201
|
Seth M, Shirayama M, Tang W, Shen EZ, Tu S, Lee HC, Weng Z, Mello CC. The Coding Regions of Germline mRNAs Confer Sensitivity to Argonaute Regulation in C. elegans. Cell Rep 2018; 22:2254-2264. [PMID: 29456100 PMCID: PMC5918280 DOI: 10.1016/j.celrep.2018.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Protein-coding genes undergo a wide array of regulatory interactions with factors that engage non-coding regions. Open reading frames (ORFs), in contrast, are thought to be constrained by coding function, precluding a major role in gene regulation. Here, we explore Piwi-interacting (pi)RNA-mediated transgene silencing in C. elegans and show that marked differences in the sensitivity to piRNA silencing map to the endogenous sequences within transgene ORFs. Artificially increasing piRNA targeting within the ORF of a resistant transgene can lead to a partial yet stable reduction in expression, revealing that piRNAs not only silence but can also “tune” gene expression. Our findings support a model that involves a temporal element to mRNA regulation by germline Argonautes, likely prior to translation, and suggest that piRNAs afford incremental control of germline mRNA expression by targeting the body of the mRNA, including the coding region.
Collapse
Affiliation(s)
- Meetu Seth
- RNA Therapeutics Institute, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute
| | - Masaki Shirayama
- RNA Therapeutics Institute, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute
| | - Wen Tang
- RNA Therapeutics Institute, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - En-Zhi Shen
- RNA Therapeutics Institute, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Heng-Chi Lee
- RNA Therapeutics Institute, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute.
| |
Collapse
|
202
|
Tang W, Seth M, Tu S, Shen EZ, Li Q, Shirayama M, Weng Z, Mello CC. A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans. Dev Cell 2018; 44:762-770.e3. [PMID: 29456136 DOI: 10.1016/j.devcel.2018.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 01/25/2023]
Abstract
In metazoans, Piwi-related Argonaute proteins engage piRNAs (Piwi-interacting small RNAs) to defend the genome against invasive nucleic acids, such as transposable elements. Yet many organisms-including worms and humans-express thousands of piRNAs that do not target transposons, suggesting that piRNA function extends beyond genome defense. Here, we show that the X chromosome-derived piRNA 21ux-1 downregulates XOL-1 (XO Lethal), a master regulator of X chromosome dosage compensation and sex determination in Caenorhabditis elegans. Mutations in 21ux-1 and several Piwi-pathway components sensitize hermaphrodites to dosage compensation and sex determination defects. We show that the piRNA pathway also targets xol-1 in C. briggsae, a nematode species related to C. elegans. Our findings reveal physiologically important piRNA-mRNA interactions, raising the possibility that piRNAs function broadly to ensure robust gene expression and germline development.
Collapse
Affiliation(s)
- Wen Tang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Meetu Seth
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - En-Zhi Shen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qian Li
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Masaki Shirayama
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
203
|
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura KI. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet 2018; 14:e1007238. [PMID: 29432414 PMCID: PMC5825165 DOI: 10.1371/journal.pgen.1007238] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 02/23/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
The 24-nucleotides (nt) phased secondary small interfering RNA (phasiRNA) is a unique class of plant small RNAs abundantly expressed in monocot anthers at early meiosis. Previously, 44 intergenic regions were identified as the loci for longer precursor RNAs of 24-nt phasiRNAs (24-PHASs) in the rice genome. However, the regulatory mechanism that determines spatiotemporal expression of these RNAs has remained elusive. ETERNAL TAPETUM1 (EAT1) is a basic-helix-loop-helix (bHLH) transcription factor indispensable for induction of programmed cell death (PCD) in postmeiotic anther tapetum, the somatic nursery for pollen production. In this study, EAT1-dependent non-cell-autonomous regulation of male meiosis was evidenced from microscopic observation of the eat1 mutant, in which meiosis with aberrantly decondensed chromosomes was retarded but accomplished somehow, eventually resulting in abortive microspores due to an aberrant tapetal PCD. EAT1 protein accumulated in tapetal-cell nuclei at early meiosis and postmeiotic microspore stages. Meiotic EAT1 promoted transcription of 24-PHAS RNAs at 101 loci, and importantly, also activated DICER-LIKE5 (DCL5, previous DCL3b in rice) mRNA transcription that is required for processing of double-stranded 24-PHASs into 24-nt lengths. From the results of the chromatin-immunoprecipitation and transient expression analyses, another tapetum-expressing bHLH protein, TDR INTERACTING PROTEIN2 (TIP2), was suggested to be involved in meiotic small-RNA biogenesis. The transient assay also demonstrated that UNDEVELOPED TAPETUM1 (UDT1)/bHLH164 is a potential interacting partner of both EAT1 and TIP2 during early meiosis. This study indicates that EAT1 is one of key regulators triggering meiotic phasiRNA biogenesis in anther tapetum, and that other bHLH proteins, TIP2 and UDT1, also play some important roles in this process. Spatiotemporal expression control of these bHLH proteins is a clue to orchestrate precise meiosis progression and subsequent pollen production non-cell-autonomously.
Collapse
Affiliation(s)
- Seijiro Ono
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Hua Liu
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Katsutoshi Tsuda
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
| | - Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Takuji Sasaki
- NODAI Research Institute, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
204
|
Zhang D, Tu S, Stubna M, Wu WS, Huang WC, Weng Z, Lee HC. The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 2018; 359:587-592. [PMID: 29420292 DOI: 10.1126/science.aao2840] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 01/02/2023]
Abstract
Piwi-interacting RNAs (piRNAs) silence transposons to safeguard genome integrity in animals. However, the functions of the many piRNAs that do not map to transposons remain unknown. Here, we show that piRNA targeting in Caenorhabditis elegans can tolerate a few mismatches but prefer perfect pairing at the seed region. The broad targeting capacity of piRNAs underlies the germline silencing of transgenes in C. elegans Transgenes engineered to avoid piRNA recognition are stably expressed. Many endogenous germline-expressed genes also contain predicted piRNA targeting sites, and periodic An/Tn clusters (PATCs) are an intrinsic signal that provides resistance to piRNA silencing. Together, our study revealed the piRNA targeting rules and highlights a distinct strategy that C. elegans uses to distinguish endogenous from foreign nucleic acids.
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Michael Stubna
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Che Huang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
205
|
Rizzo F, Rinaldi A, Marchese G, Coviello E, Sellitto A, Cordella A, Giurato G, Nassa G, Ravo M, Tarallo R, Milanesi L, Destro A, Torzilli G, Roncalli M, Di Tommaso L, Weisz A. Specific patterns of PIWI-interacting small noncoding RNA expression in dysplastic liver nodules and hepatocellular carcinoma. Oncotarget 2018; 7:54650-54661. [PMID: 27429044 PMCID: PMC5342370 DOI: 10.18632/oncotarget.10567] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the result of a stepwise process, often beginning with development within a cirrhotic liver of premalignant lesions, morphologically characterized by low- (LGDN) and high-grade (HGDN) dysplastic nodules. PIWI-interacting RNAs (piRNAs) are small noncoding RNAs (sncRNAs), 23-35 nucleotide-long, exerting epigenetic and post-transcriptional regulation of gene expression. Recently the PIWI-piRNA pathway, best characterized in germline cells, has been identified also in somatic tissues, including stem and cancer cells, where it influences key cellular processes.Small RNA sequencing was applied to search for liver piRNAs and to profile their expression patterns in cirrhotic nodules (CNs), LGDN, HGDN, early HCC and progressed HCC (pHCC), analyzing 55 samples (14 CN, 9 LGDN, 6 HGDN, 6 eHCC and 20 pHCC) from 17 patients, aiming at identifying possible relationships between these sncRNAs and liver carcinogenesis. We identified a 125 piRNA expression signature that characterize HCC from matched CNs, correlating also to microvascular invasion in HCC. Functional analysis of the predicted RNA targets of deregulated piRNAs indicates that these can target key signaling pathways involved in hepatocarcinogenesis and HCC progression, thereby affecting their activity. Interestingly, 24 piRNAs showed specific expression patterns in dysplastic nodules, respect to cirrhotic liver and/or pHCC.The results demonstrate that the PIWI-piRNA pathway is active in human liver, where it represents a new player in the molecular events that characterize hepatocarcinogenesis, from early stages to pHCC. Furthermore, they suggest that piRNAs might be new disease biomarkers, useful for differential diagnosis of dysplastic and neoplastic liver lesions.
