201
|
Li M, Xu G, Cui Y, Wang M, Wang H, Xu X, Duan S, Shi J, Feng F. CT-based radiomics nomogram for the preoperative prediction of microsatellite instability and clinical outcomes in colorectal cancer: a multicentre study. Clin Radiol 2023; 78:e741-e751. [PMID: 37487841 DOI: 10.1016/j.crad.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
AIM To develop and validate a computed tomography (CT)-based radiomics nomogram for preoperative prediction of microsatellite instability (MSI) status and clinical outcomes in colorectal cancer (CRC) patients. MATERIALS AND METHODS This retrospective study enrolled 497 CRC patients from three centres. Least absolute shrinkage and selection operator regression was utilised for feature selection and constructing the radiomics signature. Univariate and multivariate logistic regression analyses were employed to identify significant clinical variables. The radiomics nomogram was constructed by integrating the radiomics signature and the identified clinical variables. The performance of the nomogram was evaluated through receiver operating characteristic curves, calibration curves, and decision curve analysis. Kaplan-Meier analysis was performed to investigate the prognostic value of the nomogram. RESULTS The radiomics signature comprised 10 radiomics features associated with MSI status. The nomogram, integrating the radiomics signature and independent predictors (age, location, and thickness), demonstrated favourable calibration and discrimination, achieving areas under the receiver operating characteristic (ROC) curves (AUCs) of 0.89 (95% confidence interval [CI]: 0.83-0.95), 0.87 (95% CI: 0.79-0.95), 0.88 (95% CI: 0.81-0.96), and 0.86 (95% CI: 0.78-0.93) in the training cohort, internal validation cohort, and two external validation cohorts, respectively. The nomogram exhibited superior performance compared to the clinical model (p<0.05). Additionally, survival analysis demonstrated that the nomogram successfully stratified stage II CRC patients based on prognosis (hazard ratio [HR]: 0.357, p=0.022). CONCLUSION The radiomics nomogram demonstrated promising performance in predicting MSI status and stratifying the prognosis of patients with CRC.
Collapse
Affiliation(s)
- M Li
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China; Department of Radiology, Yancheng No. 1 People's Hospital, Yancheng 224006, Jiangsu Province, China
| | - G Xu
- Department of Radiology, Yancheng No. 1 People's Hospital, Yancheng 224006, Jiangsu Province, China; Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Y Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi 030013, Shanxi Province, China
| | - M Wang
- Department of Radiology, Yancheng No. 1 People's Hospital, Yancheng 224006, Jiangsu Province, China
| | - H Wang
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - X Xu
- Department of Radiotherapy, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - S Duan
- GE Healthcare China, Shanghai 210000, China
| | - J Shi
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - F Feng
- Department of Radiology, Affiliated Tumour Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
202
|
Wu S, Zhan W, Liu L, Xie D, Yao L, Yao H, Liao G, Huang L, Zhou Y, You P, Huang Z, Li Q, Xu B, Wang S, Wang G, Zhang DK, Qiao G, Chan LWC, Lanuti M, Zhou H. Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study. J Immunother Cancer 2023; 11:e007369. [PMID: 37865396 PMCID: PMC10603353 DOI: 10.1136/jitc-2023-007369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND The predictive efficacy of current biomarker of immune checkpoint inhibitors (ICIs) is not sufficient. This study investigated the causality between radiomic biomarkers and immunotherapy response status in patients with stage IB-IV non-small cell lung cancer (NSCLC), including its biological context for ICIs treatment response prediction. METHODS CT images from 319 patients with pretreatment NSCLC receiving immunotherapy between January 2015 and November 2021 were retrospectively collected and composed a discovery (n=214), independent validation (n=54), and external test cohort (n=51). A set of 851 features was extracted from tumorous and peritumoral volumes of interest (VOIs). The reference standard is the durable clinical benefit (DCB, sustained disease control for more than 6 months assessed via radiological evaluation). The predictive value of combined radiomic signature (CRS) for pathological response was subsequently assessed in another cohort of 98 patients with resectable NSCLC receiving ICIs preoperatively. The association between radiomic features and tumor immune landscape on the online data set (n=60) was also examined. A model combining clinical predictor and radiomic signatures was constructed to improve performance further. RESULTS CRS discriminated DCB and non-DCB patients well in the training and validation cohorts with an area under the curve (AUC) of 0.82, 95% CI: 0.75 to 0.88, and 0.75, 95% CI: 0.64 to 0.87, respectively. In this study, the predictive value of CRS was better than programmed cell death ligand-1 (PD-L1) expression (AUC of PD-L1 subset: 0.59, 95% CI: 0.50 to 0.69) or clinical model (AUC: 0.66, 95% CI: 0.51 to 0.81). After combining the clinical signature with CRS, the predictive performance improved further with an AUC of 0.837, 0.790 and 0.781 in training, validation and D2 cohorts, respectively. When predicting pathological response, CRS divided patients into a major pathological response (MPR) and non-MPR group (AUC: 0.76, 95% CI: 0.67 to 0.81). Moreover, CRS showed a promising stratification ability on overall survival (HR: 0.49, 95% CI: 0.27 to 0.89; p=0.020) and progression-free survival (HR: 0.43, 95% CI: 0.26 to 0.74; p=0.002). CONCLUSION By analyzing both tumorous and peritumoral regions of CT images in a radiomic strategy, we developed a non-invasive biomarker for distinguishing responders of ICIs therapy and stratifying their survival outcome efficiently, which may support the clinical decisions on the use of ICIs in advanced as well as patients with resectable NSCLC.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Weijie Zhan
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Lan Liu
- Department of Radiology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Shantou University Medical College, Shantou, China
| | - Henian Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Medical University, Zhanjiang, China
| | - Guoqing Liao
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Luyu Huang
- Department of Surgery, Competence Center of Thoracic Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yubo Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Peimeng You
- Department of Radiology, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zekai Huang
- Guangdong Medical University, Zhanjiang, China
| | - Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Shantou University Medical College, Shantou, China
| | - Bin Xu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Siyun Wang
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyi Wang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Dong-Kun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Lawrence Wing-Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Lanuti
- Department of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
203
|
Fan X, Li J, Huang B, Lu H, Lu C, Pan M, Wang X, Zhang H, You Y, Wang X, Wang Q, Zhang J. Noninvasive radiomics model reveals macrophage infiltration in glioma. Cancer Lett 2023; 573:216380. [PMID: 37660885 DOI: 10.1016/j.canlet.2023.216380] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Preoperative MRI is an essential diagnostic and therapeutic reference for gliomas. This study aims to evaluate the prognostic aspect of a radiomics biomarker for glioma and further investigate its relationship with tumor microenvironment and macrophage infiltration. We covered preoperative MRI of 664 glioma patients from three independent datasets: Jiangsu Province Hospital (JSPH, n = 338), The Cancer Genome Atlas dataset (TCGA, n = 252), and Repository of Molecular Brain Neoplasia Data (REMBRANDT, n = 74). Incorporating a multistep post-processing workflow, 20 radiomics features (Rads) were selected and a radiomics survival biomarker (RadSurv) was developed, proving highly efficient in risk stratification of gliomas (cut-off = 1.06), as well as lower-grade gliomas (cut-off = 0.64) and glioblastomas (cut-off = 1.80) through three fixed cut-off values. Through immune infiltration analysis, we found a positive correlation between RadSurv and macrophage infiltration (RMΦ = 0.297, p < 0.001; RM2Φ = 0.241, p < 0.001), further confirmed by immunohistochemical-staining (glioblastomas, n = 32) and single-cell sequencing (multifocal glioblastomas, n = 2). In conclusion, RadSurv acts as a strong prognostic biomarker for gliomas, exhibiting a non-negligible positive correlation with macrophage infiltration, especially with M2 macrophage, which strongly suggests the promise of radiomics-based models as a preoperative alternative to conventional genomics for predicting tumor macrophage infiltration and provides clinical guidance for immunotherapy.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jintan Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Hongyu Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Minhong Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjian Zhang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China; Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
204
|
McGale J, Hama J, Yeh R, Vercellino L, Sun R, Lopci E, Ammari S, Dercle L. Artificial Intelligence and Radiomics: Clinical Applications for Patients with Advanced Melanoma Treated with Immunotherapy. Diagnostics (Basel) 2023; 13:3065. [PMID: 37835808 PMCID: PMC10573034 DOI: 10.3390/diagnostics13193065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Immunotherapy has greatly improved the outcomes of patients with metastatic melanoma. However, it has also led to new patterns of response and progression, creating an unmet need for better biomarkers to identify patients likely to achieve a lasting clinical benefit or experience immune-related adverse events. In this study, we performed a focused literature survey covering the application of artificial intelligence (AI; in the form of radiomics, machine learning, and deep learning) to patients diagnosed with melanoma and treated with immunotherapy, reviewing 12 studies relevant to the topic published up to early 2022. The most commonly investigated imaging modality was CT imaging in isolation (n = 9, 75.0%), while patient cohorts were most frequently recruited retrospectively and from single institutions (n = 7, 58.3%). Most studies concerned the development of AI tools to assist in prognostication (n = 5, 41.7%) or the prediction of treatment response (n = 6, 50.0%). Validation methods were disparate, with two studies (16.7%) performing no validation and equal numbers using cross-validation (n = 3, 25%), a validation set (n = 3, 25%), or a test set (n = 3, 25%). Only one study used both validation and test sets (n = 1, 8.3%). Overall, promising results have been observed for the application of AI to immunotherapy-treated melanoma. Further improvement and eventual integration into clinical practice may be achieved through the implementation of rigorous validation using heterogeneous, prospective patient cohorts.
