: 20636102 DOI: 10.1094/mpmi-05-10-0106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
RNA-binding proteins (RBP) can control gene expression at both transcriptional and post-transcriptional levels. Plants respond to pathogen infection with rapid reprogramming of gene expression. However, little is known about how plant RBP function in plant immunity. Here, we describe the involvement of an RBP, Arabidopsis thaliana RNA-binding protein-defense related 1 (AtRBP-DR1; At4g03110), in resistance to the pathogen Pseudomonas syringae pv. tomato DC3000. AtRBP-DR1 loss-of-function mutants showed enhanced susceptibility to P. syringae pv. tomato DC3000. Overexpression of AtRBP-DR1 led to enhanced resistance to P. syringae pv. tomato DC3000 strains and dwarfism. The hypersensitive response triggered by P. syringae pv. tomato DC3000 avrRpt2 was compromised in the Atrbp-dr1 mutant and enhanced in the AtRBP-DR1 overexpression line at early time points. AtRBP-DR1 overexpression lines showed higher mRNA levels of SID2 and PR1, which are salicylic acid (SA) inducible, as well as spontaneous cell death in mature leaves. Consistent with these observations, the SA level was low in the Atrbp-dr1 mutant but high in the overexpression line. The SA-related phenotype in the overexpression line was fully dependent on SID2. Thus, AtRBP-DR1 is a positive regulator of SA-mediated immunity, possibly acting on SA signaling-related genes at a post-transcriptional level.
Collapse
Affiliation(s)
- Yiping Qi
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St. Paul 55108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Lewis BA, Walia RR, Terribilini M, Ferguson J, Zheng C, Honavar V, Dobbs D. PRIDB: a Protein-RNA interface database. Nucleic Acids Res 2010; 39:D277-82. [PMID: 21071426 PMCID: PMC3013700 DOI: 10.1093/nar/gkq1108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Protein–RNA Interface Database (PRIDB) is a comprehensive database of protein–RNA interfaces extracted from complexes in the Protein Data Bank (PDB). It is designed to facilitate detailed analyses of individual protein–RNA complexes and their interfaces, in addition to automated generation of user-defined data sets of protein–RNA interfaces for statistical analyses and machine learning applications. For any chosen PDB complex or list of complexes, PRIDB rapidly displays interfacial amino acids and ribonucleotides within the primary sequences of the interacting protein and RNA chains. PRIDB also identifies ProSite motifs in protein chains and FR3D motifs in RNA chains and provides links to these external databases, as well as to structure files in the PDB. An integrated JMol applet is provided for visualization of interacting atoms and residues in the context of the 3D complex structures. The current version of PRIDB contains structural information regarding 926 protein–RNA complexes available in the PDB (as of 10 October 2010). Atomic- and residue-level contact information for the entire data set can be downloaded in a simple machine-readable format. Also, several non-redundant benchmark data sets of protein–RNA complexes are provided. The PRIDB database is freely available online at http://bindr.gdcb.iastate.edu/PRIDB.
Collapse
Affiliation(s)
- Benjamin A Lewis
- Bioinformatics and Computational Biology Program, Iowa State University, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
214
|
Kobayashi F, Takumi S, Handa H. Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:629-41. [PMID: 20401645 DOI: 10.1007/s00122-010-1335-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/01/2010] [Indexed: 05/22/2023]
Abstract
Responsiveness to abscisic acid (ABA) during vegetative growth plays an important role in regulating adaptive responses to various environmental conditions, including activation of a number of ABA-responsive genes. However, the relationship between gene expression and responsiveness to ABA at the seedling stage has not been well studied in wheat. In the present study, quantitative trait locus (QTL) analysis for ABA responsiveness at the seedling stage was performed using recombinant inbred lines derived from a cross between common wheat cultivars showing different ABA responsiveness. Five QTLs were found to be significant, located on chromosomes 1B, 2A, 3A, 6D and 7B. The QTL with the greatest effect was located on chromosome 6D and explained 11.12% of the variance in ABA responsiveness. The other QTLs each accounted for approximately 5-8% of the phenotypic variation. Expression analyses of three ABA-responsive Cor/Lea genes, Wdhn13, Wrab15 and Wrab17, showed that allelic differences in QTLs on chromosomes 2A, 6D and 7B influenced expression of these genes in seedlings treated with ABA. The 3A QTL appeared to be involved in the regulatory system of Wdhn13 and Wrab15, but not Wrab17. The effects of the 2A and 6D QTLs on gene expression were relatively large. The combination of alleles at the QTLs resulted in an additive or synergistic effect on Cor/Lea expression. These results indicate that the QTLs influencing ABA responsiveness are associated with ABA-regulated gene expression and suggest that the QTL on chromosome 6D with the largest effect acts as a key regulator of ABA responses including seedling growth arrest and gene expression during the vegetative stage.