Collapse
Affiliation(s)
- Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| | | | - Elena Coviello
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| | | | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy.,Genomix4life, University of Salerno, Baronissi (SA), Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy.,Genomix4life, University of Salerno, Baronissi (SA), Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| | - Luciano Milanesi
- Institute for Biomedical Technologies, National Research Council, Milano, Italy
| | - Anna Destro
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano-Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Rozzano-Milan, Italy.,Hepatobiliary and General Surgery Division, Humanitas Clinical and Research Center, Rozzano-Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano-Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano-Milan, Italy
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano-Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano-Milan, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, Baronissi (SA), Italy
| |
Collapse
|
206
|
Singh G, Roy J, Rout P, Mallick B. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers. PLoS One 2018; 13:e0190485. [PMID: 29320577 PMCID: PMC5761873 DOI: 10.1371/journal.pone.0190485] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/17/2017] [Indexed: 12/27/2022] Open
Abstract
PIWI-interacting (piRNAs), ~23–36 nucleotide-long small non-coding RNAs (sncRNAs), earlier believed to be germline-specific, have now been identified in somatic cells, including cancer cells. These sncRNAs impact critical biological processes by fine-tuning gene expression at post-transcriptional and epigenetic levels. The expression of piRNAs in ovarian cancer, the most lethal gynecologic cancer is largely uncharted. In this study, we investigated the expression of PIWILs by qRT-PCR and western blotting and then identified piRNA transcriptomes in tissues of normal ovary and two most prevalent epithelial ovarian cancer subtypes, serous and endometrioid by small RNA sequencing. We detected 219, 256 and 234 piRNAs in normal ovary, endometrioid and serous ovarian cancer samples respectively. We observed piRNAs are encoded from various genomic regions, among which introns harbor the majority of them. Surprisingly, piRNAs originated from different genomic contexts showed the varied level of conservations across vertebrates. The functional analysis of predicted targets of differentially expressed piRNAs revealed these could modulate key processes and pathways involved in ovarian oncogenesis. Our study provides the first comprehensive piRNA landscape in these samples and a useful resource for further functional studies to decipher new mechanistic views of piRNA-mediated gene regulatory networks affecting ovarian oncogenesis. The RNA-seq data is submitted to GEO database (GSE83794).
Collapse
Affiliation(s)
- Garima Singh
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
| | - Jyoti Roy
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
| | - Pratiti Rout
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
- * E-mail: ,
| |
Collapse
|
207
|
Assessment of piRNA biogenesis and function in testicular germ cell tumors and their precursor germ cell neoplasia in situ. BMC Cancer 2018; 18:20. [PMID: 29301509 PMCID: PMC5755174 DOI: 10.1186/s12885-017-3945-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aberrant overexpression of PIWI/piRNA pathway proteins is shown for many types of tumors. Interestingly, these proteins are downregulated in testicular germ cell tumors (TGCTs) compared to normal testis tissues. Here, we used germline and TGCT markers to assess the piRNA biogenesis and function in TGCTs and their precursor germ cell neoplasia in situ (GCNIS). METHODS We used small RNA deep sequencing, qRT-PCR, and mining public RNAseq/small RNA-seq datasets to examine PIWI/piRNA gene expression and piRNA biogenesis at four stages of TGCT development: (i) germ cells in healthy testis tissues, (ii) germ cells in testis tissues adjacent to TGCTs, (iii) GCNIS cells and (iv) TGCT cells. To this end, we studied three types of samples: (a) healthy testis, (b) testis tissues adjacent to two types of TGCTs (seminomas and nonseminomas) and containing both germ cells and GCNIS cells, as well as (c) matching TGCT samples. RESULTS Based on our analyses of small RNA-seq data as well as the presence/absence of expression correlation between PIWI/piRNA pathway genes and germline or TGCT markers, we can suggest that piRNA biogenesis is intact in germ cells present in healthy adult testes, and adjacent to TGCTs. Conversely, GCNIS and TGCT cells were found to lack PIWI/piRNA pathway gene expression and germline-like piRNA biogenesis. However, using an in vitro cell line model, we revealed a possible role for a short PIWIL2/HILI isoform expressed in TGCTs in posttranscriptional regulation of the youngest members of LINE and SINE classes of transposable elements. Importantly, this regulation is also implemented without involvement of germline-like biogenesis of piRNAs. CONCLUSIONS Though further studies are warranted, these findings suggest that the conventional germline-like PIWI/piRNA pathway is lost in transition from germ cells to GCNIS cells.
Collapse
|
208
|
Zhang H, Ali A, Gao J, Ban R, Jiang X, Zhang Y, Shi Q. IsopiRBank: a research resource for tracking piRNA isoforms. Database (Oxford) 2018; 2018:5046757. [PMID: 29961820 PMCID: PMC6025188 DOI: 10.1093/database/bay059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/24/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are essential for transcriptional and post-transcriptional regulation of transposons and coding genes in germline. With the development of sequencing technologies, length variations of piRNAs have been identified in several species. However, the extent to which, piRNA isoforms exist, and whether these isoforms are functionally distinct from canonical piRNAs remain uncharacterized. Through data mining from 2154 datasets of small RNA sequencing data from four species (Homo sapiens, Mus musculus, Danio rerio and Drosophila melanogaster), we have identified 8 749 139 piRNA isoforms from 175 454 canonical piRNAs, and classified them on the basis of variations on 5' or 3' end via the alignment of isoforms with canonical sequence. We thus established a database named IsopiRBank. Each isoforms has detailed annotation as follows: normalized expression data, classification, spatiotemporal expression data and genome origin. Users can also select interested isoforms for further analysis, including target prediction and Enrichment analysis. Taken together, IsopiRBank is an interactive database that aims to present the first integrated resource of piRNA isoforms, and broaden the research of piRNA biology. IsopiRBank can be accessed at http://mcg.ustc.edu.cn/bsc/isopir/index.html without any registration or log in requirement. Database URL: http://mcg.ustc.edu.cn/bsc/isopir/index.html.
Collapse
Affiliation(s)
- Huan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Asim Ali
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Jianing Gao
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Rongjun Ban
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Xiaohua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Yuanwei Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center of Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Collaborative Innovation Center of Genetics and Development, Collaborative Innovation Center for Cancer Medicine, Hefei, Anhui 230027, China
| |
Collapse
|
209
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
210
|
Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 2017; 8:1411. [PMID: 29127279 PMCID: PMC5681665 DOI: 10.1038/s41467-017-01049-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) contribute to the large amount of repetitive sequences in mammalian genomes and have been linked to species-specific genome innovations by rewiring regulatory circuitries. However, organisms need to restrict TE activity to ensure genome integrity, especially in germline cells to protect the transmission of genetic information to the next generation. This review features our current understandings of mammalian PIWI-interacting RNAs (piRNAs) and their role in TE regulation in spermatogenesis. Here we discuss functional implication and explore additional molecular mechanisms that inhibit transposon activity and altogether illustrate the paradoxical arms race between genome evolution and stability.
Collapse
Affiliation(s)
- Christina Ernst
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden.
| |
Collapse
|
211
|
Gong J, Zhang Q, Wang Q, Ma Y, Du J, Zhang Y, Zhao X. Identification and verification of potential piRNAs from domesticated yak testis. Reproduction 2017; 155:117-127. [PMID: 29101267 PMCID: PMC5763474 DOI: 10.1530/rep-17-0592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA–protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18–40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18–30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM–receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity.
