201
|
Roberts DW. Is a combination of assays really needed for non-animal prediction of skin sensitization potential? Performance of the GARD™ (Genomic Allergen Rapid Detection) assay in comparison with OECD guideline assays alone and in combination. Regul Toxicol Pharmacol 2018; 98:155-160. [DOI: 10.1016/j.yrtph.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 07/22/2018] [Indexed: 11/26/2022]
|
202
|
Assessment of the skin sensitisation hazard of functional polysiloxanes and silanes in the SENS-IS assay. Regul Toxicol Pharmacol 2018; 98:209-214. [DOI: 10.1016/j.yrtph.2018.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
|
203
|
Luechtefeld T, Marsh D, Rowlands C, Hartung T. Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility. Toxicol Sci 2018; 165:198-212. [PMID: 30007363 PMCID: PMC6135638 DOI: 10.1093/toxsci/kfy152] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier we created a chemical hazard database via natural language processing of dossiers submitted to the European Chemical Agency with approximately 10 000 chemicals. We identified repeat OECD guideline tests to establish reproducibility of acute oral and dermal toxicity, eye and skin irritation, mutagenicity and skin sensitization. Based on 350-700+ chemicals each, the probability that an OECD guideline animal test would output the same result in a repeat test was 78%-96% (sensitivity 50%-87%). An expanded database with more than 866 000 chemical properties/hazards was used as training data and to model health hazards and chemical properties. The constructed models automate and extend the read-across method of chemical classification. The novel models called RASARs (read-across structure activity relationship) use binary fingerprints and Jaccard distance to define chemical similarity. A large chemical similarity adjacency matrix is constructed from this similarity metric and is used to derive feature vectors for supervised learning. We show results on 9 health hazards from 2 kinds of RASARs-"Simple" and "Data Fusion". The "Simple" RASAR seeks to duplicate the traditional read-across method, predicting hazard from chemical analogs with known hazard data. The "Data Fusion" RASAR extends this concept by creating large feature vectors from all available property data rather than only the modeled hazard. Simple RASAR models tested in cross-validation achieve 70%-80% balanced accuracies with constraints on tested compounds. Cross validation of data fusion RASARs show balanced accuracies in the 80%-95% range across 9 health hazards with no constraints on tested compounds.
Collapse
Affiliation(s)
- Thomas Luechtefeld
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, Maryland
- ToxTrack, Baltimore, Maryland
| | | | - Craig Rowlands
- UL Product Supply Chain Intelligence, Underwriters Laboratories (UL), Northbrook, Illinois
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, Maryland
- University of Konstanz, CAAT-Europe, Konstanz, Germany
| |
Collapse
|
204
|
Zhong G, Li H, Bai J, Pang S, He C, Du X, Wang H, Zhang Q, Xie S, Du H, Dai R, Huang L. Advancing the predictivity of skin sensitization by applying a novel HMOX1 reporter system. Arch Toxicol 2018; 92:3103-3115. [DOI: 10.1007/s00204-018-2287-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
205
|
Piersma A, Burgdorf T, Louekari K, Desprez B, Taalman R, Landsiedel R, Barroso J, Rogiers V, Eskes C, Oelgeschläger M, Whelan M, Braeuning A, Vinggaard A, Kienhuis A, van Benthem J, Ezendam J. Workshop on acceleration of the validation and regulatory acceptance of alternative methods and implementation of testing strategies. Toxicol In Vitro 2018; 50:62-74. [DOI: 10.1016/j.tiv.2018.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
|
206
|
Nepal MR, Shakya R, Kang MJ, Jeong TC. A simple in chemico method for testing skin sensitizing potential of chemicals using small endogenous molecules. Toxicol Lett 2018; 289:75-85. [DOI: 10.1016/j.toxlet.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
207
|
Natsch A, Emter R, Haupt T, Ellis G. Deriving a No Expected Sensitization Induction Level for Fragrance Ingredients Without Animal Testing: An Integrated Approach Applied to Specific Case Studies. Toxicol Sci 2018; 165:170-185. [DOI: 10.1093/toxsci/kfy135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Natsch
- Fragrances S&T, in vitro molecular screening, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| | - Roger Emter
- Fragrances S&T, in vitro molecular screening, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| | - Tina Haupt
- Fragrances S&T, in vitro molecular screening, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| | - Graham Ellis
- Regulatory Affairs and Product Safety, global toxicology Givaudan International SA, CH-1214 Vernier, Switzerland
| |
Collapse
|
208
|
Wijeyesakere SJ, Wilson DM, Settivari R, Auernhammer TR, Parks AK, Marty MS. Development of a Profiler for Facile Chemical Reactivity Using the Open-Source Konstanz Information Miner. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
209
|
Abstract
Background The development of non-animal alternatives for skin sensitization potency prediction is dependent upon the availability of a sufficient dataset whose human potency is well characterized. Previously, establishment of basic categorization criteria for 6 defined potency categories, allowed 131 substances to be allocated into them entirely on the basis of human information. Objectives To supplement the original dataset with an extended range of fragrance substances. Methods A more fully described version of the original criteria was used to assess 89 fragrance chemicals, allowing their allocation into one of the 6 potency categories. Results None of the fragrance substances were assigned to the most potent group, category 1, whereas 11 were category 2, 22 were category 3, 37 were category 4, and 19 were category 5. Although none were identified as non-sensitizing, note that substances in category 5 also do not pass the threshold for regulatory classification. Conclusions The combined datasets of >200 substances placed into potency categories solely on the basis of human data provides an essential resource for the elaboration and evaluation of predictive non-animal methods.
