201
|
Nie Q, Chen H, Hu J, Fan S, Nie S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr 2018; 59:848-863. [PMID: 30569745 DOI: 10.1080/10408398.2018.1536646] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) and its complications are major public health concerns which strongly influence the quality of humans' life. Modification of gut microbiota has been widely used for the management of diabetes. In this review, the relationship between diabetes and gut microbiota, as well as the effects of different dietary components and traditional Chinese medicine (TCM) on gut microflora are summarized. Dietary compounds and TCM possessing bioactive components (fiber and phytochemicals) first change the composition of gut microbiota (inhibiting pathogens and promoting the beneficial bacteria growth) and then influence the production of their metabolites, which would further modify the intestinal environment through inhibiting the production of detrimental compounds (such as lipopolysaccharide, hydrogen sulfide, indol, etc.). Importantly, metabolites (short chain fatty acids and other bioactive components) fermented/degraded by gut microbiota can target multiple pathways in intestine, liver, pancreas, etc., resulting in the improvement of gut health, glycemic control, lipids profile, insulin resistance and inflammation. Furthermore, understanding the interaction between different dietary components and gut microbiota, as well as underlying mechanisms would help design different diet formula for the management of diabetes. Further researches could focus on the combination of different dietary components for preventing and treating diabetes, based on the principle of "multiple components against multiple targets" from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Qixing Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Haihong Chen
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Jielun Hu
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Songtao Fan
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Shaoping Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| |
Collapse
|
202
|
Nath A, Molnár MA, Csighy A, Kőszegi K, Galambos I, Huszár KP, Koris A, Vatai G. Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. ACTA ACUST UNITED AC 2018; 54:medicina54060098. [PMID: 30513975 PMCID: PMC6306850 DOI: 10.3390/medicina54060098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Lactose-based prebiotics are synthesized by enzymatic- or microbial- biotransformation of lactose and have unique functional values. In this comprehensive review article, the biochemical mechanisms of controlling osteoporosis, blood-lipid, and glucose levels by lactose-based prebiotics and symbiosis with probiotics are reported along with the results of clinical investigations. Interaction between lactose-based prebiotics and probiotics reduces osteoporosis by (a) transforming insoluble inorganic salts to soluble and increasing their absorption to gut wall; (b) maintaining and protecting mineral absorption surface in the intestine; (c) increasing the expression of calcium-binding proteins in the gut wall; (d) remodeling osteoclasts and osteoblasts formation; (e) releasing bone modulating factors; and (f) degrading mineral complexing phytic acid. Lactose-based prebiotics with probiotics control lipid level in the bloodstream and tissue by (a) suppressing the expressions of lipogenic- genes and enzymes; (b) oxidizing fatty acids in muscle, liver, and adipose tissue; (c) binding cholesterol with cell membrane of probiotics and subsequent assimilation by probiotics; (d) enzymatic-transformations of bile acids; and (e) converting cholesterol to coprostanol and its defecation. Symbiosis of lactose-based prebiotics with probiotics affect plasma glucose level by (a) increasing the synthesis of gut hormones plasma peptide-YY, glucagon-like peptide-1 and glucagon-like peptide-2 from entero-endocrine L-cells; (b) altering glucose assimilation and metabolism; (c) suppressing systematic inflammation; (d) reducing oxidative stress; and (e) producing amino acids. Clinical investigations show that lactose-based prebiotic galacto-oligosaccharide improves mineral absorption and reduces hyperlipidemia. Another lactose-based prebiotic, lactulose, improves mineral absorption, and reduces hyperlipidemia and hyperglycemia. It is expected that this review article will be of benefit to food technologists and medical practitioners.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Üllő út., H-3 Nagykanizsa, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Attila Csighy
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Kornélia Kőszegi
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Üllő út., H-3 Nagykanizsa, Hungary.
