201
|
Kujawska M, Ignatowicz E, Ewertowska M, Markowski J, Jodynis-Liebert J. Cloudy apple juice protects against chemical-induced oxidative stress in rat. Eur J Nutr 2011; 50:53-60. [PMID: 20490519 DOI: 10.1007/s00394-010-0114-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 05/04/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apples abundant in phenolic compounds show a variety of biological activities that may contribute to beneficial effects against some chronic diseases. PURPOSE The aim of our study was to assess the protective effect of cloudy apple juice against chemical-induced oxidative stress in rats. METHODS Male Wistar rats were treated with apple juice per os, 10 mL/kg/day for 28 days and with a single dose of N-nitrosodiethylamine (NDEA), 150 mg/kg or carbon tetrachloride (CCl(4)), 2 mL/kg, 24 h before killing. Two groups of rats not pretreated with juice were administered each of the xenobiotics alone. RESULTS Microsomal lipid peroxidation in the liver was decreased in rats pretreated with juice by 52-87% when compared to animals given NDEA or CCl(4) alone. Pretreatment with juice protected antioxidant enzymes: catalase, glutathione peroxidase and glutathione reductase but not superoxide dismutase. Their activity was recovered by 49-173% when compared to that in rats given either toxicant alone. The plasma activity of paraoxonase 1 was reduced by both toxicants and was increased by 23% in the apple/CCl(4) group. A rise in plasma protein carbonyls caused by the xenobiotics was reduced by 20% only in apple/NDEA-treated rats. Also, in this group of animals, a 9% decrease in DNA damage in blood leukocytes was observed. CONCLUSION Phytochemicals in commonly consumed apple juice may protect some macromolecules against oxidative insult induced by xenobiotics.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznań University of Medical Sciences, 30 Dojazd Str, 60-631 Poznań, Poland
| | | | | | | | | |
Collapse
|
202
|
Michaelson-Richie ED, Loeber RL, Codreanu SG, Ming X, Liebler DC, Campbell C, Tretyakova NY. DNA-protein cross-linking by 1,2,3,4-diepoxybutane. J Proteome Res 2011; 9:4356-67. [PMID: 20666492 DOI: 10.1021/pr1000835] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1,2,3,4-diepoxybutane (DEB) is a strongly genotoxic diepoxide hypothesized to be the ultimate carcinogenic metabolite of the common industrial chemical and environmental carcinogen 1,3-butadiene. DEB is a bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs), which are thought to play a central role in its biological activity. Previous studies with recombinant proteins have shown that the biological outcomes of DEB-induced DPCs are strongly influenced by protein identities. The present work combines affinity capture methodology with mass spectrometry-based proteomics and immunological detection to identify the proteins that form DPCs in nuclear extracts from human cervical carcinoma (HeLa) cells. We identified 39 human proteins that form covalent DPCs in the presence of DEB. DNA-protein cross-linking efficiency following treatment with 25 mM DEB was 2-12%, depending on protein identity. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI+-MS/MS) analysis of the total proteolytic digests of cross-linked proteins revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, suggesting that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA.
Collapse
Affiliation(s)
- Erin D Michaelson-Richie
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Rhee JS, Kim RO, Chang HH, Lee J, Lee YM, Lee JS. Endocrine disrupting chemicals modulate expression of O⁶-methylguanine DNA methyltransferase (O⁶-MGMT) gene in the hermaphroditic fish, Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:141-9. [PMID: 20965277 DOI: 10.1016/j.cbpc.2010.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
O⁶-methylguanine-DNA methyltransferase (O⁶-MGMT; EC 2.1.1.63) is a key repair enzyme that helps to protect the cell against alkylation on DNA by removing a methyl group from the O⁶-position of guanine. Here, we cloned and sequenced the full-length O⁶-MGMT cDNA from the hermaphroditic fish, Kryptolebias marmoratus. Complete Km-O⁶-MGMT cDNA was 1324 bp in length, and the open reading frame of 567 bp encoded a polypeptide of 188 amino acid residues. Phylogenetic analysis revealed that Km-O⁶-MGMT was clustered with those of other fish species. Embryo, juveniles, and aged secondary fish had low levels of Km-O⁶-MGMT mRNA than adults, indicating more susceptibility to DNA damage by alkylating agent exposure during these developmental stages. Km-O⁶-MGMT mRNA levels differed according to tissue type and was highest in the liver. Exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU) exposure increased the mRNA expression of tumor suppressor gene such as p53 and oncogenes such as R-ras1, R-ras3, N-ras, c-fos as well as Km-O⁶-MGMT mRNA in a time-dependent manner. On the contrary, several (anti)estrogenic compounds (17β-estradiol 100 ng/L, tamoxifen 10 μg/L, bisphenol A 600 μg/L, and 4-tert-octylphenol 300 μg/L) suppressed mRNA expression of Km-O⁶-MGMT in most tissues, especially the liver. In juvenile fish, 17β-estradiol, bisphenol A, and 4-tert-octylphenol also decreased the expression of Km-O⁶-MGMT mRNA in a time-dependent manner. Overall, our finding shows that Km-O⁶-MGMT mRNA levels can be modulated by environmental estrogenic compounds as well as alkylating agents. This finding will be helpful to improve our knowledge of the effects of estrogenic compounds that contain the genotoxic ability to inhibit the DNA repair process in aquatic animals.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
The importance of epigenetics in normal development and tissue-specific gene expression, as well as in diseases such as cancer, is well established. DNA methylation is a primary epigenetic modification that is directly linked to the genome itself. Here, we review evidence supporting the promise of DNA methylation-based biomarkers in personalized medicine, discuss standard and emerging technologies for profiling DNA methylation on a genome-wide scale, and forecast how these approaches will be used in parallel to better understand the epigenetics of health and disease and apply that knowledge to advance the field of personalized medicine.
Collapse
|
205
|
Lotfi M, Afsharnezhad S, Raziee HR, Ghaffarzadegan K, Sharif S, Shamsara J, Lary S, Behravan J. Immunohistochemical Assessment of MGMT Expression and p53 Mutation in Glioblastoma Multiforme. TUMORI JOURNAL 2011; 97:104-8. [DOI: 10.1177/030089161109700118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and background The prognosis of glioblastoma multiforme (GBM) remains poor despite advances in surgery and adjuvant therapies. TP53 and O6-methylguanine-DNA methyltransferase (MGMT) are tumor suppressor genes that are implicated in GBM resistance to radiation and chemotherapy. In order to assess the expression of the protein products of these two genes, 50 GBM samples were analyzed in this study. Methods Demographic and clinical data along with postsurgery tumor samples from 50 GBM patients were collected from the pathology archive. MGMT and p53 protein expression was evaluated by immunohistochemistry. Results 52% of cases had mutated p53, predominantly expressed in the nuclei of tumor cells. MGMT immunohistochemistry was negative in 35 (70%) patients and positive in 15 (30%) others. Immunohistochemistry-negative specimens for MGMT expression showed a significantly higher expression of mutant p53 (P = 0.03). Conclusion MGMT expression was significantly lower in cells bearing p53 mutation. This indicates that there is a tendency for p53 activity to decline with MGMT inactivation. However, this study could not deduce which protein was the regulator of the other. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Marziyeh Lotfi
- Department of Biochemistry, Payame Nour University, Mashhad
| | - Sima Afsharnezhad
- Faculty of Medical Science, Islamic Azad University, Mashhad Branch, Mashhad
| | - Hamid Reza Raziee
- Radiation Oncology Department, Omid Hospital, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Kamran Ghaffarzadegan
- Pathology Department, Omid Hospital, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Samaneh Sharif
- Department of Biochemistry, Payame Nour University, Tehran
| | - Jamal Shamsara
- Biotechnology Laboratory, Biotechnology Research Center, Mashhad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Lary
- Pathology Department, Omid Hospital, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Javad Behravan
- Biotechnology Laboratory, Biotechnology Research Center, Mashhad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
206
|
Hang B. Formation and repair of tobacco carcinogen-derived bulky DNA adducts. J Nucleic Acids 2010; 2010:709521. [PMID: 21234336 PMCID: PMC3017938 DOI: 10.4061/2010/709521] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.