Collapse
Affiliation(s)
- Jeremy McGale
- Department of Radiology, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Jakob Hama
- Queens Hospital Center, Icahn School of Medicine at Mt. Sinai, Queens, NY 10029, USA
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Laetitia Vercellino
- Nuclear Medicine Department, INSERM UMR S942, Hôpital Saint-Louis, Assistance-Publique, Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, New York, NY 10032, USA
| |
Collapse
|
205
|
Chen Y, Yang C, Sheng L, Jiang H, Song B. The Era of Immunotherapy in Hepatocellular Carcinoma: The New Mission and Challenges of Magnetic Resonance Imaging. Cancers (Basel) 2023; 15:4677. [PMID: 37835371 PMCID: PMC10572030 DOI: 10.3390/cancers15194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, significant advancements in immunotherapy for hepatocellular carcinoma (HCC) have shown the potential to further improve the prognosis of patients with advanced HCC. However, in clinical practice, there is still a lack of effective biomarkers for identifying the patient who would benefit from immunotherapy and predicting the tumor response to immunotherapy. The immune microenvironment of HCC plays a crucial role in tumor development and drug responses. However, due to the complexity of immune microenvironment, currently, no single pathological or molecular biomarker can effectively predict tumor responses to immunotherapy. Magnetic resonance imaging (MRI) images provide rich biological information; existing studies suggest the feasibility of using MRI to assess the immune microenvironment of HCC and predict tumor responses to immunotherapy. Nevertheless, there are limitations, such as the suboptimal performance of conventional MRI sequences, incomplete feature extraction in previous deep learning methods, and limited interpretability. Further study needs to combine qualitative features, quantitative parameters, multi-omics characteristics related to the HCC immune microenvironment, and various deep learning techniques in multi-center research cohorts. Subsequently, efforts should also be undertaken to construct and validate a visual predictive tool of tumor response, and assess its predictive value for patient survival benefits. Additionally, future research endeavors must aim to provide an accurate, efficient, non-invasive, and highly interpretable method for predicting the effectiveness of immune therapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
206
|
Li X, Zhang C, Li T, Lin X, Wu D, Yang G, Cao D. Early acquired resistance to EGFR-TKIs in lung adenocarcinomas before radiographic advanced identified by CT radiomic delta model based on two central studies. Sci Rep 2023; 13:15586. [PMID: 37730961 PMCID: PMC10511693 DOI: 10.1038/s41598-023-42916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Early acquired resistance (EAR) to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinomas before radiographic advance cannot be perceived by the naked eye. This study aimed to discover and validate a CT radiomic model to precisely identify the EAR. Training cohort (n = 67) and internal test cohort (n = 29) were from the First Affiliated Hospital of Fujian Medical University, and external test cohort (n = 29) was from the Second Affiliated Hospital of Xiamen Medical College. Follow-up CT images at three different times of each patient were collected: (1) baseline images before EGFR-TKIs therapy; (2) first follow-up images after EGFR-TKIs therapy (FFT); (3) EAR images, which were the last follow-up images before radiographic advance. The features extracted from FFT and EAR were used to construct the classic radiomic model. The delta features which were calculated by subtracting the baseline from either FFT or EAR were used to construct the delta radiomic model. The classic radiomic model achieved AUC 0.682 and 0.641 in training and internal test cohorts, respectively. The delta radiomic model achieved AUC 0.730 and 0.704 in training and internal test cohorts, respectively. Over the external test cohort, the delta radiomic model achieved AUC 0.661. The decision curve analysis showed that when threshold of the probability of the EAR to the EGFR-TKIs was between 0.3 and 0.82, the proposed model was more benefit than treating all patients. Based on two central studies, the delta radiomic model derived from the follow-up non-enhanced CT images can help clinicians to identify the EAR to EGFR-TKIs in lung adenocarcinomas before radiographic advance and optimize clinical outcomes.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, China
| | - Chengxiu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhangshan Road, Shanghai, 200062, China
| | - Tingting Li
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, Fujian, China
| | - Xiuqiang Lin
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhangshan Road, Shanghai, 200062, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhangshan Road, Shanghai, 200062, China.
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Shanghai, 200062, China.
| |
Collapse
|
207
|
Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, Li X, Yang Z. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med 2023; 21:598. [PMID: 37674169 PMCID: PMC10481579 DOI: 10.1186/s12967-023-04437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
The advent of immunotherapy, a groundbreaking advancement in cancer treatment, has given rise to the prominence of the tumor microenvironment (TME) as a critical area of research. The clinical implications of an improved understanding of the TME are significant and far-reaching. Radiomics has been increasingly utilized in the comprehensive assessment of the TME and cancer prognosis. Similarly, the advancement of pathomics, which is based on pathological images, can offer additional insights into the panoramic view and microscopic information of tumors. The combination of pathomics and radiomics has revolutionized the concept of a "digital biopsy". As genomics and transcriptomics continue to evolve, integrating radiomics with genomic and transcriptomic datasets can offer further insights into tumor and microenvironment heterogeneity and establish correlations with biological significance. Therefore, the synergistic analysis of digital image features (radiomics, pathomics) and genetic phenotypes (genomics) can comprehensively decode and characterize the heterogeneity of the TME as well as predict cancer prognosis. This review presents a comprehensive summary of the research on important radiomics biomarkers for predicting the TME, emphasizing the interplay between radiomics, genomics, transcriptomics, and pathomics, as well as the application of multiomics in decoding the TME and predicting cancer prognosis. Finally, we discuss the challenges and opportunities in multiomics research. In conclusion, this review highlights the crucial role of radiomics and multiomics associations in the assessment of the TME and cancer prognosis. The combined analysis of radiomics, pathomics, genomics, and transcriptomics is a promising research direction with substantial research significance and value for comprehensive TME evaluation and cancer prognosis assessment.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of, Fudan University, Shanghai, 200011, China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Jianwei Luo
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junqing Xi
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
208
|
Shamsabadipour A, Pourmadadi M, Davodabadi F, Rahdar A, Romanholo Ferreira LF. Applying thermodynamics as an applicable approach to cancer diagnosis, evaluation, and therapy: A review. J Drug Deliv Sci Technol 2023; 86:104681. [DOI: 10.1016/j.jddst.2023.104681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
209
|
Zhao J, He Y, Yang X, Tian P, Zeng L, Huang K, Zhao J, Zhou J, Zhu Y, Wang Q, Chen M, Li W, Gao Y, Zhang Y, Xia Y. Assessing treatment outcomes of chemoimmunotherapy in extensive-stage small cell lung cancer: an integrated clinical and radiomics approach. J Immunother Cancer 2023; 11:e007492. [PMID: 37730276 PMCID: PMC10514620 DOI: 10.1136/jitc-2023-007492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a highly malignant cancer characterized by metastasis and an extremely poor prognosis. Although combined chemoimmunotherapy improves the prognosis of extensive-stage (ES)-SCLC, the survival benefits remain limited. Furthermore, no reliable biomarker is available so far to predict the treatment outcomes for chemoimmunotherapy. METHODS This retrospective study included patients with ES-SCLC treated with first-line combined atezolizumab or durvalumab with standard chemotherapy between Janauray 1, 2019 and October 1, 2022 at five medical centers in China as the chemoimmunotherapy group. The patients were divided into one training cohort and two independent external validation cohorts. Additionally, we created a control group of ES-SCLC who was treated with first-line standard chemotherapy alone. The Radiomics Score was derived using machine learning algorithms based on the radiomics features extracted in the regions of interest delineated on the chest CT obtained before treatment. Cox proportional hazards regression analysis was performed to identify clinical features associated with therapeutic efficacy. The log-rank test, time-dependent receiver operating characteristic curve, and Concordance Index (C-index) were used to assess the effectiveness of the models. RESULTS A total of 341 patients (mean age, 62±8.7 years) were included in our study. After a median follow-up time of 12.1 months, the median progression-free survival (mPFS) was 7.1 (95% CI 6.6 to 7.7) months, whereas the median overall survival (mOS) was not reached. The TNM stage, Eastern Cooperative Oncology Group performance status, and Lung Immune Prognostic Index showed significant correlations with PFS. We proposed a predictive model based on eight radiomics features to determine the risk of chemoimmunotherapy resistance among patients with SCLC (validation set 1: mPFS, 12.0 m vs 5.0 m, C-index=0.634; validation set 2: mPFS, 10.8 m vs 6.1 m, C-index=0.617). By incorporating the clinical features associated with PFS into the radiomics model, the predictive efficacy was substantially improved. Consequently, the low-progression-risk group exhibited a significantly longer mPFS than the high-progression-risk group in both validation set 1 (mPFS, 12.8 m vs 4.5 m, HR=0.40, p=0.028) and validation set 2 (mPFS, 9.2 m vs 4.6 m, HR=0.30, p=0.012). External validation set 1 and set 2 yielded the highest 6-month area under the curve and C-index of 0.852 and 0.820, respectively. Importantly, the integrated prediction model also exhibited considerable differentiation power for survival outcomes. The HR for OS derived from the low-progression-risk and high-progression-risk groups was 0.28 (95% CI 0.17 to 0.48) in all patients and 0.20 (95% CI 0.08 to 0.54) in validation set. By contrast, no significant differences were observed in PFS and OS, between high-progression-risk patients receiving chemoimmunotherapy and the chemotherapy cohort (mPFS, 5.5 m vs 5.9 m, HR=0.90, p=0.547; mOS, 14.5 m vs 13.7 m, HR=0.97, p=0.910). CONCLUSIONS The integrated clinical and radiomics model can predict the treatment outcomes in patients with ES-SCLC receiving chemoimmunotherapy, rendering a convenient and low-cost prognostic model for decision-making regarding patient management.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, Beijing, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China
| | - Kun Huang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Zhao
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Zhou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yin Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyuan Wang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mailin Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, Beijing, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Gao
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
210
|
Yang W, Wu W, Wang L, Zhang S, Zhao J, Qiang Y. PMSG-Net: A priori-guided multilevel graph transformer fusion network for immunotherapy efficacy prediction. Comput Biol Med 2023; 164:107371. [PMID: 37586204 DOI: 10.1016/j.compbiomed.2023.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In the case of specific immunotherapy regimens and access to pre-treatment CT scans, developing reliable, interpretable intelligent image biomarkers to predict efficacy is essential for physician decision-making and patient treatment selection. However, varying levels of prognosis show a similar appearance on CT scans. It becomes challenging to stratify patients by a single pre-treatment CT scan when presenting subtle differences in images for experienced experts and existing prognostic classification methods. In addition, the pattern of peri-tumoural radiological structures also determines the patient's response to ICIs. Therefore, it is essential to develop a method that focuses on the clinical priori features of the tumour edges but also makes full use of the rich information within the 3D tumour. This paper proposes a priori-guided multilevel graph transformer fusion network (PMSG-Net). Specifically, a graph convolutional network is first used to obtain a feature representation of the tumour edge, and complementary information from that detailed representation is used to enhance the global representation. In the tumour global representation branch (MSGNet), we designed the cascaded scale-enhanced swin transformer to obtain attributes of graph nodes, and efficiently learn and model spatial dependencies and semantic connections at different scales through multi-hop context-aware attention (MCA), yielding a richer global semantic representation. To our knowledge, this is the first attempt to use graph neural networks to predict the efficacy of immunotherapy, and the experimental results show that this method outperforms the current mainstream methods.
