201
|
Wang YF, Zhang MT. Proton-Coupled Electron-Transfer Reduction of Dioxygen: The Importance of Precursor Complex Formation between Electron Donor and Proton Donor. J Am Chem Soc 2022; 144:12459-12468. [PMID: 35776107 DOI: 10.1021/jacs.2c04467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction has drawn extensive attention for its widespread occurrence in chemistry, biology, and materials science. The mechanistic studies via model systems such as tyrosine and phenol oxidation have gradually deepened the understanding of PCET reactions, which was widely accepted and applied to bond activation and transformation. However, direct PCET activation of nonpolar bonds such as the C-H bond, O2, and N2 has yet to be explored. Herein, we report that the interaction between electron donor and proton donor could overcome the barrier of direct O2 activation via a concerted electron-proton transfer mechanism. This work provides a new strategy for developing direct PCET activation of nonpolar bonds.
Collapse
Affiliation(s)
- Yu-Fan Wang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
202
|
The nature of proton-coupled electron transfer in a blue light using flavin domain. Proc Natl Acad Sci U S A 2022; 119:e2203996119. [PMID: 35737837 PMCID: PMC9245699 DOI: 10.1073/pnas.2203996119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proton-coupled electron transfer (PCET) is key to the activation of the blue light using flavin (BLUF) domain photoreceptors. Here, to elucidate the photocycle of the central FMN-Gln-Tyr motif in the BLUF domain of OaPAC, we eliminated the intrinsic interfering W90 in the mutant design. We integrated the stretched exponential function into the target analysis to account for the dynamic heterogeneity arising from the active-site solvation relaxation and the flexible H-bonding network as shown in the molecular dynamics simulation results, facilitating a simplified expression of the kinetics model. We find that, in both the functional wild-type (WT) and the nonfunctional Q48E and Q48A, forward PCET happens in the range of 105 ps to 344 ps, with a kinetic isotope effect (KIE) measured to be ∼1.8 to 2.4, suggesting that the nature of the forward PCET is concerted. Remarkably, only WT proceeds with an ultrafast reverse PCET process (31 ps, KIE = 4.0), characterized by an inverted kinetics of the intermediate FMNH˙. Our results reveal that the reverse PCET is driven by proton transfer via an intervening imidic Gln.
Collapse
|
203
|
Wei X, Wen X, Liu Y, Chen C, Xie C, Wang D, Qiu M, He N, Zhou P, Chen W, Cheng J, Lin H, Jia J, Fu XZ, Wang S. Oxygen Vacancy-Mediated Selective C-N Coupling toward Electrocatalytic Urea Synthesis. J Am Chem Soc 2022; 144:11530-11535. [PMID: 35748598 DOI: 10.1021/jacs.2c03452] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electrocatalytic C-N coupling for one-step urea synthesis under ambient conditions serves as the promising alternative to the traditional urea synthetic protocol. However, the hydrogenation of intermediate species hinders the efficient urea synthesis. Herein, the oxygen vacancy-enriched CeO2 was demonstrated as the efficient electrocatalyst with the stabilization of the crucial intermediate of *NO via inserting into vacant sites, which is conducive to the subsequent C-N coupling process rather than protonation, whereas the poor selectivity of C-N coupling with protonation was observed on the vacancy-deficient catalyst. The oxygen vacancy-mediated selective C-N coupling was distinguished and validated by the in situ sum frequency generation spectroscopy. The introduction of oxygen vacancies tailors the common catalyst carrier into an efficient electrocatalyst with a high urea yield rate of 943.6 mg h-1 g-1, superior than that of partial noble-metal-based electrocatalysts. This work provides novel insights into the catalyst design and developments of coupling systems.
Collapse
Affiliation(s)
- Xiaoxiao Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China.,College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518000, P. R. China
| | - Xiaojian Wen
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518000, P. R. China
| | - Yingying Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Chen Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Mengyi Qiu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Nihan He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Peng Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China.,College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518000, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361000, P. R. China
| | - Hongzhen Lin
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu 215000, P. R. China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi 030031, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518000, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
204
|
Romero AH, Cerecetto HE. High CT-Fluorophore Featuring a Basic Moiety into D-A Chain as a p Ka Probe. J Org Chem 2022; 87:7618-7634. [PMID: 35671375 DOI: 10.1021/acs.joc.1c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The determination of acidity represents a significant challenge within fluorometry, and no effective strategy has been developed successfully yet. It is attributed to the fact that acidity tends to be enhanced upon excitation, giving, in general, an overestimation of the ionization constant, pKa. Herein, we developed a strategy for pKa estimation of Brønsted acids in solution through fluorometry by using a convenient pKa probe, N1-aryl-7-methoxy-2-(trifluoromethyl)benzo[b][1,8]naphthyridin-4(1H)-one. It allowed us to obtain a linear log KSV versus pKa correlation derived from the selective quenching response of the probe by an interaction with different Brønsted acids. The key points of N1-aryl-7-methoxy-2-(trifluoromethyl)benzo[b][1,8]naphthyridin-4(1H)-one as a pKa probe were (i) the location of a weak basic moiety in the donor-acceptor chain of the fluorophore, which favors a selective quenching of the intramolecular charge-transfer process according to the acidity of acid, and (ii) the high CT character upon excitation that promotes higher quenching magnitudes and favors a wider pKa range (19.5pKa) for the log KSV versus pKa correlation. Other key principles were to delimit the study to pure proton transfer and nonfluorescent acids, which allowed restricting the quenching response to a process dependent mainly on the acid-base equilibrium. All these findings open a new perspective as a proof of concept to design effective fluorescent pKa probes.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Hugo E Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| |
Collapse
|
205
|
Pann J, Viertl W, Roithmeyer H, Pehn R, Hofer TS, Brüggeller P. Insights into Proton Coupled Electron Transfer in the Field of Artificial Photosynthesis. Isr J Chem 2022. [DOI: 10.1002/ijch.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Johann Pann
- Institute of General Inorganic and Theoretical Chemistry Centrum for Chemistry and Biomedicine University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Wolfgang Viertl
- Institute of General Inorganic and Theoretical Chemistry Centrum for Chemistry and Biomedicine University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Helena Roithmeyer
- Institute of General Inorganic and Theoretical Chemistry Centrum for Chemistry and Biomedicine University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Richard Pehn
- Institute of General Inorganic and Theoretical Chemistry Centrum for Chemistry and Biomedicine University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Thomas S. Hofer
- Institute of General Inorganic and Theoretical Chemistry Centrum for Chemistry and Biomedicine University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Peter Brüggeller
- Institute of General Inorganic and Theoretical Chemistry Centrum for Chemistry and Biomedicine University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| |
Collapse
|
206
|
|
207
|
Cao H, Zhang Z, Chen JW, Wang YG. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO 2 Reduction on Single Atom Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Cao
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jie-Wei Chen
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yang-Gang Wang
- Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
208
|
Abstract
Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks-they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called α3X model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.