Collapse
Affiliation(s)
- Bo Hang
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
207
|
Sciuscio D, Diserens AC, van Dommelen K, Martinet D, Jones G, Janzer RC, Pollo C, Hamou MF, Kaina B, Stupp R, Levivier M, Hegi ME. Extent and patterns of MGMT promoter methylation in glioblastoma- and respective glioblastoma-derived spheres. Clin Cancer Res 2010; 17:255-66. [PMID: 21097691 DOI: 10.1158/1078-0432.ccr-10-1931] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Quantitative methylation-specific tests suggest that not all cells in a glioblastoma with detectable promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene carry a methylated MGMT allele. This observation may indicate cell subpopulations with distinct MGMT status, raising the question of the clinically relevant cutoff of MGMT methylation therapy. Epigenetic silencing of the MGMT gene by promoter methylation blunts repair of O6-methyl guanine and has been shown to be a predictive factor for benefit from alkylating agent therapy in glioblastoma. EXPERIMENTAL DESIGN Ten paired samples of glioblastoma and respective glioblastoma-derived spheres (GS), cultured under stem cell conditions, were analyzed for the degree and pattern of MGMT promoter methylation by methylation-specific clone sequencing, MGMT gene dosage, chromatin status, and respective effects on MGMT expression and MGMT activity. RESULTS In glioblastoma, MGMT-methylated alleles ranged from 10% to 90%. In contrast, methylated alleles were highly enriched (100% of clones) in respective GS, even when 2 MGMT alleles were present, with 1 exception (<50%). The CpG methylation patterns were characteristic for each glioblastoma exhibiting 25% to 90% methylated CpGs of 28 sites interrogated. Furthermore, MGMT promoter methylation was associated with a nonpermissive chromatin status in accordance with very low MGMT transcript levels and undetectable MGMT activity. CONCLUSIONS In MGMT-methylated glioblastoma, MGMT promoter methylation is highly enriched in GS that supposedly comprise glioma-initiating cells. Thus, even a low percentage of MGMT methylation measured in a glioblastoma sample may be relevant and predict benefit from an alkylating agent therapy.
Collapse
Affiliation(s)
- Davide Sciuscio
- Laboratory of Brain Tumor Biology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Onodera T, Morino K, Tokishita SI, Morita R, Masui R, Kuramitsu S, Ohta T. Role of alkyltransferase-like (ATL) protein in repair of methylated DNA lesions in Thermus thermophilus. Mutagenesis 2010; 26:303-8. [PMID: 21059809 DOI: 10.1093/mutage/geq093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermus thermophilus is an extremely thermophilic eubacterium that grows optimally at 70-75°C. It does not have a gene encoding O(6)-alkylguanine-DNA alkyltransferase (AGT) for the repair of O(6)-methylguanine (O(6)-meG), but it has a homologous gene atl encoding alkyltransferase-like (ATL) proteins in which the cysteine residue in the active site of the PCHR motif conserved in AGT is replaced by alanine (i.e. lack of methyltransferase activity). To investigate the role of ATL protein in the repair of O(6)-meG, we isolated atl deletion mutants and measured specific G:C→A:T transition mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by a His(+) reversion system at the hisD3110 locus. MNNG caused an increased mutation frequency in the atl-deficient mutant but a significantly higher frequency increase in a uvrA mutant, which is deficient in nucleotide excision repair (NER), indicating that both ATL protein and NER played an important role in preventing G:C→A:T transitions. We observed no difference in MNNG sensitivity between the uvrA atl double mutant and the parent uvrA strain. Our results support a recently proposed repair model in which ATL protein acts as a sensor of O(6)-meG damage and recruits UvrA protein to repair the lesion via an NER system. In addition, the finding that the uvrA atl strain mutated with greater frequency than the single atl strain suggests that O(6)-meG is repaired by NER in the absence of ATL protein. We also discuss the possible association of a transcription-repair coupling factor in a transcription-coupled repair pathway and of MutS protein in a mismatch repair pathway with ATL/NER-mediated repair of O(6)-meG.
Collapse
Affiliation(s)
- Takefumi Onodera
- Department of Environmental Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
209
|
Passos-Silva DG, Rajão MA, Nascimento de Aguiar PH, Vieira-da-Rocha JP, Machado CR, Furtado C. Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major. J Nucleic Acids 2010; 2010:840768. [PMID: 20976268 PMCID: PMC2952945 DOI: 10.4061/2010/840768] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/29/2010] [Accepted: 08/25/2010] [Indexed: 12/18/2022] Open
Abstract
A wide variety of DNA lesions arise due to environmental agents, normal cellular metabolism, or intrinsic weaknesses in the chemical bonds of DNA. Diverse cellular mechanisms have evolved to maintain genome stability, including mechanisms to repair damaged DNA, to avoid the incorporation of modified nucleotides, and to tolerate lesions (translesion synthesis). Studies of the mechanisms related to DNA metabolism in trypanosomatids have been very limited. Together with recent experimental studies, the genome sequencing of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, has revealed interesting features of the DNA repair mechanism in these protozoan parasites, which will be reviewed here.
Collapse
Affiliation(s)
- Danielle Gomes Passos-Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
210
|
Efficacy of protracted dose-dense temozolomide in patients with recurrent high-grade glioma. J Neurooncol 2010; 103:585-93. [DOI: 10.1007/s11060-010-0423-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/13/2010] [Indexed: 11/26/2022]
|
211
|
Díaz-Valdés N, Comendador MA, Sierra LM. Mus308 processes oxygen and nitrogen ethylation DNA damage in germ cells of Drosophila. J Nucleic Acids 2010; 2010. [PMID: 20936147 PMCID: PMC2948884 DOI: 10.4061/2010/416364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/27/2010] [Accepted: 09/02/2010] [Indexed: 11/22/2022] Open
Abstract
The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system.
Collapse
Affiliation(s)
- Nancy Díaz-Valdés
- Área de Genética, Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
212
|
Peterson LA. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J Nucleic Acids 2010; 2010. [PMID: 20871819 PMCID: PMC2943119 DOI: 10.4061/2010/284935] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/08/2010] [Indexed: 12/24/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N′-nitrosonornicotine (NNN) are tobacco-specific nitrosamines present in tobacco products and smoke. Both compounds are carcinogenic in laboratory animals, generating tumors at sites comparable to those observed in smokers. These Group 1 human carcinogens are metabolized to reactive intermediates that alkylate DNA. This paper focuses on the DNA pyridyloxobutylation pathway which is common to both compounds. This DNA route generates 7-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxythymidine, and O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine as well as unstable adducts which dealkylate to release 4-hydroxy-1-{3-pyridyl)-1-butanone or depyriminidate/depurinate to generate abasic sites. There are multiple repair pathways responsible for protecting against the genotoxic effects of these adducts, including adduct reversal as well as base and nucleotide excision repair pathways. Data indicate that several DNA adducts contribute to the overall mutagenic properties of pyridyloxobutylating agents. Which adducts contribute to the carcinogenic properties of this pathway are likely to depend on the biochemistry of the target tissue.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
213
|
Chuk MK, Cole DE, McCully C, Loktionova NA, Pegg AE, Parker RJ, Pauly G, Widemann BC, Balis FM, Fox E. Plasma and CNS pharmacokinetics of O4-benzylfolic acid (O4BF) and metabolite in a non-human primate model. Cancer Chemother Pharmacol 2010; 67:1291-7. [PMID: 20725726 DOI: 10.1007/s00280-010-1407-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 07/11/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE O(6)-alkylguanine-DNA alkyltransferase (AGT) repairs DNA damage from alkylating agents by transferring the alkyl adducts from the O(6)-position of guanine in DNA to AGT. The folate analog O(4)-benzylfolic acid (O(4)BF) is an inhibitor of AGT with reported selectivity of the alpha-folate receptor in tumors. We studied plasma and cerebrospinal fluid (CSF) pharmacokinetics and CSF penetration of O(4)BF in a non-human primate model. METHODS Rhesus monkeys (Macaca mulatta) received O(4)BF (10-50 mg/kg) intravenously, and serial blood and CSF samples were obtained. Analyte concentrations in plasma were measured by HPLC/photo diode array, and an HPLC/MS/MS assay was used for CSF samples. RESULTS A putative metabolite of O(4)BF was detected in plasma and CSF. O(4)BF and the metabolite inactivated purified AGT with ED(50) of 0.04 mcM. The median clearance of O(4)BF was 8 ml/min/kg and half-life was 1.1 h. The metabolite had a substantially longer half-life (>20 h) and greater AUC than O(4)BF. The AUC of the metabolite increased disproportionately to the dose of O(4)BF, suggesting saturable elimination. CSF penetration of O(4)BF and its metabolite was < 1%. At the 50 mg/kg dose level, the C(max) in CSF for O(4)BF was less than 0.09 mcM and for the metabolite the C(max) ranged from 0.02 to 0.04 mcM (O(4)BF equivalents). CONCLUSIONS Concentrations of O(4)BF and the metabolite in CSF exceeded the ED(50) of AGT; however, recently reported lack of receptor specificity and pharmacokinetic data suggesting saturable elimination of both O(4)BF and its metabolite may limit dose-escalation and future clinical development of this agent.