Collapse
|
210
|
Casati S. Integrated Approaches to Testing and Assessment. Basic Clin Pharmacol Toxicol 2018; 123 Suppl 5:51-55. [PMID: 29604238 DOI: 10.1111/bcpt.13018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
Abstract
The concept of Integrated Approaches to Testing and Assessment (IATA) has been advanced by the Organisation for Economic Cooperation and Development (OECD) member countries to enable a progressive shift from traditional chemical assessments largely based on the observation of the adverse effect in animal models, using individual methods or predefined batteries of standard toxicity tests, to assessment strategies integrating diverse lines of evidence. The flexible nature of IATA allows the inclusion of mechanistic data generated with non-animal methods and with new technologies (e.g. high-throughput and high content methods). The assessment process within IATA is typically conducted through weight-of-evidence which inevitably includes the elements of subjective expert judgement. For these reasons, IATA cannot be fully harmonized across sectors and countries. Nevertheless, some of the IATA components, such as defined approaches, which consist of a fixed data interpretation procedure (DIP) applied to data generated with a defined set of information sources, can be harmonized. The focus of this MiniReview is to provide an illustration of the differences between the IATA developed so far in the areas of regulatory toxicology, and ongoing activities related to the international harmonization of defined approaches that rely on multiple non-animal information sources.
Collapse
Affiliation(s)
- Silvia Casati
- Directorate F - Health, Consumers and Reference Materials, Chemicals Safety and Alternative Methods Unit, EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Joint Research Centre, European Commission, Ispra, Italy
| |
Collapse
|
211
|
Mizumachi H, Sakuma M, Ikezumi M, Saito K, Takeyoshi M, Imai N, Okutomi H, Umetsu A, Motohashi H, Watanabe M, Miyazawa M. Transferability and within- and between-laboratory reproducibilities of EpiSensA for predicting skin sensitization potential in vitro: A ring study in three laboratories. J Appl Toxicol 2018; 38:1233-1243. [DOI: 10.1002/jat.3634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hideyuki Mizumachi
- Kao Corporation, R&D, Safety Science Research; 2606 Akabane, Ichikai-Machi, Haga-Gun Tochigi 321-3497 Japan
| | - Megumi Sakuma
- KOSÉ Corporation, Research Laboratories; 1-18-4 Azusawa, Itabashi-ku Tokyo 174-0051 Japan
| | - Mayu Ikezumi
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Kazutoshi Saito
- Kao Corporation, R&D, Safety Science Research; 2606 Akabane, Ichikai-Machi, Haga-Gun Tochigi 321-3497 Japan
| | - Midori Takeyoshi
- KOSÉ Corporation, Research Laboratories; 1-18-4 Azusawa, Itabashi-ku Tokyo 174-0051 Japan
| | - Noriyasu Imai
- KOSÉ Corporation, Research Laboratories; 1-18-4 Azusawa, Itabashi-ku Tokyo 174-0051 Japan
| | - Hiroko Okutomi
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Asami Umetsu
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Hiroko Motohashi
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Mika Watanabe
- Food and Drug Safety Center; Hatano Research Institute; 729-5 Ochiai Hadano-shi Kanagawa 257-8523 Japan
| | - Masaaki Miyazawa
- Kao Corporation, R&D, Safety Science Research; 2606 Akabane, Ichikai-Machi, Haga-Gun Tochigi 321-3497 Japan
| |
Collapse
|
212
|
Kleinstreuer NC, Hoffmann S, Alépée N, Allen D, Ashikaga T, Casey W, Clouet E, Cluzel M, Desprez B, Gellatly N, Göbel C, Kern PS, Klaric M, Kühnl J, Martinozzi-Teissier S, Mewes K, Miyazawa M, Strickland J, van Vliet E, Zang Q, Petersohn D. Non-animal methods to predict skin sensitization (II): an assessment of defined approaches *. Crit Rev Toxicol 2018; 48:359-374. [PMID: 29474122 PMCID: PMC7393691 DOI: 10.1080/10408444.2018.1429386] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.
Collapse
Affiliation(s)
- Nicole C. Kleinstreuer
- NIH/NIEHS/DNTP/NICEATM, P.O. Box 12233, Mail Stop K2-16, Research Triangle Park, NC, 27709, USA; NK, 1-919-541-7997,; WC, 1-919-316-4729,
| | - Sebastian Hoffmann
- seh consulting + services, Stembergring 15, 33106 Paderborn, Germany; +4952518700566;
| | - Nathalie Alépée
- L’Oréal Research & Innovation, Aulnay-sous-Bois, France; NA, ; SM-T,
| | - David Allen
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA, 1-919-281-1110; DA, ; JS, ; QZ,
| | - Takao Ashikaga
- Shiseido, 2-2-1, Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan. Current Address: Japanese Center for the Validation of Alternative Methods (JaCVAM), National Institute of Health Sciences (NIHS) 1-18-1 Kamiyoga, Setagaya, Tokyo, Japan;
| | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, P.O. Box 12233, Mail Stop K2-16, Research Triangle Park, NC, 27709, USA; NK, 1-919-541-7997,; WC, 1-919-316-4729,
| | - Elodie Clouet
- Pierre Fabre, 3 Avenue Hubert Curien, 31100 Toulouse, France;
| | - Magalie Cluzel
- LVMH, 185 avenue de Verdun, 45804 St Jean de Braye, France;
| | - Bertrand Desprez
- Cosmetics Europe, Avenue Herrmann Debroux 40, 1160 Brussels, Belgium; BD, ; MK,
| | - Nichola Gellatly
- Unilever, Colworth Science Park, Bedford, United Kingdom. Current address: NC3Rs, Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom;
| | | | - Petra S. Kern
- Procter & Gamble Services Company NV, Temselaan 100, 1853 Strombeek-Bever, Belgium;
| | - Martina Klaric
- Cosmetics Europe, Avenue Herrmann Debroux 40, 1160 Brussels, Belgium; BD, ; MK,
| | - Jochen Kühnl
- Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany;
| | | | - Karsten Mewes
- Henkel AG & Co. KGaA, Henkelstraße 67, 40589 Düsseldorf, Germany; KM, ; DP,
| | - Masaaki Miyazawa
- Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi, 321-3497, Japan;
| | - Judy Strickland
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA, 1-919-281-1110; DA, ; JS, ; QZ,
| | - Erwin van Vliet
- Services & Consultations on Alternative Methods (SeCAM), Via Campagnora 1, 6983, Magliaso, Switzerland;
| | - Qingda Zang
- ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA, 1-919-281-1110; DA, ; JS, ; QZ,
| | - Dirk Petersohn
- Henkel AG & Co. KGaA, Henkelstraße 67, 40589 Düsseldorf, Germany; KM, ; DP,
| |
Collapse
|
213
|
Dempster-Shafer theory for combining in silico evidence and estimating uncertainty in chemical risk assessment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
214
|
Frombach J, Sonnenburg A, Krapohl BD, Zuberbier T, Peiser M, Stahlmann R, Schreiner M. Lymphocyte surface markers and cytokines are suitable for detection and potency assessment of skin-sensitizing chemicals in an in vitro model of allergic contact dermatitis: the LCSA-ly. Arch Toxicol 2018; 92:1495-1505. [PMID: 29380012 DOI: 10.1007/s00204-018-2164-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022]
Abstract
Allergic contact dermatitis is a widespread health disorder and occupational skin disease. Hence, screening for contact-sensitizing chemicals is highly relevant to toxicology, dermatology, and occupational medicine. The use of animal tests for this purpose is constrained by ethical considerations, need for high-throughput screening, and legislation (e.g., for cosmetics in the European Union). T cell activation is the final and most specific key event of the "adverse outcome pathway" for skin sensitization and therefore a promising target for the development of in vitro sensitization assays. We present a novel in vitro sensitization assay with a lymphocyte endpoint as an add-on to the loose-fit coculture-based sensitization assay (LCSA): the LCSA-ly. While the LCSA measures dendritic cell activation, the LCSA-ly offers the option for an additional lymphocyte endpoint which can be measured concurrently. We incorporated lymphocytes in our previously established coculture of primary human keratinocytes and monocyte-derived dendritic cells and tested nine substances: five sensitizers [2,4-dinitrochlorobenzene (DNCB) 1.25-15 µmol/l, p-phenylenediamine (PPD) 15.6-125 µmol/l, 2-mercaptobenzothiazole (MBT) 50-1000 µmol/l, coumarin, and resorcinol (both: 250-1500 µmol/l)] and four non-sensitizers (monochlorobenzene, caprylic acid, glycerol, and salicylic acid (all: 125-1000 µmol/l)]. DNCB and MBT increased a subset of IL-23 receptor+/IFN-γ receptor 1 (CD119)+ lymphocytes. DNCB, PPD, and MBT enhanced a subunit of the IL-4 receptor (CD124) and a memory marker (CD44) on lymphocytes. Remarkably, DNCB, PPD, and MBT raised IL-4 concentrations in coculture supernatants while IFN-γ levels decreased, which might point to Th2 activation in vitro. Coumarin, resorcinol, and non-sensitizers did not alter any of the tested surface markers or cytokines. IL-17 was not affected by any of the substances. Relative strength of sensitizers according to lymphocyte markers was DNCB > PPD > MBT, which corresponds to earlier results from the LCSA without lymphocyte endpoint, the murine local lymph node assay, and human data. This study is the first to prove the suitability of lymphocyte surface markers for sensitization testing and potency assessment.
Collapse
Affiliation(s)
- Janna Frombach
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Sonnenburg
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Björn-Dirk Krapohl
- Department of Plastic Surgery, St. Marien Hospital Berlin, Gallwitzallee 123, 12249, Berlin, Germany
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Matthias Peiser
- Department Safety of Pesticides, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Ralf Stahlmann
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Maximilian Schreiner
- Department of Internal Medicine, Bundeswehr Hospital, Scharnhorststraße 13, 10115, Berlin, Germany.
| |
Collapse
|
215
|
Mechanism-informed read-across assessment of skin sensitizers based on SkinSensDB. Regul Toxicol Pharmacol 2018; 94:276-282. [DOI: 10.1016/j.yrtph.2018.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022]
|
216
|
Del Bufalo A, Pauloin T, Alepee N, Clouzeau J, Detroyer A, Eilstein J, Gomes C, Nocairi H, Piroird C, Rousset F, Tourneix F, Basketter D, Martinozzi Teissier S. Alternative Integrated Testing for Skin Sensitization: Assuring Consumer Safety. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
217
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
218
|
Nepal MR, Kang Y, Kang MJ, Nam DH, Jeong TC. A β-galactosidase-expressing E. coli culture as an alternative test to identify skin sensitizers and non-sensitizers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:288-301. [PMID: 29473800 DOI: 10.1080/15287394.2018.1440187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although the Organization for Economic Cooperation and Development (OECD) has adopted several in vitro methods with reasonable predictive capacity, alternative methods for identifying skin sensitizers and non-sensitizers with reliability and simplicity are still required for more efficient and economic prediction. The present study was to design an in vitro system with the use of a β-galactosidase-expressing E. coli culture for simpler but sufficiently accurate classification of skin sensitizers and non-sensitizers. A LacZ gene-containing E. coli strain that is capable of producing β-galactosidase enzyme was induced by isopropyl β-D-1-thiogalactopyranoside with concomitant treatment with test chemicals. After 6-hr incubation, cells were lysed and β-galactosidase enzyme activity was monitored colorimetrically by using O-nitrophenyl-D-galactopyranoside as a substrate. Following optimization of several experimental conditions, 22 skin sensitizers and 11 non-sensitizers were examined to assess predictive capacity of this method. The results indicated that predictivity was as follows: 90.9% sensitivity, 81.8% specificity, and 87.9% accuracy, when 17.3% of control activity was used as the cut-off value to separate sensitizers from non-sensitizers. Data suggested that the current bacterial system expressing β-galactosidase may serve as a useful alternative test for classifying skin sensitizers and non-sensitizers, without the utilization of animals or mammalian cell cultures.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Youra Kang
