201
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
202
|
Gajaganti S, Bajpai S, Srivastava V, Singh S. An efficient, room temperature, oxygen radical anion (O2•−) mediated, one-pot, and multicomponent synthesis of spirooxindoles. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present report highlights an efficient use of oxygen radical anion to promote a room temperature multi-component synthesis of spirooxindoles (4a–4l) under mild reaction conditions. The potassium superoxide (KO2) and tetraethylammonium bromide (TEAB) combination generate the oxygen radical anion in situ to promote this transformation. This method offers a sustainable and direct access to the biologically important spirooxindole derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Somaiah Gajaganti
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
| | - Shivam Bajpai
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
- Department of Chemistry, Indian Institute of Technology — BHU, Varanasi 221 005, Uttar Pradesh, India
| |
Collapse
|
203
|
Hama T, Kouchi A, Watanabe N, Enami S, Shimoaka T, Hasegawa T. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy. J Phys Chem B 2017; 121:11124-11131. [PMID: 29148773 DOI: 10.1021/acs.jpcb.7b09173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH2-related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.
Collapse
Affiliation(s)
- Tetsuya Hama
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Akira Kouchi
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Naoki Watanabe
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takafumi Shimoaka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
204
|
Pfrang C, Rastogi K, Cabrera-Martinez ER, Seddon AM, Dicko C, Labrador A, Plivelic TS, Cowieson N, Squires AM. Complex three-dimensional self-assembly in proxies for atmospheric aerosols. Nat Commun 2017; 8:1724. [PMID: 29170428 PMCID: PMC5701067 DOI: 10.1038/s41467-017-01918-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Aerosols are significant to the Earth’s climate, with nearly all atmospheric aerosols containing organic compounds that often contain both hydrophilic and hydrophobic parts. However, the nature of how these compounds are arranged within an aerosol droplet remains unknown. Here we demonstrate that fatty acids in proxies for atmospheric aerosols self-assemble into highly ordered three-dimensional nanostructures that may have implications for environmentally important processes. Acoustically trapped droplets of oleic acid/sodium oleate mixtures in sodium chloride solution are analysed by simultaneous synchrotron small-angle X-ray scattering and Raman spectroscopy in a controlled gas-phase environment. We demonstrate that the droplets contained crystal-like lyotropic phases including hexagonal and cubic close-packed arrangements of spherical and cylindrical micelles, and stacks of bilayers, whose structures responded to atmospherically relevant humidity changes and chemical reactions. Further experiments show that self-assembly reduces the rate of the reaction of the fatty acid with ozone, and that lyotropic-phase formation also occurs in more complex mixtures more closely resembling compositions of atmospheric aerosols. We suggest that lyotropic-phase formation likely occurs in the atmosphere, with potential implications for radiative forcing, residence times and other aerosol characteristics. Nearly all atmospheric aerosols contain surface-active organic compounds; however, the nature of how they arrange remains poorly understood. Here, the authors show that fatty acids in atmospheric aerosol proxies self-assemble into highly ordered, viscous 3D nanostructures that undergo changes upon exposure to humidity and ozone.
Collapse
Affiliation(s)
- C Pfrang
- Department of Chemistry, University of Reading, Whiteknights Campus, PO Box 224, Reading, RG6 6AD, UK.
| | - K Rastogi
- Department of Chemistry, University of Reading, Whiteknights Campus, PO Box 224, Reading, RG6 6AD, UK
| | - E R Cabrera-Martinez
- Department of Chemistry, University of Reading, Whiteknights Campus, PO Box 224, Reading, RG6 6AD, UK
| | - A M Seddon
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK.,Bristol Centre for Functional Nanomaterials, H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - C Dicko
- Pure and Applied Biochemistry, Chemical Center, University of Lund, Naturvetarvägen 14, 22241, Lund, Sweden
| | - A Labrador
- MAX IV Laboratory, University of Lund, PO Box 188, 22100, Lund, Sweden
| | - T S Plivelic
- MAX IV Laboratory, University of Lund, PO Box 188, 22100, Lund, Sweden
| | - N Cowieson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - A M Squires
- Department of Chemistry, University of Reading, Whiteknights Campus, PO Box 224, Reading, RG6 6AD, UK. .,Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
205
|
Lin YH, Arashiro M, Clapp PW, Cui T, Sexton KG, Vizuete W, Gold A, Jaspers I, Fry RC, Surratt JD. Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8166-8175. [PMID: 28636383 PMCID: PMC5610912 DOI: 10.1021/acs.est.7b01967] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Secondary organic aerosol (SOA) derived from the photochemical oxidation of isoprene contributes a substantial mass fraction to atmospheric fine particulate matter (PM2.5). The formation of isoprene SOA is influenced largely by anthropogenic emissions through multiphase chemistry of its multigenerational oxidation products. Considering the abundance of isoprene SOA in the troposphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. In this study, we assessed the effects of isoprene SOA on gene expression in human airway epithelial cells (BEAS-2B) through an air-liquid interface exposure. Gene expression profiling of 84 oxidative stress and 249 inflammation-associated human genes was performed. Our results show that the expression levels of 29 genes were significantly altered upon isoprene SOA exposure under noncytotoxic conditions (p < 0.05), with the majority (22/29) of genes passing a false discovery rate threshold of 0.3. The most significantly affected genes belong to the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor network. The Nrf2 function is confirmed through a reporter cell line. Together with detailed characterization of SOA constituents, this study reveals the impact of isoprene SOA exposure on lung responses and highlights the importance of further understanding its potential health outcomes.