Collapse
Affiliation(s)
- Meredith K Chuk
- Pediatric Oncology Branch, National Cancer Institute, 10 Center Drive, Building 10/Rm 1W-5750, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
McManus FP, Fang Q, Booth JDM, Noronha AM, Pegg AE, Wilds CJ. Synthesis and characterization of an O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand cross-link in a 5'-GNC motif and repair by human O(6)-alkylguanine-DNA alkyltransferase. Org Biomol Chem 2010; 8:4414-26. [PMID: 20714665 DOI: 10.1039/c0ob00093k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
O(6)-2'-Deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-links (ICLs) with a four and seven methylene linkage in a 5'-GNC- motif have been synthesized and their repair by human O6-alkylguanine-DNA alkyltransferase (hAGT) investigated. Duplexes containing 11 base-pairs with the ICLs in the center were assembled by automated DNA solid-phase synthesis using a cross-linked 2'-deoxyguanosine dimer phosphoramidite, prepared via a seven step synthesis which employed the Mitsunobu reaction to introduce the alkyl lesion at the O(6) atom of guanine. Introduction of the four and seven carbon ICLs resulted in no change in duplex stability based on UV thermal denaturation experiments compared to a non-cross-linked control. Circular dichroism spectra of these ICL duplexes exhibited features of a B-form duplex, similar to the control, suggesting that these lesions induce little overall change in structure. The efficiency of repair by hAGT was examined and it was shown that hAGT repairs both ICL containing duplexes, with the heptyl ICL repaired more efficiently relative to the butyl cross-link. These results were reproducible with various hAGT mutants including one that contains a novel V148L mutation. The ICL duplexes displayed similar binding affinities to a C145S hAGT mutant compared to the unmodified duplex with the seven carbon containing ICLs displaying slightly higher binding. Experiments with CHO cells to investigate the sensitivity of these cells to busulfan and hepsulfam demonstrate that hAGT reduces the cytotoxicity of hepsulfam suggesting that the O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-link may account for at least part of the cytotoxicity of this agent.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, CanadaH4B 1R6
| | | | | | | | | | | |
Collapse
|
215
|
Ishiguro K, Zhu YL, Shyam K, Penketh PG, Baumann RP, Sartorelli AC. Quantitative relationship between guanine O(6)-alkyl lesions produced by Onrigin™ and tumor resistance by O(6)-alkylguanine-DNA alkyltransferase. Biochem Pharmacol 2010; 80:1317-25. [PMID: 20654586 DOI: 10.1016/j.bcp.2010.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/16/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) mediates tumor resistance to alkylating agents that generate guanine O(6)-chloroethyl (Onrigin™ and carmustine) and O(6)-methyl (temozolomide) lesions; however, the relative efficiency of AGT protection against these lesions and the degree of resistance to these agents that a given number of AGT molecules produces are unclear. Measured from differential cytotoxicity in AGT-ablated and AGT-intact HL-60 cells containing 17,000 AGT molecules/cell, AGT produced 12- and 24-fold resistance to chloroethylating (90CE) and methylating (KS90) analogs of Onrigin™, respectively. For 50% growth inhibition, KS90 and 90CE generated 5,600 O(6)-methylguanines/cell and ∼300 O(6)-chloroethylguanines/cell, respectively. AGT repaired O(6)-methylguanines until the AGT pool was exhausted, while its repair of O(6)-chloroethylguanines was incomplete due to progression of the lesions to AGT-irreparable interstrand DNA cross-links. Thus, the smaller number of O(6)-chloroethylguanine lesions needed for cytotoxicity accounted for the marked degree of resistance (12-fold) to 90CE produced by AGT. Transfection of human or murine AGT into AGT deficient transplantable tumor cells (i.e., EMT6, M109 and U251) generated transfectants expressing AGT ranging from 4,000 to 700,000 molecules/cell. In vitro growth inhibition assays using these transfectants treated with 90CE revealed that AGT caused a concentration dependent resistance up to a level of ∼10,000 AGT molecules/cell. This finding was corroborated by in vivo studies where expression of 4,000 and 10,000 murine AGT molecules/cell rendered EMT6 tumors partially and completely resistant to Onrigin™, respectively. These studies imply that the antitumor activity of Onrigin™ stems from guanine O(6)-chloroethylation and define the threshold concentration of AGT that negates its antineoplastic activity.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| | | | | | | | | | | |
Collapse
|
216
|
Bobustuc GC, Baker CH, Limaye A, Jenkins WD, Pearl G, Avgeropoulos NG, Konduri SD. Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol 2010; 12:917-27. [PMID: 20525765 DOI: 10.1093/neuonc/noq044] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antiepileptic drugs (AEDs) are frequently used to treat seizures in glioma patients. AEDs may have an unrecognized impact in modulating O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that has an important role in tumor cell resistance to alkylating agents. We report that levetiracetam (LEV) is the most potent MGMT inhibitor among several AEDs with diverse MGMT regulatory actions. In vitro, when used at concentrations within the human therapeutic range for seizure prophylaxis, LEV decreases MGMT protein and mRNA expression levels. Chromatin immunoprecipitation analysis reveals that LEV enhances p53 binding on the MGMT promoter by recruiting the mSin3A/histone deacetylase 1 (HDAC1) corepressor complex. However, LEV does not exert any MGMT inhibitory activity when the expression of either p53, mSin3A, or HDAC1 is abrogated. LEV inhibits malignant glioma cell proliferation and increases glioma cell sensitivity to the monofunctional alkylating agent temozolomide. In 4 newly diagnosed patients who had 2 craniotomies 7-14 days apart, prior to the initiation of any tumor-specific treatment, samples obtained before and after LEV treatment showed the inhibition of MGMT expression. Our results suggest that the choice of AED in patients with malignant gliomas may have an unrecognized impact in clinical practice and research trial design.
Collapse
Affiliation(s)
- George C Bobustuc
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806, USA.
| | | | | | | | | | | | | |
Collapse
|
217
|
Alkyltransferase-like proteins: molecular switches between DNA repair pathways. Cell Mol Life Sci 2010; 67:3749-62. [PMID: 20502938 DOI: 10.1007/s00018-010-0405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O⁶-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O⁶-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.
Collapse
|
218
|
Selection of genetically modified hematopoietic cells in vitro and in vivo using alkylating agent lysomustine. Anal Biochem 2010; 404:149-54. [PMID: 20450874 DOI: 10.1016/j.ab.2010.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/19/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022]
Abstract
Efficient gene transfer into hematopoietic stem cells is vital for the success of gene therapy of hematopoietic and immune system disorders. An in vivo selection system based on a mutant form of the O(6)-methylguanine-DNA-methyltransferase gene (MGMTm) is considered one of the more promising strategies for expansion of hematopoietic cells transduced with viral vectors. Here we demonstrate that MGMTm-expressing cells can be efficiently selected using lysomustine, a nitrosourea derivative of lysine. K562 and murine bone marrow cells expressing MGMTm are protected from the cytotoxic action of lysomustine in vitro. We also show in a murine model that MGMTm-transduced hematopoietic cells can be expanded in vivo on transplantation into sublethally irradiated recipients followed by lysomustine treatment. These results indicate that lysomustine can be used as a potent novel chemoselection drug applicable for gene therapy of hematopoietic and immune system disorders.
