201
|
Lillehoj PB, Wei F, Ho CM. A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. LAB ON A CHIP 2010; 10:2265-70. [PMID: 20596556 DOI: 10.1039/c004885b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A robust poly(dimethylsiloxane) (PDMS) surface treatment was utilized for the development of a self-pumping lab-on-a-chip (LOC) to rapidly detect minute quantities of toxic substances. One such toxin, botulinum neurotoxin (BoNT), is an extremely lethal substance, which has the potential to cause hundreds of thousands of fatalities if as little as a few grams are released into the environment. To prevent such an outcome, a quick (<45 min) and sensitive detection format is needed. We have developed a self-pumping LOC that can sense down to 1 pg of BoNT type A (in a 1 microL sample) within 15 min in an autonomous manner. The key technologies enabling for such a device are a sensitive electrochemical sensor, an optimized fluidic network and a robust hydrophilic PDMS coating, thereby facilitating autonomous delivery of liquid samples for rapid detection. The stability, simplicity and portability of this device make possible for a storable and distributable system for monitoring bioterrorist attacks.
Collapse
Affiliation(s)
- Peter B Lillehoj
- Mechanical and Aerospace Engineering department, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
202
|
Shen F, Du W, Davydova EK, Karymov MA, Pandey J, Ismagilov RF. Nanoliter multiplex PCR arrays on a SlipChip. Anal Chem 2010; 82:4606-12. [PMID: 20446698 DOI: 10.1021/ac1007249] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SlipChip platform was tested to perform high-throughput nanoliter multiplex PCR. The advantages of using the SlipChip platform for multiplex PCR include the ability to preload arrays of dry primers, instrument-free sample manipulation, small sample volume, and high-throughput capacity. The SlipChip was designed to preload one primer pair per reaction compartment and to screen up to 384 different primer pairs with less than 30 nanoliters of sample per reaction compartment. Both a 40-well and a 384-well design of the SlipChip were tested for multiplex PCR. In the geometries used here, the sample fluid was spontaneously compartmentalized into discrete volumes even before slipping of the two plates of the SlipChip, but slipping introduced additional capabilities that made devices more robust and versatile. The wells of this SlipChip were designed to overcome potential problems associated with thermal expansion. By using circular wells filled with oil and overlapping them with square wells filled with the aqueous PCR mixture, a droplet of aqueous PCR mixture was always surrounded by the lubricating fluid. In this design, during heating and thermal expansion, only oil was expelled from the compartment and leaking of the aqueous solution was prevented. Both 40-well and 384-well devices were found to be free from cross-contamination, and end point fluorescence detection provided reliable readout. Multiple samples could also be screened on the same SlipChip simultaneously. Multiplex PCR was validated on the 384-well SlipChip with 20 different primer pairs to identify 16 bacterial and fungal species commonly presented in blood infections. The SlipChip correctly identified five different bacterial or fungal species in separate experiments. In addition, the presence of the resistance gene mecA in methicillin resistant Staphylococcus aureus (MRSA) was identified. The SlipChip will be useful for applications involving PCR arrays and lays the foundation for new strategies for diagnostics, point-of-care devices, and immobilization-based arrays.
Collapse
Affiliation(s)
- Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
203
|
Current and emerging techniques of fetal cell separation from maternal blood. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1905-11. [DOI: 10.1016/j.jchromb.2010.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/28/2010] [Accepted: 05/02/2010] [Indexed: 11/19/2022]
|
204
|
Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem 2010; 82:3183-90. [PMID: 20192178 DOI: 10.1021/ac902683t] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.
Collapse
Affiliation(s)
- Yong Zeng
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
205
|
Abstract
Gene doping, the abuse of gene therapy for illicit athletic enhancement, is perceived as a coming threat and is a prime concern to the anti-doping community. This doping technique represents a significant ethical challenge and there are concerns regarding its safety for athletes. This article presents the basics of gene doping, potential strategies for its detection and the role of promising new technologies in aiding detection efforts. These include the use of lab-on-a-chip techniques as well as nanoparticles to enhance the performance of current analytical methods and to develop new doping detection strategies.
Collapse
Affiliation(s)
- Mai M H Mansour
- Department of Chemistry and YJ-Science and Technology Research Center, The American University in Cairo, Cairo, Egypt
| | | |
Collapse
|
206
|
Dharmasiri U, Witek MA, Adams AA, Osiri JK, Hupert ML, Bianchi TS, Roelke DL, Soper SA. Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal Chem 2010; 82:2844-9. [PMID: 20218574 DOI: 10.1021/ac100323k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Low abundant (<100 cells mL(-1)) E. coli O157:H7 cells were isolated and enriched from environmental water samples using a microfluidic chip. The poly(methylmethacrylate), PMMA, chip contained 8 devices, each equipped with 16 curvilinear high aspect ratio channels that were covalently decorated with polyclonal anti-O157 antibodies (pAb) and could search for rare cells through a pAb mediated process. The chip could process independently 8 different samples or one sample using 8 different parallel inputs to increase volume processing throughput. After cell enrichment, cells were released and enumerated using benchtop real-time quantitative polymerase chain reaction (PCR), targeting genes which effectively discriminated the O157:H7 serotype from other nonpathogenic bacteria. The recovery of target cells from water samples was determined to be approximately 72%, and the limit-of-detection was found to be 6 colony forming units (cfu) using the slt1 gene as a reporter. We subsequently performed analysis of lake and wastewater samples. The simplicity in manufacturing and ease of operation makes this device attractive for the selection of pathogenic species from a variety of water supplies suspected of containing bacterial pathogens at extremely low frequencies.
Collapse
Affiliation(s)
- Udara Dharmasiri
- Center for Bio-Modular Multi-Scale Systems, Louisiana State University, 8000 G.SRI Road, Bldg. 3100, Baton Rouge, Louisiana 70820-7403, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Wei H, Li H, Gao D, Lin JM. Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells. Analyst 2010; 135:2043-50. [PMID: 20526497 DOI: 10.1039/c0an00162g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes an integrated system combining microfluidic devices with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) for monitoring cellular chemical release. To demonstrate the feasibility of this new system, the reported carnosine-protection process against Abeta42-induced glutamate released from PC12 cells, was monitored. Poly-L-lysine coated microchannels were used to culture cells. A multi-channel miniature extraction chip (MEC) was integrated into the design to remove salts and protein interference effects. ESI-Q-TOF-MS was employed to realize semi-quantitative and highly sensitive qualitative analysis. The protective effect of carnosine against Abeta42-induced neurotoxicity was evaluated under different conditions in microchannels in parallel. The secretion product analysis, carried out by ESI-Q-TOF-MS, was accomplished in 5 min using only 2.5 microL of solvent. Furthermore, we show that integrated microfluidic devices have significant potential for the analysis of cellular secretions, as well as for medical screening tests and for the diagnosis of specific diseases.