Collapse
Affiliation(s)
- Ying-Hsuan Lin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maiko Arashiro
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Phillip W. Clapp
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth G. Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ilona Jaspers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
206
|
Lakey PSJ, Wisthaler A, Berkemeier T, Mikoviny T, Pöschl U, Shiraiwa M. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects. INDOOR AIR 2017; 27:816-828. [PMID: 27943451 DOI: 10.1111/ina.12360] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/30/2016] [Indexed: 05/03/2023]
Abstract
Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m-3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood.
Collapse
Affiliation(s)
- P S J Lakey
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - A Wisthaler
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - T Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - T Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - U Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - M Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
207
|
Lyu Y, Zhang K, Chai F, Cheng T, Yang Q, Zheng Z, Li X. Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:559-571. [PMID: 28245949 DOI: 10.1016/j.envpol.2017.02.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/11/2017] [Accepted: 02/19/2017] [Indexed: 05/28/2023]
Abstract
This study examines size-resolved heavy metal data for particles sampled near an urban site affected by non-ferrous metal smelting in China with a focus on how particle sizes impact regional respiratory deposition behavior. Particles with aerodynamic diameters between 0.43 and 9 μm were collected during winter haze episodes from December 2011 to January 2012. The results showed that concentrations of individual trace elements ranged from ∼10-2-∼104 ng/m3. Mass size distributions exhibit that Cu, Zn, As, Se, Ag, Cd, TI, and Pb have unimodal peak in fine particles range (<2.1 μm); Al, Ti, Fe, Sr, Cr, Co, Ni, Mo, and U have unimodal peak in coarse range (>2.1 μm), and Be, Na, Mg, Ca, Ba, Th, V, Mn, Sn, Sb, and K have bimodal profiles with a dominant peak in the fine range and a smaller peak in the coarse range. The total deposition fluxes of trace elements were estimated at 2.1 × 10-2 - 4.1 × 103 ng/h by the MPPD model, and the region with the highest contribution was the head region (42% ± 13%), followed by the tracheobronchial region (11% ± 3%) and pulmonary region (6% ± 1%). The daily intake of individual element for humans occurs via three main exposure pathways: ingestion (2.3 × 10-4 mg/kg/day), dermal contact (2.3 × 10-5 mg/kg/day), and inhalation (9.0 × 10-6 mg/kg/day). A further health risk assessment revealed that the risk values for humans were all above the guidelines of the hazard quotient (1) and cancer risk (10-6), indicating that there are potential non-cancer effects and cancer risks in this area.
Collapse
Affiliation(s)
- Yan Lyu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tiantao Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, China
| | - Qing Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zilong Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, China.
| |
Collapse
|
208
|
Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat Commun 2017; 8:15002. [PMID: 28429776 PMCID: PMC5413943 DOI: 10.1038/ncomms15002] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. Secondary organic aerosols (SOA) are important for climate and aerosol quality, but the phase state is unclear. Here, the authors show that SOA is liquid in tropical and polar air, semi-solid in the mid-latitudes, solid over dry lands and in a glassy solid phase state in the middle and upper troposphere.
Collapse
|
209
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
210
|
Liu F, Reinmuth-Selzle K, Lai S, Weller MG, Pöschl U, Kampf CJ. Simultaneous determination of nitrated and oligomerized proteins by size exclusion high-performance liquid chromatography coupled to photodiode array detection. J Chromatogr A 2017; 1495:76-82. [PMID: 28342582 DOI: 10.1016/j.chroma.2017.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Chemical modifications such as nitration and cross-linking may enhance the allergenic potential of proteins. The kinetics and mechanisms of the underlying chemical processes, however, are not yet well understood. Here, we present a size-exclusion chromatography/spectrophotometry method (SEC-HPLC-DAD) that allows a simultaneous detection of mono-, di-, tri-, and higher protein oligomers, as well as their individual nitration degrees (NDs). The ND results of proteins from this new method agree well with the results from an alternative well-established method, for the analysis of tetranitromethane (TNM)- and nitrogen dioxide and ozone (NO2/O3)-nitrated protein samples. Importantly, the NDs for individual oligomer fractions can be obtained from the new method, and also, we provide a proof of principle for the calculation of the concentrations for individual protein oligomer fractions by their determined NDs, which will facilitate the investigation of the kinetics and mechanism for protein tyrosine nitration and cross-linking.
Collapse
Affiliation(s)
- Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Kathrin Reinmuth-Selzle
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Senchao Lai
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Michael G Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Christopher J Kampf
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany; Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
211
|
Burkholder JB, Abbatt JPD, Barnes I, Roberts JM, Melamed ML, Ammann M, Bertram AK, Cappa CD, Carlton AG, Carpenter LJ, Crowley JN, Dubowski Y, George C, Heard DE, Herrmann H, Keutsch FN, Kroll JH, McNeill VF, Ng NL, Nizkorodov SA, Orlando JJ, Percival CJ, Picquet-Varrault B, Rudich Y, Seakins PW, Surratt JD, Tanimoto H, Thornton JA, Tong Z, Tyndall GS, Wahner A, Weschler CJ, Wilson KR, Ziemann PJ. The Essential Role for Laboratory Studies in Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2519-2528. [PMID: 28169528 DOI: 10.1021/acs.est.6b04947] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.