Collapse
Affiliation(s)
- Wanting Yang
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Wei Wu
- Department of Clinical Laboratory, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Long Wang
- Jinzhong College of Information, 030600, Taiyuan, Shanxi, China
| | - Shuming Zhang
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Juanjuan Zhao
- College of Software, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, 030000, Taiyuan, Shanxi, China.
| |
Collapse
|
211
|
Wang X, Jiang Y, Chen H, Zhang T, Han Z, Chen C, Yuan Q, Xiong W, Wang W, Li G, Heng PA, Li R. Cancer immunotherapy response prediction from multi-modal clinical and image data using semi-supervised deep learning. Radiother Oncol 2023; 186:109793. [PMID: 37414254 DOI: 10.1016/j.radonc.2023.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND PURPOSE Immunotherapy is a standard treatment for many tumor types. However, only a small proportion of patients derive clinical benefit and reliable predictive biomarkers of immunotherapy response are lacking. Although deep learning has made substantial progress in improving cancer detection and diagnosis, there is limited success on the prediction of treatment response. Here, we aim to predict immunotherapy response of gastric cancer patients using routinely available clinical and image data. MATERIALS AND METHODS We present a multi-modal deep learning radiomics approach to predict immunotherapy response using both clinical data and computed tomography images. The model was trained using 168 advanced gastric cancer patients treated with immunotherapy. To overcome limitations of small training data, we leverage an additional dataset of 2,029 patients who did not receive immunotherapy in a semi-supervised framework to learn intrinsic imaging phenotypes of the disease. We evaluated model performance in two independent cohorts of 81 patients treated with immunotherapy. RESULTS The deep learning model achieved area under receiver operating characteristics curve (AUC) of 0.791 (95% CI 0.633-0.950) and 0.812 (95% CI 0.669-0.956) for predicting immunotherapy response in the internal and external validation cohorts. When combined with PD-L1 expression, the integrative model further improved the AUC by 4-7% in absolute terms. CONCLUSION The deep learning model achieved promising performance for predicting immunotherapy response from routine clinical and image data. The proposed multi-modal approach is general and can incorporate other relevant information to further improve prediction of immunotherapy response.
Collapse
Affiliation(s)
- Xi Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, CA, USA; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; Zhejiang Lab, Hangzhou, China
| | - Yuming Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, CA, USA; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, CA, USA.
| |
Collapse
|
212
|
Qiu Y, Liu YF, Shu X, Qiao XF, Ai GY, He XJ. Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer. Acad Radiol 2023; 30 Suppl 1:S1-S13. [PMID: 37393175 DOI: 10.1016/j.acra.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
RATIONALE AND OBJECTIVES To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions. MATERIALS AND METHODS In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve. RESULTS The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions. CONCLUSION The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yun-Fan Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Shu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiao-Feng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guang-Yong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiao-Jing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
213
|
Chen S, Song D, Chen L, Guo T, Jiang B, Liu A, Pan X, Wang T, Tang H, Chen G, Xue Z, Wang X, Zhang N, Zheng J. Artificial intelligence-based non-invasive tumor segmentation, grade stratification and prognosis prediction for clear-cell renal-cell carcinoma. PRECISION CLINICAL MEDICINE 2023; 6:pbad019. [PMID: 38025974 PMCID: PMC10680020 DOI: 10.1093/pcmedi/pbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13-5.45, P = 0.023] in the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58-4.84, P = 0.0019), 3.83 (95%CI: 1.22-11.96, P = 0.029), and 2.80 (95%CI: 1.05-7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical advice for deciding treatment options.
Collapse
Affiliation(s)
- Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Dandan Song
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Chen
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Beibei Jiang
- Department of Radiology, Erasmus University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, The Netherlands
| | - Aie Liu
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Xianpan Pan
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Heting Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhong Xue
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai 201807, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
214
|
Zhang W, Tong S, Hu B, Wan T, Tang H, Zhao F, Jiao T, Li J, Zhang Z, Cai J, Ye H, Wang Z, Chen S, Wang Y, Li X, Wang F, Cao J, Tian L, Zhao X, Chen M, Wang H, Cai S, Hu M, Bai Y, Lu S. Lenvatinib plus anti-PD-1 antibodies as conversion therapy for patients with unresectable intermediate-advanced hepatocellular carcinoma: a single-arm, phase II trial. J Immunother Cancer 2023; 11:e007366. [PMID: 37730273 PMCID: PMC10514649 DOI: 10.1136/jitc-2023-007366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Over 70% of the patients with hepatocellular carcinoma (HCC) are diagnosed at an advanced stage and lose the opportunity for radical surgery. Combination therapy of tyrosine kinase inhibitors (TKIs) and anti-programmed cell death protein-1 (PD-1) antibodies has achieved a high tumor response rate in both the first-line and second-line treatment of advanced HCC. However, few studies have prospectively evaluated whether TKIs plus anti-PD-1 antibodies could convert unresectable intermediate-advanced HCC into resectable disease. METHODS This single-arm, phase II study enrolled systemic therapy-naïve adult patients with unresectable Barcelona Clinic Liver Cancer stage B or C HCC. Patients received oral lenvatinib one time per day plus intravenous anti-PD-1 agents every 3 weeks (one cycle). Tumor response and resectability were evaluated before the fourth cycle, then every two cycles. The primary endpoint was conversion success rate by investigator assessment. Secondary endpoints included objective response rate (ORR) by independent imaging review (IIR) assessment per modified RECIST (mRECIST) and Response Evaluation Criteria in Solid Tumors, V.1.1 (RECIST 1.1), progression-free survival (PFS) and 12-month recurrence-free survival (RFS) rate by IIR per mRECIST, R0 resection rate, overall survival (OS), and safety. Biomarkers were assessed as exploratory objectives. RESULTS Of the 56 eligible patients enrolled, 53 (94.6%) had macrovascular invasion, and 16 (28.6%) had extrahepatic metastasis. The median follow-up was 23.5 months. The primary endpoint showed a conversion success rate of 55.4% (31/56). ORR was 53.6% per mRECIST and 44.6% per RECIST 1.1. Median PFS was 8.9 months, and median OS was 23.9 months. Among the 31 successful conversion patients, 21 underwent surgery with an R0 resection rate of 85.7%, a pathological complete response rate of 38.1%, and a 12-month RFS rate of 47.6%. Grade ≥3 treatment-related adverse events were observed in 42.9% of patients. Tumor immune microenvironment analysis of pretreatment samples displayed significant enrichment of CD8+ T cells (p=0.03) in responders versus non-responders. CONCLUSION Lenvatinib plus anti-PD-1 antibodies demonstrate promising efficacy and tolerable safety as conversion therapy in unresectable HCC. Pre-existing CD8+ cells are identified as a promising biomarker for response to this regimen. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR1900023914.
Collapse
Affiliation(s)
- Wenwen Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | - Shuang Tong
- Medical Affairs, 3D Medicines, Shanghai, China
| | - Bingyang Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | - Tao Wan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | - Haowen Tang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | | | - Tianyu Jiao
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Junfeng Li
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ze Zhang
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Shanghai, China
| | - Huiyi Ye
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Zhanbo Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | | | - Yafei Wang
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xuerui Li
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Fangzhou Wang
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Junning Cao
- Organ Transplant Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lantian Tian
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | | | - Mingyi Chen
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | - Hongguang Wang
- Department of Hepatopancreatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouwang Cai
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | - Minggen Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| | - Yuezong Bai
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
215
|
Liu Z, Duan T, Zhang Y, Weng S, Xu H, Ren Y, Zhang Z, Han X. Radiogenomics: a key component of precision cancer medicine. Br J Cancer 2023; 129:741-753. [PMID: 37414827 PMCID: PMC10449908 DOI: 10.1038/s41416-023-02317-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics, radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Tian Duan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
216
|
Lin P, Lin YQ, Gao RZ, Wan WJ, He Y, Yang H. Integrative radiomics and transcriptomics analyses reveal subtype characterization of non-small cell lung cancer. Eur Radiol 2023; 33:6414-6425. [PMID: 36826501 DOI: 10.1007/s00330-023-09503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES To assess whether integrative radiomics and transcriptomics analyses could provide novel insights for radiomic features' molecular annotation and effective risk stratification in non-small cell lung cancer (NSCLC). METHODS A total of 627 NSCLC patients from three datasets were included. Radiomics features were extracted from segmented 3-dimensional tumour volumes and were z-score normalized for further analysis. In transcriptomics level, 186 pathways and 28 types of immune cells were assessed by using the Gene Set Variation Analysis (GSVA) algorithm. NSCLC patients were categorized into subgroups based on their radiomic features and pathways enrichment scores using consensus clustering. Subgroup-specific radiomics features were used to validate clustering performance and prognostic value. Kaplan-Meier survival analysis with the log-rank test and univariable and multivariable Cox analyses were conducted to explore survival differences among the subgroups. RESULTS Three radiotranscriptomics subtypes (RTSs) were identified based on the radiomics and pathways enrichment profiles. The three RTSs were characterized as having specific molecular hallmarks: RTS1 (proliferation subtype), RTS2 (metabolism subtype), and RTS3 (immune activation subtype). RTS3 showed increased infiltration of most immune cells. The RTS stratification strategy was validated in a validation cohort and showed significant prognostic value. Survival analysis demonstrated that the RTS strategy could stratify NSCLC patients according to prognosis (p = 0.009), and the RTS strategy remained an independent prognostic indicator after adjusting for other clinical parameters. CONCLUSIONS This radiotranscriptomics study provides a stratification strategy for NSCLC that could provide information for radiomics feature molecular annotation and prognostic prediction. KEY POINTS • Radiotranscriptomics subtypes (RTSs) could be used to stratify molecularly heterogeneous patients. • RTSs showed relationships between molecular phenotypes and radiomics features. • The RTS algorithm could be used to identify patients with poor prognosis.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yi-Qun Lin
- Department of Radiology, The 909th Hospital. School of Medicine, Xiamen University, Fujian, Zhangzhou, People's Republic of China
| | - Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei-Jun Wan
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
217
|
Sun C, Liu X, Sun J, Dong L, Wei F, Bao C, Zhong J, Li Y. A CT-based radiomics nomogram for predicting histopathologic growth patterns of colorectal liver metastases. J Cancer Res Clin Oncol 2023; 149:9543-9555. [PMID: 37221440 DOI: 10.1007/s00432-023-04852-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE To develop a computed tomography (CT)-based radiomics nomogram for pre-treatment prediction of histopathologic growth patterns (HGPs) in colorectal liver metastases (CRLM) and to validate its accuracy and clinical value. MATERIALS AND METHODS This retrospective study included a total of 197 CRLM from 92 patients. Lesions from CRLM were randomly divided into the training study (n = 137) and the validation study (n = 60) with the ratio of 3:1 for model construction and internal validation. The least absolute shrinkage and selection operator (LASSO) was used to screen features. Radiomics score (rad-score) was calculated to generate radiomics features. A predictive radiomics nomogram based on rad-score and clinical features was developed using random forest (RF). The performances of clinical model, radiomic model and radiomics nomogram were thoroughly evaluated by the DeLong test, decision curve analysis (DCA) and clinical impact curve (CIC) allowing for generation of an optimal predictive model. RESULTS The radiological nomogram model consists of three independent predictors, including rad-score, T-stage, and enhancement rim on PVP. Training and validation results demonstrated the high-performance level of the model of area under curve (AUC) of 0.86 and 0.84, respectively. The radiomic nomogram model can achieve better diagnostic performance than the clinical model, yielding greater net clinical benefit compared to the clinical model alone. CONCLUSIONS A CT-based radiomics nomogram can be used to predict HGPs in CRLM. Preoperative non-invasive identification of HGPs could further facilitate clinical treatment and provide personalized treatment plans for patients with liver metastases from colorectal cancer.