Collapse
Affiliation(s)
- Jishang Gong
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Quanwei Zhang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Qi Wang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Youji Ma
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Jiaxiang Du
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Yong Zhang
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| | - Xingxu Zhao
- Gansu Agricultural UniversityLanzhou, People's Republic of China
| |
Collapse
|
212
|
Dufourt J, Bontonou G, Chartier A, Jahan C, Meunier AC, Pierson S, Harrison PF, Papin C, Beilharz TH, Simonelig M. piRNAs and Aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nat Commun 2017; 8:1305. [PMID: 29101389 PMCID: PMC5670238 DOI: 10.1038/s41467-017-01431-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and PIWI proteins play a crucial role in germ cells by repressing transposable elements and regulating gene expression. In Drosophila, maternal piRNAs are loaded into the embryo mostly bound to the PIWI protein Aubergine (Aub). Aub targets maternal mRNAs through incomplete base-pairing with piRNAs and can induce their destabilization in the somatic part of the embryo. Paradoxically, these Aub-dependent unstable mRNAs encode germ cell determinants that are selectively stabilized in the germ plasm. Here we show that piRNAs and Aub actively protect germ cell mRNAs in the germ plasm. Aub directly interacts with the germline-specific poly(A) polymerase Wispy, thus leading to mRNA polyadenylation and stabilization in the germ plasm. These results reveal a role for piRNAs in mRNA stabilization and identify Aub as an interactor of Wispy for mRNA polyadenylation. They further highlight the role of Aub and piRNAs in embryonic patterning through two opposite functions.
Collapse
Affiliation(s)
- Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Gwénaëlle Bontonou
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Camille Jahan
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Anne-Cécile Meunier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Catherine Papin
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Traude H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
213
|
Gainetdinov I, Skvortsova Y, Kondratieva S, Funikov S, Azhikina T. Two modes of targeting transposable elements by piRNA pathway in human testis. RNA (NEW YORK, N.Y.) 2017; 23:1614-1625. [PMID: 28842508 PMCID: PMC5648030 DOI: 10.1261/rna.060939.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
PIWI proteins and their partner small RNAs, termed piRNAs, are known to control transposable elements (TEs) in the germline. Here, we provide evidence that in humans this control is exerted in two different modes. On the one hand, production of piRNAs specifically targeting evolutionarily youngest TEs (L1HS, L1PA2-L1PA6, LTR12C, SVA) is present both at prenatal and postnatal stages of spermatogenesis and is performed without involvement of piRNA clusters. On the other hand, at postnatal stages, piRNAs deriving from pachytene clusters target "older" TEs and thus complement cluster-independent piRNA production to achieve relevant targeting of virtually all TEs expressed in postnatal testis. We also find that converging transcription of antisense-oriented genes contributes to the origin of genic postnatal prepachytene clusters. Finally, while a fraction of pachytene piRNAs was previously shown to arise from long intergenic noncoding RNAs (lincRNAs, i.e., pachytene piRNA cluster primary transcripts), we ascertain that these are a specific set of lincRNAs that both possess distinguishing epigenetic features and are expressed exclusively in testis.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia Skvortsova
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sofia Kondratieva
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey Funikov
- Department of Structural, Functional and Evolutionary Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tatyana Azhikina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
214
|
Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG, Chang HY, Fuller MT. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 2017; 6:e26116. [PMID: 29087293 PMCID: PMC5703642 DOI: 10.7554/elife.26116] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
The switch from mitosis to meiosis is the key event marking onset of differentiation in the germline stem cell lineage. In Drosophila, the translational repressor Bgcn is required for spermatogonia to stop mitosis and transition to meiotic prophase and the spermatocyte state. Here we show that the mammalian Bgcn homolog YTHDC2 facilitates a clean switch from mitosis to meiosis in mouse germ cells, revealing a conserved role for YTHDC2 in this critical cell fate transition. YTHDC2-deficient male germ cells enter meiosis but have a mixed identity, maintaining expression of Cyclin A2 and failing to properly express many meiotic markers. Instead of continuing through meiotic prophase, the cells attempt an abnormal mitotic-like division and die. YTHDC2 binds multiple transcripts including Ccna2 and other mitotic transcripts, binds specific piRNA precursors, and interacts with RNA granule components, suggesting that proper progression of germ cells through meiosis is licensed by YTHDC2 through post-transcriptional regulation.
Collapse
Affiliation(s)
- Alexis S Bailey
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| | - Pedro J Batista
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Rebecca S Gold
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| | - Y Grace Chen
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Dirk G de Rooij
- Center for Reproductive MedicineAcademic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Howard Y Chang
- Center for Personal Dynamic RegulomesStanford University School of MedicineStanfordUnited States
| | - Margaret T Fuller
- Department of Developmental BiologyStanford University School of MedicineStanfordUnited States
| |
Collapse
|
215
|
Yu Y, Zhou Y, Zhang Y, Chen Y. Grass phasiRNAs and male fertility. SCIENCE CHINA-LIFE SCIENCES 2017; 61:148-154. [PMID: 29052095 DOI: 10.1007/s11427-017-9166-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that a special type of small noncoding RNAs, phased small-interfering RNAs (phasiRNAs) play crucial roles in many cellular processes of plant development. PhasiRNAs are generated from long RNA precursors at intervals of 21 or 24 nt in plants, and they are produced from both protein-coding gene and long noncoding RNA genes. Different from those in eudicots, grass phasiRNAs include a special class of small RNAs that are specifically expressed in reproductive organs. These grass phasiRNAs are associated with gametogenesis, especially with anther development and male fertility. In this review, we summarized current knowledge on these small noncoding RNAs in male germ cells and their possible biological functions and mechanisms in grass species.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanfei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
216
|
Isoler-Alcaraz J, Fernández-Pérez D, Larriba E, del Mazo J. Cellular and molecular characterization of gametogenic progression in ex vivo cultured prepuberal mouse testes. Reprod Biol Endocrinol 2017; 15:85. [PMID: 29047395 PMCID: PMC5648490 DOI: 10.1186/s12958-017-0305-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, an effective testis culture method using a gas-liquid interphase, capable of differentiate male germ cells from neonatal spermatogonia to spermatozoa has been developed. Nevertheless, this methodology needs deep analyses that allow future experimental approaches in basic, pathologic and/or reprotoxicologic studies. Because of this, we characterized at cellular and molecular levels the entire in vitro spermatogenic progression, in order to understand and evaluate the characteristics that define the spermatogenic process in ex vivo cultured testes compared to the in vivo development. METHODS Testicular explants of CD1 mice aged 6 and 10 days post-partum were respectively cultured during 55 and 89 days. Cytological and molecular approaches were performed, analyzing germ cell proportion at different time culture points, meiotic markers immunodetecting synaptonemal complex protein SYCP3 by immunocytochemistry and the relative expression of different marker genes along the differentiation process by Reverse Transcription - quantitative Polymerase Chain Reaction. In addition, microRNA and piwi-interactingRNA profiles were also evaluated by Next Generation Sequencing and bioinformatic approaches. RESULTS The method promoted and maintained the spermatogenic process during 89 days. At a cytological level we detected spermatogenic development delays of cultured explants compared to the natural in vivo process. The expression of different spermatogenic stages gene markers correlated with the proportion of different cell types detected in the cytological preparations. CONCLUSIONS In vitro progression analysis of the different spermatogenic cell types, from both 6.5 dpp and 10.5 dpp testes explants, has revealed a relative delay in relation to in vivo process. The expression of the genes studied as biomarkers correlates with the cytologically and functional detected progression and differential expression identified in vivo. After a first analysis of deep sequencing data it has been observed that as long as cultures progress, the proportion of microRNAs declined respect to piwi-interactingRNAs levels that increased, showing a similar propensity than which happens in in vivo spermatogenesis. Our study allows to improve and potentially to control the ex vivo spermatogenesis development, opening new perspectives in the reproductive biology fields including male fertility.