Collapse
|
219
|
Zeilmaker MJ, Bakker MI, Schothorst R, Slob W. Risk Assessment of N-nitrosodimethylamine Formed Endogenously after Fish-with-Vegetable Meals. Toxicol Sci 2010; 116:323-35. [DOI: 10.1093/toxsci/kfq093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
220
|
Berrocal A, Perez Segura P, Gil M, Balaña C, Garcia Lopez J, Yaya R, Rodríguez J, Reynes G, Gallego O, Iglesias L. Extended-schedule dose-dense temozolomide in refractory gliomas. J Neurooncol 2010; 96:417-22. [PMID: 19669096 PMCID: PMC2808507 DOI: 10.1007/s11060-009-9980-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/20/2009] [Indexed: 11/26/2022]
Abstract
This multicenter phase II study conducted by the Spanish Neuro-Oncology Group evaluated the activity of an extended, dose-dense temozolomide regimen in patients with temozolomide-refractory malignant glioma. Adult patients (at least 18 years of age) with WHO grade III or IV glioma and a Karnofsky Performance Status of 60 or higher were treated with temozolomide (85 mg/m(2)/day) for 21 consecutive days every 28-day cycle until disease progression or unacceptable toxicity. All patients had developed progressive disease either during or less than 3 months after completing previous temozolomide treatment. Forty-seven patients were treated with a median of 2 (range, 1-13) cycles of temozolomide. Before study entry, patients had received a median of 6 cycles of temozolomide: 39 (83%) as part of initial therapy and 23 (49%) as second-line therapy. Three patients (6.4%) had a partial response with durations of 8.0, 3.5, and 3.2 months; 15 patients (31.9%) had stable disease with a median duration of 2.1 months, including 2 patients with stable disease (SD) for greater than 6 months (14 and 16 months). Median time to progression was 2 months, and median overall survival from study entry was 5.1 months. The 6-month progression-free survival rate was 16.7%. The most common hematologic toxicities were lymphopenia, thrombocytopenia, and leukopenia. Lymphopenia occurred in 83% of patients and was grade 3 in 28%, but no opportunistic infections occurred. In conclusion, this extended dose-dense schedule of temozolomide appears to have modest activity in patients refractory to previous treatment with temozolomide and is associated with manageable toxicity.
Collapse
Affiliation(s)
- A Berrocal
- Servicio de Oncologia Medica, Consorcio Hospital General Universitario de Valencia, Avda Tres Cruces S/N, 46006, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Loh YH, Mitrou PN, Bowman R, Wood A, Jeffery H, Luben RN, Lentjes MAH, Khaw KT, Rodwell SA. MGMT Ile143Val polymorphism, dietary factors and the risk of breast, colorectal and prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study. DNA Repair (Amst) 2010; 9:421-8. [PMID: 20096652 DOI: 10.1016/j.dnarep.2010.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/24/2009] [Accepted: 01/01/2010] [Indexed: 11/28/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) repairs DNA damage caused by alkylating agents including N-nitroso compounds from diet. MGMT Ile143Val polymorphism may lead to less DNA damage repair and increased cancer risk depending on the environmental exposures. We investigated interactions between dietary factors and the MGMT Ile143Val polymorphism in relation to breast, colorectal and prostate cancer risk. There were 276/1498, 273/2984 and 312/1486 cases/controls for the breast, colorectal and prostate cancer studies respectively; all nested within the EPIC-Norfolk study, a prospective cohort of approximately 25,000 men and women aged 40-79. Baseline 7-day food diary data were collected for dietary assessment. MGMT Ile143Val polymorphism was not overall associated with breast, colorectal and prostate cancer risk. There was a significant interaction between this polymorphism and intake of red and processed meat on colorectal cancer risk (P(interaction)=0.04) suggesting an increased risk among carriers of the variant genotype compared to the MGMT Ile143Ile common genotype. A lower colorectal cancer risk was seen with higher intake of vitamin E and carotene among the variant genotype group but not in the common genotype group (P(interaction)=0.009 and P(interaction)=0.005 for vitamin E and carotene, respectively). A higher prostate cancer risk was seen with higher alcohol intake among the variant genotype (OR=2.08, 95% CI=1.21-3.57, P(interaction)=0.0009) compared to the common genotype with lower alcohol intake. In this UK population, the MGMT Ile143Val polymorphism was not overall associated with breast, colorectal and prostate cancer risk. There was evidence for this polymorphism playing a role in modulating the risk of prostate cancer in presence of alcohol. For colorectal cancer, the MGMT Ile143Val polymorphism may confer increased or decreased risk depending on the dietary exposure.
Collapse
Affiliation(s)
- Yet Hua Loh
- MRC Centre for Nutritional Epidemiology in Cancer Prevention and Survival, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Fang Q, Kanugula S, Tubbs JL, Tainer JA, Pegg AE. Repair of O4-alkylthymine by O6-alkylguanine-DNA alkyltransferases. J Biol Chem 2009; 285:8185-95. [PMID: 20026607 DOI: 10.1074/jbc.m109.045518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O(6)-methylguanine (m(6)G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O(4)-methylthymine (m(4)T) efficiently, the human AGT (hAGT) acts poorly on m(4)T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m(4)T. Construct hAGT-03 (where hAGT sequence -V(149)CSSGAVGN(157)- was replaced with the corresponding Ogt -I(143)GRNGTMTG(151)-) exhibited enhanced m(4)T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N'-nitro-N-nitrosoguanidine and caused a reduction in m(6)G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m(4)T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O(4)-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O(4)-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
223
|
Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 2009; 6:39-51. [PMID: 19997073 DOI: 10.1038/nrneurol.2009.197] [Citation(s) in RCA: 552] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) antagonizes the genotoxic effects of alkylating agents. MGMT promoter methylation is the key mechanism of MGMT gene silencing and predicts a favorable outcome in patients with glioblastoma who are exposed to alkylating agent chemotherapy. This biomarker is on the verge of entering clinical decision-making and is currently used to stratify or even select glioblastoma patients for clinical trials. In other subtypes of glioma, such as anaplastic gliomas, the relevance of MGMT promoter methylation might extend beyond the prediction of chemosensitivity, and could reflect a distinct molecular profile. Here, we review the most commonly used assays for evaluation of MGMT status, outline the prerequisites for standardized tests, and evaluate reasons for difficulties in reproducibility. We critically discuss the prognostic and predictive value of MGMT silencing, reviewing trials in which patients with different types of glioma were treated with various chemotherapy schedules, either up-front or at recurrence. Standardization of MGMT testing requires comparison of different technologies across laboratories and prospectively validated cut-off values for prognostic or predictive effects. Moreover, future clinical trials will need to determine, for each subtype of glioma, the degree to which MGMT promoter methylation is predictive or prognostic, and whether testing should become routine clinical practice.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
Gliomas are the most common primary brain tumors. They account for more than 70% of all neoplasms of the central nervous system and vary considerably in morphology, location, genetic alterations, and response to therapy. Most frequent and malignant are glioblastomas. The vast majority (>90%) develops rapidly after a short clinical history and without evidence of a less malignant precursor lesion (primary or de novo glioblastoma). Secondary glioblastomas develop more slowly through progression from low-grade or anaplastic astrocytoma. These glioblastoma subtypes constitute distinct disease entities that affect patients of different age, develop through distinct genetic pathways, show different RNA and protein expression profiles, and may differ in their response to radio- and chemotherapy. Recently, isocitrate dehydrogenase 1 (IDH1) mutations have been identified as a very early and frequent genetic alteration in the pathway to secondary glioblastomas as well as that in oligodendroglial tumors, providing the first evidence that low-grade astrocytomas and oligodendrogliomas may share common cells of origin. In contrast, primary glioblastomas very rarely contain IDH1 mutations, suggesting that primary and secondary glioblastomas may originate from different progenitor cells, despite the fact that they are histologically largely indistinguishable. In this review, we summarize the current status of genetic alterations and signaling pathways operative in the evolution of astrocytic and oligodendroglial tumors.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
225
|
Kalapila AG, Pegg AE. Alkyltransferase-mediated toxicity of bis-electrophiles in mammalian cells. Mutat Res 2009; 684:35-42. [PMID: 19941875 DOI: 10.1016/j.mrfmmm.2009.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 11/27/2022]
Abstract
The primary function of O(6)-alkylguanine-DNA alkyltransferase (AGT) is to maintain genomic integrity in the face of damage by both endogenous and exogenous alkylating agents. However, paradoxically, bacterial and mammalian AGTs have been shown to increase cytotoxicity and mutagenicity of dihaloalkanes and other bis-electrophiles when expressed in bacterial cells. We have extended these studies to mammalian cells using CHO cells that lack AGT expression and CHO cells stably transfected with a plasmid that expresses human AGT. The cytotoxicity of 1,2-dibromoethane, dibromomethane and epibromohydrin was significantly increased by the presence of AGT but cytotoxicity of butadiene diepoxide was not affected. Mutations caused by these agents were assessed using hypoxanthine-guanine phosphoribosyltransferase (HPRT) as a reporter gene. There was a small (c. 2-3-fold) but statistically significant AGT-mediated increase in mutations caused by 1,2-dibromoethane, dibromomethane and epibromohydrin. Analysis of the mutation spectrum induced by 1,2-dibromoethane showed that the presence of AGT also altered the types of mutations with an increase in total base substitution mutants due to a rise in transversions at both G:C and A:T sites. AGT expression also led to mutations arising from the transcribed strand, which were not seen in cells lacking AGT. Although the frequency of deletion mutations was decreased by AGT expression, the formation of large deletions (> or = 3 exons) was increased. This work demonstrates that interaction of AGT with some bis-electrophiles can cause mutagenicity and diminished cell survival in mammalian cells. It is consistent with the hypothesis that DNA-AGT cross-links, which have been characterized in experiments with purified AGT protein and such bis-electrophiles, can be formed in mammalian cells.