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Mi Jeong Kang
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Doo Hyun Nam
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Tae Cheon Jeong
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| |
Collapse
|
219
|
Hoffmann S, Kleinstreuer N, Alépée N, Allen D, Api AM, Ashikaga T, Clouet E, Cluzel M, Desprez B, Gellatly N, Goebel C, Kern PS, Klaric M, Kühnl J, Lalko JF, Martinozzi-Teissier S, Mewes K, Miyazawa M, Parakhia R, van Vliet E, Zang Q, Petersohn D. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit Rev Toxicol 2018; 48:344-358. [DOI: 10.1080/10408444.2018.1429385] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | - Anne Marie Api
- The Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | - Takao Ashikaga
- Shiseido Global Innovation Center, Hayabuchi, Kanagawa, Japan
| | | | | | | | | | | | - Petra S. Kern
- Procter and Gamble Services Company NV, Strombeek-Bever, Belgium
| | | | | | - Jon F. Lalko
- The Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | | | | | | | - Rahul Parakhia
- The Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | - Erwin van Vliet
- Services and Consultations on Alternative Methods (SeCAM), Magliaso, Switzerland
| | | | | |
Collapse
|
220
|
Corsini E, Casula M, Tragni E, Galbiati V, Pallardy M. Tools to investigate and avoid drug-hypersensitivity in drug development. Expert Opin Drug Discov 2018; 13:425-433. [PMID: 29405076 DOI: 10.1080/17460441.2018.1437141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Drug hypersensitivity reactions (DHRs) are common adverse effects of pharmaceuticals that clinically resemble allergies, and which are becoming an important burden to healthcare systems. Alongside accurate diagnostic techniques, tools which can predict potential drug-inducing hypersensitivity reactions in the pre-clinical phase are critical. Despite the important adverse reactions linked to immune-mediated hypersensitivity, at present, there are no validated or required in vivo or in vitro methods to screen the sensitizing potential of drugs and their metabolites in the pre-clinical phase. Areas covered: Enhanced prediction in preclinical safety evaluation is extremely important. The purpose of this review is to assess the state of the art of tools available to assess the allergenic potential of drugs and to highlight our current understanding of the molecular mechanisms underlying inappropriate immune activation. Expert opinion: The knowledge that allergenic drugs share common mechanisms of immune cell activation with chemical allergens, and of the definition of the mechanistic pathway to adverse outcomes, can enhance targeting toxicity testing in drug development and hazard assessment of hypersensitivity. Additional efforts and extensive resources are necessary to improve preclinical testing methodologies, including optimization, better design and interpretation of data.
Collapse
Affiliation(s)
- Emanuela Corsini
- a Laboratory of Toxicology, Department of Environmental Science and Policy , Università degli Studi di Milano , Milan , Italy
| | - Manuela Casula
- b Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Elena Tragni
- b Epidemiology and Preventive Pharmacology Centre (SEFAP), Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Valentina Galbiati
- a Laboratory of Toxicology, Department of Environmental Science and Policy , Università degli Studi di Milano , Milan , Italy
| | - Marc Pallardy
- c Inflammation, Chemokines and Immunopathology , INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
221
|
Avonto C, Wang M, Chittiboyina AG, Vukmanovic S, Khan IA. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment. Toxicol In Vitro 2018; 46:237-245. [DOI: 10.1016/j.tiv.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
222
|
Abstract
Over the recent years development toward assessing skin sensitization hazard has moved toward non-animal testing methods. These methods are based on the key events as described in the OECD Adverse Outcome Pathway (AOP) for skin sensitization initiated by covalent binding to proteins. As these individual methods address mainly one mechanistic event (key event) in the initiation of skin sensitization, combination of different methods are needed to conclude on the skin sensitization hazard. Validated and regulatory adopted (EU and OECD) in chemico/in vitro methods are available for KEs 1-3 and are presented here. This chapter also illustrates how individual test methods can be combined by providing two examples of defined approaches to testing and assessment for skin sensitization hazard identification and assessment.
Collapse
|
223
|
Potter TM, Neun BW, Dobrovolskaia MA. In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions. Methods Mol Biol 2018; 1682:197-210. [PMID: 29039104 DOI: 10.1007/978-1-4939-7352-1_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Delayed-type hypersensitivity (DTH) reactions are among the common reasons for drug withdrawal from clinical use during the post-marketing stage. Several in vivo methods have been developed to test DTH responses in animal models. They include the local lymph node assay (LLNA) and local lymph node proliferation assay (LLNP). While LLNA is instrumental in testing topically administered formulations (e.g., creams), the LLNP was proven to be predictive of drug-mediated DTH in response to small molecule pharmaceuticals. Global efforts in reducing the use of research animals lead to the development of in vitro models to predict test-material-mediated DTH. Two such models include analysis of surface marker expression in human cell lines THP-1 and U-937. These tests are known as the human cell line activation test (hCLAT) and myeloid U937 skin sensitization test (MUSST or U-SENS), respectively. Here we describe experimental procedures for all these methods, discuss their in vitro-in vivo correlation, and suggest a strategy for applying these tests to analyze engineered nanomaterials and nanotechnology-formulated drug products.