Collapse
Affiliation(s)
- Huibin Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
208
|
Patterson AD, Lanz C, Gonzalez FJ, Idle JR. The role of mass spectrometry-based metabolomics in medical countermeasures against radiation. MASS SPECTROMETRY REVIEWS 2010; 29:503-21. [PMID: 19890938 PMCID: PMC3690279 DOI: 10.1002/mas.20272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry was established to develop field-deployable biodosimeters based, in part, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter.
Collapse
Affiliation(s)
- Andrew D. Patterson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Christian Lanz
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, 3010 Bern, Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jeffrey R. Idle
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, 3010 Bern, Switzerland
- Address for correspondence: Institute of Clinical Pharmacology and Visceral Research, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland; ; Tel: +420 603 484 583; Fax: +420 220 912 140
| |
Collapse
|
209
|
Gijs MAM, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 2010; 110:1518-63. [PMID: 19961177 DOI: 10.1021/cr9001929] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland.
| | | | | |
Collapse
|
210
|
Zhang C, Xing D. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chem Rev 2010; 110:4910-47. [DOI: 10.1021/cr900081z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
211
|
Lien KY, Lee GB. Miniaturization of molecular biological techniques for gene assay. Analyst 2010; 135:1499-518. [PMID: 20390199 DOI: 10.1039/c000037j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid diagnosis of various diseases is a critical advantage of many emerging biomedical tools. Due to advances in preventive medicine, tools for the accurate analysis of genetic mutation and associated hereditary diseases have attracted significant interests in recent years. The entire diagnostic process usually involves two critical steps, namely, sample pre-treatment and genetic analysis. The sample pre-treatment processes such as extraction and purification of the target nucleic acids prior to genetic analysis are essential in molecular diagnostics. The genetic analysis process may require specialized apparatus for nucleic acid amplification, sequencing and detection. Traditionally, pre-treatment of clinical biological samples (e.g. the extraction of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)) and the analysis of genetic polymorphisms associated with genetic diseases are typically a lengthy and costly process. These labor-intensive and time-consuming processes usually result in a high-cost per diagnosis and hinder their practical applications. Besides, the accuracy of the diagnosis may be affected owing to potential contamination from manual processing. Alternatively, due to significant advances in micro-electro-mechanical-systems (MEMS) and microfluidic technology, there are numerous miniature systems employed in biomedical applications, especially for the rapid diagnosis of genetic diseases. A number of advantages including automation, compactness, disposability, portability, lower cost, shorter diagnosis time, lower sample and reagent consumption, and lower power consumption can be realized by using these microfluidic-based platforms. As a result, microfluidic-based systems are becoming promising platforms for genetic analysis, molecular biology and for the rapid detection of genetic diseases. In this review paper, microfluidic-based platforms capable of identifying genetic sequences and diagnosis of genetic mutations are surveyed and reviewed. Some critical issues with the use of microfluidic-based systems for diagnosis of genetic diseases are also highlighted.
Collapse
Affiliation(s)
- Kang-Yi Lien
- Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | | |
Collapse
|
212
|
An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci Int Genet 2010; 4:178-86. [DOI: 10.1016/j.fsigen.2009.02.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/15/2009] [Accepted: 02/01/2009] [Indexed: 01/20/2023]
|
213
|
Chaotic micromixing in open wells using audio-frequency acoustic microstreaming. Biotechniques 2010; 47:827-34. [PMID: 19852766 DOI: 10.2144/000113242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mixing fluids for biochemical assays is problematic when volumes are very small (on the order of the 10 microL typical of single drops), which has inspired the development of many micromixing devices. In this paper, we show that micromixing is possible in the simple open wells of standard laboratory consumables using appropriate acoustic frequencies that can be applied using cheap, conventional audio components. Earlier work has shown that the phenomenon of acoustic microstreaming can mix fluids, provided that bubbles are introduced into a specially designed microchamber or that high-frequency surface acoustic wave devices are constructed. We demonstrate a key simplification: acoustic micromixing at audio frequencies by ensuring the system has a liquid-air interface with a small radius of curvature. The meniscus of a drop in a small well provided an appropriately small radius, and so an introduced bubble was not necessary. Microstreaming showed improvement over diffusion-based mixing by 1-2 orders of magnitude. Furthermore, significant improvements are attainable through the utilization of chaotic mixing principles, whereby alternating fluid flow patterns are created by applying, in sequence, two different acoustic frequencies to a drop of liquid in an open well.
Collapse
|
214
|
Brengues M, Paap B, Bittner M, Amundson S, Seligmann B, Korn R, Lenigk R, Zenhausern F. Biodosimetry on small blood volume using gene expression assay. HEALTH PHYSICS 2010; 98:179-85. [PMID: 20065681 PMCID: PMC3677703 DOI: 10.1097/01.hp.0000346706.44253.5c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper reports the development of a biodosimetry device suitable for rapidly measuring expression levels of a low-density gene set that can define radiation exposure, dose and injury in a public health emergency. The platform comprises a set of 14 genes selected on the basis of their abundance and differential expression level in response to radiation from an expression profiling series measuring 41,000 transcripts. Gene expression is analyzed through direct signal amplification using a quantitative Nuclease Protection Assay (qNPA). This assay can be configured as either a high-throughput microplate assay or as a handheld detection device for individual point-of-care assays. Recently, we were able to successfully develop the qNPA platform to measure gene expression levels directly from human whole blood samples. The assay can be performed with volumes as small as 30 microL of whole blood, which is compatible with collection from a fingerstick. We analyzed in vitro irradiated blood samples with qNPA. The results revealed statistically significant discrimination between irradiated and non-irradiated samples. These results indicate that the qNPA platform combined with a gene profile based on a small number of genes is a valid test to measure biological radiation exposure. The scalability characteristics of the assay make it appropriate for population triage. This biodosimetry platform could also be used for personalized monitoring of radiotherapy treatments received by patients.