Collapse
Affiliation(s)
- Aley G Kalapila
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
226
|
Abstract
The experiments described here demonstrate ways in which DNA length can be used as an experimental variable for the characterization of positively cooperative, sequence nonspecific DNA binding. Examples are drawn from recent studies of the interactions of O(6)-alkylguanine DNA alkyltransferase (AGT) with duplex DNAs (Melikishvili et al. (2008). Interactions of human O(6)-alkylguanine-DNA alkyltransferase (AGT) with short double-stranded DNAs. Biochemistry 47, 13754-13763). Oscillations in binding density and apparent binding site size (S(app)) are predicted by models in which a single cooperative assembly forms on each DNA molecule and in which enzyme molecules bind full-length binding sites, but not partial ones. These oscillations provide an accurate, DNA-length independent measure of the occluded binding site size (the length of DNA that one protein molecule occupies to the exclusion of others). In addition, length-dependent oscillations in association constant (K) and cooperativity (ω) reveal the degree to which substrate length can influence these parameters.
Collapse
|
227
|
Koryllou A, Patrinou-Georgoula M, Troungos C, Pletsa V. Cell death induced by N-methyl-N-nitrosourea, a model S(N)1 methylating agent, in two lung cancer cell lines of human origin. Apoptosis 2009; 14:1121-33. [PMID: 19634013 DOI: 10.1007/s10495-009-0379-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New therapeutic approaches are needed for lung cancer, the leading cause of cancer death. Methylating agents constitute a widely used class of anticancer drugs, the effect of which on human non small cell lung cancer (NSCLC) has not been adequately studied. N-methyl-N-nitrosourea (MNU), a model S(N)1 methylating agent, induced cell death through a distinct mechanism in two human NSCLC cell lines studied, A549(p53(wt)) and H157(p53(null)). In A549(p53(wt)), MNU induced G2/M arrest, accompanied by cdc25A degradation, hnRNP B1 induction, hnRNP C1/C2 downregulation. Non-apoptotic cell death was confirmed by the lack of increase in the sub-G1 DNA content, Poly (ADP-ribose) polymerase cleavage and caspase-3, -7 activation. In H157(p53(null)), MNU induced apoptotic cell death, confirmed by cytofluorometry of DNA content and immunodetection of apoptotic markers, accompanied by overexpression of hnRNP B1 and C1/C2. Thus, the mechanism of the cell death induced by S(N)1 methylating agents is cell type-dependent and must be assessed prior treatment.
Collapse
Affiliation(s)
- Angeliki Koryllou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | |
Collapse
|
228
|
Tiwari R, Parang K. Protein conjugates of SH3-domain ligands and ATP-competitive inhibitors as bivalent inhibitors of protein kinases. Chembiochem 2009; 10:2445-2448. [PMID: 19731277 DOI: 10.1002/cbic.200900462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Indexed: 11/10/2022]
Affiliation(s)
- Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | |
Collapse
|
229
|
Piperi C, Themistocleous MS, Papavassiliou GA, Farmaki E, Levidou G, Korkolopoulou P, Adamopoulos C, Papavassiliou AG. High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Mol Med 2009; 16:1-9. [PMID: 19809523 DOI: 10.2119/molmed.2009.00140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 12/31/2022] Open
Abstract
Glioblastomas, the most frequent primary brain tumors in adults, are characterized by a highly aggressive, inflammatory and angiogenic phenotype. Methylation of CpG islands in cancer-related genes may serve as an epigenetic biomarker for glioblastoma diagnosis and prognosis. The aim of this study was to analyze the methylation status of four critical tumor-associated genes (MGMT, RARbeta, RASSF1A, CDH13), and investigate possible links with inflammatory (interleukin [IL]-6, IL-8) and angiogenic mediators (vascular endothelial growth factor [VEGF], cyclooxygenase [COX]-2) and clinical outcome in 23 glioma samples (6 grade II astrocytomas, 17 grade IV glioblastomas). RARbeta and MGMT genes were more frequently methylated in 70.58% and 58.8% of glioblastomas, respectively. RASSF1A and CDH13 displayed a similar methylation frequency (23.52%) in glioblastomas. No gene methylation was observed in grade II astrocytomas. Tumor grade correlated positively with MGMT and RARbeta methylation (P = 0.005 and P = 0.019, respectively) and the extent of necrosis (P = 0.001 and P = 0.003). Interestingly, the marker of chronic inflammation, IL-6, was positively associated with methylation of MGMT (P = 0.004), RARbeta (P = 0.002), and RASSF1A (P = 0.0081) as well as the total number of methylated genes (P < 0.0001), indicating the important role of IL-6 in maintaining promoter methylation of these genes. VEGF expression correlated positively with MGMT and RARbeta methylation although these relationships were of marginal significance (P = 0.0679 and P = 0.0757). Kaplan-Meier univariate survival analysis indicated an unfavorable survival period in patients with MGMT methylation compared with those without methylation (P = 0.0474). Our study highlights the implication of MGMT and RARbeta methylation in the aggressive phenotype of primary glioblastomas. The association of MGMT methylation with clinical outcome indicates its potential prognostic value.
Collapse
Affiliation(s)
- Christina Piperi
- Department of Biological Chemistry, Medical School, University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Lee GW, Kang JH, Kim IS, Kim HG, Ko GH, Lee JH, Kim DC, Song DH, Yang JW, Lee JS. Is inactivation of O6-methylguanine DNA methyltransferase still a favorable prognostic factor of patients with diffuse large B-cell lymphoma in the era of R-CHOP chemotherapy? Leuk Lymphoma 2009; 50:1992-8. [DOI: 10.3109/10428190903312462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gyeong-Won Lee
- Division of Hematology–Oncology, Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
| | - Jung-Hun Kang
- Division of Hematology–Oncology, Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
| | - In-Suk Kim
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Laboratory Medicine
| | - Hoon-Gu Kim
- Division of Hematology–Oncology, Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Laboratory Medicine
| | - Gyung Hyuck Ko
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jeong Hee Lee
- Division of Hematology–Oncology, Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dong Chool Kim
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Hyun Song
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jung Wook Yang
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Laboratory Medicine
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jong Sil Lee
- Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
- Gyeongnam Regional Cancer Center, Jinju, Republic of Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
231
|
Loeber RL, Michaelson-Richie ED, Codreanu SG, Liebler DC, Campbell CR, Tretyakova NY. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards. Chem Res Toxicol 2009; 22:1151-62. [PMID: 19480393 DOI: 10.1021/tx900078y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.