Collapse
Affiliation(s)
- Timothy M Potter
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Barry W Neun
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Marina A Dobrovolskaia
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
224
|
Hirota M, Ashikaga T, Kouzuki H. Development of an artificial neural network model for risk assessment of skin sensitization using human cell line activation test, direct peptide reactivity assay, KeratinoSens™ and in silico structure alert parameter. J Appl Toxicol 2017; 38:514-526. [DOI: 10.1002/jat.3558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Morihiko Hirota
- Shiseido Global Innovation Center; Shiseido Co. Ltd.; 2-2-1 Hayabuchi, Tsuzuki-ku Yokohama-shi Kanagawa 224-8558 Japan
| | - Takao Ashikaga
- Shiseido Global Innovation Center; Shiseido Co. Ltd.; 2-2-1 Hayabuchi, Tsuzuki-ku Yokohama-shi Kanagawa 224-8558 Japan
| | - Hirokazu Kouzuki
- Shiseido Global Innovation Center; Shiseido Co. Ltd.; 2-2-1 Hayabuchi, Tsuzuki-ku Yokohama-shi Kanagawa 224-8558 Japan
| |
Collapse
|
225
|
Wareing B, Urbisch D, Kolle SN, Honarvar N, Sauer UG, Mehling A, Landsiedel R. Prediction of skin sensitization potency sub-categories using peptide reactivity data. Toxicol In Vitro 2017; 45:134-145. [DOI: 10.1016/j.tiv.2017.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/11/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022]
|
226
|
Moreira LC, de Ávila RI, Veloso DFMC, Pedrosa TN, Lima ES, do Couto RO, Lima EM, Batista AC, de Paula JR, Valadares MC. In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermocosmetic product. Toxicol In Vitro 2017; 45:397-408. [DOI: 10.1016/j.tiv.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/03/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
|
227
|
Kreiling R, Gehrke H, Broschard TH, Dreeßen B, Eigler D, Hart D, Höpflinger V, Kleber M, Kupny J, Li Q, Ungeheuer P, Sauer UG. In chemico, in vitro and in vivo comparison of the skin sensitizing potential of eight unsaturated and one saturated lipid compounds. Regul Toxicol Pharmacol 2017; 90:262-276. [DOI: 10.1016/j.yrtph.2017.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 11/25/2022]
|
228
|
Bock S, Said A, Müller G, Schäfer-Korting M, Zoschke C, Weindl G. Characterization of reconstructed human skin containing Langerhans cells to monitor molecular events in skin sensitization. Toxicol In Vitro 2017; 46:77-85. [PMID: 28941582 DOI: 10.1016/j.tiv.2017.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Human cell-based approaches to assess defined key events in allergic contact dermatitis (ACD) are well-established, but lack cutaneous penetration and biotransformation as well as cellular cross-talk. Herein, we integrated in vitro-generated immature MUTZ-3-derived Langerhans-like cells (MUTZ-LCs) or monocyte-derived LC-like cells (MoLCs) into reconstructed human skin (RHS), consistent of a stratified epidermis formed by primary keratinocytes on a dermal compartment with collagen-embedded primary fibroblasts. LC-like cells were mainly localized in the epidermal compartment and distributed homogenously in accordance with native human skin. Topical application of the strong contact sensitizer 2,4-dinitrochlorobenzene (DNCB) induced IL-6 and IL-8 secretion in RHS with LC-like cells, whereas no change was observed in reference models. Increased gene expression of CD83, PD-L1, and CXCR4 in the dermal compartment indicated LC maturation. Importantly, exposure to DNCB enhanced mobility of the LC-like cells from epidermal to dermal compartments. In response to the moderate sensitizer isoeugenol and irritant sodium dodecyl sulphate, the obtained response was less pronounced. In summary, we integrated immature and functional MUTZ-LCs and MoLCs into RHS and provide a unique comparative experimental setting to monitor early events during skin sensitization.
Collapse
Affiliation(s)
- Stephanie Bock
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - André Said
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Gerrit Müller
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
229
|
Sachana M, Leinala E. Approaching Chemical Safety Assessment Through Application of Integrated Approaches to Testing and Assessment: Combining Mechanistic Information Derived from Adverse Outcome Pathways and Alternative Methods. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Organization for Economic Co-operation and Development (OECD), Paris, France
| | - Eeva Leinala
- Environment Health and Safety Division, Organization for Economic Co-operation and Development (OECD), Paris, France
| |
Collapse
|
230
|
Gabbert S, Leontaridou M, Landsiedel R. A Critical Review of Adverse Outcome Pathway-Based Concepts and Tools for Integrating Information from Nonanimal Testing Methods: The Case of Skin Sensitization. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Silke Gabbert
- Environmental Economics and Natural Resources Group, Wageningen University, Wageningen, The Netherlands
| | - Maria Leontaridou
- Environmental Economics and Natural Resources Group, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
231
|
Non-animal skin sensitization safety assessments for cosmetic ingredients – What is possible today? CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
232
|
Otsubo Y, Nishijo T, Miyazawa M, Saito K, Mizumachi H, Sakaguchi H. Binary test battery with KeratinoSens™ and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction. Regul Toxicol Pharmacol 2017; 88:118-124. [DOI: 10.1016/j.yrtph.2017.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/12/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
|
233
|
Galbiati V. In vitro testing of drug-induced systemic hypersensitivity: Just a burden or an opportunity? CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
234
|
Vinken M, Knapen D, Vergauwen L, Hengstler JG, Angrish M, Whelan M. Adverse outcome pathways: a concise introduction for toxicologists. Arch Toxicol 2017; 91:3697-3707. [PMID: 28660287 DOI: 10.1007/s00204-017-2020-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
Abstract
Adverse outcome pathways (AOPs) are designed to provide a clear-cut mechanistic representation of critical toxicological effects that propagate over different layers of biological organization from the initial interaction of a chemical with a molecular target to an adverse outcome at the individual or population level. Adverse outcome pathways are currently gaining momentum, especially in view of their many potential applications as pragmatic tools in the fields of human toxicology, ecotoxicology, and risk assessment. A number of guidance documents, issued by the Organization for Economic Cooperation and Development, as well as landmark papers, outlining best practices to develop, assess and use AOPs, have been published in the last few years. The present paper provides a synopsis of the main principles related to the AOP framework for the toxicologist less familiar with this area, followed by two case studies relevant for human toxicology and ecotoxicology.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.,Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Michelle Angrish
- National Center for Environmental Assessment, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
235
|
Clouet E, Kerdine-Römer S, Ferret PJ. Comparison and validation of an in vitro skin sensitization strategy using a data set of 33 chemical references. Toxicol In Vitro 2017; 45:374-385. [PMID: 28539215 DOI: 10.1016/j.tiv.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Allergic contact dermatitis (ACD) is an adverse health effect that develops following repeated exposure to skin sensitizing chemicals. An animal testing ban has been applied in EU, leading to development of reliably predictive non-animal methods. Several in vitro methods have been developed as alternatives but one single non-animal test method is not been sufficient to fully address since the LLNA test ban. Here, we have selected an ITS (Integrated Testing Strategy) for skin sensitization which focuses on three in vitro methods that covered the first three steps of the AOP (DPRA, SENS-IS or h-CLAT). The aim of this study was to compare these three methods due to the WoE approach based on a 2-out-of-3-assessment. The results of 33 references were compared to in vivo data (especially human). We have shown that tested firstly DPRA and SENS-IS have permitted to conclude on 29 of 33 chemicals, whereas DPRA and h-CLAT on 25, and SENS-IS and h-CLAT on 23. With this sequence, DPRA and SENS-IS and then h-CLAT in case of equivocal results, we conclude more quickly by performing fewer tests. Thereby, we have shown that it is better to follow a preferential sequence than testing chemicals simultaneously with these three methods.