Collapse
Affiliation(s)
- Muriel Brengues
- Applied NanoBioscience Center and Medicine, University of Arizona, Phoenix, AZ 85004-2157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Yobas L, Cheow LF, Tang KC, Yong SE, Ong EKZ, Wong L, Teo WCY, Ji H, Rafeah S, Yu C. A self-contained fully-enclosed microfluidic cartridge for lab on a chip. Biomed Microdevices 2010; 11:1279-88. [PMID: 19757073 DOI: 10.1007/s10544-009-9347-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We describe a self-contained fully-enclosed cartridge for lab-on-a-chip applications where sample and reagents can be applied sequentially as is performed in a heterogeneous immunoassay, or nucleic acid extraction. Both the self-contained and fully-enclosed features of the cartridge are sought to ensure its safe use in the field by unskilled staff. Simplicity in cartridge design and operation is obtained via adopting a valveless concept whereby reagents are stored and used in the form of liquid plugs isolated by air spacers around a fluidic loop. Functional components integrated in the loop include a microfluidic chip specific to the target application, a novel peristaltic pump to displace the liquid plugs, and a pair of removable tubing segments where one is used to introduce biological sample and while the other is to collect eluant. The novel pump is fabricated through soft-lithography technique and works by pinching a planar channel under stainless-steel ball bearings that have been magnetically loaded. The utility of the cartridge is demonstrated for automated extraction and purification of nucleic acids (DNA) from a cell lysate on a battery-operated portable system. The cartridge shown here can be further extended to sample-in-answer-out diagnostic tests.
Collapse
|
216
|
Abstract
This review presents an application of micromixer technologies, which have driven a number of critical research trends over the past few decades, particularly for chemical and biological fields. Micromixer technologies in this review are categorized according to their applications: (1) chemical applications, including chemical synthesis, polymerization, and extraction; (2) biological applications, including DNA analysis, biological screening enzyme assays, protein folding; and (3) detection/analysis of chemical or biochemical content combined with NMR, FTIR, or Raman spectroscopies. In the chemical application, crystallization, extraction, polymerization, and organic synthesis have been reported, not only for laboratory studies, but also for industrial applications. Microscale techniques are used in chemical synthesis to develop microreactors. In clinical medicine and biological studies, microfluidic systems have been widely applied to the identification of biochemical products, diagnosis, drug discovery, and investigation of disease symptoms. The biological and biochemical applications also include enzyme assays, biological screening assays, cell lysis, protein folding, and biological analytical assays. Nondestructive analytical/detection methods have yielded a number of benefits to chemical and biochemical processes. In this chapter, we introduce analytical methods those are frequently integrated into micromixing technologies, such as NMR, FT-IR, and Raman spectroscopies. From the study of micromixers, we discovered that the Re number and mixing time depends on the specific application, and we clustered micromixers in various applications according to the Re number and mixing performance (mixing time). We expect that this clustering will be helpful in designing of micromixers for specific applications.
Collapse
Affiliation(s)
- Gi Seok Jeong
- Department of Biomedical Engineering, College of Health Science, Korea University, 1-boneji San, Jeongneung-dong, Seongbuk-gu, 136-100, Seoul, Korea
| | | | | | | |
Collapse
|
217
|
Deféver T, Druet M, Rochelet-Dequaire M, Joannes M, Grossiord C, Limoges B, Marchal D. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis. J Am Chem Soc 2009; 131:11433-41. [PMID: 19722651 DOI: 10.1021/ja901368m] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We described the proof-of-principle of a nonoptical real-time PCR that uses cyclic voltammetry for indirectly monitoring the amplified DNA product generated in the PCR reaction solution after each PCR cycle. To enable indirect measurement of the amplicon produced throughout PCR, we monitor electrochemically the progressive consumption (i.e., the decrease of concentration) of free electroactive deoxynucleoside triphosphates (dNTPs) used for DNA synthesis. This is accomplished by exploiting the fast catalytic oxidation of native deoxyguanosine triphosphate (dGTP) or its unnatural analogue 7-deaza-dGTP by the one-electron redox catalysts Ru(bpy)(3)(3+) (with bpy = 2,2'-bipyridine) or Os(bpy)(3)(3+) generated at an electrode. To demonstrate the feasibility of the method, a disposable array of eight miniaturized self-contained electrochemical cells (working volume of 50 microL) has been developed and implemented in a classical programmable thermal cycler and then tested with the PCR amplification of two illustrated examples of real-world biological target DNA sequences (i.e., a relatively long 2300-bp sequence from the bacterial genome of multidrug-resistant Achromobacter xylosoxidans and a shorter 283-bp target from the human cytomegalovirus). Although the method works with both mediator/base couples, the catalytic peak current responses recorded with the Ru(bpy)(3)(3+)/dGTP couple under real-time PCR conditions are significantly affected by a continuous current drift and interference with the background solvent discharge, thus leading to poorly reproducible data. Much more reproducible and reliable results are finally obtained with the Os(bpy)(3)(3+)/7-deaza-dGTP, a result that is attributed to the much lower anodic potential at which the catalytic oxidation of 7-deaza-dGTP by Os(bpy)(3)(3+) is detected. Under these conditions, an exponential decrease of the catalytic signal as a function of the number of PCR cycles is obtained, allowing definition of a cycle threshold value (C(t)) that correlates inversely with the initial amount of target DNA. A semilogarithmic plot of C(t) with the initial copy number of target DNA gives a standard linear curve similar to that obtained with fluorescent-based real-time PCR. Although the detection limit (10(3) molecules of target DNA in 50 microL) and sensitivity of the electrochemical method is not as high as conventional optical-based real-time PCR, the methodology described here offers many of the advantages of real-time PCR, such as a high dynamic range (over 8-log(10)) and speed, high amplification efficiency (close to 2), and the elimination of post-PCR processing. The method also has the advantage of being very simple, just requiring the use of low-cost single-use electrodes and the addition of a minute amount of redox catalyst into the PCR mixture. Moreover, compared to the other recently developed electrochemical real-time PCR based on solid-phase amplification, the present approach does not require electrode functionalization by a DNA probe. Finally, on account of the relative insensitivity of electrochemical methods to downscaling, the detection scheme is quite promising for use in miniaturized devices and in the development of point-of-care diagnosis applications.
Collapse
Affiliation(s)
- Thibaut Deféver
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, UMR CNRS 7591, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
218
|
Bhattacharyya A, Klapperich CM. Differential gene expression using mRNA isolated on plastic microfluidic chips. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:1067-70. [PMID: 19965139 DOI: 10.1109/iembs.2009.5335124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Here we demonstrate the ability to perform differential gene expression experiments using messenger RNA (mRNA) isolated from crude cell lysates using a plastic microfluidic solid phase extraction column. The microfluidic columns (100microm by 100microm by 1.5 cm) were fabricated in a cyclic polyolefin by hot-embossing with an electroformed master-mold. The solid-phase consisted of a photopolymerized microporous monolith embedded with functional microparticles and covalently attached to the channel walls via photoinitiated grafting. For mRNA isolation from total RNA and direct mRNA isolation from cell lysates, oligo(dT) beads were embedded in the monolith. The extraction efficiency of the system is approximately 80% and the nucleic acid binding capacity of the silica solid-phase in this configuration is approximately 3.5 ng. The micro solid-phase was applied for the extraction and purification of mRNA from human liver total RNA and the isolation of mRNA from neonatal human dermal fibroblast cells (NHDF) and MCF7 breast cancer cell lysates. Differential gene expression between the two cell lines is demonstrated.