Collapse
Affiliation(s)
- James B Burkholder
- Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , Toronto, Ontario, M5S 3H6, Canada
| | - Ian Barnes
- University of Wuppertal , School of Mathematics and Natural Science, Institute of Atmospheric and Environmental Research, Gauss Strasse 20, 42119 Wuppertal, Germany
| | - James M Roberts
- Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration , Boulder, Colorado 80305, United States
| | - Megan L Melamed
- IGAC Executive Officer, University of Colorado/CIRES , Boulder, Colorado 80309-0216 United States
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute , Villigen, 5232, Switzerland
| | - Allan K Bertram
- Department of Chemistry, The University of British Columbia , Vancouver, British Columbia, V6T 1Z1, Canada
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California , Davis, California 95616, United States
| | - Annmarie G Carlton
- Department of Chemistry, University of California , Irvine, California 92617, United States
| | - Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York , York, United Kingdom , YO10 5DD
| | | | - Yael Dubowski
- Faculty of Civil and Environmental Engineering Technion, Israel Institute of Technology , Haifa 32000, Israel
| | - Christian George
- Université Lyon 1CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon , Villeurbanne F-69626, France
| | - Dwayne E Heard
- School of Chemistry, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Hartmut Herrmann
- Leibniz-Institut für Troposphärenforschung (TROPOS), D-04318 Leipzig, Germany
| | - Frank N Keutsch
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02128, United States
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - V Faye McNeill
- Chemical Engineering, Columbia University , New York, New York, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia, United States
| | - Sergey A Nizkorodov
- Department of Chemistry University of California , Irvine, California 92697, United States
| | - John J Orlando
- National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Laboratory , Boulder, Colorado 80301, United States
| | - Carl J Percival
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester , Manchester, United Kingdom
| | - Bénédicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Universités Paris-Est Créteil et Paris Diderot, Institut Pierre-Simon Laplace , Créteil Cedex, France
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Paul W Seakins
- School of Chemistry, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Hiroshi Tanimoto
- National Institute for Environmental Studies , Tsukuba, Ibaraki Japan
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98195, United States
| | - Zhu Tong
- College of Environmental Sciences and Engineering, Peking University , Beijing, China
| | - Geoffrey S Tyndall
- National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Laboratory , Boulder, Colorado 80301, United States
| | - Andreas Wahner
- Institue of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Charles J Weschler
- Environmental & Occupational Health Sciences Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California, United States
| | - Paul J Ziemann
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
212
|
Fairhurst MC, Ezell MJ, Kidd C, Lakey PSJ, Shiraiwa M, Finlayson-Pitts BJ. Kinetics, mechanisms and ionic liquids in the uptake of n-butylamine onto low molecular weight dicarboxylic acids. Phys Chem Chem Phys 2017; 19:4827-4839. [PMID: 28133655 DOI: 10.1039/c6cp08663b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atmospheric particles adversely affect visibility, health, and climate, yet the kinetics and mechanisms of particle formation and growth are poorly understood. Multiphase reactions between amines and dicarboxylic acids (diacids) have been suggested to contribute. In this study, the reactions of n-butylamine (BA) with solid C3-C8 diacids were studied at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. Uptake coefficients for amines on the diacids with known geometric surface areas were measured at initial amine concentrations from (3-50) × 1011 cm-3. Uptake coefficients ranged from 0.7 ± 0.1 (2σ) for malonic acid (C3) to <10-6 for suberic acid (C8), show an odd-even carbon number effect, and decrease with increasing chain length within each series. Butylaminium salts formed from evaporation of aqueous solutions of BA with C3, C5 and C7 diacids (as well as C8) were viscous liquids, suggesting that ionic liquids (ILs) form on the surface during the reactions of gas phase amine with the odd carbon diacids. Predictions from the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) were quantitatively consistent with uptake occurring via dissolution of the underlying diacid into the IL layer and reaction with amine taken up from the gas phase. The butylaminium salts formed from the C4 and C6 diacids were solids, and their uptake coefficients were smaller. These experiments and kinetic modeling demonstrate the unexpected formation of ILs in a gas-solid reaction, and suggest that ILs should be considered under some circumstances in atmospheric processes.
Collapse
Affiliation(s)
| | - Michael J Ezell
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Carla Kidd
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Pascale S J Lakey
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
213
|
Romonosky DE, Li Y, Shiraiwa M, Laskin A, Laskin J, Nizkorodov SA. Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical. J Phys Chem A 2017; 121:1298-1309. [DOI: 10.1021/acs.jpca.6b10900] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dian E. Romonosky
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Ying Li
- National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
214
|
Matsuoka K, Sakamoto Y, Hama T, Kajii Y, Enami S. Reactive Uptake of Gaseous Sesquiterpenes on Aqueous Surfaces. J Phys Chem A 2017; 121:810-818. [DOI: 10.1021/acs.jpca.6b11821] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kohei Matsuoka
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
| | - Tetsuya Hama
- Institute
of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshizumi Kajii
- Graduate
School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto 606-8316, Japan
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
215
|
Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal Bioanal Chem 2017; 409:2411-2420. [PMID: 28108753 PMCID: PMC5352754 DOI: 10.1007/s00216-017-0188-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Abstract
Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.
Collapse
|
216
|
Vijayakumar S, Kumar A, Rajakumar B. Experimental and computational kinetic investigations for the reactions of Cl atoms with unsaturated ketones in the gas phase. NEW J CHEM 2017. [DOI: 10.1039/c7nj03209a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cl atom initiated photo oxidation of unsaturated ketones.