Collapse
Affiliation(s)
- Elodie Clouet
- Pierre Fabre Dermo-Cosmetics Research & Development, Toxicology Division, Safety Department, Toulouse, France; UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Saadia Kerdine-Römer
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Pierre-Jacques Ferret
- Pierre Fabre Dermo-Cosmetics Research & Development, Toxicology Division, Safety Department, Toulouse, France
| |
Collapse
|
236
|
Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen ML, Hummler E, Jakasa I, Jurakić-Tončic R, John SM, Khnykin D, Molin S, Holm JO, Suomela S, Thierse HJ, Kezic S, Martin SF, Thyssen JP. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis 2017; 77:1-16. [DOI: 10.1111/cod.12789] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sjors A. Koppes
- Department of Coronel Institute of Occupational Health, Academic Medical Center; University of Amsterdam; 1105 AZ Amsterdam The Netherlands
- Department of Dermatology-Allergology; VU University Medical Centre; 081 HV Amsterdam The Netherlands
| | - Kristiane A. Engebretsen
- Department of Dermatology and Allergy, National Allergy Research Centre; Herlev and Gentofte Hospital, University of Copenhagen; 2900 Hellerup Denmark
| | - Tove Agner
- Department of Dermatology; Bispebjerg Hospital, University of Copenhagen; 2400 Copenhagen Denmark
| | | | - Teresa Berents
- Institute of Clinical Medicine; University of Oslo; 0318 Oslo Norway
- Department of Dermatology; Oslo University Hospital; 0424 Oslo Norway
| | - Johanna Brandner
- Department of Dermatology and Venerology; University Hospital Hamburg-Eppendorf; 20246 Hamburg Germany
| | - Richard Brans
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; 49076 Osnabrück Germany
| | - Maja-Lisa Clausen
- Department of Dermatology; Bispebjerg Hospital, University of Copenhagen; 2400 Copenhagen Denmark
| | - Edith Hummler
- Department of Pharmacology and Toxicology; University of Lausanne; 1011 Lausanne Switzerland
| | - Ivone Jakasa
- Faculty of Food Technology and Biotechnology, Department of Chemistry and Biochemistry, Laboratory for Analytical Chemistry; University of Zagreb; 10000 Zagreb Croatia
| | - Ružica Jurakić-Tončic
- University Department of Dermatovenereology; Clinical Hospital Zagreb and School of Medicine; 10000 Zagreb Croatia
| | - Swen M. John
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; 49076 Osnabrück Germany
| | - Denis Khnykin
- Department of Pathology; Oslo University Hospital - Rikshospitalet; 0424 Oslo Norway
- Centre for Immune Regulation; University of Oslo; 0424 Oslo Norway
| | - Sonja Molin
- Department of Dermatology and Allergology; Ludwig-Maximilians-University; 81377 München Germany
| | - Jan O. Holm
- Institute of Clinical Medicine; University of Oslo; 0318 Oslo Norway
- Department of Dermatology; Oslo University Hospital; 0424 Oslo Norway
| | - Sari Suomela
- Department of Dermatology; Finnish Institute of Occupational Health; 00251 Helsinki Finland
| | - Hermann-Josef Thierse
- Department of Chemicals and Product Safety; German Federal Institute for Risk Assessment; 10589 Berlin Germany
- Laboratory for Immunology & Proteomics, Department of Dermatology and University Medical Centre Mannheim; University of Heidelberg; 68167 Mannheim Germany
| | - Sanja Kezic
- Department of Coronel Institute of Occupational Health, Academic Medical Center; University of Amsterdam; 1105 AZ Amsterdam The Netherlands
| | - Stefan F. Martin
- Department of Dermatology, Allergy Research Group; Medical Centre - University of Freiburg; 79104 Freiburg Germany
| | - Jacob P. Thyssen
- Department of Dermatology and Allergy, National Allergy Research Centre; Herlev and Gentofte Hospital, University of Copenhagen; 2900 Hellerup Denmark
| |
Collapse
|
237
|
Drewe WC, Payne MP, Williams RV. Phosphite esters: a novel class of contact allergen. Contact Dermatitis 2017; 76:312-314. [DOI: 10.1111/cod.12704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
|
238
|
Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, Studer C, Krug HF. Green Toxicology: a strategy for sustainable chemical and material development. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:16. [PMID: 28435767 PMCID: PMC5380705 DOI: 10.1186/s12302-017-0115-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 05/04/2023]
Abstract
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Hartung
- John Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
- CAAT-Europe, University of Konstanz, Universitaetsstrasse 10, 78467 Constance, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Mathes
- DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany
| | | | | | - Christoph Studer
- Federal Office of Public Health, Schwarzenburgstraße 157, 3003 Bern, Switzerland
| | - Harald F. Krug
- Empa, Materials Science and Technology, Lerchenfeld-straße 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
239
|
Fitzpatrick JM, Patlewicz G. Application of IATA - A case study in evaluating the global and local performance of a Bayesian network model for skin sensitization. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:297-310. [PMID: 28423913 PMCID: PMC6284231 DOI: 10.1080/1062936x.2017.1311941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
The information characterizing key events in an Adverse Outcome Pathway (AOP) can be generated from in silico, in chemico, in vitro and in vivo approaches. Integration of this information and interpretation for decision making are known as integrated approaches to testing and assessment (IATA). One such IATA was published by Jaworska et al., which describes a Bayesian network model known as ITS-2. The current work evaluated the performance of ITS-2 using a stratified cross-validation approach. We also characterized the impact of replacing the most significant component of the network, output from the expert system TIMES-SS, with structural alert information from the OECD Toolbox and Toxtree. Lack of structural alerts or TIMES-SS predictions yielded a sensitization potential prediction of 79%. If the TIMES-SS prediction was replaced by a structural alert indicator, the network predictivity increased up to 87%. The original network's predictivity was 89%. The local applicability domain of the original ITS-2 network was also evaluated using reaction mechanistic domains to understand what types of chemicals ITS-2 was able to make the best predictions for. We found that the original network was successful at predicting which chemicals would be sensitizers, but not at predicting their potency.