Collapse
|
219
|
Adams JD, Tom Soh H. Perspectives on utilizing unique features of microfluidics technology for particle and cell sorting. ACTA ACUST UNITED AC 2009; 14:331-340. [PMID: 20161387 DOI: 10.1016/j.jala.2009.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sample preparation is often the most tedious and demanding step in an assay, but it also plays an essential role in determining the quality of results. As biological questions and analytical methods become increasingly sophisticated, there is a rapidly growing need for systems that can reliably and reproducibly separate cells and particles with high purity, throughput and recovery. Microfluidics technology represents a compelling approach in this regard, allowing precise control of separation forces for high performance separation in inexpensive, or even disposable, devices. In addition, microfluidics technology enables the fabrication of arrayed and integrated systems that operate either in parallel or in tandem, in a capacity that would be difficult to achieve in macro-scale systems. In this report, we use recent examples from our work to illustrate the potential of microfluidic cell- and particle-sorting devices. We demonstrate the potential of chip-based high-gradient magnetophoresis that enable high-purity separation through reversible trapping of target particles paired with high-stringency washing with minimal loss. We also describe our work in the development of devices that perform simultaneous multi-target sorting, either through precise control of magnetic and fluidic forces or through the integration of multiple actuation forces into a single monolithic device. We believe that such devices may serve as a powerful "front-end" module of highly integrated analytical platforms capable of providing actionable diagnostic information directly from crude, unprocessed samples - the success of such systems may hold the key to advancing point-of-care diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Jonathan D Adams
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | | |
Collapse
|
220
|
Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 2009; 81:7436-42. [PMID: 19715365 DOI: 10.1021/ac9012072] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to diagnose cancer based on the detection of rare cancer cells in blood or other bodily fluids is a significant challenge. To address this challenge, we have developed a microfluidic device that can simultaneously sort, enrich, and then detect multiple types of cancer cells from a complex sample. The device, which is made from poly(dimethylsiloxane) (PDMS), implements cell-affinity chromatography based on the selective cell-capture of immobilized DNA-aptamers and yields a 135-fold enrichment of rare cells in a single run. This enrichment is achieved because the height of the channel is on the order of a cell diameter. The sorted cells grow at the comparable rate as cultured cells and are 96% pure based on flow cytometry determination. Thus, by using our aptamer based device, cell capture is achieved simply and inexpensively, with no sample pretreatment before cell analysis. Enrichment and detection of multiple rare cancer cells can be used to detect cancers at the early stages, diagnose metastatic relapse, stratify patients for therapeutic purposes, monitor response to drugs and therapies, track tumor progression, and gain a deeper understanding of the biology of circulating tumor cells (CTCs).
Collapse
Affiliation(s)
- Ye Xu
- Center for Research at the Bio/Nano Interface, Department of Chemistry, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Nakayama T, Hiep HM, Furui S, Yonezawa Y, Saito M, Takamura Y, Tamiya E. An optimal design method for preventing air bubbles in high-temperature microfluidic devices. Anal Bioanal Chem 2009; 396:457-64. [DOI: 10.1007/s00216-009-3160-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/12/2009] [Accepted: 09/15/2009] [Indexed: 11/27/2022]
|
223
|
Sauer-Budge AF, Mirer P, Chatterjee A, Klapperich CM, Chargin D, Sharon A. Low cost and manufacturable complete microTAS for detecting bacteria. LAB ON A CHIP 2009; 9:2803-10. [PMID: 19967117 DOI: 10.1039/b904854e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this paper, we present a fully integrated lab-on-a-chip and associated instrument for the detection of bacteria from liquid samples. The system conducts bacterial lysis, nucleic acid isolation and concentration, polymerase chain reaction (PCR), and end-point fluorescent detection. To enable truly low-cost manufacture of the single-use disposable chip, we designed the plastic chip in a planar format without any active components to be amenable to injection molding and utilized a novel porous polymer monolith (PPM) embedded with silica that has been shown to lyse bacteria and isolate the nucleic acids from clinical samples (M. D. Kulinski, M. Mahalanabis, S. Gillers, J. Y. Zhang, S. Singh and C. M. Klapperich, Biomed. Microdevices, 2009, 11, 671-678).(1) The chip is made of Zeonex(R), a thermoplastic with a high melting temperature to allow PCR, good UV transmissibility for UV-curing of the PPM, and low auto-fluorescence for fluorescence detection of the amplicon. We have built a prototype instrument to automate control of the fluids, temperature cycling, and optical detection with the capability of accommodating various chip designs. To enable fluid control without including valves or pumps on the chip, we utilized a remote valve switching technique. To allow fluid flow rate changes on the valveless chip, we incorporated speed changing fluid reservoirs. The PCR thermal cycling was achieved with a ceramic heater and air cooling, while end-point fluorescence detection was accomplished with an optical spectrometer; all integrated in the instrument. The chip seamlessly and automatically is mated to the instrument through an interface block that presses against the chip. The interface block aligns and ensures good contact of the chip to the temperature controlled region and the optics. The integrated functionality of the chip was demonstrated using Bacillus subtilis as a model bacterial target. A Taqman assay was employed on-chip to detect the isolated bacterial DNA.
Collapse
|
224
|
Mahalanabis M, Al-Muayad H, Kulinski MD, Altman D, Klapperich CM. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. LAB ON A CHIP 2009; 9:2811-7. [PMID: 19967118 DOI: 10.1039/b905065p] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sepsis caused by gram positive and gram negative bacteria is the leading cause of death in noncoronary ICUs and the tenth leading cause of death in the United States. We have developed a microfluidic sample preparation platform for rapid on-chip detection of infectious organisms for point-of-care diagnostics. The microfluidic chips are made of a robust thermoplastic and can be easily multiplexed for high throughput applications. Bacteria are lysed on-chip via hybrid chemical/mechanical method. Once lysed, the bacterial DNA is isolated using a microscale silica bead/polymer composite solid-phase-extraction (SPE) column. Lysis was confirmed using off-chip real time PCR. We isolated and detected both gram-negative (Escherichia coli) and gram-positive (Bacillussubtilis and Enterococcus faecalis) bacterial genomic DNA from microliter scale spiked whole human blood samples. The system performs better for gram-negative bacteria than it does for gram-positive bacteria, with limits of detection at 10(2) CFU/ml and 10(3)-10(4) CFU/ml, respectively. Total extraction times are less than one hour and can be further decreased by altering the channel geometry and pumping configuration.