Collapse
Affiliation(s)
- S. Vijayakumar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Avinash Kumar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - B. Rajakumar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
217
|
Skoda MWA, Thomas B, Hagreen M, Sebastiani F, Pfrang C. Simultaneous neutron reflectometry and infrared reflection absorption spectroscopy (IRRAS) study of mixed monolayer reactions at the air–water interface. RSC Adv 2017. [DOI: 10.1039/c7ra04900e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Simultaneous neutron reflectometry and infrared spectroscopy can follow the oxidation of complex, realistic surfactant mixtures relevant for atmospheric chemistry.
Collapse
Affiliation(s)
- Maximilian W. A. Skoda
- ISIS Pulsed Neutron and Muon Source
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Harwell
- UK
| | - Benjamin Thomas
- ISIS Pulsed Neutron and Muon Source
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Harwell
- UK
| | | | | | | |
Collapse
|
218
|
Fairhurst MC, Ezell MJ, Finlayson-Pitts BJ. Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3–C7 solid dicarboxylic acids. Phys Chem Chem Phys 2017; 19:26296-26309. [DOI: 10.1039/c7cp05252a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level.
Collapse
|
219
|
Arquero KD, Xu J, Gerber RB, Finlayson-Pitts BJ. Particle formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study. Phys Chem Chem Phys 2017; 19:28286-28301. [PMID: 29028063 DOI: 10.1039/c7cp04468b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental-theoretical study on the effect of oxalic acid on particle formation and growth from the reaction of MSA with trimethylamine in the absence and presence of water.
Collapse
Affiliation(s)
| | - Jing Xu
- Department of Chemistry
- University of California
- Irvine
- USA
| | - R. Benny Gerber
- Department of Chemistry
- University of California
- Irvine
- USA
- Institute of Chemistry
| | | |
Collapse
|
220
|
Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, Day DA, Donahue NM, Fry JL, Fuchs H, Griffin RJ, Guzman MI, Herrmann H, Hodzic A, Iinuma Y, Jimenez JL, Kiendler-Scharr A, Lee BH, Luecken DJ, Mao J, McLaren R, Mutzel A, Osthoff HD, Ouyang B, Picquet-Varrault B, Platt U, Pye HOT, Rudich Y, Schwantes RH, Shiraiwa M, Stutz J, Thornton JA, Tilgner A, Williams BJ, Zaveri RA. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:2103-2162. [PMID: 30147712 PMCID: PMC6104845 DOI: 10.5194/acp-17-2103-2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Collapse
Affiliation(s)
- Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steven S. Brown
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Elliot Atlas
- Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, FL, USA
| | - Ronald C. Cohen
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - John N. Crowley
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Mainz, Germany
| | - Douglas A. Day
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Juliane L. Fry
- Department of Chemistry, Reed College, Portland, OR, USA
| | - Hendrik Fuchs
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Robert J. Griffin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | - Hartmut Herrmann
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Alma Hodzic
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Yoshiteru Iinuma
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - José L. Jimenez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Astrid Kiendler-Scharr
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Deborah J. Luecken
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jingqiu Mao
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - Robert McLaren
- Centre for Atmospheric Chemistry, York University, Toronto, Ontario, Canada
| | - Anke Mutzel
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Hans D. Osthoff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Bin Ouyang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benedicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), CNRS, Universities of Paris-Est Créteil and ì Paris Diderot, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Ulrich Platt
- Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot, Israel
| | - Rebecca H. Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Andreas Tilgner
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul A. Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
221
|
Finlayson-Pitts BJ. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discuss 2017; 200:11-58. [DOI: 10.1039/c7fd00161d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.
Collapse
|
222
|
Ault AP, Axson JL. Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances. Anal Chem 2016; 89:430-452. [DOI: 10.1021/acs.analchem.6b04670] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L. Axson
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
223
|
China S, Wang B, Weis J, Rizzo L, Brito J, Cirino GG, Kovarik L, Artaxo P, Gilles MK, Laskin A. Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12179-12186. [PMID: 27749043 DOI: 10.1021/acs.est.6b02896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Airborne biological particles, such as fungal spores and pollen, are ubiquitous in the Earth's atmosphere and may influence the atmospheric environment and climate, impacting air quality, cloud formation, and the Earth's radiation budget. The atmospheric transformations of airborne biological spores at elevated relative humidity remain poorly understood and their climatic role is uncertain. Using an environmental scanning electron microscope (ESEM), we observed rupturing of Amazonian fungal spores and subsequent release of submicrometer size fragments after exposure to high humidity. We find that fungal fragments contain elements of inorganic salts (e.g., Na and Cl). They are hygroscopic in nature with a growth factor up to 2.3 at 96% relative humidity, thus they may potentially influence cloud formation. Due to their hygroscopic growth, light scattering cross sections of the fragments are enhanced by up to a factor of 10. Furthermore, rupturing of fungal spores at high humidity may explain the bursting events of new particle formation in Amazonia.