Collapse
Affiliation(s)
- Chao Sun
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Jie Sun
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Longchun Dong
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Feng Wei
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Jin Zhong
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, Jieyuan Road, Hongqiao District, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
218
|
Xu M, Yang H, Yang Q, Teng P, Hao H, Liu C, Yu S, Liu G. Radiomics nomogram based on digital breast tomosynthesis: preoperative evaluation of axillary lymph node metastasis in breast carcinoma. J Cancer Res Clin Oncol 2023; 149:9317-9328. [PMID: 37208454 DOI: 10.1007/s00432-023-04859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE This study aimed to establish a radiomics nomogram model based on digital breast tomosynthesis (DBT) images, to predict the status of axillary lymph nodes (ALN) in patients with breast carcinoma. METHODS The data of 120 patients with confirmed breast carcinoma, including 49 cases with axillary lymph node metastasis (ALNM), were retrospectively analyzed in this study. The dataset was randomly divided into a training group consisting of 84 patients (37 with ALNM) and a validation group comprising 36 patients (12 with ALNM). Clinical information was collected for all cases, and radiomics features were extracted from DBT images. Feature selection was performed to develop the Radscore model. Univariate and multivariate logistic regression analysis were employed to identify independent risk factors for constructing both the clinical model and nomogram model. To evaluate the performance of these models, receiver operating characteristic (ROC) curve analysis, calibration curve, decision curve analysis (DCA), net reclassification improvement (NRI), and integrated discriminatory improvement (IDI) were conducted. RESULTS The clinical model identified tumor margin and DBT_reported_LNM as independent risk factors, while the Radscore model was constructed using 9 selected radiomics features. Incorporating tumor margin, DBT_reported_LNM, and Radscore, the radiomics nomogram model exhibited superior performance with AUC values of 0.933 and 0.920 in both datasets, respectively. The NRI and IDI showed a significant improvement, suggesting that the Radscore may serve as a useful biomarker for predicting ALN status. CONCLUSION The radiomics nomogram based on DBT demonstrated effective preoperative prediction performance for ALNM in patients with breast cancer.
Collapse
Affiliation(s)
- Maolin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Huimin Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Qi Yang
- Department of Radiology, The First Hospital of Jilin University, No.71 Xinmin Street, Changchun, 130012, China.
| | - Peihong Teng
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Haifeng Hao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Chang Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China
| | - Shaonan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China.
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
219
|
Jiang Y, Zhang Z, Wang W, Huang W, Chen C, Xi S, Ahmad MU, Ren Y, Sang S, Xie J, Wang JY, Xiong W, Li T, Han Z, Yuan Q, Xu Y, Xing L, Poultsides GA, Li G, Li R. Biology-guided deep learning predicts prognosis and cancer immunotherapy response. Nat Commun 2023; 14:5135. [PMID: 37612313 PMCID: PMC10447467 DOI: 10.1038/s41467-023-40890-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Substantial progress has been made in using deep learning for cancer detection and diagnosis in medical images. Yet, there is limited success on prediction of treatment response and outcomes, which has important implications for personalized treatment strategies. A significant hurdle for clinical translation of current data-driven deep learning models is lack of interpretability, often attributable to a disconnect from the underlying pathobiology. Here, we present a biology-guided deep learning approach that enables simultaneous prediction of the tumor immune and stromal microenvironment status as well as treatment outcomes from medical images. We validate the model for predicting prognosis of gastric cancer and the benefit from adjuvant chemotherapy in a multi-center international study. Further, the model predicts response to immune checkpoint inhibitors and complements clinically approved biomarkers. Importantly, our model identifies a subset of mismatch repair-deficient tumors that are non-responsive to immunotherapy and may inform the selection of patients for combination treatments.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhicheng Zhang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- JancsiTech and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Wang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weicai Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - M Usman Ahmad
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yulan Ren
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shengtian Sang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tuanjie Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - George A Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
220
|
Bevilacqua R, Barbarossa F, Fantechi L, Fornarelli D, Paci E, Bolognini S, Giammarchi C, Lattanzio F, Paciaroni L, Riccardi GR, Pelliccioni G, Biscetti L, Maranesi E. Radiomics and Artificial Intelligence for the Diagnosis and Monitoring of Alzheimer's Disease: A Systematic Review of Studies in the Field. J Clin Med 2023; 12:5432. [PMID: 37629474 PMCID: PMC10455452 DOI: 10.3390/jcm12165432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
The use of radiomics and artificial intelligence applied for the diagnosis and monitoring of Alzheimer's disease has developed in recent years. However, this approach is not yet completely applicable in clinical practice. The aim of this paper is to provide a systematic analysis of the studies that have included the use of radiomics from different imaging techniques and artificial intelligence for the diagnosis and monitoring of Alzheimer's disease in order to improve the clinical outcomes and quality of life of older patients. A systematic review of the literature was conducted in February 2023, analyzing manuscripts and articles of the last 5 years from the PubMed, Scopus and Embase databases. All studies concerning discrimination among Alzheimer's disease, Mild Cognitive Impairment and healthy older people performing radiomics analysis through machine and deep learning were included. A total of 15 papers were included. The results showed a very good performance of this approach in the differentiating Alzheimer's disease patients-both at the dementia and pre-dementia phases of the disease-from healthy older people. In summary, radiomics and AI can be valuable tools for diagnosing and monitoring the progression of Alzheimer's disease, potentially leading to earlier and more accurate diagnosis and treatment. However, the results reported by this review should be read with great caution, keeping in mind that imaging alone is not enough to identify dementia due to Alzheimer's.
Collapse
Affiliation(s)
- Roberta Bevilacqua
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Federico Barbarossa
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Lorenzo Fantechi
- Unit of Nuclear Medicine, IRCCS INRCA, 60127 Ancona, Italy; (L.F.); (D.F.)
| | - Daniela Fornarelli
- Unit of Nuclear Medicine, IRCCS INRCA, 60127 Ancona, Italy; (L.F.); (D.F.)
| | - Enrico Paci
- Unit of Radiology, IRCCS INRCA, 60127 Ancona, Italy;
| | - Silvia Bolognini
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Cinzia Giammarchi
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Fabrizia Lattanzio
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Lucia Paciaroni
- Unit of Neurology, IRCCS INRCA, 60127 Ancona, Italy; (L.P.); (G.P.)
| | | | | | | | - Elvira Maranesi
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| |
Collapse
|
221
|
Wu P, Jiang Y, Xing H, Song W, Cui X, Wu XL, Xu G. Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study. Phys Med Biol 2023; 68:175023. [PMID: 37524093 DOI: 10.1088/1361-6560/acec2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Background. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).Methods. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.Results. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.Conclusion. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.
Collapse
Affiliation(s)
- Peiyan Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Yan Jiang
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Hanshuo Xing
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Wenbo Song
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Long Wu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Guoping Xu
- School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China
| |
Collapse
|
222
|
Jiang Y, Zhou K, Sun Z, Wang H, Xie J, Zhang T, Sang S, Islam MT, Wang JY, Chen C, Yuan Q, Xi S, Li T, Xu Y, Xiong W, Wang W, Li G, Li R. Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics. Cell Rep Med 2023; 4:101146. [PMID: 37557177 PMCID: PMC10439253 DOI: 10.1016/j.xcrm.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kangneng Zhou
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengtian Sang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sujuan Xi
- The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tuanjie Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
223
|
Bronte G, Cosi DM, Magri C, Frassoldati A, Crinò L, Calabrò L. Immune Checkpoint Inhibitors in "Special" NSCLC Populations: A Viable Approach? Int J Mol Sci 2023; 24:12622. [PMID: 37628803 PMCID: PMC10454231 DOI: 10.3390/ijms241612622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Over the last decade, the therapeutic scenario for advanced non-small-cell lung cancer (NSCLC) has undergone a major paradigm shift. Immune checkpoint inhibitors (ICIs) have shown a meaningful clinical and survival improvement in different settings of the disease. However, the real benefit of this therapeutic approach remains controversial in selected NSCLC subsets, such as those of the elderly with active brain metastases or oncogene-addicted mutations. This is mainly due to the exclusion or underrepresentation of these patient subpopulations in most pivotal phase III studies; this precludes the generalization of ICI efficacy in this context. Moreover, no predictive biomarkers of ICI response exist that can help with patient selection for this therapeutic approach. Here, we critically summarize the current state of ICI efficacy in the most common "special" NSCLC subpopulations.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica Delle Marche, Via Tronto 10/A, 60121 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | | | - Chiara Magri
- Department of Oncology, University Hospital of Ferrara, 44124 Cona, Italy
| | | | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Luana Calabrò
- Department of Oncology, University Hospital of Ferrara, 44124 Cona, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
224
|
Li M, Xu G, Zhou H, Chen Q, Fan Q, Shi J, Duan S, Cui Y, Feng F. Computed tomography-based radiomics nomogram for the pre-operative prediction of BRAF mutation and clinical outcomes in patients with colorectal cancer: a double-center study. Br J Radiol 2023; 96:20230019. [PMID: 37195006 PMCID: PMC10392655 DOI: 10.1259/bjr.20230019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023] Open
Abstract
OBJECTIVE To develop and validate a radiomics nomogram based on CT for the pre-operative prediction of BRAF mutation and clinical outcomes in patients with colorectal cancer (CRC). METHODS A total of 451 CRC patients (training cohort = 190; internal validation cohort = 125; external validation cohort = 136) from 2 centers were retrospectively included. Least absolute shrinkage and selection operator regression was used to select radiomics features and the radiomics score (Radscore) was calculated. Nomogram was constructed by combining Radscore and significant clinical predictors. Receiver operating characteristic curve analysis, calibration curve and decision curve analysis were used to evaluate the predictive performance of the nomogram. Kaplan‒Meier survival curves based on the radiomics nomogram were used to assess overall survival (OS) of the entire cohort. RESULTS The Radscore consisted of nine radiomics features which were the most relevant to BRAF mutation. The radiomics nomogram integrating Radscore and clinical independent predictors (age, tumor location and cN stage) showed good calibration and discrimination with AUCs of 0.86 (95% CI: 0.80-0.91), 0.82 (95% CI: 0.74-0.90) and 0.82 (95% CI: 0.75-0.90) in the training cohort, internal validation and external validation cohorts, respectively. Furthermore,the performance of nomogram was significantly better than that of the clinical model (p < 0.05). The radiomics nomogram-predicted BRAF mutation high-risk group had a worse OS than the low-risk group (p < 0.0001). CONCLUSION The radiomics nomogram showed good performance in predicting BRAF mutation and OS of CRC patients, which could provide valuable information for individualized treatment. ADVANCES IN KNOWLEDGE The radiomics nomogram could effectively predict BRAF mutation and OS in patients with CRC. High-risk BRAF mutation group identified by the radiomics nomogram was independently associated with poor OS.