Collapse
|
225
|
Zavali M, Petrou PS, Goustouridis D, Raptis I, Misiakos K, Kakabakos SE. A regenerable flow-through affinity sensor for label-free detection of proteins and DNA. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 878:237-42. [PMID: 19729351 DOI: 10.1016/j.jchromb.2009.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
Label-free monitoring of biomolecular reactions in real-time is of great interest since it can provide valuable information about binding kinetics and equilibrium constants. In this report, a sensor based on White Light Reflectance Spectroscopy (WLRS) is presented that is capable of real-time monitoring of biomolecular reactions taking place on top of a polymer covered silicon dioxide reflective surface. The optical set-up consists of a visible-near infrared light source, a bifurcated optical fiber and a spectrometer. The outer part of the optical fiber guides the light vertically onto the surface where the biomolecular reactions occur, whereas the reflected light is driven from the central part of the fiber to the spectrometer. A microfluidic module in combination with a pump supplies the reagents at a constant rate. The biomolecular interactions are monitored as shifts of the wavelength of the interference minimum. The proposed methodology was applied for real-time and label-free monitoring mouse gamma-globulins binding onto immobilized anti-mouse IgG antibody. Mouse gamma-globulins at concentrations down to 150pM were detected in reaction times of 1-min. Regeneration of immobilized antibody was accomplished up to seven times without loss of its activity. In addition, real-time monitoring of hybridization reaction between complementary oligonucleotides was accomplished. The proposed sensor provides a simple, fast, low cost approach for label-free monitoring of biomolecular interactions and therefore it should by suitable for a wide range of analytical applications.
Collapse
Affiliation(s)
- Maria Zavali
- Institute of Microelectronics, NCSR "Demokritos", Aghia Paraskevi, Greece
| | | | | | | | | | | |
Collapse
|
226
|
Luo X, Hsing IM. Electrochemical techniques on sequence-specific PCR amplicon detection for point-of-care applications. Analyst 2009; 134:1957-64. [PMID: 19768201 DOI: 10.1039/b912653h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acid based analysis provides accurate differentiation among closely affiliated species and this species- and sequence-specific detection technique would be particularly useful for point-of-care (POC) testing for prevention and early detection of highly infectious and damaging diseases. Electrochemical (EC) detection and polymerase chain reaction (PCR) are two indispensable steps, in our view, in a nucleic acid based point-of-care testing device as the former, in comparison with the fluorescence counterpart, provides inherent advantages of detection sensitivity, device miniaturization and operation simplicity, and the latter offers an effective way to boost the amount of targets to a detectable quantity. In this mini-review, we will highlight some of the interesting investigations using the combined EC detection and PCR amplification approaches for end-point detection and real-time monitoring. The promise of current approaches and the direction for future investigations will be discussed. It would be our view that the synergistic effect of the combined EC-PCR steps in a portable device provides a promising detection technology platform that will be ready for point-of-care applications in the near future.
Collapse
Affiliation(s)
- Xiaoteng Luo
- Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
227
|
Mwilu SK, Aluoch AO, Miller S, Wong P, Sadik OA, Fatah AA, Arcilesi RD. Identification and Quantitation of Bacillus globigii Using Metal Enhanced Electrochemical Detection and Capillary Biosensor. Anal Chem 2009; 81:7561-70. [DOI: 10.1021/ac900834e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samuel K. Mwilu
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, New York 13902
| | - Austin O. Aluoch
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, New York 13902
| | - Seth Miller
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, New York 13902
| | - Paula Wong
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, New York 13902
| | - Omowunmi A. Sadik
- Department of Chemistry, Center for Advanced Sensors & Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, New York 13902
| | - Alim A. Fatah
- Office of Law Enforcement Standards, National Institute of Standards and Technology, Technology Services, 100 Bureau Drive, Mail Stop: 2000, Gaithersburg, Maryland 20899-8102
| | | |
Collapse
|
228
|
Activation of nanoparticles by biosorption for E. coli detection in milk and apple juice. Appl Biochem Biotechnol 2009; 162:460-75. [PMID: 19649746 DOI: 10.1007/s12010-009-8709-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/05/2009] [Indexed: 10/20/2022]
Abstract
Two types of silver nanoparticles were activated by specific sorption of biomolecules for the detection of Escherichia coli. The capture of this bacterium was performed using polyclonal antibodies (anti-E. coli) biosorbed onto nanospheres or nanorice through a protein-A layer. The bacterial detection was achieved using surface enhancement Raman scattering in order to compare the performance of these two nanoparticles. The activated silver nanospheres showed a better performance mainly due to the dimension of these nanoparticles. The detection limit has been established using the automated Raman mapping system. The technique was capable of detecting 10(3) cells/mL in milk and apple juice without any pre-enrichment. With an overall assay time less than 1 h, the process could be easily adapted to detect other pathogens by selecting the pertinent antibody. Furthermore, PCR was used for the DNA verification to assess whether the selected bacterial strain was identical before and after detection.
Collapse
|
229
|
López-Ferrer D, Hixson KK, Smallwood H, Squier TC, Petritis K, Smith RD. Evaluation of a high-intensity focused ultrasound-immobilized trypsin digestion and 18O-labeling method for quantitative proteomics. Anal Chem 2009; 81:6272-7. [PMID: 19555078 PMCID: PMC2765551 DOI: 10.1021/ac802540s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultrarapid digestion and more thorough (18)O labeling for quantitative protein comparisons. The method was reproducible and provided effective digestions within <1 min with lower amounts of enzyme, compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as (18)O labeling of complex protein mixtures, validating this method for differential proteomic measurements. This approach is simple, reproducible, cost-effective, rapid, and well suited for automation.
Collapse
Affiliation(s)
- Daniel López-Ferrer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Heather Smallwood
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Thomas C. Squier
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Konstantinos Petritis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
230
|
Gao X, Jiang L, Su X, Qin J, Lin B. Microvalves actuated sandwich immunoassay on an integrated microfluidic system. Electrophoresis 2009; 30:2481-7. [DOI: 10.1002/elps.200800818] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
231
|
Dixon JM, Lubomirski M, Amaratunga D, Morrison TB, Brenan CJH, Ilyin SE. Nanoliter high-throughput RT-qPCR: a statistical analysis and assessment. Biotechniques 2009; 46:ii-viii. [PMID: 19480642 DOI: 10.2144/000112838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biomarkers discovered from gene expression profiles using hybridization microarrays have made great inroads in the diagnosis and development of safer and efficacious drugs. The candidate gene set is biologically validated by quantitative measurement with reverse transcriptase quantitative PCR (RT-qPCR) and is an effective strategy when implemented with microplates if the number of candidate genes and samples is small. With the trend toward informative candidate gene panels increasing from tens to hundreds of genes and sample cohorts exceeding several hundred, an alternative fluidic approach is needed that preserves the intrinsic analytical precision, large dynamic range, and high sensitivity of RT-qPCR, yet is scalable to high throughputs. We have evaluated the performance of a nanoliter fluidic system that enables up to 3072 nanoliter RT-qPCR assays simultaneously in a high-density array format. We measured the transcription from two different adult human tissues to assess measurement reproducibility across replicates, measurement accuracy, precision, specificity, and sensitivity; determined the false positive rate (FPR) and false negative rate (FNR) of the expressed transcript copies; and determined differences in kinase gene expression reflecting tissue and dosage differences. Using our methodology, we confirm the potential of this technology in advancing pharmaceutical research and development.