Collapse
Affiliation(s)
- Swarup China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Bingbing Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Johannes Weis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luciana Rizzo
- Federal University of São Paulo , São Paulo - SP, 04021-001, Brazil
| | - Joel Brito
- Institute of Physics, University of São Paulo , São Paulo - SP, 05508-900, Brazil
| | - Glauber G Cirino
- National Institute of Research in Amazonia , Manaus - AM, 69067-375, Brazil
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Paulo Artaxo
- Institute of Physics, University of São Paulo , São Paulo - SP, 05508-900, Brazil
| | - Mary K Gilles
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Laskin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| |
Collapse
|
224
|
Jin L, Luo X, Fu P, Li X. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww079] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractRapid urban and industrial development has resulted in severe air-pollution problems in developing countries such as China, especially in highly industrialized and populous urban clusters. Dissecting the complex mixtures of airborne particulate matter (PM) has been a key scientific focus in the last two decades, leading to significant advances in understanding physicochemical compositions for comprehensive source apportionment. However, identifying causative components with an attributable link to population-based health outcomes remains a huge challenge. The microbiome, an integral dimension of the PM mixture, is an unexplored frontier in terms of identities and functions in atmospheric processes and human health. In this review, we identify the major gaps in addressing these issues, and recommend a holistic framework for evaluating the sources, processes and impacts of atmospheric PM pollution. Such an approach and the knowledge generated will facilitate the formulation of regulatory measures to control PM pollution in China and elsewhere.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
225
|
|
226
|
Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G. Plasma–liquid interactions: a review and roadmap. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/0963-0252/25/5/053002] [Citation(s) in RCA: 917] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
227
|
Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep 2016; 6:32916. [PMID: 27605301 PMCID: PMC5015057 DOI: 10.1038/srep32916] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.
Collapse
|
228
|
Trueblood JV, Estillore AD, Lee C, Dowling JA, Prather KA, Grassian VH. Heterogeneous Chemistry of Lipopolysaccharides with Gas-Phase Nitric Acid: Reactive Sites and Reaction Pathways. J Phys Chem A 2016; 120:6444-50. [PMID: 27445084 DOI: 10.1021/acs.jpca.6b07023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent studies have shown that sea spray aerosol (SSA) has a size-dependent, complex composition consisting of biomolecules and biologically derived organic compounds in addition to salts. This additional chemical complexity most likely influences the heterogeneous reactivity of SSA, as these other components will have different reactive sites and reaction pathways. In this study, we focus on the reactivity of a class of particles derived from some of the biological components of sea spray aerosol including lipopolysaccharides (LPS) that undergo heterogeneous chemistry within the reactive sites of the biological molecule. Examples of these reactions and the relevant reactive sites are proposed as follows: R-COONa(s) + HNO3(g) → NaNO3 + R-COOH and R-HPO4Na(s) + HNO3(g) → NaNO3 + R-H2PO4. These reactions may be a heterogeneous pathway not only for sea spray aerosol but also for a variety of other types of atmospheric aerosol as well.
Collapse
Affiliation(s)
- Jonathan V Trueblood
- Department of Chemistry & Biochemistry, ‡Scripps Institution of Oceanography, and §Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Armando D Estillore
- Department of Chemistry & Biochemistry, ‡Scripps Institution of Oceanography, and §Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Christopher Lee
- Department of Chemistry & Biochemistry, ‡Scripps Institution of Oceanography, and §Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Jacqueline A Dowling
- Department of Chemistry & Biochemistry, ‡Scripps Institution of Oceanography, and §Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Kimberly A Prather
- Department of Chemistry & Biochemistry, ‡Scripps Institution of Oceanography, and §Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry, ‡Scripps Institution of Oceanography, and §Department of Nanoengineering, University of California San Diego , La Jolla, California 92093, United States
| |
Collapse
|
229
|
Yue S, Ren H, Fan S, Sun Y, Wang Z, Fu P. Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci Rep 2016; 6:29618. [PMID: 27470588 PMCID: PMC4965869 DOI: 10.1038/srep29618] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/22/2016] [Indexed: 11/22/2022] Open
Abstract
Bioaerosols and humic-like substances (HULIS) are important components of atmospheric aerosols, which can affect regional climate by acting as cloud condensation nuclei and some of which can damage human health. Up to date, release of bioaerosols and HULIS initiated by precipitation is still poorly understood. Here we present different release processes for bioaerosols, non-bioaerosols and HULIS during a precipitation event in Beijing, China. Large fungal-spore-like aerosols were emitted at the onset and later weak stage of precipitation, the number concentration of which increased by more than two folds, while the number concentration of bacteria-like particles doubled when the precipitation strengthened. Besides, a good correlation between protein-like substances that were measured simultaneously by on-line and off-line fluorescence techniques consolidated their applications to measure bioaerosols. Furthermore, our EEM results suggest that the relative contribution of water-soluble HULIS to microbial materials was enhanced gradually by the rain event.
Collapse
Affiliation(s)
- Siyao Yue
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Ren
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songyun Fan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.,Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.,Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.,Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
230
|
Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci 2016; 7:6604-6616. [PMID: 28567251 PMCID: PMC5450524 DOI: 10.1039/c6sc02353c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/17/2016] [Indexed: 12/20/2022] Open
Abstract
Once airborne, biologically-derived aerosol particles are prone to reaction with various atmospheric oxidants such as OH, NO3, and O3.
Advances in analytical techniques and instrumentation have now established methods for detecting, quantifying, and identifying the chemical and microbial constituents of particulate matter in the atmosphere. For example, recent cryo-TEM studies of sea spray have identified whole bacteria and viruses ejected from ocean seawater into air. A focal point of this perspective is directed towards the reactivity of aerosol particles of biological origin with oxidants (OH, NO3, and O3) present in the atmosphere. Complementary information on the reactivity of aerosol particles is obtained from field investigations and laboratory studies. Laboratory studies of different types of biologically-derived particles offer important information related to their impacts on the local and global environment. These studies can also unravel a range of different chemistries and reactivity afforded by the complexity and diversity of the chemical make-up of these particles. Laboratory experiments as the ones reviewed herein can elucidate the chemistry of biological aerosols.