Collapse
Affiliation(s)
- Cecilia Tommos
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
209
|
Liu T, Li G, Shen N, Wang L, Timmer BJJ, Kravchenko A, Zhou S, Gao Y, Yang Y, Yang H, Xu B, Zhang B, Ahlquist MSG, Sun L. Promoting Proton Transfer and Stabilizing Intermediates in Catalytic Water Oxidation via Hydrophobic Outer Sphere Interactions. Chemistry 2022; 28:e202104562. [PMID: 35289447 PMCID: PMC9314586 DOI: 10.1002/chem.202104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/29/2022]
Abstract
The outer coordination sphere of metalloenzyme often plays an important role in its high catalytic activity, however, this principle is rarely considered in the design of man-made molecular catalysts. Herein, four Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) based molecular water oxidation catalysts with well-defined outer spheres are designed and synthesized. Experimental and theoretical studies showed that the hydrophobic environment around the Ru center could lead to thermodynamic stabilization of the high-valent intermediates and kinetic acceleration of the proton transfer process during catalytic water oxidation. By this outer sphere stabilization, a 6-fold rate increase for water oxidation catalysis has been achieved.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Ge Li
- Department of Theoretical Chemistry & BiologySchool of Engineering Sciences in Chemistry Biotechnology and HealthKTH Royal Institute of Technology10691StockholmSweden
| | - Nannan Shen
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD−X) andCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University215123SuzhouChina
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar FuelsSchool of ScienceWestlake University310024HangzhouChina
| | - Brian J. J. Timmer
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Alexander Kravchenko
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Shengyang Zhou
- Nanotechnology and Functional Materials, Department of Materials Sciences and EngineeringThe Ångström LaboratoryUppsala University751 03UppsalaSweden
| | - Ying Gao
- Wallenberg Wood Science CenterDepartment of Fiber and Polymer TechnologyKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Yi Yang
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Hao Yang
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Bo Xu
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar FuelsSchool of ScienceWestlake University310024HangzhouChina
| | - Mårten S. G. Ahlquist
- Department of Theoretical Chemistry & BiologySchool of Engineering Sciences in Chemistry Biotechnology and HealthKTH Royal Institute of Technology10691StockholmSweden
| | - Licheng Sun
- Department of ChemistrySchool of Engineering Sciences inChemistry Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
- Center of Artificial Photosynthesis for Solar FuelsSchool of ScienceWestlake University310024HangzhouChina
- Institute of Artificial Photosynthesis (IAP)State Key Laboratory of Fine ChemicalsDalian University of Technology (DUT)Dalian116024China
| |
Collapse
|
210
|
Wu Q, Li M, He S, Xiong Y, Zhang P, Huang H, Chen L, Huang F, Li F. The hangman effect boosts hydrogen production by a manganese terpyridine complex. Chem Commun (Camb) 2022; 58:5128-5131. [PMID: 35380563 DOI: 10.1039/d2cc00757f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The manganese terpyridine complex 1 with a coordinated carboxylate in the axial position was obtained in situ. By virtue of a hangman effect, complex 1 catalyzes electrochemical hydrogen evolution from phenol in acetonitrile solution with a turnover frequency of 525 s-1 at a low overpotential of ca. 230 mV.
Collapse
Affiliation(s)
- Qianqian Wu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Minghong Li
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Shuanglin He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Ying Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Ping Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Heyan Huang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
211
|
Nilsen-Moe A, Rosichini A, Glover SD, Hammarström L. Concerted and Stepwise Proton-Coupled Electron Transfer for Tryptophan-Derivative Oxidation with Water as the Primary Proton Acceptor: Clarifying a Controversy. J Am Chem Soc 2022; 144:7308-7319. [PMID: 35416654 PMCID: PMC9052761 DOI: 10.1021/jacs.2c00371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Concerted electron-proton transfer (CEPT) reactions avoid charged intermediates and may be energetically favorable for redox and radical-transfer reactions in natural and synthetic systems. Tryptophan (W) often partakes in radical-transfer chains in nature but has been proposed to only undergo sequential electron transfer followed by proton transfer when water is the primary proton acceptor. Nevertheless, our group has shown that oxidation of freely solvated tyrosine and W often exhibit weakly pH-dependent proton-coupled electron transfer (PCET) rate constants with moderate kinetic isotope effects (KIE ≈ 2-5), which could be associated with a CEPT mechanism. These results and conclusions have been questioned. Here, we present PCET rate constants for W derivatives with oxidized Ru- and Zn-porphyrin photosensitizers, extracted from laser flash-quench studies. Alternative quenching/photo-oxidation methods were used to avoid complications of previous studies, and both the amine and carboxylic acid groups of W were protected to make the indole the only deprotonable group. With a suitably tuned oxidant strength, we found an ET-limited reaction at pH < 4 and weakly pH-dependent rates at pH > ∼5 that are intrinsic to the PCET of the indole group with water (H2O) as the proton acceptor. The observed rate constants are up to more than 100 times higher than those measured for initial electron transfer, excluding the electron-first mechanism. Instead, the reaction can be attributed to CEPT. These conclusions are important for our view of CEPT in water and of PCET-mediated radical reactions with solvent-exposed tryptophan in natural systems.
Collapse
Affiliation(s)
- Astrid Nilsen-Moe
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120 Uppsala, Sweden
| | - Andrea Rosichini
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120 Uppsala, Sweden
| | - Starla D Glover
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
212
|
Tao X, Zhao Y, Wang S, Li C, Li R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem Soc Rev 2022; 51:3561-3608. [PMID: 35403632 DOI: 10.1039/d1cs01182k] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The conversion and storage of solar energy to chemical energy via artificial photosynthesis holds significant potential for optimizing the energy situation and mitigating the global warming effect. Photocatalytic water splitting utilizing particulate semiconductors offers great potential for the production of renewable hydrogen, while this cross-road among biology, chemistry, and physics features a topic with fascinating interdisciplinary challenges. Progress in photocatalytic water splitting has been achieved in recent years, ranging from fundamental scientific research to pioneering scalable practical applications. In this review, we focus mainly on the recent advancements in terms of the development of new light-absorption materials, insights and strategies for photogenerated charge separation, and studies towards surface catalytic reactions and mechanisms. In particular, we emphasize several efficient charge separation strategies such as surface-phase junction, spatial charge separation between facets, and polarity-induced charge separation, and also discuss their unique properties including ferroelectric and photo-Dember effects on spatial charge separation. By integrating time- and space-resolved characterization techniques, critical issues in photocatalytic water splitting including photoinduced charge generation, separation and transfer, and catalytic reactions are analyzed and reviewed. In addition, photocatalysts with state-of-art efficiencies in the laboratory stage and pioneering scalable solar water splitting systems for hydrogen production using particulate photocatalysts are presented. Finally, some perspectives and outlooks on the future development of photocatalytic water splitting using particulate photocatalysts are proposed.
Collapse
Affiliation(s)
- Xiaoping Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Shengyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China. .,University of Chinese Academy of Sciences, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| |
Collapse
|
213
|
Morawski O, Gawryś P, Sadło J, Sobolewski AL. Photochemical Hydrogen Storage with Hexaazatrinaphthylene (HATN). Chemphyschem 2022; 23:e202200077. [PMID: 35377513 DOI: 10.1002/cphc.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Indexed: 11/10/2022]
Abstract
When irradiated with violet light, hexaazatrinaphthylene (HATN) extracts a hydrogen atom from an alcohol forming a long-living hydrogenated species. The kinetic isotope effect for fluorescence decay in deuterated methanol (1.56) indicates that the lowest singlet excited state of the molecule is a precursor for intermolecular hydrogen transfer. The photochemical hydrogenation occurs in several alcohols (methanol, ethanol, isopropanol) but not in water. Hydrogenated HATN can be detected optically by an absorption band at 1.78 eV as well as with EPR and NMR techniques. Mass spectroscopy of photoproducts reveal di-hydrogenated HATN structures along with methoxylated and methylated HATN molecules which are generated through the reaction with methoxy radicals (remnants from alcohol splitting). Experimental findings are consistent with the theoretical results which predicted that for the excited state of the HATN-solvent molecular complex, there exists a barrierless hydrogen transfer from methanol but a barrier for the similar oxidation of water.