Collapse
Affiliation(s)
| | - Guodong Xu
- Department of Radiology, Yancheng No. 1 People’s Hospital, Yancheng, Jiangsu Province, China
| | - Hui Zhou
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qiaoling Chen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qi Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jian Shi
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | | | - Yanfen Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi, Shanxi Province, China
| | - Feng Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
225
|
Wang Z, Liu Y, Niu X. Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. Semin Cancer Biol 2023; 93:83-96. [PMID: 37116818 DOI: 10.1016/j.semcancer.2023.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
226
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
227
|
Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. Semin Cancer Biol 2023; 93:97-113. [PMID: 37211292 DOI: 10.1016/j.semcancer.2023.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. It exhibits, at the mesoscopic scale, phenotypic characteristics that are generally indiscernible to the human eye but can be captured non-invasively on medical imaging as radiomic features, which can form a high dimensional data space amenable to machine learning. Radiomic features can be harnessed and used in an artificial intelligence paradigm to risk stratify patients, and predict for histological and molecular findings, and clinical outcome measures, thereby facilitating precision medicine for improving patient care. Compared to tissue sampling-driven approaches, radiomics-based methods are superior for being non-invasive, reproducible, cheaper, and less susceptible to intra-tumoral heterogeneity. This review focuses on the application of radiomics, combined with artificial intelligence, for delivering precision medicine in lung cancer treatment, with discussion centered on pioneering and groundbreaking works, and future research directions in the area.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Susan J Copley
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK
| | - Haonan Lu
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK.
| |
Collapse
|
228
|
Saber R, Henault D, Messaoudi N, Rebolledo R, Montagnon E, Soucy G, Stagg J, Tang A, Turcotte S, Kadoury S. Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases. J Transl Med 2023; 21:507. [PMID: 37501197 PMCID: PMC10375693 DOI: 10.1186/s12967-023-04175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/30/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that catalyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such radiomic score would have a prognostic significance. METHODS We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT images, stratified expression levels of CD73 (CD73High vs. CD73Low) assessed by immunofluorescence (IF) on tissue microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the performance on a hold-out test set. RESULTS TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 (0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched CRLM (Spearman's ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) after CRLM resection in rad-CD73High vs rad-CD73Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020). CONCLUSIONS Our findings reveal promising results for non-invasive CT-scan-based prediction of CD73 expression in CRLM and warrant further validation as to whether rad-CD73 could assist oncologists as a biomarker of prognosis and response to immunotherapies targeting the adenosine pathway.
Collapse
Affiliation(s)
- Ralph Saber
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - David Henault
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Nouredin Messaoudi
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
- Department of Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel) and Europe Hospitals, Brussels, Belgium
| | - Rolando Rebolledo
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Emmanuel Montagnon
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - Geneviève Soucy
- Pahology Department, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - John Stagg
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
| | - An Tang
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Simon Turcotte
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada.
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada.
| | - Samuel Kadoury
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada.
- Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada.
| |
Collapse
|
229
|
Yang F, Wan Y, Shen X, Wu Y, Xu L, Meng J, Wang J, Liu Z, Chen J, Lu D, Wen X, Zheng S, Niu T, Xu X. Application of multi-modality MRI-based radiomics in the pre-treatment prediction of RPS6K expression in hepatocellular carcinoma. MOLECULAR BIOMEDICINE 2023; 4:22. [PMID: 37482600 PMCID: PMC10363521 DOI: 10.1186/s43556-023-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/20/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, we aim to develop and validate a radiomics model for pretreatment prediction of RPS6K expression in hepatocellular carcinoma (HCC) patients, thus helping clinical decision-making of mTOR-inhibitor (mTORi) therapy. We retrospectively enrolled 147 HCC patients, who underwent curative hepatic resection at First Affiliated Hospital Zhejiang University School of Medicine. RPS6K expression was determined with immunohistochemistry staining. Patients were randomly split into training or validation cohorts on a 7:3 ratio. Radiomics features were extracted from T2-weighted and diffusion-weighted images. Machine learning algorithms including multiple logistic regression (MLR), supporting vector machine (SVM), random forest (RF), and artificial neural network (ANN) were applied to construct the predictive model. A nomogram was further built to visualize the possibility of RPS6K expression. The area under the receiver operating characteristic (AUC) was used to evaluate the performance of diagnostic models. 174 radiomics features were confirmed correlated with RPS6K expression. Amongst all built models, the ANN-based hybrid model exhibited best predictive ability with AUC of 0.887 and 0.826 in training and validation cohorts. ALB was identified as the key clinical index, and the nomogram displayed further improved ability with AUC of 0.917 and 0.845. In this study, we proved MRI-based radiomics model and nomogram can accurately predict RPS6K expression non-invasively, thus providing help for clinical decision making for mTORi therapy.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Xiaoyong Shen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, China
| | - Yichao Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Jinwen Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianguo Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhikun Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jun Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan Health Hangzhou Hospital, Hangzhou, 310004, Zhejiang, China
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
230
|
Tonneau M, Phan K, Manem VSK, Low-Kam C, Dutil F, Kazandjian S, Vanderweyen D, Panasci J, Malo J, Coulombe F, Gagné A, Elkrief A, Belkaïd W, Di Jorio L, Orain M, Bouchard N, Muanza T, Rybicki FJ, Kafi K, Huntsman D, Joubert P, Chandelier F, Routy B. Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors' response in non-small cell lung cancer: a multicenter cohort study. Front Oncol 2023; 13:1196414. [PMID: 37546399 PMCID: PMC10400292 DOI: 10.3389/fonc.2023.1196414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Background Recent developments in artificial intelligence suggest that radiomics may represent a promising non-invasive biomarker to predict response to immune checkpoint inhibitors (ICIs). Nevertheless, validation of radiomics algorithms in independent cohorts remains a challenge due to variations in image acquisition and reconstruction. Using radiomics, we investigated the importance of scan normalization as part of a broader machine learning framework to enable model external generalizability to predict ICI response in non-small cell lung cancer (NSCLC) patients across different centers. Methods Radiomics features were extracted and compared from 642 advanced NSCLC patients on pre-ICI scans using established open-source PyRadiomics and a proprietary DeepRadiomics deep learning technology. The population was separated into two groups: a discovery cohort of 512 NSCLC patients from three academic centers and a validation cohort that included 130 NSCLC patients from a fourth center. We harmonized images to account for variations in reconstruction kernel, slice thicknesses, and device manufacturers. Multivariable models, evaluated using cross-validation, were used to estimate the predictive value of clinical variables, PD-L1 expression, and PyRadiomics or DeepRadiomics for progression-free survival at 6 months (PFS-6). Results The best prognostic factor for PFS-6, excluding radiomics features, was obtained with the combination of Clinical + PD-L1 expression (AUC = 0.66 in the discovery and 0.62 in the validation cohort). Without image harmonization, combining Clinical + PyRadiomics or DeepRadiomics delivered an AUC = 0.69 and 0.69, respectively, in the discovery cohort, but dropped to 0.57 and 0.52, in the validation cohort. This lack of generalizability was consistent with observations in principal component analysis clustered by CT scan parameters. Subsequently, image harmonization eliminated these clusters. The combination of Clinical + DeepRadiomics reached an AUC = 0.67 and 0.63 in the discovery and validation cohort, respectively. Conversely, the combination of Clinical + PyRadiomics failed generalizability validations, with AUC = 0.66 and 0.59. Conclusion We demonstrated that a risk prediction model combining Clinical + DeepRadiomics was generalizable following CT scan harmonization and machine learning generalization methods. These results had similar performances to routine oncology practice using Clinical + PD-L1. This study supports the strong potential of radiomics as a future non-invasive strategy to predict ICI response in advanced NSCLC.
Collapse
Affiliation(s)
- Marion Tonneau
- Department of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, Canada
- Université de Médecine, Lille, France
| | - Kim Phan
- Imagia Canexia Health, Montreal, QC, Canada
| | - Venkata S. K. Manem
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, Canada
- Department of Mathematics and Computer Science, University of Quebec at Trois-Rivières, Trois-Rivières, QC, Canada
| | | | | | - Suzanne Kazandjian
- Department of Medical Oncology, Jewish General Hospital, Montreal, QC, Canada
| | - Davy Vanderweyen
- Department of Radiology, Centre Hospitalier de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Justin Panasci
- Department of Medical Oncology, Jewish General Hospital, Montreal, QC, Canada
| | - Julie Malo
- Department of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, Canada
| | - François Coulombe
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, Canada
| | - Andréanne Gagné
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, Canada
| | - Arielle Elkrief
- Department of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, Canada
- Hemato-Oncology Division, Centre Hospitalier de l’université de Montreal, Montreal, QC, Canada
| | - Wiam Belkaïd
- Department of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, Canada
| | | | - Michele Orain
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, Canada
| | - Nicole Bouchard
- Department of Oncology, Centre Hospitalier de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Thierry Muanza
- Department of Medical Oncology, Jewish General Hospital, Montreal, QC, Canada
- Department of Radiation Oncology, Lady Davis Institute of the Jewish General Hospital, Montreal, QC, Canada
| | | | - Kam Kafi
- Imagia Canexia Health, Montreal, QC, Canada
| | | | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Québec City, QC, Canada
- Department of Pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | | | - Bertrand Routy
- Department of Cancer Research, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, QC, Canada
- Hemato-Oncology Division, Centre Hospitalier de l’université de Montreal, Montreal, QC, Canada
| |
Collapse
|
231
|
Ni H, Zhou G, Chen X, Ren J, Yang M, Zhang Y, Zhang Q, Zhang L, Mao C, Li X. Predicting Recurrence in Pancreatic Ductal Adenocarcinoma after Radical Surgery Using an AX-Unet Pancreas Segmentation Model and Dynamic Nomogram. Bioengineering (Basel) 2023; 10:828. [PMID: 37508855 PMCID: PMC10376503 DOI: 10.3390/bioengineering10070828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
This study aims to investigate the reliability of radiomic features extracted from contrast-enhanced computer tomography (CT) by AX-Unet, a pancreas segmentation model, to analyse the recurrence of pancreatic ductal adenocarcinoma (PDAC) after radical surgery. In this study, we trained an AX-Unet model to extract the radiomic features from preoperative contrast-enhanced CT images on a training set of 205 PDAC patients. Then we evaluated the segmentation ability of AX-Unet and the relationship between radiomic features and clinical characteristics on an independent testing set of 64 patients with clear prognoses. The lasso regression analysis was used to screen for variables of interest affecting patients' post-operative recurrence, and the Cox proportional risk model regression analysis was used to screen for risk factors and create a nomogram prediction model. The proposed model achieved an accuracy of 85.9% for pancreas segmentation, meeting the requirements of most clinical applications. Radiomic features were found to be significantly correlated with clinical characteristics such as lymph node metastasis, resectability status, and abnormally elevated serum carbohydrate antigen 19-9 (CA 19-9) levels. Specifically, variance and entropy were associated with the recurrence rate (p < 0.05). The AUC for the nomogram predicting whether the patient recurred after surgery was 0.92 (95% CI: 0.78-0.99) and the C index was 0.62 (95% CI: 0.48-0.78). The AX-Unet pancreas segmentation model shows promise in analysing recurrence risk factors after radical surgery for PDAC. Additionally, our findings suggest that a dynamic nomogram model based on AX-Unet can provide pancreatic oncologists with more accurate prognostic assessments for their patients.