Collapse
Affiliation(s)
- J. Isoler-Alcaraz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - D. Fernández-Pérez
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - E. Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - J. del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| |
Collapse
|
217
|
Rojas-Ríos P, Chartier A, Pierson S, Simonelig M. Aubergine and piRNAs promote germline stem cell self-renewal by repressing the proto-oncogene Cbl. EMBO J 2017; 36:3194-3211. [PMID: 29030484 PMCID: PMC5666619 DOI: 10.15252/embj.201797259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
PIWI proteins play essential roles in germ cells and stem cell lineages. In Drosophila, Piwi is required in somatic niche cells and germline stem cells (GSCs) to support GSC self‐renewal and differentiation. Whether and how other PIWI proteins are involved in GSC biology remains unknown. Here, we show that Aubergine (Aub), another PIWI protein, is intrinsically required in GSCs for their self‐renewal and differentiation. Aub needs to be loaded with piRNAs to control GSC self‐renewal and acts through direct mRNA regulation. We identify the Cbl proto‐oncogene, a regulator of mammalian hematopoietic stem cells, as a novel GSC differentiation factor. Aub stimulates GSC self‐renewal by repressing Cbl mRNA translation and does so in part through recruitment of the CCR4‐NOT complex. This study reveals the role of piRNAs and PIWI proteins in controlling stem cell homeostasis via translational repression and highlights piRNAs as major post‐transcriptional regulators in key developmental decisions.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
218
|
Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Siddall NA, Koopman P, Hime GR, McLaughlin EA. RNA binding protein Musashi‐2 regulates PIWIL1 and TBX1 in mouse spermatogenesis. J Cell Physiol 2017; 233:3262-3273. [DOI: 10.1002/jcp.26168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jessie M. Sutherland
- School of Biomedical Science & PharmacyUniversity of NewcastleCallaghanAustralia
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | - Alexander P. Sobinoff
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
- Telomere Length Regulation GroupChildren's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Barbara A. Fraser
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | - Kate A. Redgrove
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | | | - Peter Koopman
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
| | - Gary R. Hime
- Anatomy and NeuroscienceUniversity of MelbourneParkvilleAustralia
| | - Eileen A. McLaughlin
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
219
|
Skeparnias I, Αnastasakis D, Shaukat AN, Grafanaki K, Stathopoulos C. Expanding the repertoire of deadenylases. RNA Biol 2017; 14:1320-1325. [PMID: 28267419 PMCID: PMC5711463 DOI: 10.1080/15476286.2017.1300222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Deadenylases belong to an expanding family of exoribonucleases involved mainly in mRNA stability and turnover, with the exception of PARN which has additional roles in the biogenesis of several important non-coding RNAs, including miRNAs and piRNAs. Recently, PARN in C. elegans and its homolog PNLDC1 in B. mori were reported as the elusive trimmers mediating piRNA biogenesis. In addition, characterization of mammalian PNLDC1 in comparison to PARN, showed that is specifically expressed in embryonic stem and germ cells, as well as during early embryo development. Moreover, its expression is correlated with epigenetic events mediated by the de novo DNMT3b methyltransferase and knockdown in stem cells upregulates important genes that regulate multipotency. The recent data suggest that at least some new deadenylases may have expanded roles in cell metabolism as regulators of gene expression, through mRNA deadenylation, ncRNAs biogenesis and ncRNA-mediated mRNA targeting, linking essential mechanisms that regulate epigenetic control and transition events during differentiation. The possible roles of mammalian PNLDC1 along those dynamic networks are discussed in the light of new extremely important findings.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | | | | - Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, Greece
| | | |
Collapse
|
220
|
Wu S, Li Y, Chen S, Liang S, Ren X, Guo W, Sun Q, Yang X. Effect of dietary Astragalus Polysaccharide supplements on testicular piRNA expression profiles of breeding cocks. Int J Biol Macromol 2017; 103:957-964. [DOI: 10.1016/j.ijbiomac.2017.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
|
221
|
Henaoui IS, Jacovetti C, Guerra Mollet I, Guay C, Sobel J, Eliasson L, Regazzi R. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function. Diabetologia 2017; 60:1977-1986. [PMID: 28711973 DOI: 10.1007/s00125-017-4368-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS P-element induced Wimpy testis (PIWI)-interacting RNAs (piRNAs) are small non-coding RNAs that interact with PIWI proteins and guide them to silence transposable elements. They are abundantly expressed in germline cells and play key roles in spermatogenesis. There is mounting evidence that piRNAs are also present in somatic cells, where they may accomplish additional regulatory tasks. The aim of this study was to identify the piRNAs expressed in pancreatic islets and to determine whether they are involved in the control of beta cell activities. METHODS piRNA profiling of rat pancreatic islets was performed by microarray analysis. The functions of piRNAs were investigated by silencing the two main Piwi genes or by modulating the level of selected piRNAs in islet cells. RESULTS We detected about 18,000 piRNAs in rat pancreatic islets, many of which were differentially expressed throughout islet postnatal development. Moreover, we identified changes in the level of several piRNAs in the islets of Goto-Kakizaki rats, a well-established animal model of type 2 diabetes. Silencing of Piwil2 or Piwil4 genes in adult rat islets caused a reduction in the level of several piRNAs and resulted in defective insulin secretion and increased resistance of the cells to cytokine-induced cell death. Furthermore, overexpression in the islets of control animals of two piRNAs that are upregulated in diabetic rats led to a selective defect in glucose-induced insulin release. CONCLUSIONS/INTERPRETATION Our results provide evidence for a role of PIWI proteins and their associated piRNAs in the control of beta cell functions, and suggest a possible involvement in the development of type 2 diabetes. DATA AVAILABILITY Data have been deposited in Gene Expression Omnibus repository under the accession number GSE93792. Data can be accessed via the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ojklueugdzehpkv&acc=GSE93792.
Collapse
Affiliation(s)
- Imène Sarah Henaoui
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Inês Guerra Mollet
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Lena Eliasson
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
222
|
Abstract
Small RNAs called PIWI-interacting RNAs (piRNAs) act as an immune system to suppress transposable elements in the animal gonads. A poorly understood adaptive pathway links cytoplasmic slicing of target RNA by the PIWI protein MILI to loading of target-derived piRNAs into nuclear MIWI2. Here we demonstrate that MILI slicing generates a 16-nt by-product that is discarded and a pre-piRNA intermediate that is used for phased piRNA production. The ATPase activity of Mouse Vasa Homolog (MVH) is essential for processing the intermediate into piRNAs, ensuring transposon silencing and male fertility. The ATPase activity controls dissociation of an MVH complex containing PIWI proteins, piRNAs, and slicer products, allowing safe handover of the intermediate. In contrast, ATPase activity of TDRD9 is dispensable for piRNA biogenesis but is essential for transposon silencing and male fertility. Our work implicates distinct RNA helicases in specific steps along the nuclear piRNA pathway.
Collapse
|
223
|
Hilz S, Modzelewski AJ, Cohen PE, Grimson A. The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development 2017; 143:3061-73. [PMID: 27578177 PMCID: PMC5047671 DOI: 10.1242/dev.136721] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MicroRNAs and siRNAs, both of which are AGO-bound small RNAs, are essential for mammalian spermatogenesis. Although their precise germline roles remain largely uncharacterized, recent discoveries suggest that they function in mechanisms beyond microRNA-mediated post-transcriptional control, playing roles in DNA repair and transcriptional regulation within the nucleus. Here, we discuss the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline. We integrate genetic, clinical and genomics data, and draw upon findings from non-mammalian models, to examine potential roles for AGO-bound small RNAs during spermatogenesis. Finally, we evaluate the emerging and differing roles for AGOs and AGO-bound small RNAs in the male and female germlines, suggesting potential reasons for these sexual dimorphisms. Summary: This Review article summarizes the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline, with a particular focus on spermatogenesis.
