201
|
A resistin binding peptide selected by phage display inhibits 3T3-L1 preadipocyte differentiation. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200603020-00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
202
|
Krumpe LR, Mori T. The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs. Int J Pept Res Ther 2006; 12:79-91. [PMID: 19444323 PMCID: PMC2678933 DOI: 10.1007/s10989-005-9002-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2005] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited.
Collapse
Affiliation(s)
- Lauren R.H. Krumpe
- Basic Research Program, Science Applications International Corporation-Frederick, Inc., Frederick, MD USA
| | - Toshiyuki Mori
- Molecular Targets Development Program, Center for Cancer Research, National Cancer Institute, Frederick, MD USA
- Biomedical Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85 Yodogawaku, Osaka, 532-8686 Japan
| |
Collapse
|
203
|
Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B. Phage display in the study of infectious diseases. Trends Microbiol 2006; 14:141-7. [PMID: 16460941 PMCID: PMC7127285 DOI: 10.1016/j.tim.2006.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/05/2006] [Accepted: 01/20/2006] [Indexed: 12/01/2022]
Abstract
Microbial infections are dependent on the panoply of interactions between pathogen and host and identifying the molecular basis of such interactions is necessary to understand and control infection. Phage display is a simple functional genomic methodology for screening and identifying protein–ligand interactions and is widely used in epitope mapping, antibody engineering and screening for receptor agonists or antagonists. Phage display is also used widely in various forms, including the use of fragment libraries of whole microbial genomes, to identify peptide–ligand and protein–ligand interactions that are of importance in infection. In particular, this technique has proved successful in identifying microbial adhesins that are vital for colonization.
Collapse
Affiliation(s)
- Lisa M Mullen
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | | | | | | | |
Collapse
|
204
|
Naumann TA, Savinov SN, Benkovic SJ. Engineering an affinity tag for genetically encoded cyclic peptides. Biotechnol Bioeng 2006; 92:820-30. [PMID: 16155946 DOI: 10.1002/bit.20644] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptide expression libraries are valuable probes of cellular function. SICLOPPS technology merges the principal advantages of both genetic methods and small-molecule approaches in yielding superior library sizes of operationally stable, structurally well-defined entities with an established biological and medicinal record. Here, we describe development, application, and the first-generation library implementation of an expressed affinity tag for a library of cyclic peptides. A tripeptide streptavidin-binding motif (HPQ) proved to be compatible with presentation from a backbone cyclized template. A resulting peptide was employed as a sensitive indicator of peptide splicing, expression, and recovery as well as an affinity tag for one-step purification. Specific recognition of the tag by streptavidin was also critical for an analysis of intein mutants. Finally, the initially identified probe was used as a template for design of a streptavidin-responsive cyclic peptide library.
Collapse
Affiliation(s)
- Todd A Naumann
- Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
205
|
Levin AM, Coroneus JG, Cocco MJ, Weiss GA. Exploring the interaction between the protein kinase A catalytic subunit and caveolin-1 scaffolding domain with shotgun scanning, oligomer complementation, NMR, and docking. Protein Sci 2006; 15:478-86. [PMID: 16452625 PMCID: PMC2249769 DOI: 10.1110/ps.051911706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The techniques of phage-displayed homolog shotgun scanning, oligomer complementation, NMR secondary structure analysis, and computational docking provide a complementary suite of tools for dissecting protein-protein interactions. Focusing these tools on the interaction between the catalytic sub-unit of protein kinase A (PKAcat) and caveolin-1 scaffolding domain (CSD) reveals the first structural model for the interaction. Homolog shotgun scanning varied each CSD residue as either a wild-type or a homologous amino acid. Wild-type to homolog ratios from 116 different homologous CSD variants identified side-chain functional groups responsible for precise contacts with PKAcat. Structural analysis by NMR assigned an alpha-helical conformation to the central residues 84- 97 of CSD. The extensive mutagenesis data and NMR secondary structure information provided constraints for developing a model for the PKAcat-CSD interaction. Addition of synthetic CSD to phage-displayed CSD resulted in oligomer complementation, or enhanced binding to PKAcat. Together with previous experiments examining the interaction between CSD and endothelial nitric oxide synthase (eNOS), the results suggest a general oligomerization-dependent enhancement of binding between signal transducing enzymes and caveolin-1.
Collapse
Affiliation(s)
- Aron M Levin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
206
|
Borghouts C, Kunz C, Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 2006; 11:713-26. [PMID: 16138387 DOI: 10.1002/psc.717] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The completion of the human genome sequence and the development of new techniques, which allow the visualisation of comprehensive gene expression patterns, has led to the identification of a large number of gene products differentially expressed in tumours and corresponding normal tissues. The task at hand is the sorting of these genes into correlative and causative ones. Correlative genes are merely changed as a consequence of transformation and have no decisive effects upon transformation. In contrast, causative genes play a direct role in the process of cellular transformation and the maintenance of the transformed state, which can be exploited for therapeutic purposes. Oncogenes and tumour suppressor genes are prime targets for the development of new inhibitors and gene therapeutic strategies. However, many target oncogene products do not exhibit enzymatic activity that can be inhibited by conventional small molecular weight compounds. They exert their functions through regulated protein-protein or protein-DNA interactions and might require other compounds for efficient interference with such functions. Peptides are emerging as a novel class of drugs for cancer therapy, which could fulfil these tasks. Peptide therapy aims at the specific inhibition of inappropriately activated oncogenes. This review will focus on the selection procedures, which can be employed to identify useful peptides for the treatment of cancer. Before peptide-based therapeutics can become useful, it will be necessary to increase their stability by modifications or the use of scaffolds. Additionally, various delivery methods including liposomes and particularly the use of protein transduction domains (PTDs) have to be explored. These strategies will yield highly specific and more effective peptides and improve the potential of peptide-based anti-cancer therapeutics.