Collapse
Affiliation(s)
- Olaf Morawski
- Institute of Physics Polish Academy of Sciences: Instytut Fizyki Polskiej Akademii Nauk, Radiation and Spectroscopy, Al. Lotnikow 32/46, 02-668, Warsaw, POLAND
| | - Paweł Gawryś
- Institute of Physics Polish Academy of Sciences: Instytut Fizyki Polskiej Akademii Nauk, Radiation and Spectroscopy, Al. Lotników 32/46, 02-668, Warszawa, POLAND
| | - Jarosław Sadło
- Institute of Nuclear Chemistry and Technology, Spectroscopy, ul. Dorodna 16, 03-195, Warsaw, POLAND
| | - Andrzej L Sobolewski
- Institute of Physics Polish Academy of Sciences: Instytut Fizyki Polskiej Akademii Nauk, Radiation and Spectroscopy, Al. Lotników 32/46, 02-668, Warsaw, POLAND
| |
Collapse
|
214
|
Gao Y, Xue Q, Li J, Zhang M, Ma Y, Qu Y. Phytate Coordination-Enhanced Electrocatalytic Activity of Copper for Nitroarene Hydrogenation through Concerted Proton-Coupled Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14202-14209. [PMID: 35289590 DOI: 10.1021/acsami.1c24744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coupling acid-electrolyte proton exchange membrane fuel cells for electricity generation and cathodic hydrogenation for valuable chemical production shows great potential in energy and chemical industry. The key for this promising approach is the identification of cathode electrocatalysts with acid resistance, high activity, and low fabrication cost for practical applications. Among various promising cathodic candidates for this integrative approach, the easily available and cheap Cu suffers from low acidic hydrogenation activity due to kinetically arduous proton adsorption/activation. Inspired by the kinetic advantages of the concerted proton-coupled electron transfer (CPET) over the sequential proton-electron transfer process, herein, we use phytate coordination on Cu surface to overcome the kinetic bottleneck for proton adsorption/activation through the CPET pathway in an acidic half-cell setup; this leads to 1 order of magnitude activity enhancement (36.94-fold) for nitrobenzene hydrogenation. Mechanistic analysis confirms that phytate, as proton acceptor, induces the CPET process and overcomes the above kinetic limitations by tuning the d-band center and concentrating protons on the Cu surface. Consequently, the CPET process facilitates the formation of active hydrogen intermediates for efficient cathodic hydrogenation. This work provides a promising approach to integrate electricity generation and chemical production.
Collapse
Affiliation(s)
- Yuanfeng Gao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qingyu Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingkai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
215
|
Ding M, Shan BQ, Peng B, Zhou JF, Zhang K. Dynamic Pt-OH -·H 2O-Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface. Phys Chem Chem Phys 2022; 24:7923-7936. [PMID: 35311880 DOI: 10.1039/d2cp00673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir-Hinshelwood (L-H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt-Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L-H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag-Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.
Collapse
Affiliation(s)
- Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, 69364 Lyon cedex 07, France.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, P. R. China.,Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
216
|
Castner AT, Su H, Svensson Grape E, Inge AK, Johnson BA, Ahlquist MSG, Ott S. Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal-Organic Framework. J Am Chem Soc 2022; 144:5910-5920. [PMID: 35325542 PMCID: PMC8990995 DOI: 10.1021/jacs.1c13377] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transport through metal-organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusion-migration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, Deapp, that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the Deapp for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation-linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.
Collapse
Affiliation(s)
- Ashleigh T Castner
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Hao Su
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Ben A Johnson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
217
|
Schreiber E, Fertig AA, Brennessel WW, Matson EM. Oxygen-Atom Defect Formation in Polyoxovanadate Clusters via Proton-Coupled Electron Transfer. J Am Chem Soc 2022; 144:5029-5041. [PMID: 35275632 PMCID: PMC8949770 DOI: 10.1021/jacs.1c13432] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/28/2022]
Abstract
The uptake of hydrogen atoms (H-atoms) into reducible metal oxides has implications in catalysis and energy storage. However, outside of computational modeling, it is difficult to obtain insight into the physicochemical factors that govern H-atom uptake at the atomic level. Here, we describe oxygen-atom vacancy formation in a series of hexavanadate assemblies via proton-coupled electron transfer, presenting a novel pathway for the formation of defect sites at the surface of redox-active metal oxides. Kinetic investigations reveal that H-atom transfer to the metal oxide surface occurs through concerted proton-electron transfer, resulting in the formation of a transient VIII-OH2 moiety that, upon displacement of the water ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide cluster. Oxidation state distribution of the cluster core dictates the affinity of surface oxido ligands for H-atoms, mirroring the behavior of reducible metal oxide nanocrystals. Ultimately, atomistic insights from this work provide new design criteria for predictive proton-coupled electron-transfer reactivity of terminal M═O moieties at the surface of nanoscopic metal oxides.
Collapse
Affiliation(s)
| | | | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
218
|
Wang R, Xie KJ, Fu Q, Wu M, Pan GF, Lou DW, Liang FS. Transformation of Thioacids into Carboxylic Acids via a Visible-Light-Promoted Atomic Substitution Process. Org Lett 2022; 24:2020-2024. [PMID: 35263540 DOI: 10.1021/acs.orglett.2c00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible-light-promoted atomic substitution reaction for transforming thiocacids into carboxylic acids with dimethyl sulfoxide (DMSO) as the oxygen source has been developed, affording various alkyl and aryl carboxylic acids in over 90% yields. The atomic substitution process proceeds smoothly through the photochemical reactivity of the formed hydrogen-bonding adduct between thioacids and DMSO. A DMSO-involved proton-coupled electron transfer (PCET) and the simultaneous generation of thiyl and hydroxyl radicals are proposed to be key steps for realizing the transformation.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kai-Jun Xie
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Min Wu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Gao-Feng Pan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Da-Wei Lou
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
219
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
220
|
Park Y, Tian L, Kim S, Pabst TP, Kim J, Scholes GD, Chirik PJ. Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. JACS AU 2022; 2:407-418. [PMID: 35252990 PMCID: PMC8889617 DOI: 10.1021/jacsau.1c00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The harvesting of visible light is a powerful strategy for the synthesis of weak chemical bonds involving hydrogen that are below the thermodynamic threshold for spontaneous H2 evolution. Piano-stool iridium hydride complexes are effective for the blue-light-driven hydrogenation of organic substrates and contra-thermodynamic dearomative isomerization. In this work, a combination of spectroscopic measurements, isotopic labeling, structure-reactivity relationships, and computational studies has been used to explore the mechanism of these stoichiometric and catalytic reactions. Photophysical measurements on the iridium hydride catalysts demonstrated the generation of long-lived excited states with principally metal-to-ligand charge transfer (MLCT) character. Transient absorption spectroscopic studies with a representative substrate, anthracene revealed a diffusion-controlled dynamic quenching of the MLCT state. The triplet state of anthracene was detected immediately after the quenching events, suggesting that triplet-triplet energy transfer initiated the photocatalytic process. The key role of triplet anthracene on the post-energy transfer step was further demonstrated by employing photocatalytic hydrogenation with a triplet photosensitizer and a HAT agent, hydroquinone. DFT calculations support a concerted hydrogen atom transfer mechanism in lieu of stepwise electron/proton or proton/electron transfer pathways. Kinetic monitoring of the deactivation channel established an inverse kinetic isotope effect, supporting reversible C(sp2)-H reductive coupling followed by rate-limiting ligand dissociation. Mechanistic insights enabled design of a piano-stool iridium hydride catalyst with a rationally modified supporting ligand that exhibited improved photostability under blue light irradiation. The complex also provided improved catalytic performance toward photoinduced hydrogenation with H2 and contra-thermodynamic isomerization.