Collapse
Affiliation(s)
- Stephanie Hilz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
224
|
Glycerol-3-phosphate acyltransferase 2 is essential for normal spermatogenesis. Biochem J 2017; 474:3093-3107. [DOI: 10.1042/bcj20161018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first and rate-limiting step in the de novo glycerolipid synthesis. The GPAT2 isoform differs from the other isoforms because its expression is restricted to male germ cells and cancer cells. It has been recently reported that GPAT2 expression in mouse testis fluctuates during sexual maturation and that it is regulated by epigenetic mechanisms in combination with vitamin A derivatives. Despite progress made in this field, information about GPAT2 role in the developing male germ cells remains unclear. The aim of the present study was to confirm the hypothesis that GPAT2 is required for the normal physiology of testes and male germ cell maturation. The gene was silenced in vivo by inoculating lentiviral particles carrying the sequence of a short-hairpin RNA targeting Gpat2 mRNA into mouse testis. Histological and gene expression analysis showed impaired spermatogenesis and arrest at the pachytene stage. Defects in reproductive fitness were also observed, and the analysis of apoptosis-related gene expression demonstrated the activation of apoptosis in Gpat2-silenced germ cells. These findings indicate that GPAT2 protein is necessary for the normal development of male gonocytes, and that its absence triggers apoptotic mechanisms, thereby decreasing the number of dividing germ cells.
Collapse
|
225
|
Structural Foundations of RNA Silencing by Argonaute. J Mol Biol 2017; 429:2619-2639. [PMID: 28757069 DOI: 10.1016/j.jmb.2017.07.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.
Collapse
|
226
|
Hempfling AL, Lim SL, Adelson DL, Evans J, O'Connor AE, Qu ZP, Kliesch S, Weidner W, O'Bryan MK, Bergmann M. Expression patterns of HENMT1 and PIWIL1 in human testis: implications for transposon expression. Reproduction 2017; 154:363-374. [PMID: 28676534 DOI: 10.1530/rep-16-0586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to define the expression patterns of HENMT1 and PIWI proteins in human testis and investigate their association with transposon expression, infertility sub-type or development of testicular germ cell tumours (TGCTs). Testis biopsies showing normal spermatogenesis were used to identify normal localisation patterns of HENMT1 and PIWIL1 by immunolocalisation and RT-PCR after laser microdissection. 222 testis biopsies representing normal spermatogenesis, hypospermatogenesis, spermatogenic arrests, Sertoli cell-only (SCO) tumours and TGCTs were analysed by RT-qPCR for expression of HENMT1/PIWIL1/PIWIL2/PIWIL3/PIWIL4 and LINE-1 Additionally, HENMT1-overexpressing TCam2 seminoma cell lines were analysed for the same parameters by RT-qPCR. We found that HENMT1 and PIWIL1 are coexpressed in pachytene spermatocytes and spermatids. Expression of HENMT1, PIWIL1 and PIWIL2 was mainly dependent on germ cell content but low levels of expression were also detected in some SCO samples. Levels of HENMT1, PIWIL1 and PIWIL2 expression were low in TGCT. Samples with HENMT1, PIWIL2 and PIWIL4 expression showed significantly (P < 0.05) lower transposon expression compared to samples without expression in the same histological group. HENMT1-overexpressing TCam2 cells showed lower LINE-1 expression than empty vector-transfected control lines. Our findings support that the transposon-regulating function of the piRNA pathway found in the mouse is conserved in adult human testis. HENMT1 and PIWI proteins are expressed in a germ-cell-specific manner and required for transposon control.
Collapse
Affiliation(s)
- A L Hempfling
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia .,Institute for Veterinary AnatomyHistology and Embryology, Justus Liebig University, Giessen, Germany
| | - S L Lim
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia
| | - D L Adelson
- School of Biological SciencesThe University of Adelaide, Adelaide, Australia
| | - J Evans
- Centre for Reproductive HealthHudson Institute of Medical Research, Clayton, Australia
| | - A E O'Connor
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia
| | - Z P Qu
- School of Biological SciencesThe University of Adelaide, Adelaide, Australia
| | - S Kliesch
- Centre of Reproductive Medicine and AndrologyMuenster, Germany
| | - W Weidner
- Clinic for UrologyPediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - M K O'Bryan
- The Development and Stem Cells Program of the Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental BiologyMonash University Clayton, Clayton, Australia.,The School of Biological SciencesMonash University, Clayton, Australia
| | - M Bergmann
- Institute for Veterinary AnatomyHistology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
227
|
Zhang Y, Tang C, Yu T, Zhang R, Zheng H, Yan W. MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biol 2017; 18:105. [PMID: 28615029 PMCID: PMC5471846 DOI: 10.1186/s13059-017-1243-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. Result Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. Conclusions miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA
| | - Ruirui Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA.
| |
Collapse
|
228
|
Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF. Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017; 169:1090-1104.e13. [PMID: 28552346 DOI: 10.1016/j.cell.2017.04.034] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 04/03/2017] [Indexed: 11/25/2022]
Abstract
Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jun-Yan Kang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Dai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuang Zhao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Man Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yi Lu
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China
| | - Yong Zhu
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Li
- Department of Andrology and PFD, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Gang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui-Juan Shi
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research, Fudan University Reproduction and Development Institution, Shanghai 200032, China.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
229
|
Liu B, Yang F, Chou KC. 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624202 PMCID: PMC5415553 DOI: 10.1016/j.omtn.2017.04.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Involved with important cellular or gene functions and implicated with many kinds of cancers, piRNAs, or piwi-interacting RNAs, are of small non-coding RNA with around 19–33 nt in length. Given a small non-coding RNA molecule, can we predict whether it is of piRNA according to its sequence information alone? Furthermore, there are two types of piRNA: one has the function of instructing target mRNA deadenylation, and the other does not. Can we discriminate one from the other? With the avalanche of RNA sequences emerging in the postgenomic age, it is urgent to address the two problems for both basic research and drug development. Unfortunately, to the best of our knowledge, so far no computational methods whatsoever could be used to deal with the second problem, let alone deal with the two problems together. Here, by incorporating the physicochemical properties of nucleotides into the pseudo K-tuple nucleotide composition (PseKNC), we proposed a powerful predictor called 2L-piRNA. It is a two-layer ensemble classifier, in which the first layer is for identifying whether a query RNA molecule is piRNA or non-piRNA, and the second layer for identifying whether a piRNA is with or without the function of instructing target mRNA deadenylation. Rigorous cross-validations have indicated that the success rates achieved by the proposed predictor are quite high. For the convenience of most biologists and drug development scientists, the web server for 2L-piRNA has been established at http://bioinformatics.hitsz.edu.cn/2L-piRNA/, by which users can easily get their desired results without the need to go through the mathematical details.
Collapse
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Key Laboratory of Network Oriented Intelligent Computation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Gordon Life Science Institute, Belmont, MA 02478, USA.
| | - Fan Yang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Belmont, MA 02478, USA; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
230
|
Zhang L, Zhang H, Zhang H, Benson M, Han X, Li D. Roles of piRNAs in microcystin-leucine-arginine (MC-LR) induced reproductive toxicity in testis on male offspring. Food Chem Toxicol 2017; 105:177-185. [PMID: 28414124 DOI: 10.1016/j.fct.2017.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
231
|
Russell S, Patel M, Gilchrist G, Stalker L, Gillis D, Rosenkranz D, LaMarre J. Bovine piRNA-like RNAs are associated with both transposable elements and mRNAs. Reproduction 2017; 153:305-318. [DOI: 10.1530/rep-16-0620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/20/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
Abstract
PIWI proteins and their associated piRNAs have been the focus of intensive research in the past decade; therefore, their participation in the maintenance of genomic integrity during spermatogenesis has been well established. Recent studies have suggested important roles for the PIWI/piRNA system outside of gametogenesis, based on the presence of piRNAs and PIWI proteins in several somatic tissues, cancers, and the early embryo. Here, we investigated the small RNA complement present in bovine gonads, gametes, and embryos through next-generation sequencing. A distinct piRNA population was present in the testis as expected. However, we also found a large population of slightly shorter, 24–27 nt piRNA-like RNA (pilRNAs) in pools of oocytes and zygotes. These oocyte and embryo pilRNAs exhibited many of the canonical characteristics of piRNAs including a 1U bias, the presence of a ‘ping-pong’ signature, genomic clustering, and transposable element targeting. Some of the major transposons targeted by oocyte and zygote pilRNA were from the LINE RTE and ERV1 classes. We also identified pools of pilRNA potentially derived from, or targeted at, specific mRNA sequences. We compared the frequency of these gene-associated pilRNAs to the fold change in the expression of respective mRNAs from two previously reported transcriptome datasets. We observed significant negative correlations between the number of pilRNAs targeting mRNAs, and their fold change in expression between the 4–8 cell and 8–16 cell stages. Together, these results represent one of the first characterizations of the PIWI/piRNA pathway in the translational bovine model, and in the novel context of embryogenesis.