Collapse
Affiliation(s)
- James M Dixon
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Welsh and McKean Roads, Spring House, PA 19477, USA
| | | | | | | | | | | |
Collapse
|
232
|
Lu Q, Lin H, Ge S, Luo S, Cai Q, Grimes CA. Wireless, remote-query, and high sensitivity Escherichia coli O157:H7 biosensor based on the recognition action of concanavalin A. Anal Chem 2009; 81:5846-50. [PMID: 19548666 PMCID: PMC2735831 DOI: 10.1021/ac9008572] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli O157:H7 is detected using a remote-query (wireless, passive) magnetoelastic sensor platform to which a 1 microm thick layer of Bayhydrol 110 and then a layer of functionalized mannose is applied. The multivalent binding of lectin concanavalin A (Con A) to the E. coli surface O-antigen and mannose favors the strong adhesion of E. coli to the mannose-modified magnetoelastic sensor; E. coli is rigidly and strongly attached on the mannose-modified sensor through Con A, which works as a bridge to bind E. coli to the mannose-modified sensor surface. As E. coli is bound to the sensor, its resonance frequency shifts, enabling quantification of E. coli concentration with a limit of detection of 60 cells/mL and a linear logarithmic response range of 6.0 x 10(1) to 6.1 x 10(9) cells/mL. The analysis can be directly conducted without incubation and completed in 3 h or less.
Collapse
Affiliation(s)
- Qingzhu Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, Changsha 410082, P. R. China
| | - Hailan Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, Changsha 410082, P. R. China
| | - Shutian Ge
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, Changsha 410082, P. R. China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, Changsha 410082, P. R. China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Department of Chemistry, Hunan University, Changsha 410082, P. R. China
| | - Craig A. Grimes
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
233
|
Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 2009; 10:909. [PMID: 18677651 DOI: 10.1007/s10544-008-9206-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A cell concentration microdevice for immunomagnetic pathogen isolation from a dilute sample is presented. Cells are driven by integrated on-chip pumps through a fluidized bed of immobilized immunomagnetic beads. Off-chip polymerase chain reaction and capillary electrophoretic analysis are used to determine capture efficiencies of E. coli and to optimize the system. Beads are immobilized after each split in a bifurcated channel system to ensure a balanced distribution of beads in all the capture channels. The addition of a pumping flutter step to repeatedly drive sample through the bead bed was found to enhance capture. Capture efficiencies of 70% and a limit of detection of 2 cfu/microL were achieved; specific capture of E. coli at a concentration of 100 cfu/microL in a 100-fold background of S. aureus is shown. This capture/concentration system is an important step in overcoming the macro-to-micro interface challenge in the development of microdevices for pathogen detection.
Collapse
|
234
|
Ferguson BS, Buchsbaum SF, Swensen JS, Hsieh K, Lou X, Soh HT. Integrated Microfluidic Electrochemical DNA Sensor. Anal Chem 2009; 81:6503-8. [DOI: 10.1021/ac900923e] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian S. Ferguson
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - Steven F. Buchsbaum
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - James S. Swensen
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - Xinhui Lou
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| | - H. Tom Soh
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, College of Creative Studies, Physics, University of California, Santa Barbara, California 93106, and Department of Materials, University of California, Santa Barbara, California 93106
| |
Collapse
|
235
|
Beyor N, Yi L, Seo TS, Mathies RA. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem 2009; 81:3523-8. [PMID: 19341275 DOI: 10.1021/ac900060r] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A laboratory-on-a-chip system for pathogen detection is presented that integrates cell preconcentration, purification, polymerase chain reaction (PCR), and capillary electrophoretic (CE) analysis. The microdevice is composed of micropumps and valves, a cell capture structure, a 100 nL PCR reactor, and a 5 cm long CE column for amplicon separation. Sample volumes ranging from 10 to 100 microL are introduced and driven through a fluidized bed of magnetically constrained immunomagnetic beads where the target cells are captured. After cell capture, beads are transferred using the on-chip pumps to the PCR reactor for DNA amplification. The resulting PCR products are electrophoretically injected onto the CE column for separation and detection of Escherichia coli K12 and E. coli O157 targets. A detection limit of 0.2 cfu/microL is achieved using the E. coli O157 target and an input volume of 50 microL. Finally, the sensitive detection of E. coli O157 in the presence of K12 at a ratio of 1:1000 illustrates the capability of our system to identify target cells in a high commensal background. This cell capture-PCR-CE microsystem is a significant advance in the development of rapid, sensitive, and specific laboratory-on-a-chip devices for pathogen detection.
Collapse
Affiliation(s)
- Nathaniel Beyor
- UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
236
|
Bou Chakra E, Hannes B, Vieillard J, Mansfield CD, Mazurczyk R, Bouchard A, Potempa J, Krawczyk S, Cabrera M. Grafting of antibodies inside integrated microfluidic-microoptic devices by means of automated microcontact printing. SENSORS AND ACTUATORS. B, CHEMICAL 2009; 140:278-286. [PMID: 20161128 PMCID: PMC2743016 DOI: 10.1016/j.snb.2009.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel approach to integrating biochip and microfluidic devices is reported in which microcontact printing is a key fabrication technique. The process is performed using an automated microcontact printer that has been developed as an application-specific tool. As proof-of-concept the instrument is used to consecutively and selectively graft patterns of antibodies at the bottom of a glass channel for use in microfluidic immunoassays. Importantly, feature collapse due to over compression of the PDMS stamp is avoided by fine control of the stamp's compression during contact. The precise alignment of biomolecules at the intersection of microfluidic channel and integrated optical waveguides has been achieved, with antigen detection performed via fluorescence excitation. Thus, it has been demonstrated that this technology permits sequential microcontact printing of isolated features consisting of functional biomolecules at any position along a microfluidic channel and also that it is possible to precisely align these features with existing components.