Collapse
|
221
|
Boosting the Electrocatalytic Activity of Nickel-Iron Layered Double Hydroxide for the Oxygen Evolution Reaction byTerephthalic Acid. Catalysts 2022. [DOI: 10.3390/catal12030258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of a new type of oxygen evolution reaction (OER) catalyst to reduce the energy loss in the process of water electrolysis is of great significance to the realization of the industrialization of hydrogen energy storage. Herein, we report the catalysts of NiFe double-layer hydroxide (NiFe-LDH) mixed with different equivalent terephthalic acid (TPA), synthesized by the hydrothermal method. The catalyst synthesized with the use of the precursor solution containing one equivalent of TPA shows the best performance with the current density of 2 mA cm−2 at an overpotential of 270 mV, the Tafel slope of 40 mV dec−1, and excellent stable electrocatalytic performance for OER. These catalysts were characterized in a variety of methods. X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and Raman spectrum proved the presence of TPA in the catalysts. The lamellar structure and the uniform distribution of Ni and Fe in the catalysts were observed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). In X-ray photoelectron spectroscopy (XPS) of NiFe-LDH with and without TPA, the changes in the peak positions of Ni and Fe spectra indicate strong electronic interactions between TPA and Ni and Fe atoms. These results suggest that a certain amount of TPA can boost catalytic activity.
Collapse
|
222
|
Abstract
This tutorial review showcases recent (2015-2021) work describing ligand construction as it relates to the design of secondary coordination spheres (SCSs). Metalloenzymes, for example, utilize SCSs to stabilize reactive substrates, shuttle small molecules, and alter redox properties, promoting functional activity. In the realm of biomimetic chemistry, specific incorporation of SCS residues (e.g., Brønsted or Lewis acid/bases, crown ethers, redox groups etc.) has been shown to be equally critical to function. This contribution illustrates how fundamental advances in organic and inorganic chemistry have been used for the construction of such SCSs. These imaginative contributions have driven exciting findings in many transformations relevant to clean fuel generation, including small molecule (e.g., H+, N2, CO2, NOx, O2) reduction. In most cases, these reactions occur cooperatively, where both metal and ligand are requisite for substrate activation.
Collapse
Affiliation(s)
- Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
223
|
Ohmatsu K, Fujimori H, Minami K, Nomura K, Kiyokawa M, Ooi T. Thioamidate Ion as Effective Cocatalyst for Photoinduced C−H Alkylation via Multisite Proton-Coupled Electron Transfer. CHEM LETT 2022. [DOI: 10.1246/cl.220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Haruka Fujimori
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Kodai Minami
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Kosuke Nomura
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Mari Kiyokawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601
| |
Collapse
|
224
|
Léonard NG, Chantarojsiri T, Ziller JW, Yang JY. Cationic Effects on the Net Hydrogen Atom Bond Dissociation Free Energy of High-Valent Manganese Imido Complexes. J Am Chem Soc 2022; 144:1503-1508. [PMID: 35041788 PMCID: PMC9118977 DOI: 10.1021/jacs.1c09583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and at surfaces. Similar fields can be generated in molecular systems using charged functionalities. Manganese(V) salen nitrido complexes (salen = N,N'-ethylenebis(salicylideneaminato)) appended with a crown ether unit containing Na+ (1-Na), K+, (1-K), Ba2+ (1-Ba), Sr2+ (1-Sr), La3+ (1-La), or Eu3+ (1-Eu) cation were investigated to determine the effect of charge on pKa, E1/2, and the net bond dissociation free energy (BDFE) of N-H bonds. The series, which includes the manganese(V) salen nitrido without an appended crown, spans 4 units of charge. Bounds for the pKa values of the transient imido complexes were used with the Mn(VI/V) reduction potentials to calculate the N-H BDFEs of the imidos in acetonitrile. Despite a span of >700 mV and >9 pKa units across the series, the hydrogen atom BDFE only spans ∼6 kcal/mol (between 73 and 79 kcal/mol). These results suggest that the incorporation of cationic functionalities is an effective strategy for accessing wide ranges of reduction potentials and pKa values while minimally affecting the BDFE, which is essential to modulating electron, proton, or hydrogen atom transfer pathways.
Collapse
Affiliation(s)
- Nadia G Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
225
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
226
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
227
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
228
|
Skubi KL, Hooper RX, Mercado BQ, Bollmeyer MM, MacMillan SN, Lancaster KM, Holland PL. Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure. Inorg Chem 2022; 61:1644-1658. [PMID: 34986307 PMCID: PMC8792349 DOI: 10.1021/acs.inorgchem.1c03499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sulfur/carbon/sulfur pincer ligands have an interesting combination of strong-field and weak-field donors, a coordination environment that is also present in the nitrogenase active site. Here, we explore the electronic structures of iron(II) and iron(III) complexes with such a pincer ligand, bearing a monodentate phosphine, thiolate S donor, amide N donor, ammonia, or CO. The ligand scaffold features a proton-responsive thioamide site, and the protonation state of the ligand greatly influences the reduction potential of iron in the phosphine complex. The N-H bond dissociation free energy, derived from the Bordwell equation, is 56 ± 2 kcal/mol. Electron paramagnetic resonance (EPR) spectroscopy and superconducting quantum interference device (SQUID) magnetometry measurements show that the iron(III) complexes with S and N as the fourth donors have an intermediate spin (S = 3/2) ground state with a large zero field splitting, and X-ray absorption spectra show a high Fe-S covalency. The Mössbauer spectrum changes drastically with the position of a nearby alkali metal cation in the iron(III) amido complex, and density functional theory calculations explain this phenomenon through a change between having the doubly occupied orbital as dz2 or dyz, as the former is more influenced by the nearby positive charge.
Collapse
Affiliation(s)
- Kazimer L. Skubi
- Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | - Reagan X. Hooper
- Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | | | - Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
229
|
Kang X, Chen Z, Zhou Z, Zhou Y, Tang S, Zhang Y, Zhang T, Ding B, Zhong D. Direct Observation of Ultrafast Proton Rocking in the BLUF Domain. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiu‐Wen Kang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zijing Chen
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Siwei Tang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Tianyi Zhang
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Bei Ding
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
- Department of Physics Department of Chemistry and Biochemistry and Programs of Biophysics Chemical Physics, and Biochemistry The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
230
|
Beagan DM, Cabelof AC. Recent advances in metal-mediated nitrogen oxyanion reduction using reductively borylated and silylated N-heterocycles. Dalton Trans 2022; 51:2203-2213. [PMID: 35044399 DOI: 10.1039/d1dt03740d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of nitrogen oxyanions is critical for the remediation of eutrophication caused by anthropogenic perturbations to the natural nitrogen cycle. There are many approaches to nitrogen oxyanion reduction, and here we report our advances in reductive deoxygenation using pre-reduced N-heterocycles. We show examples of nitrogen oxyanion reduction using Cr, Fe, Co, Ni, and Zn, and we evaluate the role of metal choice, number of coordinated oxyanions, and ancillary ligands on the reductive transformations. We report the experimental challenges faced and provide an outlook on new directions to repurpose nitrogen oxyanions into value-added products.