Collapse
Affiliation(s)
- Haixu Ni
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Gonghai Zhou
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinlong Chen
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Jing Ren
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Minqiang Yang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuhong Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiyu Zhang
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chengsheng Mao
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xun Li
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
232
|
Barrett JS, Goyal RK, Gobburu J, Baran S, Varshney J. An AI Approach to Generating MIDD Assets Across the Drug Development Continuum. AAPS J 2023; 25:70. [PMID: 37430126 DOI: 10.1208/s12248-023-00838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Model-informed drug development involves developing and applying exposure-based, biological, and statistical models derived from preclinical and clinical data sources to inform drug development and decision-making. Discrete models are generated from individual experiments resulting in a single model expression that is utilized to inform a single stage-gate decision. Other model types provide a more holistic view of disease biology and potentially disease progression depending on the appropriateness of the underlying data sources for that purpose. Despite this awareness, most data integration and model development approaches are still reliant on internal (within company) data stores and traditional structural model types. An AI/ML-based MIDD approach relies on more diverse data and is informed by past successes and failures including data outside a host company (external data sources) that may enhance predictive value and enhance data generated by the sponsor to reflect more informed and timely experimentation. The AI/ML methodology also provides a complementary approach to more traditional modeling efforts that support MIDD and thus yields greater fidelity in decision-making. Early pilot studies support this assessment but will require broader adoption and regulatory support for more evidence and refinement of this paradigm. An AI/ML-based approach to MIDD has the potential to transform regulatory science and the current drug development paradigm, optimize information value, and increase candidate and eventually product confidence with respect to safety and efficacy. We highlight early experiences with this approach using the AI compute platforms as representative examples of how MIDD can be facilitated with an AI/ML approach.
Collapse
Affiliation(s)
- Jeffrey S Barrett
- Aridhia Bioinformatics, 163 Bath Street, Glasgow, Scotland, G2 4SQ, UK.
| | - Rahul K Goyal
- Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Jogarao Gobburu
- Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
- Pumas-AI, Baltimore, Maryland, USA
| | | | | |
Collapse
|
233
|
Wang TW, Hsu MS, Lin YH, Chiu HY, Chao HS, Liao CY, Lu CF, Wu YT, Huang JW, Chen YM. Application of Radiomics in Prognosing Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3542. [PMID: 37509204 PMCID: PMC10377421 DOI: 10.3390/cancers15143542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In the context of non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs), this research evaluated the prognostic value of CT-based radiomics. A comprehensive systematic review and meta-analysis of studies up to April 2023, which included 3111 patients, was conducted. We utilized the Quality in Prognosis Studies (QUIPS) tool and radiomics quality scoring (RQS) system to assess the quality of the included studies. Our analysis revealed a pooled hazard ratio for progression-free survival of 2.80 (95% confidence interval: 1.87-4.19), suggesting that patients with certain radiomics features had a significantly higher risk of disease progression. Additionally, we calculated the pooled Harrell's concordance index and area under the curve (AUC) values of 0.71 and 0.73, respectively, indicating good predictive performance of radiomics. Despite these promising results, further studies with consistent and robust protocols are needed to confirm the prognostic role of radiomics in NSCLC.
Collapse
Affiliation(s)
- Ting-Wei Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Sheng Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Hui Lin
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hwa-Yen Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yuh-Min Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
234
|
Yolchuyeva S, Giacomazzi E, Tonneau M, Lamaze F, Orain M, Coulombe F, Malo J, Belkaid W, Routy B, Joubert P, Manem VSK. Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell lung patients treated with immunotherapy: a multi-institutional study. Sci Rep 2023; 13:11065. [PMID: 37422576 PMCID: PMC10329671 DOI: 10.1038/s41598-023-38076-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
With the increasing use of immune checkpoint inhibitors (ICIs), there is an urgent need to identify biomarkers to stratify responders and non-responders using programmed death-ligand (PD-L1) expression, and to predict patient-specific outcomes such as progression free survival (PFS). The current study is aimed to determine the feasibility of building imaging-based predictive biomarkers for PD-L1 and PFS through systematically evaluating a combination of several machine learning algorithms with different feature selection methods. A retrospective, multicenter study of 385 advanced NSCLC patients amenable to ICIs was undertaken in two academic centers. Radiomic features extracted from pretreatment CT scans were used to build predictive models for PD-L1 and PFS (short-term vs. long-term survivors). We first employed the LASSO methodology followed by five feature selection methods and seven machine learning approaches to build the predictors. From our analyses, we found several combinations of feature selection methods and machine learning algorithms to achieve a similar performance. Logistic regression with ReliefF feature selection (AUC = 0.64, 0.59 in discovery and validation cohorts) and SVM with Anova F-test feature selection (AUC = 0.64, 0.63 in discovery and validation datasets) were the best-performing models to predict PD-L1 and PFS. This study elucidates the application of suitable feature selection approaches and machine learning algorithms to predict clinical endpoints using radiomics features. Through this study, we identified a subset of algorithms that should be considered in future investigations for building robust and clinically relevant predictive models.
Collapse
Affiliation(s)
- Sevinj Yolchuyeva
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada
| | - Elena Giacomazzi
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
- Université de médecine de Lille, Lille, France
| | - Fabien Lamaze
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Michele Orain
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - François Coulombe
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Julie Malo
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Wiam Belkaid
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Venkata S K Manem
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
| |
Collapse
|
235
|
Fitzgerald KJ, Schoenfeld JD. Radiotherapy Dose in Patients Receiving Immunotherapy. Semin Radiat Oncol 2023; 33:327-335. [PMID: 37331787 DOI: 10.1016/j.semradonc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
There is significant rationale for combining radiation therapy (RT) and immuno-oncology (IO) agents, but the optimal radiation parameters are unknown. This review summarizes key trials in the RT and IO space with a focus on RT dose. Very low RT doses solely modulate the tumor immune microenvironment, intermediate doses both modulate the tumor immune microenvironment and kill some fraction of tumor cells, and ablative doses eliminate the majority of target tumor cells and also possess immunomodulatory effects. Ablative RT doses may have high toxicity if targets are adjacent to radiosensitive normal organs. The majority of completed trials have been conducted in the setting of metastatic disease and direct RT to a single lesion with the goal of generating systemic antitumor immunity termed the abscopal effect. Unfortunately, reliable generation of an abscopal effect has proved elusive over a range of radiation doses. Newer trials are exploring the effects of delivering RT to all or most sites of metastatic disease, with dose personalization based on the number and location of lesions. Additional directions include testing RT and IO in earlier stages of disease, sometimes in further combination with chemotherapy and surgery, where lower doses of RT may still contribute substantially to pathologic responses.
Collapse
|
236
|
Hu Z, Jiang D, Zhao X, Yang J, Liang D, Wang H, Zhao C, Liao J. Predicting Drug Treatment Outcomes in Childrens with Tuberous Sclerosis Complex-Related Epilepsy: A Clinical Radiomics Study. AJNR Am J Neuroradiol 2023; 44:853-860. [PMID: 37348968 PMCID: PMC10337615 DOI: 10.3174/ajnr.a7911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND AND PURPOSE Highly predictive markers of drug treatment outcomes of tuberous sclerosis complex-related epilepsy are a key unmet clinical need. The objective of this study was to identify meaningful clinical and radiomic predictors of outcomes of epilepsy drug treatment in patients with tuberous sclerosis complex. MATERIALS AND METHODS A total of 105 children with tuberous sclerosis complex-related epilepsy were enrolled in this retrospective study. The pretreatment baseline predictors that were used to predict drug treatment outcomes included patient demographic and clinical information, gene data, electroencephalogram data, and radiomic features that were extracted from pretreatment MR imaging scans. The Spearman correlation coefficient and least absolute shrinkage and selection operator were calculated to select the most relevant features for the drug treatment outcome to build a comprehensive model with radiomic and clinical features for clinical application. RESULTS Four MR imaging-based radiomic features and 5 key clinical features were selected to predict the drug treatment outcome. Good discriminative performances were achieved in testing cohorts (area under the curve = 0.85, accuracy = 80.0%, sensitivity = 0.75, and specificity = 0.83) for the epilepsy drug treatment outcome. The model of radiomic and clinical features resulted in favorable calibration curves in all cohorts. CONCLUSIONS Our results suggested that the radiomic and clinical features model may predict the epilepsy drug treatment outcome. Age of onset, infantile spasms, antiseizure medication numbers, epileptiform discharge in left parieto-occipital area of electroencephalography, and gene mutation type are the key clinical factors to predict the epilepsy drug treatment outcome. The texture and first-order statistic features are the most valuable radiomic features for predicting drug treatment outcomes.
Collapse
Affiliation(s)
- Z Hu
- From the Departments of Neurology (Z.H., X.Z., J.L.)
| | - D Jiang
- Research Centre for Medical AI (D.J., J.Y., D.L.)