Collapse
Affiliation(s)
- J M Fitzpatrick
- a National Center for Computational Toxicology (NCCT), US Environmental Protection Agency (US EPA) , Durham , USA
| | - G Patlewicz
- a National Center for Computational Toxicology (NCCT), US Environmental Protection Agency (US EPA) , Durham , USA
| |
Collapse
|
240
|
Watzek N, Berger F, Kolle SN, Kaufmann T, Becker M, van Ravenzwaay B. Assessment of skin sensitization under REACH: A case report on vehicle choice in the LLNA and its crucial role preventing false positive results. Regul Toxicol Pharmacol 2017; 85:25-32. [DOI: 10.1016/j.yrtph.2017.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
|
241
|
Vukmanović S, Sadrieh N. Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Crit Rev Toxicol 2017; 47:415-432. [DOI: 10.1080/10408444.2017.1288025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| | - Nakissa Sadrieh
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| |
Collapse
|
242
|
Behaviour of chemical respiratory allergens in novel predictive methods for skin sensitisation. Regul Toxicol Pharmacol 2017; 86:101-106. [PMID: 28274809 DOI: 10.1016/j.yrtph.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 12/30/2022]
Abstract
Asthma resulting from sensitisation of the respiratory tract to chemicals is an important occupational health issue, presenting many toxicological challenges. Most importantly there are no recognised predictive methods for respiratory allergens. Nevertheless, it has been found that all known chemical respiratory allergens elicit positive responses in assays for skin sensitising chemicals. Thus, chemicals failing to induce a positive response in skin sensitisation assays such as the local lymph node assay (LLNA) lack not only skin sensitising activity, but also the potential to cause respiratory sensitisation. However, it is unclear whether it will be possible to regard chemicals that are negative in in vitro skin sensitisation tests also as lacking respiratory sensitising activity. To address this, the behaviour of chemical respiratory allergens in the LLNA and in recently validated non-animal tests for skin sensitisation have been examined. Most chemical respiratory allergens are positive in one or more newly validated non-animal test methods, although the situation varies between individual assays. The use of an integrated testing strategy could provide a basis for recognition of most respiratory sensitising chemicals. However, a more complete picture of the performance characteristics of such tests is required before specific recommendations can be made.
Collapse
|
243
|
Petry T, Bosch A, Coste X, Eigler D, Germain P, Seidel S, Jean PA. Evaluation of in vitro assays for the assessment of the skin sensitization hazard of functional polysiloxanes and silanes. Regul Toxicol Pharmacol 2017; 84:64-76. [DOI: 10.1016/j.yrtph.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 12/16/2016] [Indexed: 11/15/2022]
|
244
|
Galbiati V, Papale A, Marinovich M, Gibbs S, Roggen E, Corsini E. Development of an in vitro method to estimate the sensitization induction level of contact allergens. Toxicol Lett 2017; 271:1-11. [PMID: 28189648 DOI: 10.1016/j.toxlet.2017.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
No standardized in vitro methods to assess potency of skin sensitizers are available. Recently, we standardized a procedure which combines the epidermal equivalent potency assay with assessment of IL-18 to provide a single test for identification and classification of skin sensitizers. This current study aimed to extend tested chemicals, and to provide a simple in vitro method for estimation of the expected sensitization induction level interpolating in vitro EC50 and IL-18 SI2 values to predict LLNA EC3 and/or human NOEL from standards curves generated using reference contact allergens. Reconstituted human epidermis was challenged with 14 chemicals not previously tested benzoquinone, chlorpromazine, chloramine T, benzyl salicylate, diethyl maleate, dihydroeugenol, 2,4-dichloronitrobenzene, benzyl cinnamate, imidazolidinyl urea, and limonene as contact sensitizers while benzyl alcohol, isopropanol, dimethyl isophthalate and 4-aminobenzoic acid as non-sensitizers in the LLNA. Where for benzyl salicylate and benzyl cinnamate no sensitization was observed in human predictive studies, positive responses to benzyl alcohol and dimethyl isophthalate were reported. The proposed method correlates better with human data, correctly predicting substances incorrectly classified by LLNA. With the exception of benzoquinone (interference with both MTT and IL-18 ELISA), and chloramine T (underestimated in the interpolation), a good estimation of LLNA EC3 and in vivo available human NOEL values was obtained.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Angela Papale
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Sue Gibbs
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands; Department of Oral Cell Biology, ACTA, Amsterdam, The Netherlands
| | | | - Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
245
|
Schultz TW, Dimitrova G, Dimitrov S, Mekenyan OG. The adverse outcome pathway for skin sensitisation: Moving closer to replacing animal testing. Altern Lab Anim 2017; 44:453-460. [PMID: 27805828 DOI: 10.1177/026119291604400515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article outlines the work of the Organisation for Economic Co-operation and Development (OECD) that led to being jointly awarded the 2015 Lush Black Box Prize. The award-winning work centred on the development of 'The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins'. This Adverse Outcome Pathway (AOP) has provided the mechanistic basis for the integration of skin sensitisation-related information. Recent developments in integrated approaches to testing and assessment, based on the AOP, are summarised. The impact of the AOP on regulatory policy and on the Three Rs are discussed. An overview of the next generation of the skin sensitisation AOP module in the OECD QSAR Toolbox, based on more-recent work at the Laboratory of Mathematical Chemistry, is also presented.