Collapse
Affiliation(s)
- Armando D Estillore
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Jonathan V Trueblood
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California San Diego , La Jolla , California 92093 , USA . ; ; Tel: +1-858-534-2499.,Scripps Institution of Oceanography and Department of Nanoengineering , University of California San Diego , La Jolla , California 92093 , USA
| |
Collapse
|
231
|
Metaproteomic analysis of atmospheric aerosol samples. Anal Bioanal Chem 2016; 408:6337-48. [PMID: 27411545 PMCID: PMC5009178 DOI: 10.1007/s00216-016-9747-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 02/04/2023]
Abstract
Metaproteomic analysis of air particulate matter provides information about the abundance and properties of bioaerosols in the atmosphere and their influence on climate and public health. We developed and applied efficient methods for the extraction and analysis of proteins from glass fiber filter samples of total, coarse, and fine particulate matter. Size exclusion chromatography was applied to remove matrix components, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied for protein fractionation according to molecular size, followed by in-gel digestion and LC-MS/MS analysis of peptides using a hybrid Quadrupole-Orbitrap MS. Maxquant software and the Swiss-Prot database were used for protein identification. In samples collected at a suburban location in central Europe, we found proteins that originated mainly from plants, fungi, and bacteria, which constitute a major fraction of primary biological aerosol particles (PBAP) in the atmosphere. Allergenic proteins were found in coarse and fine particle samples, and indications for atmospheric degradation of proteins were observed. Workflow for the metaproteomic analysis of atmospheric aerosol samples ![]()
Collapse
|
232
|
Berkemeier T, Ammann M, Mentel TF, Pöschl U, Shiraiwa M. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6334-42. [PMID: 27219077 DOI: 10.1021/acs.est.6b00961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.
Collapse
Affiliation(s)
- Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute , Villigen 5232, Switzerland
| | - Thomas F Mentel
- Institute of Energy and Climate Research , IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| |
Collapse
|
233
|
Laskin A, Gilles MK, Knopf DA, Wang B, China S. Progress in the Analysis of Complex Atmospheric Particles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:117-43. [PMID: 27306308 DOI: 10.1146/annurev-anchem-071015-041521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.
Collapse
Affiliation(s)
- Alexander Laskin
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354;
| | - Mary K Gilles
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Daniel A Knopf
- Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Bingbing Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354;
| | - Swarup China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354;
| |
Collapse
|
234
|
West JJ, Cohen A, Dentener F, Brunekreef B, Zhu T, Armstrong B, Bell ML, Brauer M, Carmichael G, Costa DL, Dockery DW, Kleeman M, Krzyzanowski M, Künzli N, Liousse C, Lung SCC, Martin RV, Pöschl U, Pope CA, Roberts JM, Russell AG, Wiedinmyer C. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4895-904. [PMID: 27010639 DOI: 10.1021/acs.est.5b03827] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.
Collapse
Affiliation(s)
- J Jason West
- Environmental Sciences & Engineering, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Aaron Cohen
- Health Effects Institute, Boston, Massachusetts 02110, United States
| | - Frank Dentener
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, I. 21027 Ispra, Italy
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Universiteit Utrecht, and Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , 3584 CJ Utrecht, The Netherlands
| | - Tong Zhu
- State Key Lab for Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University , Beijing 100871, China
| | - Ben Armstrong
- Social and Environmental Health Research, London School of Hygiene & Tropical Medicine , London WC1E 7HT, United Kingdom
| | - Michelle L Bell
- School of Forestry & Environmental Studies, Yale University , New Haven, Connecticut 06511, United States
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Gregory Carmichael
- Chemical and Biochemical Engineering, University of Iowa , Iowa City, Iowa 52242, United States
| | - Dan L Costa
- Air, Climate & Energy Research Program, Office of Research & Development, Environmental Protection Agency, Durham, North Carolina 27705, United States
| | - Douglas W Dockery
- Harvard T. H. Chan School of Public Health , Boston, Massachusetts 02115, United States
| | - Michael Kleeman
- Civil and Environmental Engineering, University of California at Davis , Davis, California 95616, United States
| | - Michal Krzyzanowski
- Environmental Research Group, King's College London, London SE1 9NH, United Kingdom
| | - Nino Künzli
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute , Basel, Switzerland
- University of Basel , Basel, Switzerland
| | - Catherine Liousse
- Laboratoire d' Aérologie, CNRS-Université de Toulouse , Toulouse 31400, France
| | | | - Randall V Martin
- Physics and Atmospheric Science, Dalhousie University , Halifax, Nova Scotia B3H 4R2, Canada
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - C Arden Pope
- Economics, Brigham Young University , Provo, Utah 84602, United States
| | - James M Roberts
- Earth System Research Laboratory, Chemical Sciences Division, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Armistead G Russell
- Civil & Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christine Wiedinmyer
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| |
Collapse
|
235
|
Rathnayake CM, Metwali N, Baker Z, Jayarathne T, Kostle PA, Thorne PS, O'Shaughnessy PT, Stone EA. Urban Enhancement of PM 10 Bioaerosol Tracers Relative to Background Locations in the Midwestern United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:5071-5089. [PMID: 27672535 PMCID: PMC5034947 DOI: 10.1002/2015jd024538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.