Collapse
|
232
|
Emerging cardiac non-coding landscape: The importance of meta-analysis. Biochimie 2017; 133:87-94. [DOI: 10.1016/j.biochi.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/26/2016] [Indexed: 11/23/2022]
|
233
|
Small RNA Sequencing in Cells and Exosomes Identifies eQTLs and 14q32 as a Region of Active Export. G3-GENES GENOMES GENETICS 2017; 7:31-39. [PMID: 27799337 PMCID: PMC5217120 DOI: 10.1534/g3.116.036137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are small extracellular vesicles that carry heterogeneous cargo, including RNA, between cells. Increasing evidence suggests that exosomes are important mediators of intercellular communication and biomarkers of disease. Despite this, the variability of exosomal RNA between individuals has not been well quantified. To assess this variability, we sequenced the small RNA of cells and exosomes from a 17-member family. Across individuals, we show that selective export of miRNAs occurs not only at the level of specific transcripts, but that a cluster of 74 mature miRNAs on chromosome 14q32 is massively exported in exosomes while mostly absent from cells. We also observe more interindividual variability between exosomal samples than between cellular ones and identify four miRNA expression quantitative trait loci shared between cells and exosomes. Our findings indicate that genomically colocated miRNAs can be exported together and highlight the variability in exosomal miRNA levels between individuals as relevant for exosome use as diagnostics.
Collapse
|
234
|
Phay M, Kim HH, Yoo S. Analysis of piRNA-Like Small Non-coding RNAs Present in Axons of Adult Sensory Neurons. Mol Neurobiol 2016; 55:483-494. [PMID: 27966078 DOI: 10.1007/s12035-016-0340-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Small non-coding RNAs (sncRNAs) have been shown to play pivotal roles in spatiotemporal-specific gene regulation that is linked to many different biological functions. PIWI-interacting RNAs (piRNAs), typically 25-34-nucleotide long, are originally identified and thought to be restricted in germline cells. However, recent studies suggest that piRNAs associate with neuronal PIWI proteins, contributing to neuronal development and function. Here, we identify a cohort of piRNA-like sncRNAs (piLRNAs) in rat sciatic nerve axoplasm and directly contrast temporal changes of piLRNA levels in the nerve following injury, as compared with those in an uninjured nerve using deep sequencing. We find that 32 of a total of 53 annotated piLRNAs show significant changes in their levels in the regenerating nerve, suggesting that individual axonal piLRNAs may play important regulatory roles in local messenger RNA (mRNA) translation during regeneration. Bioinformatics and biochemical analyses show that these piLRNAs carry characteristic features of mammalian piRNAs, including sizes, a sequence bias for uracil at the 5'-end and a 2'-O-methylation at the 3'-end. Their axonal expression is directly visualized by fluorescence in situ hybridization in cultured dorsal root ganglion neurons as well as immunoprecipitation with MIWI. Further, depletion of MIWI protein using RNAi from cultured sensory neurons increases axon growth rates, decreases axon retraction after injury, and increases axon regrowth after injury. All these data suggest more general roles for MIWI/piLRNA pathway that could confer a unique advantage for coordinately altering the population of proteins generated in growth cones and axons of neurons by targeting mRNA cohorts.
Collapse
Affiliation(s)
- Monichan Phay
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hak Hee Kim
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
235
|
Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang FP, Vihinen H, Jokitalo E, Sironen A, Toppari J, Kotaja N. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy 2016; 13:302-321. [PMID: 27929729 PMCID: PMC5324852 DOI: 10.1080/15548627.2016.1261319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribonucleoprotein (RNP) granules play a major role in compartmentalizing cytoplasmic RNA regulation. Haploid round spermatids that have exceptionally diverse transcriptomes are characterized by a unique germ cell-specific RNP granule, the chromatoid body (CB). The CB shares many characteristics with somatic RNP granules but also has germline-specific features. The CB appears to be a central structure in PIWI-interacting RNA (piRNA)-targeted RNA regulation. Here, we identified a novel CB component, FYCO1, which is involved in the intracellular transport of autophagic vesicles in somatic cells. We demonstrated that the CB is associated with autophagic activity. Induction of autophagy leads to the recruitment of lysosomal vesicles onto the CB in a FYCO1-dependent manner as demonstrated by the analysis of a germ cell-specific Fyco1 conditional knockout mouse model. Furthermore, in the absence of FYCO1, the integrity of the CB was affected and the CB was fragmented. Our results suggest that RNP granule homeostasis is regulated by FYCO1-mediated autophagy.
Collapse
Affiliation(s)
- Matteo Da Ros
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,b Department of Cellular and Molecular Biology , Faculty of Medicine, University of Ottawa , Ottawa , ON , Canada
| | - Tiina Lehtiniemi
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| | - Opeyemi Olotu
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| | - Daniel Fischer
- c Natural Resources Institute Finland (Luke), Green Technology , Jokioinen , Finland
| | - Fu-Ping Zhang
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,d Turku Center for Disease Modeling, University of Turku , Turku , Finland
| | - Helena Vihinen
- e Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki , Helsinki , Finland
| | - Eija Jokitalo
- e Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki , Helsinki , Finland
| | - Anu Sironen
- c Natural Resources Institute Finland (Luke), Green Technology , Jokioinen , Finland
| | - Jorma Toppari
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,f Department of Pediatrics , University of Turku and Turku University Hospital , Turku , Finland
| | - Noora Kotaja
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| |
Collapse
|
236
|
Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop. Regul Toxicol Pharmacol 2016; 82:127-139. [DOI: 10.1016/j.yrtph.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
|
237
|
Sarkar A, Volff JN, Vaury C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation? FASEB J 2016; 31:436-446. [PMID: 27799346 DOI: 10.1096/fj.201600637rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/14/2016] [Indexed: 01/12/2023]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are small, noncoding RNAs known for silencing transposable elements (TEs) in the germline of animals. Most genomes host TEs, which are notorious for mobilizing themselves and endangering survival of the host if not controlled. By silencing TEs in the germline, piRNAs prevent harmful mutations from being passed on to the next generation. How piRNAs are generated and how they silence TEs were the focus of researchers ever since their discovery. Now a spate of recent papers are beginning to tell us that piRNAs can play roles beyond TE silencing and are involved in diverse cellular processes from mRNA regulation to development or genome rearrangement. In this review, we discuss some of these recently reported roles. Data on these new roles are often rudimentary, and the involvement of piRNAs in these processes is yet to be definitely established. What is interesting is that the reports are on animals widely separated on the phylogenetic tree of life and that piRNAs were also found outside the gonadal tissues. Some of these piRNAs map to TE sequences, prompting us to hypothesize that genomes may have co-opted the TE-derived piRNA system for their own regulation.-Sarkar, A., Volff, J.-N., Vaury, C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation?