Collapse
Affiliation(s)
- Daniel M Beagan
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Alyssa C Cabelof
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
231
|
Zhang W, Moore CE, Zhang S. Multiple Proton-Coupled Electron Transfers at a Tricopper Cluster: Modeling the Reductive Regeneration Process in Multicopper Oxidases. J Am Chem Soc 2022; 144:1709-1717. [PMID: 35044761 DOI: 10.1021/jacs.1c10948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal clusters in enzymes carry out the life-sustaining reactions by accumulating multiple redox equivalents in a narrow potential range. This redox potential leveling effect commonly observed in Nature has yet to be reproduced with synthetic metal clusters. Herein, we employ a fully encapsulated synthetic tricopper complex to model the three-electron two-proton reductive regeneration of fully reduced trinuclear copper cluster CuICuICuI(μ2-OH2) (FR) from native intermediate CuIICuIICuII(μ3-O) (NI) in multicopper oxidases (MCOs). The tricopper cluster can access four oxidation states (I,I,I to II,II,II) and four protonation states ([Cu3(μ3-O)]LH, [Cu3(μ3-OH)]L, [Cu3(μ3-OH)]LH, and [Cu3(μ3-OH2)]L, where LH denotes the protonated ligand), allowing mechanistic investigation of proton-coupled electron transfer (PCET) relevant to MCOs. Seven tricopper complexes with discrete oxidation and protonation states were characterized with spectroscopy or X-ray single-crystal diffraction. A stepwise electron transfer-proton transfer (ET-PT) mechanism is established for the reduction of CuIICuIICuII(μ3-O)LH to CuIICuIICuI(μ3-OH)L, while a stepwise PT-ET mechanism is determined for the reduction of CuIICuICuI(μ3-OH)LH to CuICuICuI(μ2-OH2)L. The switch-over from ET-PT to PT-ET mechanism showcases that the tricopper complex can adopt different PCET mechanisms to circumvent high-barrier proton transfer steps. Overall, three-electron two-proton reduction occurs within a narrow potential range of 170 mV, exemplifying the redox potential leveling effect of secondary proton relays in delivering multiple redox equivalents at metal clusters.
Collapse
Affiliation(s)
- Weiyao Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
232
|
Gotico P, Herrero C, Protti S, Quaranta A, Sheth S, Fallahpour R, Farran R, Halime Z, Sircoglou M, Aukauloo A, Leibl W. Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad. Photochem Photobiol Sci 2022; 21:247-259. [PMID: 34988933 DOI: 10.1007/s43630-021-00163-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022]
Abstract
Electron relays play a crucial role for efficient light-induced activation by a photo-redox moiety of catalysts for multi-electronic transformations. Their insertion between the two units reduces detrimental energy transfer quenching while establishing at the same time unidirectional electron flow. This rectifying function allows charge accumulation necessary for catalysis. Mapping these events in photophysical studies is an important step towards the development of efficient molecular photocatalysts. Three modular complexes comprised of a Ru-chromophore, an imidazole electron relay function, and a terpyridine unit as coordination site for a metal ion were synthesized and the light-induced electron transfer events studied by laser flash photolysis. In all cases, formation of an imidazole radical by internal electron transfer to the oxidized chromophore was observed. The effect of added base evidenced that the reaction sequence depends strongly on the possibility for deprotonation of the imidazole function in a proton-coupled electron transfer process. In the complex with MnII present as a proxy for a catalytic site, a strongly accelerated decay of the imidazole radical together with a decreased rate of back electron transfer from the external electron acceptor to the oxidized complex was observed. This transient formation of an imidazolyl radical is clear evidence for the function of the imidazole group as an electron relay. The implication of the imidazole proton and the external base for the kinetics and energetics of the electron trafficking is discussed.
Collapse
Affiliation(s)
- Philipp Gotico
- Institut de Biologie Intégrative de La Cellule (I2BC), Université Paris Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France
| | - Christian Herrero
- Institut de Chimie Moléculaire Et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Annamaria Quaranta
- Institut de Biologie Intégrative de La Cellule (I2BC), Université Paris Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France
| | - Sujitraj Sheth
- Institut de Biologie Intégrative de La Cellule (I2BC), Université Paris Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France
| | - Reza Fallahpour
- Department of Chemistry, University of Zürich UZH, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Rajaa Farran
- Institut de Biologie Intégrative de La Cellule (I2BC), Université Paris Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France.,Lebanese International University, Mazraa, Beirut, 146404, Lebanon
| | - Zakaria Halime
- Institut de Chimie Moléculaire Et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Marie Sircoglou
- Institut de Chimie Moléculaire Et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Ally Aukauloo
- Institut de Chimie Moléculaire Et Des Matériaux d'Orsay (ICMMO), Université Paris Saclay, 91405, Orsay, France
| | - Winfried Leibl
- Institut de Biologie Intégrative de La Cellule (I2BC), Université Paris Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
233
|
Gavilán Arriazu EM, Rodriguez SA. STUDY OF ELECTROCHEMICAL BETANIDIN OXIDATION PATH USING COMPUTATIONAL METHODS. Phys Chem Chem Phys 2022; 24:19269-19278. [DOI: 10.1039/d2cp02053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Betalains can be used in food, drugs, and cosmetic industries and have shown their bioactive potential. For these reasons, unraveling their oxidation mechanism is of high importance and demands a...