Collapse
Affiliation(s)
- Elie Bou Chakra
- Institut des Nanotechnologies de Lyon, INL UMR CNRS ECL-INSA-UCBL 5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, F69134 Ecully, France
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Heo J, Hua SZ. An overview of recent strategies in pathogen sensing. SENSORS (BASEL, SWITZERLAND) 2009; 9:4483-502. [PMID: 22408537 PMCID: PMC3291922 DOI: 10.3390/s90604483] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/31/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Pathogenic bacteria are one of the major concerns in food industries and water treatment facilities because of their rapid growth and deleterious effects on human health. The development of fast and accurate detection and identification systems for bacterial strains has long been an important issue to researchers. Although confirmative for the identification of bacteria, conventional methods require time-consuming process involving either the test of characteristic metabolites or cellular reproductive cycles. In this paper, we review recent sensing strategies based on micro- and nano-fabrication technology. These technologies allow for a great improvement of detection limit, therefore, reduce the time required for sample preparation. The paper will be focused on newly developed nano- and micro-scaled biosensors, novel sensing modalities utilizing microfluidic lab-on-a-chip, and array technology for the detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Jinseok Heo
- Bio-MEMS and Biomaterials Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Buffalo, NY 14241, USA
| | - Susan Z. Hua
- Bio-MEMS and Biomaterials Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Buffalo, NY 14241, USA
| |
Collapse
|
238
|
Emerging optofluidic technologies for point-of-care genetic analysis systems: a review. Anal Bioanal Chem 2009; 395:621-36. [PMID: 19455313 DOI: 10.1007/s00216-009-2826-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
This review describes recently emerging optical and microfluidic technologies suitable for point-of-care genetic analysis systems. Such systems must rapidly detect hundreds of mutations from biological samples with low DNA concentration. We review optical technologies delivering multiplex sensitivity and compatible with lab-on-chip integration for both tagged and non-tagged optical detection, identifying significant source and detector technology emerging from telecommunications technology. We highlight the potential for improved hybridization efficiency through careful microfluidic design and outline some novel enhancement approaches using target molecule confinement. Optimization of fluidic parameters such as flow rate, channel height and time facilitates enhanced hybridization efficiency and consequently detection performance as compared with conventional assay formats (e.g. microwell plates). We highlight lab-on-chip implementations with integrated microfluidic control for "sample-to-answer" systems where molecular biology protocols to realize detection of target DNA sequences from whole blood are required. We also review relevant technology approaches to optofluidic integration, and highlight the issue of biomolecule compatibility. Key areas in the development of an integrated optofluidic system for DNA hybridization are optical/fluidic integration and the impact on biomolecules immobilized within the system. A wide range of technology platforms have been advanced for detection, quantification and other forms of characterization of a range of biomolecules (e.g. RNA, DNA, protein and whole cell). Owing to the very different requirements for sample preparation, manipulation and detection of the different types of biomolecules, this review is focused primarily on DNA-DNA interactions in the context of point-of-care analysis systems.
Collapse
|
239
|
Lui C, Cady NC, Batt CA. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems. SENSORS (BASEL, SWITZERLAND) 2009; 9:3713-44. [PMID: 22412335 PMCID: PMC3297159 DOI: 10.3390/s90503713] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/12/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.
Collapse
Affiliation(s)
- Clarissa Lui
- Department of Biomedical Engineering / Cornell University, 317 Stocking Hall, Ithaca, NY 14853, USA
| | - Nathaniel C. Cady
- College of Nanoscale Science and Engineering / University at Albany State University of New York, 255 Fuller Rd., Albany, NY 12203, USA; E-Mail: (N.C.C.)
| | - Carl A. Batt
- Department of Food Science / Cornell University, 312 Stocking Hall, Ithaca, NY 14853, USA; E-Mail: (C.A.B.)
| |
Collapse
|
240
|
Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 2009; 79:787-95. [PMID: 19576446 DOI: 10.1016/j.talanta.2009.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 11/22/2022]
Abstract
This paper describes an immunomagnetic separation of target bacterial cells from others by using magnetic bead. The surface of bead was coated with antibodies which can capture specific organism. The binding efficiency of immunomagnetic bead (IMB) capturing target bacterial cells was higher than 98% when the concentrations of target and interferent bacterial cells were at the same level. The concentration of bacteria was determined indirectly by detecting adenosine 5'-triphosphate (ATP) employing bioluminescence (BL) reaction of firefly luciferin-ATP. Benzalkonium chloride (BAC) was used as an ATP extractant from living bacterial cells. We found that BAC could enhance the light emission when the concentration of BAC was less than 5.3 x 10(-2)% (w/v) and the BL intensity reached its maximum at the concentration of BAC was 2.7 x 10(-2)%, which was 10-fold stronger than that without BAC. Based on the principle of the IMB, a microfluidic chip combined with immunofluorescence assay for separating and detecting bacteria simultaneously was also developed. The IMBs were magnetically fixed in the bead-beds of chip channels with a 3-mm diameter of NdFeB permanent magnet. The target bacterial cells can be captured magnetically and observed by a fluorescent microscope.
Collapse
|
241
|
Han SI, Han KH, Frazier AB, Ferrance JP, Landers JP. An automated micro-solid phase extraction device involving integrated \high-pressure microvalves for genetic sample preparation. Biomed Microdevices 2009; 11:935-42. [DOI: 10.1007/s10544-009-9310-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
242
|
Magnetic particle-based hybrid platforms for bioanalytical sensors. SENSORS 2009; 9:2976-99. [PMID: 22574058 PMCID: PMC3348820 DOI: 10.3390/s90402976] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/13/2009] [Accepted: 04/23/2009] [Indexed: 11/17/2022]
Abstract
Biomagnetic nano and microparticles platforms have attracted considerable interest in the field of biological sensors due to their interesting physico-chemical properties, high specific surface area, good mechanical stability and opportunities for generating magneto-switchable devices. This review discusses recent advances in the development and characterization of active biomagnetic nanoassemblies, their interaction with biological molecules and their use in bioanalytical sensors.