- Shenzhen College of Advanced Technology (D.J., J.Y., D.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - X Zhao
- From the Departments of Neurology (Z.H., X.Z., J.L.)
| | - J Yang
- Research Centre for Medical AI (D.J., J.Y., D.L.)
- Shenzhen College of Advanced Technology (D.J., J.Y., D.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - D Liang
- Research Centre for Medical AI (D.J., J.Y., D.L.)
- Paul C. Lauterbur Research Center for Biomedical Imaging (D.L., H.W.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen College of Advanced Technology (D.J., J.Y., D.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - H Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging (D.L., H.W.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - C Zhao
- Radiology (C.Z.), Shenzhen Children's Hospital, Shenzhen, China
| | - J Liao
- From the Departments of Neurology (Z.H., X.Z., J.L.)
| |
Collapse
|
237
|
Khan F, Jones K, Lyon P. Immune checkpoint inhibition: a future guided by radiology. Br J Radiol 2023; 96:20220565. [PMID: 36752570 PMCID: PMC10321249 DOI: 10.1259/bjr.20220565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
The limitation of the function of antitumour immune cells is a common hallmark of cancers that enables their survival. As such, the potential of immune checkpoint inhibition (ICI) acts as a paradigm shift in the treatment of a range of cancers but has not yet been fully capitalised. Combining minimally and non-invasive locoregional therapies offered by radiologists with ICI is now an active field of research with the aim of furthering therapeutic capabilities in medical oncology. In parallel to this impending advancement, the "imaging toolbox" available to radiologists is also growing, enabling more refined tumour characterisation as well as greater accuracy in evaluating responses to therapy. Options range from metabolite labelling to cellular localisation to immune checkpoint screening. It is foreseeable that these novel imaging techniques will be integrated into personalised treatment algorithms. This growth in the field must include updating the current standardised imaging criteria to ensure they are fit for purpose. Such criteria is crucial to both appropriately guide clinical decision-making regarding next steps of treatment, but also provide reliable prognosis. Quantitative approaches to these novel imaging techniques are also already being investigated to further optimise personalised therapeutic decision-making. The therapeutic potential of specific ICIs and locoregional therapies could be determined before administration thus limiting unnecessary side-effects whilst maintaining efficacy. Several radiological aspects of oncological care are advancing simultaneously. Therefore, it is essential that each development is assessed for clinical use and optimised to ensure the best treatment decisions are being offered to the patient. In this review, we discuss state of the art advances in novel functional imaging techniques in the field of immuno-oncology both pre-clinically and clinically.
Collapse
Affiliation(s)
- Faraaz Khan
- Foundation Doctor, Buckinghamshire Hospitals NHS Trust, Amersham, Buckinghamshire, United Kingdom
| | - Keaton Jones
- Academic Clinical Lecturer Nuffield Department of Surgical Sciences University of Oxford, Wellington Square, Oxford, United Kingdom
| | - Paul Lyon
- Consultant Radiologist, Department of Radiology, Oxford University Hospitals, Headington, Oxford, United Kingdom
| |
Collapse
|
238
|
Han R, Huang L, Zhou S, Shen J, Li P, Li M, Wu X, Wang R. Novel clinical radiomic nomogram method for differentiating malignant from non-malignant pleural effusions. Heliyon 2023; 9:e18056. [PMID: 37539225 PMCID: PMC10395353 DOI: 10.1016/j.heliyon.2023.e18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Objectives To establish a clinical radiomics nomogram that differentiates malignant and non-malignant pleural effusions. Methods A total of 146 patients with malignant pleural effusion (MPE) and 93 patients with non-MPE (NMPE) were included. The ROI image features of chest lesions were extracted using CT. Univariate analysis was performed, and least absolute shrinkage selection operator and multivariate logistic analysis were used to screen radiomics features and calculate the radiomics score. A nomogram was constructed by combining clinical factors with radiomics scores. ROC curve and decision curve analysis (DCA) were used to evaluate the prediction effect. Results After screening, 19 radiomics features and 2 clinical factors were selected as optimal predictors to establish a combined model and construct a nomogram. The AUC of the combined model was 0.968 (95% confidence interval [CI] = 0.944-0.986) in the training cohort and 0.873 (95% CI = 0.796-0.940) in the validation cohort. The AUC value of the combined model was significantly higher than those of the clinical and radiomics models (0.968 vs. 0.874 vs. 0.878, respectively). This was similar in the validation cohort (0.873, 0.764, and 0.808, respectively). DCA confirmed the clinical utility of the radiomics nomogram. Conclusion CT-based radiomics showed better diagnostic accuracy and model fit than clinical and radiological features in distinguishing MPE from NMPE. The combination of both achieved better diagnostic performance. These findings support the clinical application of the nomogram in diagnosing MPE using chest CT.
Collapse
Affiliation(s)
- Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ling Huang
- Department of Infectious Disease, Hefei Second People's Hospital, Hefei, 230001, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, China
| | - Jiran Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xingwang Wu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
239
|
Dong W, Ji Y, Pi S, Chen QF. Noninvasive imaging-based machine learning algorithm to identify progressive disease in advanced hepatocellular carcinoma receiving second-line systemic therapy. Sci Rep 2023; 13:10690. [PMID: 37393336 PMCID: PMC10314898 DOI: 10.1038/s41598-023-37862-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
The aim of this study was to predict tyrosine kinase inhibitors (TKI) plus anti-PD-1 antibodies (TKI-PD-1) efficacy as second-line treatment in advanced hepatocellular carcinoma (HCC) using radiomics analysis. From November 2018 to November 2019, a total of 55 patients were included. Radiomic features were obtained from the CT images before treatment and filtered using intraclass correlation coefficients (ICCs) and least absolute shrinkage and selection operator (LASSO) methods. Subsequently, ten prediction algorithms were developed and validated based on radiomic characteristics. The accuracy of the constructed model was measured through area under the receiver operating characteristic curve (AUC) analysis; survival analysis was performed via Kaplan-Meier and Cox regression analyses. Overall, 18 (32.7%) out of 55 patients had progressive disease. Through ICCs and LASSO, ten radiomic features were entered into the algorithm construction and validation. Ten machine learning algorithms showed different accuracies, with the support vector machine (SVM) model having the highest AUC value of 0.933 in the training cohort and 0.792 in the testing cohort. The radiomic features were associated with overall survival. In conclsion, the SVM algorithm is a useful method to predict TKI-PD-1 efficacy in patients with advanced HCC using images taken prior to treatment.
Collapse
Affiliation(s)
- Wei Dong
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, China
| | - Ye Ji
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, China
| | - Shan Pi
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Qi-Feng Chen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
240
|
Saad MB, Hong L, Aminu M, Vokes NI, Chen P, Salehjahromi M, Qin K, Sujit SJ, Lu X, Young E, Al-Tashi Q, Qureshi R, Wu CC, Carter BW, Lin SH, Lee PP, Gandhi S, Chang JY, Li R, Gensheimer MF, Wakelee HA, Neal JW, Lee HS, Cheng C, Velcheti V, Lou Y, Petranovic M, Rinsurongkawong W, Le X, Rinsurongkawong V, Spelman A, Elamin YY, Negrao MV, Skoulidis F, Gay CM, Cascone T, Antonoff MB, Sepesi B, Lewis J, Wistuba II, Hazle JD, Chung C, Jaffray D, Gibbons DL, Vaporciyan A, Lee JJ, Heymach JV, Zhang J, Wu J. Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study. Lancet Digit Health 2023; 5:e404-e420. [PMID: 37268451 PMCID: PMC10330920 DOI: 10.1016/s2589-7500(23)00082-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/28/2023] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK negative NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. FUNDING National Institutes of Health, Mark Foundation Damon Runyon Foundation Physician Scientist Award, MD Anderson Strategic Initiative Development Program, MD Anderson Lung Moon Shot Program, Andrea Mugnaini, and Edward L C Smith.
Collapse
Affiliation(s)
- Maliazurina B Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheeba J Sujit
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuetao Lu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elliana Young
- Department of Enterprise Data Engineering and Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qasem Al-Tashi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rizwan Qureshi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Percy P Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael F Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather A Wakelee
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J Sugarbaker Division of Thoracic Surgery, Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, New York University Langone Health, New York, NY, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Milena Petranovic
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Waree Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vadeerat Rinsurongkawong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Spelman
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Jaffray
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
241
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
242
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
243
|
Han B, He J, Chen Q, Yuan M, Zeng X, Li Y, Zeng Y, He M, Feng D, Ma D. Identifying the role of NUDCD1 in human tumors from clinical and molecular mechanisms: a study based on comprehensive bioinformatics and experimental validation. Aging (Albany NY) 2023; 15:5611-5649. [PMID: 37338527 PMCID: PMC10333089 DOI: 10.18632/aging.204813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
NUDCD1 (NudC domain-containing 1) is abnormally activated in multiple tumors and has been identified as a cancer antigen. But there is still no pan-cancer analysis available for NUDCD1 in human cancers. The role of NUDCD1 across multiple tumors was explored using data from the public databases including HPA, TCGA, GEO, GTEx, TIMER2, TISIDB, UALCAN, GEPIA2, cBioPortal, GSCA and so on. Molecular experiments (e.g., quantitative real-time PCR, immunohistochemistry and western blot) were conducted to validate the expression and biological function of NUDCD1 in STAD. Results showed that NUDCD1 was highly expressed in most tumors and its levels were associated with the prognosis. Multiple genetic and epigenetic features of NUDCD1 exist in different cancers. NUDCD1 was associated with expression levels of recognized immune checkpoints (anti-CTLA-4) and immune infiltrates (e.g., CD4+ and CD8+ T cells) in some cancers. Moreover, NUDCD1 correlated with the CTRP and GDSC drug sensitivity and acted as a link between chemicals and cancers. Importantly, NUDCD1-related genes were enriched in several tumors (e.g., COAD, STAD and ESCA) and affected apoptosis, cell cycle and DNA damage cancer-related pathways. Furthermore, expression, mutation and copy number variations for the gene sets were also associated with prognosis. At last, the overexpression and contribution of NUDCD1 in STAD were experimentally validated in vitro and in vivo. NUDCD1 was involved in diverse biological processes and it influenced the occurrence and development of cancers. This first pan-cancer analysis for NUDCD1 provides a comprehensive understanding about its roles across various cancer types, especially in STAD.