Collapse
|
234
|
Tyburski R, Hammarström L. Strategies for switching the mechanism of proton-coupled electron transfer reactions illustrated by mechanistic zone diagrams. Chem Sci 2022; 13:290-301. [PMID: 35059179 PMCID: PMC8694376 DOI: 10.1039/d1sc05230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis. However, determination and tuning of the PCET mechanism is often non-trivial. Here, we apply mechanistic zone diagrams to illustrate the competition between concerted and stepwise PCET-mechanisms in the oxidation of 4-methoxyphenol by Ru(bpy)33+-derivatives in the presence of substituted pyridine bases. These diagrams show the dominating mechanism as a function of driving force for electron and proton transfer (ΔG0ET and ΔG0PT) respectively [Tyburski et al., J. Am. Chem. Soc., 2021, 143, 560]. Within this framework, we demonstrate strategies for mechanistic tuning, namely balancing of ΔG0ET and ΔG0PT, steric hindrance of the proton-transfer coordinate, and isotope substitution. Sterically hindered pyridine bases gave larger reorganization energy for concerted PCET, resulting in a shift towards a step-wise electron first-mechanism in the zone diagrams. For cases when sufficiently strong oxidants are used, substitution of protons for deuterons leads to a switch from concerted electron–proton transfer (CEPT) to an electron transfer limited (ETPTlim) mechanism. We thereby, for the first time, provide direct experimental evidence, that the vibronic coupling strength affects the switching point between CEPT and ETPTlim, i.e. at what driving force one or the other mechanism starts dominating. Implications for solar fuel catalysis are discussed. The mechanism by which proton-coupled electron transfer (PCET) occurs is of fundamental importance and has great consequences for applications, e.g. in catalysis.![]()
Collapse
Affiliation(s)
- Robin Tyburski
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry – Ångström Laboratory, Uppsala University, Box 532, SE75120 Uppsala, Sweden
| |
Collapse
|
235
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
236
|
Ding B, Kang XW, Chen Z, Zhou Z, Zhou Y, Tang S, Zhang Y, Zhang T, Zhong D. Direct Observation of Ultrafast Proton Rocking in the BLUF Domain. Angew Chem Int Ed Engl 2021; 61:e202114423. [PMID: 34927328 DOI: 10.1002/anie.202114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/10/2022]
Abstract
We present direct observation of ultrafast proton rocking in the central motif of a BLUF domain protein scaffold. The mutant design has taken considerations of modulating the proton-coupled electron transfer (PCET) driving forces by replacing Tyr in the original motif with Trp, as well as of removing the interference of a competing electron transfer pathway. Using femtosecond pump-probe spectroscopy and detailed kinetics analysis, we resolved an electron-transfer-coupled Grotthuss-type forward and reversed proton rocking along the FMN-Gln-Trp proton relay chain. The rates of forward and reversed proton transfer are determined to be very close, namely 51 ps vs 52 ps. The kinetic isotope effect (KIE) constants associated with the forward and reversed proton transfer are 3.9 and 5.3, respectively. The observation of ultrafast proton rocking is not only a crucial step towards revealing the nature of proton relay in BLUF domain, but also provides a new paradigm of proton transfer in proteins for theoretical investigations.
Collapse
Affiliation(s)
- Bei Ding
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA
| | - Xiu-Wen Kang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zijing Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhongneng Zhou
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yalin Zhou
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Siwei Tang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yifei Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Tianyi Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Dongping Zhong
- The Ohio State University, Department of Chemical and Biomolecular Engineering, CHINA
| |
Collapse
|
237
|
Xia Y, Wang X, Sun H, Huang X. Proton-coupled electron transfer of catechin in tea wine: the enhanced mechanism of anti-oxidative capacity. RSC Adv 2021; 11:39985-39993. [PMID: 35494161 PMCID: PMC9044537 DOI: 10.1039/d1ra07769d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Tea wine is a Chinese traditional alcoholic drink made by cereal and tea leaves. It is rich in tea polyphenols, caffeine, amino acids, and protons and possesses various healthcare functions. In this work, electrochemical methods, as well as density functional theory (DFT) calculations, were adopted to reveal the proton-coupled electron-transfer process of catechin in tea wine. The electrochemical results showed that the catechin preferred hydrogen-bonding with ethanol and formed molecular clusters. Thus, the direct electron-transfer process of catechin changed to proton-coupled electron transfer. This procedure reduced the energy barrier of the redox reaction and enhanced the anti-oxidative capacity. Subsequently, DFT calculations were employed to explore the bond length, bond energy, and HOMO-LUMO energy gap of catechin, which confirmed the above-mentioned mechanism. Our work offers some positive value for the scientific promotion of traditional food and a greater understanding of the health mechanisms in terms of chemistry.
Collapse
Affiliation(s)
- Yirong Xia
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Xintong Wang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| | - Hechen Sun
- Shanxian Central Hospital Heze 274300 China
| | - Ximing Huang
- School of Food and Chemical Engineering, Shaoyang University Shaoyang 422000 China
| |
Collapse
|
238
|
He S, Huang F, Wu Q, Zhang P, Xiong Y, Yang J, Zhang R, Wang F, Chen L, Liu TL, Li F. Multiple‐Site Concerted Proton–Electron Transfer in a Manganese‐Based Complete Functional Model for [FeFe]‐Hydrogenase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuanglin He
- State Key Laboratory of Environment-Friendly Energy Materials School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science Shandong Normal University Jinan 250014 P. R. China
| | - Qianqian Wu
- State Key Laboratory of Environment-Friendly Energy Materials School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Ping Zhang
- State Key Laboratory of Environment-Friendly Energy Materials School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Ying Xiong
- State Key Laboratory of Environment-Friendly Energy Materials School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Jie Yang
- State Key Laboratory of Environment-Friendly Energy Materials School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| | - Fang Wang
- Department of Chemistry and Biochemistry Utah State University College of Chemistry Logan Utah 84318 USA
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Materials School of Materials Science and Engineering Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - T. Leo Liu
- Department of Chemistry and Biochemistry Utah State University College of Chemistry Logan Utah 84318 USA
| | - Fei Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
239
|
He S, Huang F, Wu Q, Zhang P, Xiong Y, Yang J, Zhang R, Wang F, Chen L, Liu TL, Li F. Multiple-Site Concerted Proton-Electron Transfer in a Manganese-Based Complete Functional Model for [FeFe]-Hydrogenase. Angew Chem Int Ed Engl 2021; 60:25839-25845. [PMID: 34595813 DOI: 10.1002/anie.202106983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/10/2022]
Abstract
The active site of [FeFe]-hydrogenase (H2 ase) is preorganized with an amine (azadithiolate) as a proton relay and a [4Fe4S] subunit as an electron reservoir, which together lower the overpotential for proton reduction and hydrogen oxidation by multiple-site concerted proton-electron transfer (MS-CPET). Herein, we report a mononuclear manganese complex, fac-[Mn(CO)3 (6-(2-hydroxyphenol)-2-pyridine-2-quinoline) Br] (1), as a rare model to fully mimic the functions of the H2 ase. In 1, a redox-active bidentate ligand with a pendent phenol replicates the roles of the electron reservoir and the proton relay in the enzyme. Experimental and theoretical studies revealed two consecutive MS-CPET processes in the catalytic cycle, in each of which an electron stored in the reductive ligand and a proton at the proximal phenol moiety are transferred to the Mn center in a concerted way. By virtue of this mechanism, complex 1 exhibited a low overpotential comparable to that of natural enzyme in electrochemical hydrogen production using phenol as a proton source.