Collapse
Affiliation(s)
- Arpita Sarkar
- Laboratoire de Génétique, Reproduction et Développement (GReD), Centre National de la Recherche Scientifique, INSERM, Université Clermont Auvergne, Clermont-Ferrand,France; and
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chantal Vaury
- Laboratoire de Génétique, Reproduction et Développement (GReD), Centre National de la Recherche Scientifique, INSERM, Université Clermont Auvergne, Clermont-Ferrand,France; and
| |
Collapse
|
238
|
Xiao L, Lanz RB, Frolov A, Castro PD, Zhang Z, Dong B, Xue W, Jung SY, Lydon JP, Edwards DP, Mancini MA, Feng Q, Ittmann MM, He B. The Germ Cell Gene TDRD1 as an ERG Target Gene and a Novel Prostate Cancer Biomarker. Prostate 2016; 76:1271-84. [PMID: 27272765 DOI: 10.1002/pros.23213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND TMPRSS2-ERG fusion occurs in about half of prostate cancers and results in over-expression of the oncogenic ERG protein in the prostate. The mechanism by which ERG contributes to prostate cancer initiation and progression remains largely unknown. Because ERG is a transcriptional activator, we reasoned that the target genes regulated by ERG could contribute to prostate cancer development. METHODS In a search for ERG target genes, we took advantage of published datasets from the MSKCC Prostate Oncogene Project, in which a comprehensive analysis was applied to define transcriptomes in 150 prostate tumors. We retrieved the mRNA expression dataset, split them based on ERG expression, and identified genes whose expression levels are associated with ERG mRNA levels. RESULTS mRNA expression levels of 21 genes were found to be significantly increased, while for one gene it was decreased in ERG-positive prostate tumors. Among them, the expression of TDRD1 was the most significantly increased in ERG-positive tumors. Among 131 primary prostate tumors which were primarily from European American patients, TDRD1 is over-expressed in 68% of samples, while ERG is overexpressed in 48% of samples, suggesting an additional ERG-independent mechanism of TDRD1 overexpression. In African American prostate tumors, TDRD1 mRNA is expressed in 44%, while ERG is expressed in 24% of samples. In normal tissues, TDRD1 mRNA is exclusively expressed in germ cells and its protein is also known as cancer/testis antigen 41.1 (CT41.1). We generated a mouse monoclonal antibody that recognizes human TDRD1 protein with high specificity and sensitivity. By Western blot analysis and immunohistochemistry (IHC) staining, we demonstrate that TDRD1 protein is expressed in the majority of human prostate tumors, but not in normal prostate tissue. Finally, TDRD1 is not induced in the prostate of ERG overexpression transgenic mice, suggesting that such model does not fully recapitulate the TMPRSS2/ERG fusion-dependent human prostate cancer development. CONCLUSIONS Our results suggest TDRD1 as a novel prostate cancer biomarker. As an ERG target gene, TDRD1 might play an important role in human prostate cancer development, and as a cancer/testis antigen, TDRD1 might have long-term potential to be a therapeutic target for prostate cancer immunotherapy. Prostate 76:1271-1284, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lijuan Xiao
- Departments of Medicine-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Rainer B Lanz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Anna Frolov
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Patricia D Castro
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Zheng Zhang
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Sung Yun Jung
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - John P Lydon
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Dean P Edwards
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Michael A Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Qin Feng
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael M Ittmann
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Bin He
- Departments of Medicine-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
239
|
Fu Q, Pandey RR, Leu NA, Pillai RS, Wang PJ. Mutations in the MOV10L1 ATP Hydrolysis Motif Cause piRNA Biogenesis Failure and Male Sterility in Mice. Biol Reprod 2016; 95:103. [PMID: 27655786 PMCID: PMC5178147 DOI: 10.1095/biolreprod.116.142430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs. piRNAs protect the genome integrity of the germline by silencing active transposable elements and are essential for germ cell development. Most piRNA pathway proteins are evolutionarily conserved. MOV10L1, a testis-specific RNA helicase, binds to piRNA precursors and is a master regulator of piRNA biogenesis in mouse. Here we report that mutation of the MOV10L1 ATP hydrolysis site leads to depletion of piRNAs on Piwi proteins, de-repression of transposable elements, and conglomeration of piRNA pathway proteins into polar granules. The Mov10l1 mutant mice exhibit meiotic arrest and male sterility. Our results show that mutation of the MOV10L1 ATP hydrolysis site perturbs piRNA biogenesis.
Collapse
Affiliation(s)
- Qi Fu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Radha Raman Pandey
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Ramesh S. Pillai
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
- Correspondence: P. Jeremy Wang, Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
240
|
Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase: A Database for Sperm-Borne RNA Contents. Biol Reprod 2016; 95:99. [PMID: 27628216 PMCID: PMC5178153 DOI: 10.1095/biolreprod.116.142190] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022] Open
Abstract
Since their discovery approximately three decades ago, sperm-borne RNAs, both large/small and coding/noncoding, have been reported in multiple organisms, and some have been implicated in spermatogenesis, early development, and epigenetic inheritance. Despite these advances, isolation, quantification, and annotation of sperm-borne RNAs remain nontrivial. The yields and subspecies of sperm-borne RNAs isolated from sperm can vary drastically depending on the methods used, and no cross-species analyses of sperm RNA contents have ever been conducted using a standardized sperm RNA isolation protocol. To address these issues, we developed a simple RNA isolation method that is applicable to sperm of various species, thus allowing for reliable interspecies comparisons. Based on RNA-Seq analyses, we established SpermBase (
www.spermbase.org), a database dedicated to sperm-borne RNA profiling of multiple species. Currently, SpermBase contains large and small RNA expression data for mouse, rat, rabbit, and human total sperm and sperm heads. By analyzing large and small RNAs for conserved features, we found that many sperm-borne RNA species were conserved across all four species analyzed, and among the conserved small RNAs, sperm-borne tRNA-derived small noncoding RNAs and miRNAs can target a large number of genes known to be critical for early development.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
- Department of Biology, University of Nevada, Reno, Reno, Nevada
- Correspondence: Wei Yan, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV 89557. E-mail:
| |
Collapse
|
241
|
Houri-Ze'evi L, Rechavi O. Plastic germline reprogramming of heritable small RNAs enables maintenance or erasure of epigenetic memories. RNA Biol 2016; 13:1212-1217. [PMID: 27592591 PMCID: PMC5207387 DOI: 10.1080/15476286.2016.1229732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Caenorhabditis elegans small RNAs can regulate genes across generations. The mysterious tendency of heritable RNA interference (RNAi) responses to terminate after 3–5 generations has been referred to as “the bottleneck to RNAi inheritance.” We have recently shown that the re-setting of epigenetic inheritance after 3–5 generations is not due to passive dilution of the original RNA trigger, but instead results from an active, multigenerational, and small RNA-mediated regulatory pathway. In this “Point of View” manuscript we suggest that the process that leads to the erasure of the ancestral small RNA-encoded memory is a specialized type of germline reprogramming mechanism, analogous to the processes that robustly remove parental DNA methylation and histone modifications early in development in different organisms. Traditionally, germline reprogramming mechanisms that re-set chromatin are thought to stand in the way of inheritance of memories of parental experiences. We found that reprogramming of heritable small RNAs takes multiple generations to complete, enabling long-term inheritance of small RNA responses. Moreover, the duration of this reprogramming process can be prolonged significantly if new heritable RNAi responses are provoked. A dedicated signaling pathway that is responsive to environmental cues can tune the epigenetic state of the RNAi inheritance system, so that inheritance of particular small RNA species can be extended.
Collapse
Affiliation(s)
- Leah Houri-Ze'evi
- a Department of Neurobiology , Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University , Tel Aviv , Israel
| | - Oded Rechavi
- a Department of Neurobiology , Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
242
|
Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, Wang M, Wen B, Ni T, Han C. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol 2016; 13:1011-1024. [PMID: 27560004 DOI: 10.1080/15476286.2016.1218588] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among all tissues of the metazoa, the transcritpome of testis displays the highest diversity and specificity. However, its composition and dynamics during spermatogenesis have not been fully understood. Here, we have identified 20,639 message RNAs (mRNAs), 7,168 long non-coding RNAs (lncRNAs) and 15,101 circular RNAs (circRNAs) in mouse spermatogenic cells, and found many of them were specifically expressed in testes. lncRNAs are significantly more testis-specific than mRNAs. At all stages, mRNAs are generally more abundant than lncRNAs, and linear transcripts are more abundant than circRNAs. We showed that the productions of circRNAs and piRNAs were highly regulated instead of random processes. Based on the results of a small-scale functional screening experiment using cultured mouse spermatogonial stem cells, many evolutionarily conserved lncRNAs are likely to play roles in spermatogenesis. Typical classes of transcription factor binding sites are enriched in the promoters of testis-specific m/lncRNA genes. Target genes of CREM and RFX2, 2 key TFs for spermatogenesis, were further validated by using ChIP-chip assays and RNA-seq on RFX2-knockout spermatogenic cells. Our results contribute to the current understanding of the transcriptomic complexity of spermatogenic cells and provide a valuable resource from which many candidate genes may be selected for further functional studies.