Collapse
Affiliation(s)
- Fuminori Kobayashi
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | |
Collapse
|
215
|
Charon C, Moreno AB, Bardou F, Crespi M. Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus. MOLECULAR PLANT 2010; 3:729-739. [PMID: 20603381 DOI: 10.1093/mp/ssq037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The complex responses of eukaryotic cells to external factors are governed by several transcriptional and post-transcriptional processes. Several of them occur in the nucleus and have been linked to the action of non-protein-coding RNAs (or npcRNAs), both long and small npcRNAs, that recently emerged as major regulators of gene expression. Regulatory npcRNAs acting in the nucleus include silencing-related RNAs, intergenic npcRNAs, natural antisense RNAs, and other aberrant RNAs resulting from the interplay between global transcription and RNA processing activities (such as Dicers and RNA-dependent polymerases). Generally, the resulting npcRNAs exert their regulatory effects through interactions with RNA-binding proteins (or RBPs) within ribonucleoprotein particles (or RNPs). A large group of RBPs are implicated in the silencing machinery through small interfering RNAs (siRNAs) and their localization suggests that several act in the nucleus to trigger epigenetic and chromatin changes at a whole-genome scale. Other nuclear RBPs interact with npcRNAs and change their localization. In the fission yeast, the RNA-binding Mei2p protein, playing pivotal roles in meiosis, interact with a meiotic npcRNA involved in its nuclear re-localization. Related processes have been identified in plants and the ENOD40 npcRNA was shown to re-localize a nuclear-speckle RBP from the nucleus to the cytoplasm in Medicago truncatula. Plant RBPs have been also implicated in RNA-mediated chromatin silencing in the FLC locus through interaction with specific antisense transcripts. In this review, we discuss the interactions between RBPs and npcRNAs in the context of nuclear-related processes and their implication in plant development and stress responses. We propose that these interactions may add a regulatory layer that modulates the interactions between the nuclear genome and the environment and, consequently, control plant developmental plasticity.
Collapse
Affiliation(s)
- Celine Charon
- University Paris-Sud, Institut de Biologie des Plantes, UMR8618, Orsay Cedex, F-91405, France
| | | | | | | |
Collapse
|
216
|
dit Frey NF, Muller P, Jammes F, Kizis D, Leung J, Perrot-Rechenmann C, Bianchi MW. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis. THE PLANT CELL 2010; 22:1575-91. [PMID: 20484005 PMCID: PMC2899877 DOI: 10.1105/tpc.109.070680] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 05/20/2023]
Abstract
Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death-associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway.
Collapse
Affiliation(s)
- Nicolas Frei dit Frey
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Philippe Muller
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Fabien Jammes
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Centre National de la Recherche Scientifique 8114, Université d'Evry Val d'Essonne, 91057 Evry cedex, France
| | - Dimosthenis Kizis
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Jeffrey Leung
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
| | - Michele Wolfe Bianchi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique 2355, 91198 Gif sur Yvette cedex, France
- Faculté des Sciences et Technologie, Université Paris Est-Créteil, 94010 Créteil cedex, France
- Address correspondence to
| |
Collapse
|
217
|
Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T. The role of abscisic acid and auxin in the response of poplar to abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:242-58. [PMID: 20398232 DOI: 10.1111/j.1438-8677.2009.00305.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant hormones auxin and abscisic acid may at first sight appear to be a conflicting pair of plant regulators. Abscisic acid content increases during stress and protects plant water status. The content of free auxin in the developing xylem of poplar declines during stress, while auxin conjugates increase. This indicates that specific down-regulation of a signal transduction chain is important in plant adaptation to stress. Diminished auxin content may be a factor that adapts growth and wood development of poplar during adverse environmental conditions. To allow integration of environmental signals, abscisic acid and auxin must interact. Data are accumulating that abscisic acid-auxin cross-talk exists in plants. However, knowledge of the role of plant hormones in the response of trees to stress is scarce. Our data show that differences in the localisation of ABA synthesis exist between the annual, herbaceous plant Arabidopsis and the perennial woody species, poplar.