Collapse
|
243
|
Hatakeyama K, Tanaka T, Sawaguchi M, Iwadate A, Mizutani Y, Sasaki K, Tateishi N, Matsunaga T. Microfluidic device using chemiluminescence and a DNA-arrayed thin film transistor photosensor for single nucleotide polymorphism genotyping of PCR amplicons from whole blood. LAB ON A CHIP 2009; 9:1052-1058. [PMID: 19350086 DOI: 10.1039/b817427j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work describes a novel microfluidic device using a thin film transistor (TFT) photosensor integrating a microfluidic channel, a DNA chip platform, and a photodetector for the discrimination of single nucleotide polymorphisms (SNPs). A DNA-arrayed TFT photosensor was used as a DNA chip platform and photo detecting device. Chemiluminescence was used for DNA sensing because chemiluminescence provides higher sensitivity and requires simpler instrumentation than fluorescence methods. The SNP of biotinylated target DNA was detected based on chemiluminescence by using horse radish peroxidase-conjugated streptavidin. The lower detection limit for a model biotinylated oligonucleotide (63-mer) was 0.5 nM, much lower than expected DNA concentrations in a practical application of this device. Furthermore, SNP detection in the aldehyde dehydrogenase 2 gene was successfully achieved using DNA-arrayed TFT photosensor without DNA extraction and DNA purification using PCR products. The assay was completed in less than one hour. Our technology will be a promising approach to developing a miniaturized, disposable DNA chip with high sensitivity.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Krishnan R, Heller MJ. An AC electrokinetic method for enhanced detection of DNA nanoparticles. JOURNAL OF BIOPHOTONICS 2009; 2:253-61. [PMID: 19367593 DOI: 10.1002/jbio.200910007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In biomedical research and diagnostics it is a challenge to isolate and detect low levels of nanoparticles and nanoscale biomarkers in blood and other biological samples. While highly sensitive epifluorescent microscope systems are available for ultra low level detection, the isolation of the specific entities from large sample volumes is often the bigger limitation. AC electrokinetic techniques like dielectrophoresis (DEP) offer an attractive mechanism for specifically concentrating nanoparticles into microscopic locations. Unfortunately, DEP requires significant sample dilution thus making the technology unsuitable for biological applications. Using a microelectrode array device, special conditions have been found for the separation of hmw-DNA and nanoparticles under high conductance (ionic strength) conditions. At AC frequencies in the 3000-10 000 Hz range, 10 mum microspheres and human T lymphocytes can be isolated into the DEP low field regions, while hmw-DNA and nanoparticles can be concentrated into microscopic high field regions for subsequent detection using an epifluorescent system.
Collapse
Affiliation(s)
- Rajaram Krishnan
- University of California, San Diego, Department of Nanoengineering and Department of Bioengineering, La Jolla, CA 92093-0448, USA
| | | |
Collapse
|
245
|
Schulze H, Giraud G, Crain J, Bachmann TT. Multiplexed optical pathogen detection with lab-on-a-chip devices. JOURNAL OF BIOPHOTONICS 2009; 2:199-211. [PMID: 19367588 DOI: 10.1002/jbio.200910009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Infectious diseases are still a main cause of human morbidity and mortality. Advanced diagnostics is considered to be a key driver to improve the respective therapeutic outcome. The main factors influencing the impact of diagnostics include: assay speed, availability, information content, in-vitro diagnostics and cost, for which molecular assays are providing the most promising opportunities. Miniaturisation and integration of assay steps into lab-on-a-chip devices has been described as an appropriate way to speed up assay time and make assays available onsite at competitive costs. As meaningful assays for infectious diseases need to include a whole range of clinical relevant information about the pathogen, multiplexed functionality is often required for which optical transduction is particularly well suited. The aim of this review is to assess existing developments in this field and to give an outlook on future requirements and solutions.
Collapse
Affiliation(s)
- Holger Schulze
- Division of Pathway Medicine, Medical School, The University of Edinburgh, Edinburgh, Scotland UK
| | | | | | | |
Collapse
|
246
|
Gong X, Wen W. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. BIOMICROFLUIDICS 2009; 3:12007. [PMID: 19693388 PMCID: PMC2717593 DOI: 10.1063/1.3098963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/23/2009] [Indexed: 05/06/2023]
Abstract
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.
Collapse
Affiliation(s)
- Xiuqing Gong
- Department of Physics and Joint KAUST-HKUST MicroNano-Fluidics Laboratory,Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
247
|
Phillips JA, Xu Y, Xia Z, Fan ZH, Tan W. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 2009; 81:1033-9. [PMID: 19115856 DOI: 10.1021/ac802092j] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work describes the development and investigation of an aptamer modified microfluidic device that captures rare cells to achieve a rapid assay without pretreatment of cells. To accomplish this, aptamers are first immobilized on the surface of a poly(dimethylsiloxane) microchannel, followed by pumping a mixture of cells through the device. This process permits the use of optical microscopy to measure the cell-surface density from which we calculate the percentage of cells captured as a function of cell and aptamer concentration, flow velocity, and incubation time. This aptamer-based device was demonstrated to capture target cells with >97% purity and >80% efficiency. Since the cell capture assay is completed within minutes and requires no pretreatment of cells, the device promises to play a key role in the early detection and diagnosis of cancer where rare diseased cells can first be enriched and then captured for detection.
Collapse
Affiliation(s)
- Joseph A Phillips
- Center for Research at the Bio/Nano Interface, Department of Chemistry, UF Genetics Institute, and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | |
Collapse
|
248
|
Fang TH, Ramalingam N, Xian-Dui D, Ngin TS, Xianting Z, Lai Kuan AT, Peng Huat EY, Hai-Qing G. Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens Bioelectron 2009; 24:2131-6. [DOI: 10.1016/j.bios.2008.11.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/29/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
|
249
|
Huang MC, Ye H, Kuan YK, Li MH, Ying JY. Integrated two-step gene synthesis in a microfluidic device. LAB ON A CHIP 2009; 9:276-285. [PMID: 19107285 DOI: 10.1039/b807688j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herein we present an integrated microfluidic device capable of performing two-step gene synthesis to assemble a pool of oligonucleotides into genes with the desired coding sequence. The device comprised of two polymerase chain reactions (PCRs), temperature-controlled hydrogel valves, electromagnetic micromixer, shuttle micromixer, volume meters, and magnetic beads based solid-phase PCR purification, fabricated using a fast prototyping method without lithography process. The fabricated device is combined with a miniaturized thermal cycler to perform gene synthesis. Oligonucleotides were first assembled into genes by polymerase chain assembly (PCA), and the full-length gene was amplified by a second PCR. The synthesized gene was further separated from the PCR reaction mixture by the solid-phase PCR purification. We have successfully used this device to synthesize a green fluorescent protein fragment (GFPuv) (760 bp), and obtained comparable synthesis yield and error rate with experiments conducted in a PCR tube within a commercial thermal cycler. The resulting error rate determined by DNA sequencing was 1 per 250 bp. To our knowledge, this is the first microfluidic device demonstrating integrated two-step gene synthesis.
Collapse
Affiliation(s)
- Mo Chao Huang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
| | | | | | | | | |
Collapse
|
250
|
Kim J, Johnson M, Hill P, Gale BK. Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol (Camb) 2009; 1:574-86. [DOI: 10.1039/b905844c] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|