Collapse
Affiliation(s)
- Terry W Schultz
- The University of Tennessee, College of Veterinary Medicine, Knoxville, TN, USA
| | - Gergana Dimitrova
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Sabcho Dimitrov
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| | - Ovanes G Mekenyan
- Laboratory of Mathematical Chemistry (LMC), As. Zlatarov University, Bourgas, Bulgaria
| |
Collapse
|
246
|
Sullivan K. It takes a village: Stakeholder participation is essential to transforming science. Altern Lab Anim 2017; 44:411-415. [PMID: 27805823 DOI: 10.1177/026119291604400517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Efforts toward replacing the use of animals in toxicology testing have begun to make significant headway in the last several years, due to co-operative and pragmatic efforts on the part of many stakeholders, and the public pressure that non-governmental advocacy organisations represent. Science-focused advocacy organisations have a unique role to play in these efforts, as they often have flexibility to adapt quickly to keep a project going and forge connections among different kinds of stakeholders to help encourage buy-in. This year, meaningful progress has been made, especially in regulatory laws and policies, which will lead to the replacement of animals in toxicology testing. In order to keep this momentum, we need to measure progress -- but this requires improved transparency and regular reporting of animal use. In addition, we should consider how strategies that have successfully reduced and replaced animal use in toxicology can be applied to basic biomedical research practices.
Collapse
Affiliation(s)
- Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| |
Collapse
|
247
|
Zang Q, Paris M, Lehmann DM, Bell S, Kleinstreuer N, Allen D, Matheson J, Jacobs A, Casey W, Strickland J. Prediction of skin sensitization potency using machine learning approaches. J Appl Toxicol 2017; 37:792-805. [PMID: 28074598 DOI: 10.1002/jat.3424] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joanna Matheson
- US Consumer Product Safety Commission, Bethesda, MD, 20814, USA
| | | | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, NC, 27709, USA
| | | |
Collapse
|
248
|
Sauer UG, Hill EH, Curren RD, Raabe HA, Kolle SN, Teubner W, Mehling A, Landsiedel R. Local tolerance testing under REACH: Accepted non-animal methods are not on equal footing with animal tests. Altern Lab Anim 2017; 44:281-99. [PMID: 27494627 DOI: 10.1177/026119291604400311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required.
Collapse
Affiliation(s)
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - Erin H Hill
- Institute for In Vitro Sciences (IIVS), Gaithersburg, MD, USA
| | - Rodger D Curren
- Institute for In Vitro Sciences (IIVS), Gaithersburg, MD, USA
| | - Hans A Raabe
- Institute for In Vitro Sciences (IIVS), Gaithersburg, MD, USA
| | - Susanne N Kolle
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | | | | |
Collapse
|
249
|
Verheyen GR, Braeken E, Van Deun K, Van Miert S. Evaluation of in silico tools to predict the skin sensitization potential of chemicals. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:59-73. [PMID: 28105856 DOI: 10.1080/1062936x.2017.1278617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Public domain and commercial in silico tools were compared for their performance in predicting the skin sensitization potential of chemicals. The packages were either statistical based (Vega, CASE Ultra) or rule based (OECD Toolbox, Toxtree, Derek Nexus). In practice, several of these in silico tools are used in gap filling and read-across, but here their use was limited to make predictions based on presence/absence of structural features associated to sensitization. The top 400 ranking substances of the ATSDR 2011 Priority List of Hazardous Substances were selected as a starting point. Experimental information was identified for 160 chemically diverse substances (82 positive and 78 negative). The prediction for skin sensitization potential was compared with the experimental data. Rule-based tools perform slightly better, with accuracies ranging from 0.6 (OECD Toolbox) to 0.78 (Derek Nexus), compared with statistical tools that had accuracies ranging from 0.48 (Vega) to 0.73 (CASE Ultra - LLNA weak model). Combining models increased the performance, with positive and negative predictive values up to 80% and 84%, respectively. However, the number of substances that were predicted positive or negative for skin sensitization in both models was low. Adding more substances to the dataset will increase the confidence in the conclusions reached. The insights obtained in this evaluation are incorporated in a web database www.asopus.weebly.com that provides a potential end user context for the scope and performance of different in silico tools with respect to a common dataset of curated skin sensitization data.
Collapse
Affiliation(s)
- G R Verheyen
- a RADIUS group , Thomas More University College , Geel , Belgium
| | - E Braeken
- a RADIUS group , Thomas More University College , Geel , Belgium
| | - K Van Deun
- a RADIUS group , Thomas More University College , Geel , Belgium
| | - S Van Miert
- a RADIUS group , Thomas More University College , Geel , Belgium
| |
Collapse
|
250
|
Alves VM, Capuzzi SJ, Muratov E, Braga RC, Thornton T, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6501-6515. [PMID: 28630595 PMCID: PMC5473635 DOI: 10.1039/c6gc01836j] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential.
Collapse
Affiliation(s)
- Vinicius M. Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Rodolpho C. Braga
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Thomas Thornton
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Judy Strickland
- Integrated Laboratory Systems, Inc., P.O. Box 13501, Research Triangle Park, NC, 27709, USA
| | - Nicole Kleinstreuer
- National Institutes of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Carolina H. Andrade
- Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goias, Goiania, GO, 74605-170, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|