Collapse
Affiliation(s)
| | - Nervana Metwali
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Zach Baker
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| | | | - Pamela A Kostle
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Patrick T O'Shaughnessy
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| |
Collapse
|
236
|
Rathnayake CM, Metwali N, Baker Z, Jayarathne T, Kostle PA, Thorne PS, O'Shaughnessy PT, Stone EA. Urban Enhancement of PM 10 Bioaerosol Tracers Relative to Background Locations in the Midwestern United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016. [PMID: 27672535 DOI: 10.1002/2015jd024538.received] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.
Collapse
Affiliation(s)
| | - Nervana Metwali
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Zach Baker
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| | | | - Pamela A Kostle
- University of Iowa State Hygienic Laboratory, Coralville, IA, USA 52241, United States
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Patrick T O'Shaughnessy
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA 52242; Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA 52242
| | - Elizabeth A Stone
- Department of Chemistry, University of Iowa, Iowa City, IA, USA 52242
| |
Collapse
|
237
|
Tang M, Cziczo DJ, Grassian VH. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation. Chem Rev 2016; 116:4205-59. [DOI: 10.1021/acs.chemrev.5b00529] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingjin Tang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel J. Cziczo
- Department
of Earth, Atmospheric and Planetary Sciences and Civil and Environmental
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vicki H. Grassian
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Departments
of Chemistry and Biochemistry, Nanoengineering and Scripps Institution
of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
238
|
Steimer SS, Berkemeier T, Gilgen A, Krieger UK, Peter T, Shiraiwa M, Ammann M. Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass. Phys Chem Chem Phys 2016; 17:31101-9. [PMID: 26536455 DOI: 10.1039/c5cp04544d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) × 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O3 uptake at very low humidity suggests contribution of a self-reaction of O3 on the surface.
Collapse
Affiliation(s)
- Sarah S Steimer
- Paul Scherrer Institute, Laboratory of Radio- and Environmental Chemistry, 5232 Villigen PSI, Switzerland. and ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128 Mainz, Germany
| | - Anina Gilgen
- ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Ulrich K Krieger
- ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Thomas Peter
- ETH Zurich, Institute for Atmospheric and Climate Science, 8092 Zurich, Switzerland
| | - Manabu Shiraiwa
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128 Mainz, Germany
| | - Markus Ammann
- Paul Scherrer Institute, Laboratory of Radio- and Environmental Chemistry, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
239
|
Berkemeier T, Steimer SS, Krieger UK, Peter T, Pöschl U, Ammann M, Shiraiwa M. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry. Phys Chem Chem Phys 2016; 18:12662-74. [DOI: 10.1039/c6cp00634e] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Humidity-induced phase transition and formation of reactive oxygen intermediates are important processes in the heterogeneous ozonolysis of unsaturated organic compounds in the atmosphere.
Collapse
Affiliation(s)
- Thomas Berkemeier
- Max Planck Institute for Chemistry
- Multiphase Chemistry Department
- 55128 Mainz
- Germany
| | - Sarah S. Steimer
- Paul Scherrer Institute
- Laboratory of Environmental Chemistry
- 5232 Villigen PSI
- Switzerland
- ETH Zurich
| | - Ulrich K. Krieger
- ETH Zurich
- Institute for Atmospheric and Climate Science
- 8092 Zurich
- Switzerland
| | - Thomas Peter
- ETH Zurich
- Institute for Atmospheric and Climate Science
- 8092 Zurich
- Switzerland
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry
- Multiphase Chemistry Department
- 55128 Mainz
- Germany
| | - Markus Ammann
- Paul Scherrer Institute
- Laboratory of Environmental Chemistry
- 5232 Villigen PSI
- Switzerland
| | - Manabu Shiraiwa
- Max Planck Institute for Chemistry
- Multiphase Chemistry Department
- 55128 Mainz
- Germany
| |
Collapse
|
240
|
Tong H, Kourtchev I, Pant P, Keyte IJ, O'Connor IP, Wenger JC, Pope FD, Harrison RM, Kalberer M. Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry. Faraday Discuss 2016; 189:51-68. [DOI: 10.1039/c5fd00206k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic aerosol composition in the urban atmosphere is highly complex and strongly influenced by vehicular emissions which vary according to the make-up of the vehicle fleet. Normalized test measurements do not necessarily reflect real-world emission profiles and road tunnels are therefore ideal locations to characterise realistic traffic particle emissions with minimal interference from other particle sources and from atmospheric aging processes affecting their composition. In the current study, the composition of fine particles (diameter ≤2.5 μm) at an urban background site (Elms Road Observatory Site) and a road tunnel (Queensway) in Birmingham, UK, were analysed with direct infusion, nano-electrospray ionisation ultrahigh resolution mass spectrometry (UHRMS). The overall particle composition at these two sites is compared with an industrial harbour site in Cork, Ireland, with special emphasis on oxidised mono-aromatics, polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatics. Different classification criteria, such as double bond equivalents, aromaticity index and aromaticity equivalent are used and compared to assess the fraction of aromatic components in the approximately one thousand oxidized organic compounds at the different sampling locations.