Collapse
Affiliation(s)
- Corina Borghouts
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | | | | |
Collapse
|
207
|
Abstract
During the past two decades, our understanding of oncogenesis has advanced considerably and many new signalling pathways have been identified. Differences in signalling events that distinguish normal cells from tumour cells provide new targets for the development of anticancer agents. Peptide aptamers are small peptide sequences that have been selected to recognise a predetermined target protein domain and are potentially able to interfere with its function. They represent useful molecules for manipulating protein function in vivo. The isolation and use of specific peptide aptamers as inhibitors of individual signalling components, essential in cancer development and progression, provides a new challenge for drug development. Although peptides make up only a small fraction of current therapeutics, their potential is being enhanced by new developments affecting their modification, stability, delivery and their successful application in preclinical settings. This review summarises the methods that can be used for the isolation and delivery of peptide aptamers, as well as the important achievements that have been made using such peptide aptamers in different systems. The applicability of peptide aptamers as novel cancer therapeutics will be discussed.
Collapse
Affiliation(s)
- Corina Borghouts
- Georg-Speyer-Haus Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany
| | | | | |
Collapse
|
208
|
Uchiyama F, Tanaka Y, Minari Y, Tokui N. Designing scaffolds of peptides for phage display libraries. J Biosci Bioeng 2005; 99:448-56. [PMID: 16233816 DOI: 10.1263/jbb.99.448] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/02/2005] [Indexed: 11/17/2022]
Abstract
Phage display is a powerful method for the discovery of peptide ligands that are used for analytical tools, drug discovery, and target validations. Phage display technology can produce a huge number of peptides and generate novel peptide ligands. Recently, phage display technology has successfully managed to create peptide ligands that bind to pharmaceutically difficult targets such as the erythropoietin receptor. As a result of the structural analysis of their ligands, we found that the conformational design of peptides in library is important for selecting high-affinity ligands that bind to every target from a phage peptide library. Key issues concern constraints on the conformation of peptides on the phage and the development of chemically synthesized peptides derived from peptides on phage. This review discusses studies related to the conformation of peptides selected from phage display peptide libraries in addition to the conversion from peptides to non-peptides.
Collapse
Affiliation(s)
- Fumiaki Uchiyama
- Department of Nutritional Sciences, Graduate School of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jounan-Ku, Fukuoka 814-0198, Japan.
| | | | | | | |
Collapse
|
209
|
Levin AM, Weiss GA. Optimizing the affinity and specificity of proteins with molecular display. MOLECULAR BIOSYSTEMS 2005; 2:49-57. [PMID: 16880922 DOI: 10.1039/b511782h] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Affinity maturation of receptor-ligand interactions represents an important area of academic and pharmaceutical research. Improving affinity and specificity of proteins can tailor potency for both in vivo and in vitro applications. A number of different display platforms including phage display, bacterial and yeast display, ribosome display, and mRNA display can optimize protein affinity and specificity. Here, we will review the advantages and disadvantages of these molecular display methods with a focus on their suitability for protein affinity maturation.
Collapse
Affiliation(s)
- A M Levin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
210
|
Park SG, Jeong YJ, Lee YY, Kim IJ, Seo SK, Kim EJ, Jung HC, Pan JG, Park SJ, Lee YJ, Kim IS, Choi IH. Hepatitis B virus-neutralizing anti-pre-S1 human antibody fragments from large naïve antibody phage library. Antiviral Res 2005; 68:109-15. [PMID: 16290278 DOI: 10.1016/j.antiviral.2005.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/24/2005] [Accepted: 06/27/2005] [Indexed: 12/16/2022]
Abstract
We report the construction of a large nonimmunized human phage antibody library in single-chain variable region fragment (scFv) format, which allowed the selection of antibodies that neutralize hepatitis B virus (HBV) in vitro. We generated 1.1 x 10(10) independent scFv clones using the cDNA of functional variable (V) gene segments of heavy and light chains purified from the peripheral blood mononuclear cells of 50 nonimmunized human donors. Using BIAcore, we selected two clones that recognized pre-S1 and neutralized pre-S1 and HBV binding to Chang liver cells. Clone G10 had the highest affinity (K(D)=1.69 x 10(-7)M), which was higher than that of clone 1E4 that was generated previously from a heavy chain-shuffled immune library. The off-rates of clones were within 10(-3)s(-1) as determined by BIAcore and were comparable to those of antibodies derived from a normal secondary immune response. In the inhibition assays of pre-S1 and virus binding to Chang liver cells using flow cytometry and the polymerase chain reaction, G10 had better neutralizing activity than 1E4. The new phage library may be a valuable source of antibodies with reasonable affinities to different targets, and the anti-pre-S1 G10 may be a good candidate for immunoprophylaxis against HBV infection.
Collapse
Affiliation(s)
- Sae-Gwang Park
- Department of Microbiology, College of Medicine and Center for Viral Disease Research, Inje University, Jin-Gu, Busan 614-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
R Michaud N. Novel peptides targeting the hepatocyte growth factor receptor c-Met for the treatment of cancer. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.5.621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
212
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2898-2901. [DOI: 10.11569/wcjd.v12.i12.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|