Collapse
Affiliation(s)
- Rachel L Loeber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
232
|
Christov PP, Angel KC, Guengerich FP, Rizzo CJ. Replication past the N5-methyl-formamidopyrimidine lesion of deoxyguanosine by DNA polymerases and an improved procedure for sequence analysis of in vitro bypass products by mass spectrometry. Chem Res Toxicol 2009; 22:1086-95. [PMID: 19397282 DOI: 10.1021/tx900047c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oligonucleotides containing a site-specific N(6)-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dGuo) lesion were synthesized, and their in vitro replication by Escherichia coli DNA polymerase I Klenow fragment (exo(-)) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) resulted in the misincorporation of Ade, Gua, and Thy opposite the MeFapy-dGuo lesion in addition to the correct insertion of Cyt. However, sequencing of the full-length extension products revealed that the initial insertion of Cyt opposite the lesion was extended most efficiently. Two sequences were examined, and the misincorporation was sequence-dependent. Improvements in the method for the mass spectrometric sequencing of the extension products were developed; a 5'-biotinylated primer strand was used that contained a dUrd near the template-primer junction. The extended primer was immobilized with streptavidin-coated beads, allowing it to be washed free of polymerase, the template strand, and other reagents. The extended primer was cleaved from the solid support with uridine DNA deglycosylase and piperidine treatment, and the extension products were sequenced by LC-ESI-MS-MS. The purification steps afforded by the biotinylated primer resulted in improved sensitivity for the MS analysis. Translesion synthesis of a template with a local 5'-T-(MeFapy-dGuo)-G-3' sequence resulted in only error-free bypass and extension, whereas a template with a local 5'-T-(MeFapy-dGuo)-T-3' sequence also resulted in an interesting deletion product and the misincorporation of Ade opposite the MeFapy-dGuo lesion.
Collapse
Affiliation(s)
- Plamen P Christov
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, USA
| | | | | | | |
Collapse
|
233
|
Sletten E, Bertozzi C. Bioorthogonale Chemie - oder: in einem Meer aus Funktionalität nach Selektivität fischen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900942] [Citation(s) in RCA: 522] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
234
|
|
235
|
Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 2009; 459:808-13. [PMID: 19516334 PMCID: PMC2729916 DOI: 10.1038/nature08076] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/17/2009] [Indexed: 01/01/2023]
Abstract
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.
Collapse
|
236
|
Augustine CK, Yoo JS, Potti A, Yoshimoto Y, Zipfel PA, Friedman HS, Nevins JR, Ali-Osman F, Tyler DS. Genomic and molecular profiling predicts response to temozolomide in melanoma. Clin Cancer Res 2009; 15:502-10. [PMID: 19147755 DOI: 10.1158/1078-0432.ccr-08-1916] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite objective response rates of only approximately 13%, temozolomide remains one of the most effective single chemotherapy agents against metastatic melanoma, second only to dacarbazine, the current standard of care for systemic treatment of melanoma. The goal of this study was to identify molecular and/or genetic markers that correlate with, and could be used to predict, response to temozolomide-based treatment regimens and that reflect the intrinsic properties of a patient's tumor. EXPERIMENTAL DESIGN Using a panel of 26 human melanoma-derived cell lines, we determined in vitro temozolomide sensitivity, O(6)-methylguanine-DNA methyltransferase (MGMT) activity, MGMT protein expression and promoter methylation status, and mismatch repair proficiency, as well as the expression profile of 38,000 genes using an oligonucleotide-based microarray platform. RESULTS The results showed a broad spectrum of temozolomide sensitivity across the panel of cell lines, with IC(50) values ranging from 100 micromol/L to 1 mmol/L. There was a significant correlation between measured temozolomide sensitivity and a gene expression signature-derived prediction of temozolomide sensitivity (P < 0.005). Notably, MGMT alone showed a significant correlation with temozolomide sensitivity (MGMT activity, P < 0.0001; MGMT expression, P <or= 0.0001). The promoter methylation status of the MGMT gene, however, was not consistent with MGMT gene expression or temozolomide sensitivity. CONCLUSIONS These results show that melanoma resistance to temozolomide is conferred predominantly by MGMT activity and suggest that MGMT expression could potentially be a useful tool for predicting the response of melanoma patients to temozolomide therapy.
Collapse
Affiliation(s)
- Christina K Augustine
- Department of Surgery, and Duke Institute for Genome Sciences and Policy, Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Shukla PK, Mishra PC. Repair of O6-methylguanine to guanine by cysteine in the absence and presence of histidine and by cysteine thiolate anion: a quantum chemical study. Phys Chem Chem Phys 2009; 11:8191-202. [PMID: 19756275 DOI: 10.1039/b908295f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O6-methylguanine (O6mG) is known to be a potential mutagenic modification of guanine as it mispairs with thymine in DNA and causes GC to AT transversion mutation. It is experimentally known that O6mG can be repaired to guanine by the protein O6-alkylguanine-DNA alkyltransferase (AGT), a cysteine residue being the main active site. In the present work, the mechanisms of repair of cis-O6-methylguanine (O6mG) to guanine due to its reaction with cysteine in the absence and presence of histidine and with cysteine thiolate anion were investigated theoretically using the B3LYP hybrid functional of density functional theory and the second order Møller-Plesset perturbation (MP2) theory. Reactant, intermediate and product complexes as well as transition states involved in these reactions were fully optimized at the B3LYP/6-31 + G* level of theory in the gas phase. The solvent effect of water was treated using the polarizable continuum model (PCM). Single point energy calculations were performed at the B3LYP/AUG-cc-pVDZ and MP2/6-31 + G* levels of theory in the gas phase and aqueous media. It is found that cysteine alone can repair the cis-O6mG to guanine, but the involvement of histidine along with cysteine lowers down the barrier energy significantly. However, when cysteine thiolate anion is used in place of cysteine, the barrier energy is strongly reduced. These results broadly support the suggestions based on experimental studies.
Collapse
Affiliation(s)
- P K Shukla
- Department of Physics, Banaras Hindu University, Varanasi - 221005, India
| | | |
Collapse
|
238
|
Kalapila AG, Loktionova NA, Pegg AE. Effect of O6-alkylguanine-DNA alkyltransferase on genotoxicity of epihalohydrins. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:502-514. [PMID: 19472322 PMCID: PMC2855547 DOI: 10.1002/em.20491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of O(6)-alkylguanine-DNA alkyltransferase (AGT) on the toxicity and mutagenicity of epihalohydrins was studied. AGT is a DNA repair protein that protects cells from agents that produce genotoxic O(6)-alkylguanine lesions by transferring the alkyl group to an internal cysteine residue (Cys(145) in human AGT) in a single-step. This cysteine acceptor site is highly reactive and epihalohydrins reacted readily with AGT at this site with a halide order of reactivity of Br > Cl > F. AGT expression in bacterial cells caused a very large increase in the mutagenicity and cytotoxicity of epibromohydrin. The mutations were almost all G:C to A:T transitions. Epichlorohydrin also augmented AGT-mediated mutagenesis but to a lesser extent than epibromohydrin. In vitro experiments showed that AGT was covalently cross-linked to DNA in the presence of epibromohydrin and that this conjugation occurred predominantly at Cys(145), and to a smaller extent at Cys(150), a less reactive residue also located within the active site pocket. Two pathways yielding the AGT-DNA adduct were found to occur. The predominant mechanism results in an AGT-epihalohydrin intermediate, which, facilitated by the DNA binding properties of AGT, then reacts covalently with DNA. The second pathway involves an initial reactive DNA-epihalohydrin intermediate that subsequently reacts with AGT. Our results show that the paradoxical AGT-mediated increase in genotoxicity which has previously been shown to occur with dihaloalkanes, butadiene diepoxide and nitrogen mustards, also occurs with epihalohydrins and is likely to contribute to their toxicity and mutagenicity.