Collapse
Affiliation(s)
- Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dan Feng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Daiyuan Ma
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
244
|
Lu H, Lou H, Wengert G, Paudel R, Patel N, Desai S, Crum B, Linton-Reid K, Chen M, Li D, Ip J, Mauri F, Pinato DJ, Rockall A, Copley SJ, Ghaem-Maghami S, Aboagye EO. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer. Cell Rep Med 2023:101092. [PMID: 37348499 PMCID: PMC10394173 DOI: 10.1016/j.xcrm.2023.101092] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Tertiary lymphoid structure (TLS) is associated with prognosis in copy-number-driven tumors, including high-grade serous ovarian cancer (HGSOC), although the function of TLS and its interaction with copy-number alterations in HGSOC are not fully understood. In the current study, we confirm that TLS-high HGSOC patients show significantly better progression-free survival (PFS). We show that the presence of TLS in HGSOC tumors is associated with B cell maturation and cytotoxic tumor-specific T cell activation and proliferation. In addition, the copy-number loss of IL15 and CXCL10 may limit TLS formation in HGSOC; a list of genes that may dysregulate TLS function is also proposed. Last, a radiomics-based signature is developed to predict the presence of TLS, which independently predicts PFS in both HGSOC patients and immune checkpoint inhibitor (ICI)-treated non-small cell lung cancer (NSCLC) patients. Overall, we reveal that TLS coordinates intratumoral B cell and T cell response to HGSOC tumor, while the cancer genome evolves to counteract TLS formation and function.
Collapse
Affiliation(s)
- Haonan Lu
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Hantao Lou
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
| | - Georg Wengert
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Reema Paudel
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Naina Patel
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Saral Desai
- Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Bill Crum
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Kristofer Linton-Reid
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Mitchell Chen
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Dongyang Li
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Jacey Ip
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Francesco Mauri
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Andrea Rockall
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Susan J Copley
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Sadaf Ghaem-Maghami
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK.
| |
Collapse
|
245
|
Xu M, Chen Z, Zheng J, Zhao Q, Yuan Z. Artificial Intelligence-Aided Optical Imaging for Cancer Theranostics. Semin Cancer Biol 2023:S1044-579X(23)00094-9. [PMID: 37302519 DOI: 10.1016/j.semcancer.2023.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxiao Zheng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
246
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 PMCID: PMC10236604 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
247
|
Zhong J, Frood R, McWilliam A, Davey A, Shortall J, Swinton M, Hulson O, West CM, Buckley D, Brown S, Choudhury A, Hoskin P, Henry A, Scarsbrook A. Prediction of prostate tumour hypoxia using pre-treatment MRI-derived radiomics: preliminary findings. LA RADIOLOGIA MEDICA 2023; 128:765-774. [PMID: 37198374 PMCID: PMC10264289 DOI: 10.1007/s11547-023-01644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE To develop a machine learning (ML) model based on radiomic features (RF) extracted from whole prostate gland magnetic resonance imaging (MRI) for prediction of tumour hypoxia pre-radiotherapy. MATERIAL AND METHODS Consecutive patients with high-grade prostate cancer and pre-treatment MRI treated with radiotherapy between 01/12/2007 and 1/08/2013 at two cancer centres were included. Cancers were dichotomised as normoxic or hypoxic using a biopsy-based 32-gene hypoxia signature (Ragnum signature). Prostate segmentation was performed on axial T2-weighted (T2w) sequences using RayStation (v9.1). Histogram standardisation was applied prior to RF extraction. PyRadiomics (v3.0.1) was used to extract RFs for analysis. The cohort was split 80:20 into training and test sets. Six different ML classifiers for distinguishing hypoxia were trained and tuned using five different feature selection models and fivefold cross-validation with 20 repeats. The model with the highest mean validation area under the curve (AUC) receiver operating characteristic (ROC) curve was tested on the unseen set, and AUCs were compared via DeLong test with 95% confidence interval (CI). RESULTS 195 patients were included with 97 (49.7%) having hypoxic tumours. The hypoxia prediction model with best performance was derived using ridge regression and had a test AUC of 0.69 (95% CI: 0.14). The test AUC for the clinical-only model was lower (0.57), but this was not statistically significant (p = 0.35). The five selected RFs included textural and wavelet-transformed features. CONCLUSION Whole prostate MRI-radiomics has the potential to non-invasively predict tumour hypoxia prior to radiotherapy which may be helpful for individualised treatment optimisation.
Collapse
Affiliation(s)
- Jim Zhong
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
- Department of Radiology, Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals National Health Service (NHS) Trust, Beckett Street, Leeds, LS9 7TF, UK.
| | - Russell Frood
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Radiology, Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals National Health Service (NHS) Trust, Beckett Street, Leeds, LS9 7TF, UK
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Angela Davey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Jane Shortall
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Martin Swinton
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Oliver Hulson
- Department of Radiology, Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals National Health Service (NHS) Trust, Beckett Street, Leeds, LS9 7TF, UK
| | - Catharine M West
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Buckley
- Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sarah Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research (LICTR), University of Leeds, Leeds, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Peter Hoskin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Ann Henry
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Clinical Oncology, Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals National Health Service (NHS) Trust, Beckett Street, Leeds, LS9 7TF, UK
| | - Andrew Scarsbrook
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Radiology, Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals National Health Service (NHS) Trust, Beckett Street, Leeds, LS9 7TF, UK
| |
Collapse
|
248
|
Yan W, Quan C, Mourad WF, Yuan J, Shi Z, Yang J, Lu Q, Zhang J. Application of radiomics in lung immuno-oncology. PRECISION RADIATION ONCOLOGY 2023; 7:128-136. [PMID: 40337267 PMCID: PMC11935008 DOI: 10.1002/pro6.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 04/08/2023] Open
Abstract
Radiomics is a rapidly evolving field of research that extracts and analyzes quantitative features within medical images. Those features are termed as radiomic features that can characterize a tumor in a comprehensive and quantitative manner with regard to its internal structure and heterogeneity. Radiomic features can be used, alone or in combination with demographic, histological, genomic, or proteomic data, for predicting prognosis or treatment response. Immunotherapy, or immune-oncology, is the study of cancer treatment by taking advantage of the body's immune system to prevent, control, and eliminate cancer. In this review, we first provide a brief introduction to both radiomics and immune-oncology in lung cancer. Then, we discuss the need for developing immune-oncology biomarkers, and the advantages of radiomics in identifying biomarkers related to immunotherapy. We also discuss potential areas in and out of tumors, such as the intra-tumoral hypoxic region and tumor microenvironment, where radiomic markers might be extracted, as well as a potential application of radiomic biomarkers in clinical lung cancer management. Finally, we present radiation and immune modulation in non-small cell lung cancer, clinical trials and their design to incorporate radiomic biomarkers, and radiomics-guided precision radiation therapy.
Collapse
Affiliation(s)
- Weisi Yan
- Baptist Health SystemLexingtonKentuckyUSA
| | - Chen Quan
- City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Waleed F. Mourad
- Department of Radiation MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jianda Yuan
- Translational Oncology at Merck & CoKenilworthNew JerseyUSA
| | | | - Jun Yang
- Foshan Chancheng HospitalFoshanGuangdongChina
| | - Qiuxia Lu
- Foshan Chancheng HospitalFoshanGuangdongChina
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
249
|
Anderson KG, Braun DA, Buqué A, Gitto SB, Guerriero JL, Horton B, Keenan BP, Kim TS, Overacre-Delgoffe A, Ruella M, Triplett TA, Veeranki O, Verma V, Zhang F. Leveraging immune resistance archetypes in solid cancer to inform next-generation anticancer therapies. J Immunother Cancer 2023; 11:e006533. [PMID: 37399356 PMCID: PMC10314654 DOI: 10.1136/jitc-2022-006533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Obstetrics and Gynecology, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sarah B Gitto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marco Ruella
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Triplett
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Omkara Veeranki
- Medical Affairs and Clinical Development, Caris Life Sciences Inc, Irving, Texas, USA
| | - Vivek Verma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
250
|
Chen M, Lu H, Copley SJ, Han Y, Logan A, Viola P, Cortellini A, Pinato DJ, Power D, Aboagye EO. A Novel Radiogenomics Biomarker for Predicting Treatment Response and Pneumotoxicity From Programmed Cell Death Protein or Ligand-1 Inhibition Immunotherapy in NSCLC. J Thorac Oncol 2023; 18:718-730. [PMID: 36773776 DOI: 10.1016/j.jtho.2023.01.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/23/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Patient selection for checkpoint inhibitor immunotherapy is currently guided by programmed death-ligand 1 (PD-L1) expression obtained from immunohistochemical staining of tumor tissue samples. This approach is susceptible to limitations resulting from the dynamic and heterogeneous nature of cancer cells and the invasiveness of the tissue sampling procedure. To address these challenges, we developed a novel computed tomography (CT) radiomic-based signature for predicting disease response in patients with NSCLC undergoing programmed cell death protein 1 (PD-1) or PD-L1 checkpoint inhibitor immunotherapy. METHODS This retrospective study comprises a total of 194 patients with suitable CT scans out of 340. Using the radiomic features computed from segmented tumors on a discovery set of 85 contrast-enhanced chest CTs of patients diagnosed with having NSCLC and their CD274 count, RNA expression of the protein-encoding gene for PD-L1, as the response vector, we developed a composite radiomic signature, lung cancer immunotherapy-radiomics prediction vector (LCI-RPV). This was validated in two independent testing cohorts of 66 and 43 patients with NSCLC treated with PD-1 or PD-L1 inhibition immunotherapy, respectively. RESULTS LCI-RPV predicted PD-L1 positivity in both NSCLC testing cohorts (area under the curve [AUC] = 0.70, 95% confidence interval [CI]: 0.57-0.84 and AUC = 0.70, 95% CI: 0.46-0.94). In one cohort, it also demonstrated good prediction of cases with high PD-L1 expression exceeding key treatment thresholds (>50%: AUC = 0.72, 95% CI: 0.59-0.85 and >90%: AUC = 0.66, 95% CI: 0.45-0.88), the tumor's objective response to treatment at 3 months (AUC = 0.68, 95% CI: 0.52-0.85), and pneumonitis occurrence (AUC = 0.64, 95% CI: 0.48-0.80). LCI-RPV achieved statistically significant stratification of the patients into a high- and low-risk survival group (hazard ratio = 2.26, 95% CI: 1.21-4.24, p = 0.011 and hazard ratio = 2.45, 95% CI: 1.07-5.65, p = 0.035). CONCLUSIONS A CT radiomics-based signature developed from response vector CD274 can aid in evaluating patients' suitability for PD-1 or PD-L1 checkpoint inhibitor immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Haonan Lu
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Susan J Copley
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Yidong Han
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Andrew Logan
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, London, United Kingdom
| | - Alessio Cortellini
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Danielle Power
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College, London, United Kingdom.
| |
Collapse
|