Collapse
Affiliation(s)
- J Popko
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
218
|
Jung HS, Chory J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? PLANT PHYSIOLOGY 2010; 152:453-9. [PMID: 19933385 PMCID: PMC2815895 DOI: 10.1104/pp.109.149070] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
|
219
|
Zhou YL, Xu MR, Zhao MF, Xie XW, Zhu LH, Fu BY, Li ZK. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics 2010; 11:78. [PMID: 20122142 PMCID: PMC2824728 DOI: 10.1186/1471-2164-11-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Non-host resistance in rice to its bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), mediated by a maize NBS-LRR type R gene, Rxo1 shows a typical hypersensitive reaction (HR) phenotype, but the molecular mechanism(s) underlying this type of non-host resistance remain largely unknown. Results A microarray experiment was performed to reveal the molecular mechanisms underlying HR of rice to Xoc mediated by Rxo1 using a pair of transgenic and non-transgenic rice lines. Our results indicated that Rxo1 appeared to function in the very early step of the interaction between rice and Xoc, and could specifically activate large numbers of genes involved in signaling pathways leading to HR and some basal defensive pathways such as SA and ET pathways. In the former case, Rxo1 appeared to differ from the typical host R genes in that it could lead to HR without activating NDR1. In the latter cases, Rxo1 was able to induce a unique group of WRKY TF genes and a large set of genes encoding PPR and RRM proteins that share the same G-box in their promoter regions with possible functions in post-transcriptional regulation. Conclusions In conclusion, Rxo1, like most host R genes, was able to trigger HR against Xoc in the heterologous rice plants by activating multiple defensive pathways related to HR, providing useful information on the evolution of plant resistance genes. Maize non-host resistance gene Rxo1 could trigger the pathogen-specific HR in heterologous rice, and ultimately leading to a localized programmed cell death which exhibits the characteristics consistent with those mediated by host resistance genes, but a number of genes encoding pentatricopeptide repeat and RNA recognition motif protein were found specifically up-regulated in the Rxo1 mediated disease resistance. These results add to our understanding the evolution of plant resistance genes.
Collapse
Affiliation(s)
- Yong-Li Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | |
Collapse
|
220
|
Hannapel DJ. A model system of development regulated by the long-distance transport of mRNA. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:40-52. [PMID: 20074139 DOI: 10.1111/j.1744-7909.2010.00911.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1-types to regulate numerous developmental processes. In potato, the RNA of several BEL1-like transcription factors has been identified in phloem cells. One of these, StBEL5, and its Knox protein partner regulate tuber formation by targeting genes that control growth. RNA detection methods and grafting experiments demonstrated that StBEL5 transcripts move across a graft union to localize in stolon tips, the site of tuber induction. This movement of RNA originates in source leaf veins and petioles and is induced by a short-day photoperiod, regulated by the untranslated regions, and correlated with enhanced tuber production. Addition of the StBEL5 untranslated regions to another BEL1-like mRNA resulted in its preferential transport to stolon tips leading to increased tuber production. Upon fusion of the untranslated regions of StBEL5 to a beta-glucuronidase marker, translation in tobacco protoplasts was repressed by those constructs containing the 3' untranslated sequence. The untranslated regions of the StBEL5 mRNA are involved in mediating its long-distance transport and in controlling translation. The 3' untranslated sequence contains an abundance of conserved motifs that may serve as binding motifs for RNA-binding proteins. Because of their presence in the phloem sieve tube system, their unique untranslated region sequences and their diverse RNA accumulation patterns, the family of BEL1-like RNAs from potato represents a valuable model for studying the long-distance transport of full-length mRNAs and their role in development.
Collapse
Affiliation(s)
- David J Hannapel
- Plant Biology Major, 253 Horticulture Hall, Iowa State University, Ames, IA 50011-1100, USA.
| |
Collapse
|
221
|
Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW. Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. J Proteome Res 2009; 8:4641-53. [DOI: 10.1021/pr900537p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kelly A. Doroshenk
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Andrew J. Crofts
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Robert T. Morris
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - John J. Wyrick
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| | - Thomas W. Okita
- Institute of Biological Chemistry, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and Department of Natural Sciences, Akita International University, 193-2 Okutsubakidai, Tsubakigawa, Yuwa Akita-city, Akita 010-1211, Japan
| |
Collapse
|
222
|
Bailey-Serres J, Sorenson R, Juntawong P. Getting the message across: cytoplasmic ribonucleoprotein complexes. TRENDS IN PLANT SCIENCE 2009; 14:443-53. [PMID: 19616989 DOI: 10.1016/j.tplants.2009.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 05/20/2023]
Abstract
mRNA-ribonucleoprotein (mRNP) complexes mediate post-transcriptional control mechanisms in the cell nucleus and cytoplasm. Transcriptional control is paramount to gene expression but is followed by regulated nuclear pre-mRNA maturation and quality control processes that culminate in the export of a functional transcript to the cytoplasm. Once in the cytosol, mRNPs determine the activity of individual mRNAs through regulation of localization, translation, sequestration and turnover. Here, we review how quantitative assessment of mRNAs in distinct cytoplasmic mRNPs, such as polyribosomes (polysomes), has provided new perspectives on post-transcriptional regulation from the global to gene-specific level. In addition, we explore recent genetic and biochemical studies of cytoplasmic mRNPs that have begun to expose RNA-binding proteins in an integrated network that fine-tunes gene expression.
Collapse
Affiliation(s)
- J Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | | | | |
Collapse
|