| | - Klára Pásztorné Huszár
- Department of Refrigeration and Livestock Product Technology, Faculty of Food Science, Szent István University, Ménesi st 43⁻45, HU-1118 Budapest, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| |
Collapse
|
203
|
Liang S, Wu X, Jin F. Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis. Front Integr Neurosci 2018; 12:33. [PMID: 30271330 PMCID: PMC6142822 DOI: 10.3389/fnint.2018.00033] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Mental disorders and neurological diseases are becoming a rapidly increasing medical burden. Although extensive studies have been conducted, the progress in developing effective therapies for these diseases has still been slow. The current dilemma reminds us that the human being is a superorganism. Only when we take the human self and its partner microbiota into consideration at the same time, can we better understand these diseases. Over the last few centuries, the partner microbiota has experienced tremendous change, much more than human genes, because of the modern transformations in diet, lifestyle, medical care, and so on, parallel to the modern epidemiological transition. Existing research indicates that gut microbiota plays an important role in this transition. According to gut-brain psychology, the gut microbiota is a crucial part of the gut-brain network, and it communicates with the brain via the microbiota-gut-brain axis. The gut microbiota almost develops synchronously with the gut-brain, brain, and mind. The gut microbiota influences various normal mental processes and mental phenomena, and is involved in the pathophysiology of numerous mental and neurological diseases. Targeting the microbiota in therapy for these diseases is a promising approach that is supported by three theories: the gut microbiota hypothesis, the "old friend" hypothesis, and the leaky gut theory. The effects of gut microbiota on the brain and behavior are fulfilled by the microbiota-gut-brain axis, which is mainly composed of the nervous pathway, endocrine pathway, and immune pathway. Undoubtedly, gut-brain psychology will bring great enhancement to psychology, neuroscience, and psychiatry. Various microbiota-improving methods including fecal microbiota transplantation, probiotics, prebiotics, a healthy diet, and healthy lifestyle have shown the capability to promote the function of the gut-brain, microbiota-gut-brain axis, and brain. It will be possible to harness the gut microbiota to improve brain and mental health and prevent and treat related diseases in the future.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
204
|
Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci Rep 2018; 8:13238. [PMID: 30185894 PMCID: PMC6125380 DOI: 10.1038/s41598-018-31698-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dietary non-digestible carbohydrates are perceived to improve health via gut microbiota-dependent generation of products such as short-chain fatty acids (SCFA). In addition, SCFA are also precursors for lipid and cholesterol synthesis potentially resulting in unwanted effects on lipid metabolism. Inulin is a widely used model prebiotic dietary fiber. Inconsistent reports on the effects of inulin on cholesterol homeostasis have emerged in humans and preclinical models. To clarify this issue, the present study aimed to provide an in-depth characterization of the effects of short-chain (sc)- and long-chain (lc)- inulin on cholesterol synthesis, absorption and elimination in mice. Feeding wildtype C57BL/6J mice diets supplemented with 10% (w/w) of either sc- or lc-inulin for two weeks resulted in approximately 2.5-fold higher fecal SCFA levels (P < 0.01) compared with controls, but had no significant effects on plasma and liver lipids. Subtle shifts in fecal and plasma bile acid species were detected with beta-muricholic acid increasing significantly in plasma of the inulin fed groups (1.7-fold, P < 0.05). However, neither sc-inulin nor lc-inulin affected intestinal cholesterol absorption, mass fecal cholesterol excretion or trans-intestinal cholesterol excretion (TICE). Combined, our data demonstrate that sc- and lc-inulin have no adverse effects on cholesterol metabolism in mice despite increased generation of SCFA.
Collapse
|
205
|
Abstract
Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Elisa Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
206
|
Zheng J, Li H, Zhang X, Jiang M, Luo C, Lu Z, Xu Z, Shi J. Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5821-5831. [PMID: 29701959 DOI: 10.1021/acs.jafc.8b00829] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Type 2 diabetes (T2D) induced by obesity and high-fat diet is significantly associated with gut microbiota dysbacteriosis. Because the first line clinical medicine of metformin has several intestinal drawbacks, combination usage of metformin with a prebiotic of konjac mannan-oligosaccharides (MOS) was conceived and implemented aiming to investigate whether there were some intestinal synergetic effects and how MOS would function. Composite treatment of metformin and MOS demonstrated synergistic effects on ameliorating insulin resistance and glucose tolerance, also on repairing islet and hepatic histology. In addition, MF+MOS altered the gut community composition and structure by decreasing the relative abundances of family Rikenellaceae and order Clostridiales while increasing an unnamed OTU05945 of family S24-7, Akkermansia muciniphila, and Bifidobacterium pseudolongum. The present study suggested that usage of MOS could augment the hypoglycemic effects of metformin in association with gut microbiota modulation, which could provide references for further medication.
Collapse
Affiliation(s)
| | | | | | | | - Chunqin Luo
- Chengdu Yongan Yuanhe Biotechnology Co. Ltd., Fifth Tianfu Street , Chengdu 611630 , China
| | | | | | | |
Collapse
|