Collapse
Affiliation(s)
- Haijie Tong
- Centre for Atmospheric Science
- University of Cambridge
- Cambridge
- UK
| | - Ivan Kourtchev
- Centre for Atmospheric Science
- University of Cambridge
- Cambridge
- UK
| | - Pallavi Pant
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- Birmingham
- UK
| | - Ian J. Keyte
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- Birmingham
- UK
| | - Ian P. O'Connor
- Department of Chemistry and Environmental Research Institute
- University College Cork
- Cork
- Ireland
| | - John C. Wenger
- Department of Chemistry and Environmental Research Institute
- University College Cork
- Cork
- Ireland
| | - Francis D. Pope
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- Birmingham
- UK
| | - Roy M. Harrison
- School of Geography
- Earth and Environmental Sciences
- University of Birmingham
- Birmingham
- UK
| | - Markus Kalberer
- Centre for Atmospheric Science
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
241
|
Zalewski AN, Nathanael JG, White JM, Wille U. Oxidation of cholesterol and O-protected derivatives by the environmental pollutant NO2˙. Chem Commun (Camb) 2016; 52:4060-3. [DOI: 10.1039/c5cc09663d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Exposure of O-protected and free cholesterol to NO2˙ leads to oxidation of the alkene moiety through non-radical pathways, demonstrating that ionic processes must be considered when assessing NO2˙ toxicity.
Collapse
Affiliation(s)
- A. N. Zalewski
- School of Chemistry
- Bio21 Institute
- The University of Melbourne
- Parkville
- Australia
| | - J. G. Nathanael
- School of Chemistry
- Bio21 Institute
- The University of Melbourne
- Parkville
- Australia
| | - J. M. White
- School of Chemistry
- Bio21 Institute
- The University of Melbourne
- Parkville
- Australia
| | - U. Wille
- School of Chemistry
- Bio21 Institute
- The University of Melbourne
- Parkville
- Australia
| |
Collapse
|
242
|
Hosny NA, Fitzgerald C, Vyšniauskas A, Athanasiadis A, Berkemeier T, Uygur N, Pöschl U, Shiraiwa M, Kalberer M, Pope FD, Kuimova MK. Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chem Sci 2015; 7:1357-1367. [PMID: 29910892 PMCID: PMC5975791 DOI: 10.1039/c5sc02959g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/07/2015] [Indexed: 12/22/2022] Open
Abstract
We report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity.
Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.
Collapse
Affiliation(s)
- N A Hosny
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - C Fitzgerald
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK .
| | - A Vyšniauskas
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - A Athanasiadis
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - T Berkemeier
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - N Uygur
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - U Pöschl
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - M Shiraiwa
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner Weg 1 , 55128 , Mainz , Germany
| | - M Kalberer
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK .
| | - F D Pope
- School of Geography , Earth and Environmental Science , University of Birmingham , Edgbaston , B15 2TT , UK .
| | - M K Kuimova
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| |
Collapse
|
243
|
Enami S, Hoffmann MR, Colussi AJ. OH-Radical Specific Addition to Glutathione S-Atom at the Air-Water Interface: Relevance to the Redox Balance of the Lung Epithelial Lining Fluid. J Phys Chem Lett 2015; 6:3935-3943. [PMID: 26722895 DOI: 10.1021/acs.jpclett.5b01819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antioxidants in epithelial lining fluids (ELF) prevent inhaled air pollutants from reaching lung tissue. This process, however, may upset ELF's redox balance, which is deemed to be expressed by the ratio of the major antioxidant glutathione (GSH) to its putative oxidation product GSSG. Previously, we found that at physiological pH O3(g) rapidly oxidizes GS(2-)(aq) (but not GSH(-)) to GSO3(-) rather than GSSG. Here, we report that in moderately acidic pH ≤ 5 media ·OH(g) oxidizes GSH(-)(aq) to sulfenic GSOH(-), sulfinic GSO2(-), and sulfonic GSO3(-) acids via ·OH specific additions to reduced S-atoms. The remarkable specificity of ·OH on water versus its lack of selectivity in bulk water implicates an unprecedented steering process during [OH···GSH] interfacial encounters. Thus, both O3 and ·OH oxidize GSH to GSOH(-) under most conditions, and since GSOH(-) is reduced back to GSH in vivo by NADPH, redox balance may be in fact signaled by GSH/GSOH ratios.
Collapse
Affiliation(s)
- Shinichi Enami
- The Hakubi Center for Advanced Research, Kyoto University , Kyoto 606-8302, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University , Uji 611-0011, Japan
- PRESTO, Japan Science and Technology Agency , Kawaguchi 332-0012, Japan
| | - Michael R Hoffmann
- Linde Center for Global Environmental Science, California Institute of Technology , Pasadena, California 91125, United States
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
244
|
Kampf CJ, Liu F, Reinmuth-Selzle K, Berkemeier T, Meusel H, Shiraiwa M, Pöschl U. Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10859-66. [PMID: 26287571 DOI: 10.1021/acs.est.5b02902] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies.
Collapse
Affiliation(s)
- Christopher J Kampf
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz , 55128 Mainz, Germany
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| |
Collapse
|
245
|
Gamon LF, Nathanael JG, Taggert BI, Henry FA, Bogena J, Wille U. Fragmentation-Rearrangement of Peptide Backbones Mediated by the Air Pollutant NO2. Chemistry 2015; 21:14924-30. [DOI: 10.1002/chem.201501850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 11/07/2022]
|
246
|
Tibbetts JH. Air quality and climate change: a delicate balance. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A148-53. [PMID: 26030069 PMCID: PMC4455574 DOI: 10.1289/ehp.123-a148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|