Collapse
Affiliation(s)
- Xiwen Lin
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Miao Han
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Lu Cheng
- c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Jian Chen
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Zhuqiang Zhang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d Graduate University of Chinese Academy of Sciences , Beijing , China
| | - Ting Shen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Min Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Bo Wen
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China.,c Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University , Shanghai , China
| | - Ting Ni
- b State Key Laboratory of Genetic Engineering & Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University , Shanghai , China
| | - Chunsheng Han
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
243
|
Liu Y. MicroRNAs and PIWI-interacting RNAs in oncology. Oncol Lett 2016; 12:2289-2292. [PMID: 27698791 PMCID: PMC5038388 DOI: 10.3892/ol.2016.4996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
RNA molecules that are unable to translate into proteins are classified as non-coding RNA. Non-coding RNA (ncRNA) genes include highly abundant and functionally important RNAs such as transfer RNAs, microRNAs (miRNAs), siRNAs, snRNAs, exRNAs and piRNAs. The number of ncRNAs encoded within the human genome is unknown; however, recent transcriptomic and bioinformatic studies suggest the existence of thousands of ncRNAs. Furthermore, small ncRNAs, including miRNAs and PIWI-interacting RNAs (piRNAs), play an imperative role in the regulation of gene expression of numerous biological and pathological processes. Investigation into the expression and function of small RNA in cancer cells has contributed to gaining a greater understanding of the roles of small RNAs in carcinogenesis. The present review is aimed primarily to discuss the importance of the expression and functions of these small RNAs in carcinogenesis. These studies may provide useful information for future therapies in cancer.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
244
|
Anastasakis D, Skeparnias I, Shaukat AN, Grafanaki K, Kanellou A, Taraviras S, Papachristou DJ, Papakyriakou A, Stathopoulos C. Mammalian PNLDC1 is a novel poly(A) specific exonuclease with discrete expression during early development. Nucleic Acids Res 2016; 44:8908-8920. [PMID: 27515512 PMCID: PMC5062988 DOI: 10.1093/nar/gkw709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
PNLDC1 is a homologue of poly(A) specific ribonuclease (PARN), a known deadenylase with additional role in processing of non-coding RNAs. Both enzymes were reported recently to participate in piRNA biogenesis in silkworm and C. elegans, respectively. To get insights on the role of mammalian PNLDC1, we characterized the human and mouse enzymes. PNLDC1 shows limited conservation compared to PARN and represents an evolutionary related but distinct group of enzymes. It is expressed specifically in mouse embryonic stem cells, human and mouse testes and during early mouse embryo development, while it fades during differentiation. Its expression in differentiated cells, is suppressed through methylation of its promoter by the de novo methyltransferase DNMT3B. Both enzymes are localized mainly in the ER and exhibit in vitro specificity restricted solely to 3′ RNA or DNA polyadenylates. Knockdown of Pnldc1 in mESCs and subsequent NGS analysis showed that although the expression of the remaining deadenylases remains unaffected, it affects genes involved mainly in reprogramming, cell cycle and translational regulation. Mammalian PNLDC1 is a novel deadenylase expressed specifically in cell types which share regulatory mechanisms required for multipotency maintenance. Moreover, it could be involved both in posttranscriptional regulation through deadenylation and genome surveillance during early development.
Collapse
Affiliation(s)
- Dimitrios Anastasakis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | | | - Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Alexandra Kanellou
- Department of Physiology, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Dionysios J Papachristou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, 26504 Rio Achaia, Greece
| | - Athanasios Papakyriakou
- Laboratory of Chemical Biology, National Centre for Scientific Research 'Demokritos', 15341 Athens, Greece
| | | |
Collapse
|
245
|
Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol 2016; 46:676-700. [PMID: 27278298 PMCID: PMC5030620 DOI: 10.1080/10408444.2016.1175417] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.
Collapse
Affiliation(s)
- Emma L Marczylo
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Miriam N Jacobs
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| | - Timothy W Gant
- a Toxicology Department, CRCE, PHE, Chilton , Oxfordshire , UK
| |
Collapse
|
246
|
Vandewege MW, Platt RN, Ray DA, Hoffmann FG. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories. Genome Biol Evol 2016; 8:1327-37. [PMID: 27060702 PMCID: PMC4898795 DOI: 10.1093/gbe/evw078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest “ping-pong” response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation.
Collapse
Affiliation(s)
- Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| |
Collapse
|
247
|
Ghosheh Y, Seridi L, Ryu T, Takahashi H, Orlando V, Carninci P, Ravasi T. Characterization of piRNAs across postnatal development in mouse brain. Sci Rep 2016; 6:25039. [PMID: 27112104 PMCID: PMC4844963 DOI: 10.1038/srep25039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.
Collapse
Affiliation(s)
- Yanal Ghosheh
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Loqmane Seridi
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Taewoo Ryu
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hazuki Takahashi
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Valerio Orlando
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Timothy Ravasi
- Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Medicine, Division of Genetic, University of California, San Diego. 9500 Gilman Drive La Jolla, California 92093-0688, USA
| |
Collapse
|
248
|
Abstract
Spermatogenesis is a highly regulated process during which haploid sperm cells are generated. Although autophagy is involved in the spermatogenesis process, the molecular pathways and regulations of autophagy in germ cell development remain elusive. Here, we showed that Ppp1r36, a regulatory subunit of protein phosphatase 1, is expressed during gonadal development, mainly in testes during spermatogenesis. Autophagy protein LC3 (microtubule associated protein 1 light chain 3), especially its active form LC3-II, had a similar expression pattern to Ppp1r36. Moreover, LC3-II level and puncta analysis showed that autophagy is up-regulated around 21 dpp (day postpartum) in postnatal testis, indicating a potential role of autophagy during the first wave of spermatogenesis. We demonstrated that Ppp1r36 promotes autophagosome formation upon starvation induction. Further autophagy flux analysis using a tandem fluorescent indicator, mCherry-GFP-LC3, confirmed that Ppp1r36 participated in autophagy. We further determined that Ppp1r36 is associated with Atg16L1 (autophagy related 16-like 1) in autophagy of starvation induction. Thus, our results uncover a potential role of the regulatory subunit Ppp1r36 of protein phosphatase 1 in enhancing autophagy during spermatogenesis.
Collapse
|
249
|
Xu L, Qiu L, Chang G, Guo Q, Liu X, Bi Y, Zhang Y, Wang H, Li Z, Guo X, Wan F, Zhang Y, Xu Q, Chen G. Discovery of piRNAs Pathway Associated with Early-Stage Spermatogenesis in Chicken. PLoS One 2016; 11:e0151780. [PMID: 27045806 PMCID: PMC4821617 DOI: 10.1371/journal.pone.0151780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/03/2016] [Indexed: 01/10/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.
Collapse
Affiliation(s)
- Lu Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lingling Qiu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guobin Chang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- * E-mail: (GBC); (GHC)
| | - Qixin Guo
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225003, China
| | - Yulin Bi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yu Zhang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hongzhi Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225003, China
| | - Zhiteng Li
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaoming Guo
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Fang Wan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yang Zhang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qi Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guohong Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- * E-mail: (GBC); (GHC)
| |
Collapse
|
250
|
Czech B, Hannon GJ. One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends Biochem Sci 2016; 41:324-337. [PMID: 26810602 PMCID: PMC4819955 DOI: 10.1016/j.tibs.2015.12.008] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved defense mechanism that protects the genetic information of animal germ cells from the deleterious effects of molecular parasites, such as transposons. Discovered nearly a decade ago, this small RNA silencing system comprises PIWI-clade Argonaute proteins and their associated RNA-binding partners, the piRNAs. In this review, we highlight recent work that has advanced our understanding of how piRNAs preserve genome integrity across generations. We discuss the mechanism of piRNA biogenesis, give an overview of common themes as well as differences in piRNA-mediated silencing between species, and end by highlighting known and emerging functions of piRNAs.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|