Collapse
Affiliation(s)
| | | | - Anthony E. Pegg
- Correspondence to: Anthony E. Pegg, Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033.
| |
Collapse
|
239
|
Horii J, Hiraoka S, Kato J, Saito S, Harada K, Fujita H, Kaji E, Yamamoto K. Methylation of estrogen receptor 1 in colorectal adenomas is not age-dependent, but is correlated with K-ras mutation. Cancer Sci 2009; 100:1005-11. [PMID: 19302287 PMCID: PMC11159111 DOI: 10.1111/j.1349-7006.2009.01140.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The promoter region of estrogen receptor 1 (ESR1) has been shown to be methylated in normal colorectal mucosa in an age-dependent manner. However, the methylation of this region in colorectal tumors has not sufficiently been investigated. The methylation status of ESR1 in 105 colorectal adenoma tissues was examined by MethyLight and presented as the percentage of methylated references (PMR). Factors that affect the PMR of ESR1 in adenomas were determined using parameters including patient age, sex, past history of malignancy, family history of colorectal cancer, smoking and drinking habits, clinical characteristics of adenomas (location, size, macroscopic appearance, and histology), and K-ras mutation. Multiple linear regression revealed that the PMR was not correlated with patient age. K-ras mutation was significantly correlated with the higher methylation status of ESR1 in adenoma (t-value = 3.21, P = 0.0018), whereas alcohol exposure was significantly correlated with lower methylation status (t-value = -2.37, P = 0.02). Because methylation of O6-methylguanine DNA methyltransferase (MGMT) has been reported to be correlated with K-ras G-to-A transition, methylation of ESR1 was compared with that of MGMT with regard to K-ras mutation. Contrary to expectations, methylation of MGMT was not significantly correlated with K-ras G-to-A transition, but that of ESR1 was strongly correlated with K-ras G-to-A transition. Thus, the methylation status of ESR1 in adenomas was not correlated with patient age, but was associated with K-ras mutation, suggesting that methylation of ESR1 in tumors functions differently from that in normal colon mucosa.
Collapse
Affiliation(s)
- Joichiro Horii
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Cui B, Johnson SP, Bullock N, Ali-Osman F, Bigner DD, Friedman HS. Bifunctional DNA alkylator 1,3-bis(2-chloroethyl)-1-nitrosourea activates the ATR-Chk1 pathway independently of the mismatch repair pathway. Mol Pharmacol 2009; 75:1356-63. [PMID: 19261750 PMCID: PMC2684885 DOI: 10.1124/mol.108.053124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 03/04/2009] [Indexed: 01/09/2023] Open
Abstract
The presence of DNA damage initiates signaling through the ataxia-telangiectasia mutated kinase (ATM) and the ATM- and the Rad3-related kinase (ATR), which phosphorylate, thus activating, the checkpoint kinases (Chk) 1 and 2, which leads to cell cycle arrest. The bifunctional DNA alkylator 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is cytotoxic primarily by inducing DNA monoadducts and ultimately, interstrand cross-links, which block DNA replication. In this study, we investigated the activation of the ATR-Chk1 pathway in response to BCNU treatment and the dependence of this response on the DNA mismatch repair (MMR) capacity. Medulloblastoma cells were exposed to low and moderate doses of BCNU, and the effects on this DNA damage signaling pathway were examined. In response to BCNU, Chk1 was found to be phosphorylated at serine 345 and exhibited increased kinase activity. Caffeine and wortmannin, which are broad-spectrum inhibitors of ATM and ATR, reduced this phosphorylation. Cell cycle analysis further revealed an accumulation of cells in the S phase in response to BCNU, an effect that was attenuated by caffeine. Small interfering RNA knockdown of ATR also reduced Chk1 phosphorylation after exposure to BCNU. However, knockdown of ATM had no effect on the observed Chk1 phosphorylation, suggesting that ATR was primarily responsible for Chk1 activation. Analysis of Chk1 activation in cells deficient in MMR proteins MutLalpha or MutSalpha indicated that the DNA damage response induced by BCNU was independent of the MMR apparatus. This MMR-independent activation seems to be the result of DNA interstrand cross-link formation.
Collapse
Affiliation(s)
- B Cui
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
241
|
Adema AD, van der Born K, Honeywell RJ, Peters GJ. Cell cycle effects and increased adduct formation by temozolomide enhance the effect of cytotoxic and targeted agents in lung cancer cell lines. J Chemother 2009; 21:338-346. [PMID: 19567356 DOI: 10.1179/joc.2009.21.3.338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Temozolomide (TMZ) exerts its cytotoxic effects by methylating guanine in DNA, resulting in a mismatch with thymine. We studied possible enhancement of the cytotoxic activity of several other targeted drugs in four lung cancer cell lines by TMZ. the data are in relation to O(6)-alkylguanine-DNA-alkyltransferase (AGT) expression, gene methylation, cell cycle distribution and adduct formation. Synergism/additivity was found with O(6)-BG), gemcitabine, lonafarnib and paclitaxel, but not with platinum analogs and topoisomerase-inhibitors. O(6)-BG enhanced TMZ-induced accumulation in the G2/m-phase by increasing formation and retention of the O(6)-methyldeoxyguanosine adducts. TMZ combinations with drugs showing a different individual effect on the cell cycle (e.g. gemcitabine-induced S-phase) were most effective. The results show that O(6)-BG enhanced the TMZ effect in all cell lines. TMZ enhanced the cytotoxicity of gemcitabine, paclitaxel and lonafarnib in most cell lines, possibly by affecting the cell cycle, supporting possible application of TMZ in the treatment of lung cancer.
Collapse
Affiliation(s)
- A D Adema
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
242
|
Adams CA, Melikishvili M, Rodgers DW, Rasimas JJ, Pegg AE, Fried MG. Topologies of complexes containing O6-alkylguanine-DNA alkyltransferase and DNA. J Mol Biol 2009; 389:248-63. [PMID: 19358853 DOI: 10.1016/j.jmb.2009.03.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 11/25/2022]
Abstract
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein complexes of AGT with single-stranded and duplex DNAs that are based on in vitro binding data and the crystal structure of a 1:1 AGT-DNA complex. These models predict that cooperative assemblies contain a three-start helical array of proteins with dominant protein-protein interactions between the amino-terminal face of protein n and the carboxy-terminal face of protein n+3, and they predict that binding duplex DNA does not require large changes in B-form DNA geometry. Experimental tests using protein cross-linking analyzed by mass spectrometry, electrophoretic and analytical ultracentrifugation binding assays, and topological analyses with closed circular DNA show that the properties of multiprotein AGT-DNA complexes are consistent with these predictions.
Collapse
Affiliation(s)
- Claire A Adams
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
243
|
Pauly GT, Loktionova NA, Fang Q, Vankayala SL, Guida WC, Pegg AE. Substitution of aminomethyl at the meta-position enhances the inactivation of O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. J Med Chem 2009; 51:7144-53. [PMID: 18973327 DOI: 10.1021/jm800675p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O(6)-Benzylguanine is an irreversible inactivator of O(6)-alkylguanine-DNA alkyltransferase currently in clinical trials to overcome alkyltransferase-mediated resistance to certain cancer chemotherapeutic alkylating agents. In order to produce more soluble alkyltransferase inhibitors, we have synthesized three aminomethyl-substituted O(6)-benzylguanines and the three methyl analogs and found that the substitution of aminomethyl at the meta-position greatly enhances inactivation of alkyltransferase, whereas para-substitution has little effect and ortho-substitution virtually eliminates activity. Molecular modeling of their interactions with alkyltransferase provided a molecular explanation for these results. The square of the correlation coefficient (R(2)) obtained between E-model scores (obtained from GLIDE XP/QPLD docking calculations) vs log(ED(50)) values via a linear regression analysis was 0.96. The models indicate that the ortho-substitution causes a steric clash interfering with binding, whereas the meta-aminomethyl substitution allows an interaction of the amino group to generate an additional hydrogen bond with the protein.