Collapse
Affiliation(s)
- Shuanglin He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Qianqian Wu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Ping Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Ying Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Jie Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fang Wang
- Department of Chemistry and Biochemistry, Utah State University College of Chemistry, Logan, Utah, 84318, USA
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University College of Chemistry, Logan, Utah, 84318, USA
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
240
|
Abstract
The pathway of activationless proton transfer induced by an electron-transfer reaction is studied theoretically. Long-range electron transfer produces highly nonequilibrium medium polarization that can drive proton transfer through an activationless transition during the process of thermalization, dynamically altering the screening of the electron-proton Coulomb interaction by the medium. The cross electron-proton reorganization energy is the main energy parameter of the theory, which exceeds in magnitude the proton-transfer reorganization energy roughly by the ratio of the electron-transfer to proton-transfer distance. This parameter, which can be either positive or negative, is related to the difference in pKa values in two electron-transfer states. The relaxation time of the medium is on the (sub)picosecond time scale, which establishes the characteristic time for activationless proton transfer. Microscopic calculations predict substantial retardation of the collective relaxation dynamics compared to the continuum estimates due to the phenomenology analogous to de Gennes narrowing. Nonequilibrium medium configuration promoting proton transfer can be induced by either thermal or photoinduced charge transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Marshall D Newton
- Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, United States
| |
Collapse
|
241
|
Fukuzumi S, Lee Y, Nam W. Deuterium kinetic isotope effects as redox mechanistic criterions. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
| |
Collapse
|
242
|
Cattaneo M, Parada GA, Tenderholt AL, Kaminsky W, Mayer JM. Structural, Electronic and Thermochemical preference for multi-PCET reactivity of Ruthenium(II)-Amine and Ruthenium(IV)-Amido Complexes. Eur J Inorg Chem 2021; 2021:4042. [PMID: 34776777 DOI: 10.1002/ejic.202100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multiredox reactivity of bioinorganic cofactors is often coupled to proton transfers. Here we investigate the structural, thermochemical, and electronic structure of ruthenium-amino/amido complexes with multi- proton-coupled electron transfer reactivity. The bis(amino)ruthenium(II) and bis(amido)ruthenium(IV) complexes [RuII(bpy)(en*)2]2+ (RuII-H0 ) and [RuIV(bpy)(en*-H2)2]2+ (RuIV-H2 ) interconvert reversibly with the transfer of 2e-/2H+ (bpy = 2,2'-bipyridine, en* = 2,3-diamino-2,3-dimethylbutane). X-ray structures allow correlations between the structural and electronic parameters, and the thermochemical data of the 2e-/2H+ multi-square grid scheme. Redox potentials, acidity constants and DFT calculations reveal potential intermediates implicated in 2e-/2H+ reactivity with organic reagents in non-protic solvents, which shows a strong inverted redox potential favouring 2e-/2H+ transfer. This is suggested to be an attractive system for potential one-step (concerted) transfer of 2e-and 2H+ due to the small changes of the pseudo-octahedral geometries and the absence of charge change, indicating a relatively small overall reorganization energy.
Collapse
Affiliation(s)
- Mauricio Cattaneo
- INQUINOA (CONICET-UNT), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Argentina
| | - Giovanny A Parada
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA.,Department of Chemistry, The College of New Jersey, Ewing, NJ 08628, USA. (as of 7/1/2021)
| | - Adam L Tenderholt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - James M Mayer
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| |
Collapse
|
243
|
Cattaneo M, Parada GA, Tenderholt AL, Kaminsky W, Mayer JM. Structural, Electronic, and Thermochemical Preference for Multi‐PCET Reactivity of Ruthenium(II)‐Amine and Ruthenium(IV)‐Amido Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mauricio Cattaneo
- INQUINOA (CONICET-UNT) Facultad de Bioquímica Química y Farmacia Universidad Nacional de Tucumán Ayacucho 471 4000 San Miguel de Tucumán Argentina
| | - Giovanny A. Parada
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520 USA
- Department of Chemistry The College of New Jersey Ewing NJ 08628 USA
| | - Adam L. Tenderholt
- Department of Chemistry University of Washington Seattle Washington 98195-1700 USA
| | - Werner Kaminsky
- Department of Chemistry University of Washington Seattle Washington 98195-1700 USA
| | - James M. Mayer
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520 USA
| |
Collapse
|
244
|
Coste SC, Brezny AC, Koronkiewicz B, Mayer JM. C-H oxidation in fluorenyl benzoates does not proceed through a stepwise pathway: revisiting asynchronous proton-coupled electron transfer. Chem Sci 2021; 12:13127-13136. [PMID: 34745543 PMCID: PMC8513817 DOI: 10.1039/d1sc03344a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant. Kinetic analysis revealed unusual rate-driving force relationships. Our analysis indicated a mechanism of multi-site concerted proton–electron transfer (MS-CPET) for all of these reactions. More recently, an alternative interpretation of the kinetic data was proposed to explain the unusual rate-driving force relationships, invoking a crossover from CPET to a stepwise mechanism with an initial intramolecular proton transfer (PT) (Costentin, Savéant, Chem. Sci., 2020, 11, 1006). Here, we show that this proposed alternative pathway is untenable based on prior and new experimental assessments of the intramolecular PT equilibrium constant and rates. Measurement of the fluorenyl 9-C–H pKa, H/D exchange experiments, and kinetic modelling with COPASI eliminate the possibility of a stepwise mechanism for C–H oxidation in the fluorenyl benzoate series. Implications for asynchronous (imbalanced) MS-CPET mechanisms are discussed with respect to classical Marcus theory and the quantum-mechanical treatment of concerted proton–electron transfer. 2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant.![]()
Collapse
Affiliation(s)
- Scott C Coste
- Department of Chemistry, Yale University New Haven CT 06520-8107 USA
| | - Anna C Brezny
- Department of Chemistry, Skidmore College Saratoga Springs New York 12866 USA
| | | | - James M Mayer
- Department of Chemistry, Yale University New Haven CT 06520-8107 USA
| |
Collapse
|
245
|
Odella E, Secor M, Elliott M, Groy TL, Moore TA, Hammes-Schiffer S, Moore AL. Multi PCET in symmetrically substituted benzimidazoles. Chem Sci 2021; 12:12667-12675. [PMID: 34703552 PMCID: PMC8494046 DOI: 10.1039/d1sc03782j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
Proton-coupled electron transfer (PCET) reactions depend on the hydrogen-bond connectivity between sites of proton donors and acceptors. The 2-(2′-hydroxyphenyl) benzimidazole (BIP) based systems, which mimic the natural TyrZ-His190 pair of Photosystem II, have been useful for understanding the associated PCET process triggered by one-electron oxidation of the phenol. Substitution of the benzimidazole by an appropriate terminal proton acceptor (TPA) group allows for two-proton translocations. However, the prototropic properties of substituted benzimidazole rings and rotation around the bond linking the phenol and the benzimidazole can lead to isomers that interrupt the intramolecular hydrogen-bonded network and thereby prevent a second proton translocation. Herein, a strategic symmetrization of a benzimidazole based system with two identical TPAs yields an uninterrupted network of intramolecular hydrogen bonds regardless of the isomeric form. NMR data confirms the presence of a single isomeric form in the disubstituted system but not in the monosubstituted system in certain solvents. Infrared spectroelectrochemistry demonstrates a two-proton transfer process associated with the oxidation of the phenol occurring at a lower redox potential in the disubstituted system relative to its monosubstituted analogue. Computational studies support these findings and show that the disubstituted system stabilizes the oxidized two-proton transfer product through the formation of a bifurcated hydrogen bond. Considering the prototropic properties of the benzimidazole heterocycle in the context of multiple PCET will improve the next generation of novel, bioinspired constructs built by concatenated units of benzimidazoles, thus allowing proton translocations at nanoscale length. Proton-coupled electron transfer (PCET) reactions depend on the hydrogen-bond connectivity between sites of proton donors and acceptors.![]()
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Maxim Secor
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Mackenna Elliott