Collapse
Affiliation(s)
- Gary T Pauly
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, P.O. Box B, Building 538, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
244
|
Kujawska M, Ignatowicz E, Murias M, Ewertowska M, Mikołajczyk K, Jodynis-Liebert J. Protective effect of red beetroot against carbon tetrachloride- and N-nitrosodiethylamine-induced oxidative stress in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2570-2575. [PMID: 19292473 DOI: 10.1021/jf803315d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of the study was to investigate the potential protective effect of beetroot juice in a model of oxidative stress induced by N-nitrosodiethylamine (NDEA) and carbon tetrachloride (CCl(4)). Male Wistar rats were treated with beetroot juice per os, 8 mL/kg/day for 28 days, and a single i.p. dose of the xenobiotics: 150 mg/kg NDEA or 2 mL/kg CCl(4). Simultaneously, two groups of rats not pretreated with juice were given only each of the xenobiotics. The level of microsomal lipid peroxidation in the liver, expressed as TBARS concentration, was increased several fold in rats administered only NDEA or CCl(4). TBARS were decreased by 38% only in rats pretreated with beetroot juice before the administration of CCl(4). In animals pretreated with juice and receiving NDEA, a further increase in TBARS occurred. All of the investigated antioxidant enzymes were inhibited by the administration of either toxicant alone by 26%-77% as compared to controls. Pretreatment with juice caused a partial recovery in the activity of glutathione peroxidase and glutathione reductase, by 35% and 66%, respectively. Superoxide dismutase activity was increased about 3-fold in animals pretreated with juice. Both xenobiotics caused a rise in plasma protein carbonyls, which were reduced by 30% in rats pretreated with juice and then injected with NDEA. Similarly, DNA damage in blood leukocytes caused by either toxicant was slightly diminished, by 20%, in the rats treated with juice before NDEA administration. It could be concluded that pretreatment with beetroot juice can counteract, to some extent, xenobiotic-induced oxidative stress in rats.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
245
|
Keppler A, Ellenberg J. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells. ACS Chem Biol 2009; 4:127-38. [PMID: 19191588 DOI: 10.1021/cb800298u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromophore-assisted laser inactivation (CALI) can help to unravel localized activities of target proteins at defined times and locations within living cells. Covalent SNAP-tag labeling of fusion proteins with fluorophores such as fluorescein is a fast and highly specific tool to attach the photosensitizer to its target protein in vivo for selective inactivation of the fusion protein. Here, we demonstrate the effectiveness and specificity of SNAP-tag-based CALI by acute inactivation of alpha-tubulin and gamma-tubulin SNAP-tag fusions during live imaging assays of cell division. Singlet oxygen is confirmed as the reactive oxygen species that leads to loss of fusion protein function. The major advantage of SNAP-tag CALI is the ease, reliability, and high flexibility in labeling: the genetically encoded protein tag can be covalently labeled with various dyes matching the experimental requirements. This makes SNAP-tag CALI a very useful tool for rapid inactivation of tagged proteins in living cells.
Collapse
Affiliation(s)
- Antje Keppler
- Virology, Hygiene Institute, University of Heidelberg, Im Neuenheimer Feld 324, Heidelberg D-69120, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Myerhofstrasse 1, Heidelberg D-69117, Germany
| |
Collapse
|
246
|
LEE SUNMI, LEE EUIJIN, KO YOUNGHYEH, LEE SUGHYUNG, MAENG LEESO, KIM KYOUNGMEE. Prognostic significance of O6-methylguanine DNA methyltransferase and p57 methylation in patients with diffuse large B-cell lymphomas. APMIS 2009; 117:87-94. [DOI: 10.1111/j.1600-0463.2008.00017.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
247
|
Role of pre- and post-replicative mismatch repair in cytotoxicity of methylating antitumor agents (a review). Pharm Chem J 2009. [DOI: 10.1007/s11094-009-0251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
248
|
Melikishvili M, Rasimas JJ, Pegg AE, Fried MG. Interactions of human O(6)-alkylguanine-DNA alkyltransferase (AGT) with short double-stranded DNAs. Biochemistry 2009; 47:13754-63. [PMID: 19061338 DOI: 10.1021/bi801666c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O(6)-alkylguanine-DNA alkyltransferase (AGT) is a ubiquitous enzyme with an amino acid sequence that is conserved in Eubacteria, Archaea, and Eukarya. It repairs O(6)-alkylguanine and O(4)-alkylthymine adducts in single-stranded and duplex DNAs. In performing these functions, AGT must partition between adduct-containing sites and the large excess of adduct-free DNA distributed throughout the genome. Here, we characterize the binding of human AGT to linear double-stranded, adduct-free DNAs ranging in length from 11 bp to 2686 bp. Moderately cooperative binding (22.6 +/- 3.7 < or = omega < or = 145.0 +/- 37.0) results in an all-or-nothing association pattern on short templates. The apparent binding site size S(app) (mean = 4.39 +/- 0.02 bp) oscillates with increasing template length. Oscillations in cooperativity factor omega have the same frequency but are of opposite phase to S(app), with the result that the most stable protein-protein and protein-DNA interactions occur at the highest packing densities. The oscillation period (4.05 +/- 0.02 bp/protein) is nearly identical to the occluded binding site size obtained at the highest measured binding density (4 bp/protein) and is significantly smaller than the contour length ( approximately 8 bp) occupied in crystalline complexes. A model in which protein molecules overlap along the DNA contour is proposed to account for these features. High AGT densities resulting from cooperative binding may allow efficient search for lesions in the context of chromatin remodeling and DNA replication.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
249
|
Jesien-Lewandowicz E, Jesionek-Kupnicka D, Zawlik I, Szybka M, Kulczycka-Wojdala D, Rieske P, Sieruta M, Jaskolski D, Och W, Skowronski W, Sikorska B, Potemski P, Papierz W, Liberski PP, Kordek R. High incidence of MGMT promoter methylation in primary glioblastomas without correlation with TP53 gene mutations. ACTA ACUST UNITED AC 2009; 188:77-82. [PMID: 19100509 DOI: 10.1016/j.cancergencyto.2008.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/09/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022]
Abstract
O(6)-methylguanine DNA methyltransferase (MGMT) reduces cytotoxicity of therapeutic or environmental alkylating agents. MGMT promoter methylation has been associated with TP53 G: C to A:T transition mutations in various types of cancers, and with poor prognosis in patients who did not receive chemotherapy. Mutations of TP53 are more frequent in secondary than in primary glioblastoma, thus the expected MGMT promoter methylation was low in primary glioblastoma. Glioblastoma patients with MGMT promoter methylation showed better response to chemotherapy based on alkylating agents and longer survival than patients without MGMT methylation. We examined 32 primary glioblastomas, treated with radiotherapy and surgery, for TP53 mutation by direct sequencing and MGMT promoter methylation by methylation-specific PCR. MGMT promoter methylation and TP53 mutations were detected in 72% and 31% of primary glioblastoma, respectively. Although not statistically significant, the frequency of TP53 G:C to A:T mutations were higher in cases with (26%) than without (11%) MGMT promoter methylation (p=0.376). MGMT promoter methylation had no impact on patient survival. Our data indicate that MGMT promoter methylation occurs frequently in primary glioblastoma, but does not lead to G:C to A:T TP53 mutations, has no independent prognostic value and is not a predictive marker unless glioblastoma patients are treated with chemotherapy.
Collapse
|
250
|
Komori K, Takagi Y, Sanada M, Lim TH, Nakatsu Y, Tsuzuki T, Sekiguchi M, Hidaka M. A novel protein, MAPO1, that functions in apoptosis triggered by O6-methylguanine mispair in DNA. Oncogene 2009; 28:1142-50. [PMID: 19137017 DOI: 10.1038/onc.2008.462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O(6)-Methylguanine produced in DNA induces mutation due to its ambiguous base-pairing properties during DNA replication. To suppress such an outcome, organisms possess a mechanism to eliminate cells carrying O(6)-methylguanine by inducing apoptosis that requires the function of mismatch repair proteins. To identify other factors involved in this apoptotic process, we performed retrovirus-mediated gene-trap mutagenesis and isolated a mutant that acquired resistance to a simple alkylating agent, N-methyl-N-nitrosourea (MNU). However, it was still sensitive to methyl methanesulfonate, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea, etoposide and ultraviolet irradiation. Moreover, the mutant exhibited an increased mutant frequency after exposure to MNU. The gene responsible was identified and designated Mapo1 (O(6)-methylguanine-induced apoptosis 1). When the expression of the gene was inhibited by small interfering RNA, MNU-induced apoptosis was significantly suppressed. In the Mapo1-defective mutant cells treated with MNU, the mitochondrial membrane depolarization and caspase-3 activation were severely suppressed, although phosphorylation of p53, CHK1 and histone H2AX was observed. The orthologs of the Mapo1 gene are present in various organisms from nematode to humans. Both mouse and human MAPO1 proteins expressed in cells localize in the cytoplasm. We therefore propose that MAPO1 may play a role in the signal-transduction pathway of apoptosis induced by O(6)-methylguanine-mispaired lesions.
Collapse
Affiliation(s)
- K Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|