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | | | - Ana L Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| |
Collapse
|
246
|
Opalade AA, Hessefort L, Day VW, Jackson TA. Controlling the Reactivity of a Metal-Hydroxo Adduct with a Hydrogen Bond. J Am Chem Soc 2021; 143:15159-15175. [PMID: 34494835 DOI: 10.1021/jacs.1c06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The enzymes manganese lipoxygenase (MnLOX) and manganese superoxide dismutase (MnSOD) utilize mononuclear Mn centers to effect their catalytic reactions. In the oxidized MnIII state, the active site of each enzyme contains a hydroxo ligand, and X-ray crystal structures imply a hydrogen bond between this hydroxo ligand and a cis carboxylate ligand. While hydrogen bonding is a common feature of enzyme active sites, the importance of this particular hydroxo-carboxylate interaction is relatively unexplored. In this present study, we examined a pair of MnIII-hydroxo complexes that differ by a single functional group. One of these complexes, [MnIII(OH)(PaPy2N)]+, contains a naphthyridinyl moiety capable of forming an intramolecular hydrogen bond with the hydroxo ligand. The second complex, [MnIII(OH)(PaPy2Q)]+, contains a quinolinyl moiety that does not permit any intramolecular hydrogen bonding. Spectroscopic characterization of these complexes supports a common structure, but with perturbations to [MnIII(OH)(PaPy2N)]+, consistent with a hydrogen bond. Kinetic studies using a variety of substrates with activated O-H bonds, revealed that [MnIII(OH)(PaPy2N)]+ is far more reactive than [MnIII(OH)(PaPy2Q)]+, with rate enhancements of 15-100-fold. A detailed analysis of the thermodynamic contributions to these reactions using DFT computations reveals that the former complex is significantly more basic. This increased basicity counteracts the more negative reduction potential of this complex, leading to a stronger O-H BDFE in the [MnII(OH2)(PaPy2N)]+ product. Thus, the differences in reactivity between [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ can be understood on the basis of thermodynamic considerations, which are strongly influenced by the ability of the latter complex to form an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Adedamola A Opalade
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Logan Hessefort
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
247
|
Hwang D, Schlenker CW. Photochemistry of carbon nitrides and heptazine derivatives. Chem Commun (Camb) 2021; 57:9330-9353. [PMID: 34528956 DOI: 10.1039/d1cc02745j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We explore the photochemistry of polymeric carbon nitride (C3N4), an archetypal organic photocatalyst, and derivatives of its structural monomer unit, heptazine (Hz). Through spectroscopic studies and computational analysis, we have observed that Hz derivatives can engage in non-innocent hydrogen bonding interactions with hydroxylic species. The photochemistry of these complexes is influenced by intermolecular nπ*/ππ* mixing of non-bonding orbitals of each component and the relative energy of intermolecular charge-transfer (CT) states. Coupling of the former to the latter appears to facilitate proton-coupled electron transfer (PCET), resulting in biradical products. We have also observed that Hz derivatives exhibit an extremely rare inverted singlet/triplet energy splitting (ΔEST). In violation of Hund's multiplicity rules, the lowest energy singlet (S1) is stabilized relative to the lowest triplet (T1) electronic excited state. Exploiting this unique inverted ΔEST character has obvious implications for transformational discoveries in solid-state OLED lighting and photovoltaics. Harnessing this inverted ΔEST, paired with light-driven intermolecular PCET reactions, may enable molecular transformations relevant for applications ranging from solar energy storage to new classes of non-triplet photoredox catalysts for pharmaceutical development. To this end, we have explored the possibility of optically controlling the photochemistry of Hz derivatives using ultrafast pump-push-probe spectroscopy. In this case, the excited state branching ratios among locally excited states of the chromophore and the reactive intermolecular CT state can be manipulated with an appropriate secondary "push" excitation pulse. These results indicate that we can predictively redirect chemical reactivity with light in this system, which is an avidly sought achievement in the field of photochemistry. Looking forward, we anticipate future opportunities for controlling heptazine photochemistry, including manipulating PCET reactivity with a diverse array of substrates and optically delivering reducing equivalents with, for example, water as a partial source of electrons and protons. Furthermore, we wholly expect that, over the next decade, materials such as Hz derivatives, that exhibit inverted ΔEST character, will spawn a significant new research effort in the field of thin-film optoelectronics, where controlling recombination via triplet excitonic states can play a critical role in determining device performance.
Collapse
Affiliation(s)
- Doyk Hwang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Cody W Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.,Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195-1652, USA.,Clean Energy Institute, University of Washington, Seattle, Washington 98195-1653, USA.
| |
Collapse
|
248
|
Cotter L, Rimgard BP, Parada GA, Mayer JM, Hammarström L. Solvent and Temperature Effects on Photoinduced Proton-Coupled Electron Transfer in the Marcus Inverted Region. J Phys Chem A 2021; 125:7670-7684. [PMID: 34432465 PMCID: PMC8436208 DOI: 10.1021/acs.jpca.1c05764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Concerted proton-coupled electron transfer (PCET) in the Marcus inverted region was recently demonstrated (Science 2019, 364, 471-475). Understanding the requirements for such reactivity is fundamentally important and holds promise as a design principle for solar energy conversion systems. Herein, we investigate the solvent polarity and temperature dependence of photoinduced proton-coupled charge separation (CS) and charge recombination (CR) in anthracene-phenol-pyridine triads: 1 (10-(4-hydroxy-3-(4-methylpyridin-2-yl)benzyl)anthracene-9-carbonitrile) and 2 (10-(4-hydroxy-3-(4-methoxypyridin-2-yl)benzyl)anthracene-9-carbonitrile). Both the CS and CR rate constants increased with increasing polarity in acetonitrile:n-butyronitrile mixtures. The kinetics were semi-quantitatively analyzed where changes in dielectric and refractive index, and thus consequently changes in driving force (-ΔG°) and reorganization energy (λ), were accounted for. The results were further validated by fitting the temperature dependence, from 180 to 298 K, in n-butyronitrile. The analyses support previous computational work where transitions to proton vibrational excited states dominate the CR reaction with a distinct activation free energy (ΔG*CR ∼ 140 meV). However, the solvent continuum model fails to accurately describe the changes in ΔG° and λ with temperature via changes in dielectric constant and refractive index. Satisfactory modeling was obtained using the results of a molecular solvent model [J. Phys. Chem. B 1999, 103, 9130-9140], which predicts that λ decreases with temperature, opposite to that of the continuum model. To further assess the solvent polarity control in the inverted region, the reactions were studied in toluene. Nonpolar solvents decrease both ΔG°CR and λ, slowing CR into the nanosecond time regime for 2 in toluene at 298 K. This demonstrates how PCET in the inverted region may be controlled to potentially use proton-coupled CS states for efficient solar fuel production and photoredox catalysis.
Collapse
Affiliation(s)
- Laura
F. Cotter
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Giovanny A. Parada
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Leif Hammarström
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE75120 Uppsala, Sweden
| |
Collapse
|
249
|
|
250
|
Jankowska J, Sobolewski AL. Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview. Molecules 2021; 26:molecules26175140. [PMID: 34500574 PMCID: PMC8434569 DOI: 10.3390/molecules26175140] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
The excited-state intramolecular proton transfer (ESIPT) phenomenon is nowadays widely acknowledged to play a crucial role in many photobiological and photochemical processes. It is an extremely fast transformation, often taking place at sub-100 fs timescales. While its experimental characterization can be highly challenging, a rich manifold of theoretical approaches at different levels is nowadays available to support and guide experimental investigations. In this perspective, we summarize the state-of-the-art quantum-chemical methods, as well as molecular- and quantum-dynamics tools successfully applied in ESIPT process studies, focusing on a critical comparison of their specific properties.
Collapse
Affiliation(s)
- Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|