201
|
Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, Shen Y, Chen J. MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. Stroke 2019; 50:2865-2874. [PMID: 31394992 DOI: 10.1161/strokeaha.119.025371] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose- Stroke patients with type 2 diabetes mellitus (T2DM) exhibit increased vascular and white matter damage and have worse prognosis compared with nondiabetic stroke patients. We investigated the neurorestorative effects of exosomes derived from mouse brain endothelial cells (EC-Exo) as treatment for stroke in T2DM mice and investigated the role of miR-126 in mediating EC-Exo-derived therapeutic benefits in T2DM-stroke mice. Methods- Adult, male BKS.Cg-m+/+Leprdb/J (T2DM) mice were subjected to photothrombotic stroke model. T2DM mice were intravenously injected at 3 days after stroke with (1) PBS; (2) liposome mimic (vehicle control, 3×1010); (3) EC-Exo (3×1010); (4) knockdown of miR-126 in EC-Exo (miR-126-/- EC-Exo, 3×1010). Behavioral and cognitive tests were performed, and mice were sacrificed at 28 days after stroke. Results- Compared with non-DM stroke mice, T2DM-stroke mice exhibit significantly decreased serum and brain tissue miR-126 expression. Endothelial cells and EC-Exo contain high levels of miR-126 compared with other cell types or exosomes derived from other types of cells, respectively (smooth muscle cells, astrocytes, and marrow stromal cells). Compared with PBS or liposome mimic treatment, EC-Exo treatment of T2DM-stroke mice significantly improves neurological and cognitive function, increases axon density, myelin density, vascular density, arterial diameter, as well as induces M2 macrophage polarization in the ischemic boundary zone. MiR-126-/- EC-Exo treatment significantly decreases miR-126 expression in serum and brain, as well as attentuates EC-Exo treatment-induced functional improvement and does not significantly increase axon and myelin density, vascular density, arterial diameter or induce M2 macrophage polarization in T2DM-stroke mice. In vitro, EC-Exo treatment significantly increases primary cortical neuron axonal outgrowth and increases endothelial capillary tube formation whereas miR-126-/- EC-Exo attentuates EC-Exo induced capillary tube formation and axonal outgrowth. Conclusions- EC-Exo treatment of stroke promotes neurorestorative effects in T2DM mice. MiR-126 may mediate EC-Exo-induced neurorestorative effects in T2DM mice. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Poornima Venkat
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Chengcheng Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.).,Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Alex Zacharek
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Fengjie Wang
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Julie Landschoot-Ward
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Yi Shen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| |
Collapse
|
202
|
Liu Q, Johnson EM, Lam RK, Wang Q, Bo Ye H, Wilson EN, Minhas PS, Liu L, Swarovski MS, Tran S, Wang J, Mehta SS, Yang X, Rabinowitz JD, Yang SS, Shamloo M, Mueller C, James ML, Andreasson KI. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol 2019; 20:1023-1034. [PMID: 31263278 PMCID: PMC6778967 DOI: 10.1038/s41590-019-0421-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Abstract
Stroke is a multiphasic process in which initial cerebral ischemia is followed by secondary injury from immune responses to ischemic brain components. Here we demonstrate that peripheral CD11b+CD45+ myeloid cells magnify stroke injury via activation of triggering receptor expressed on myeloid cells 1 (TREM1), an amplifier of proinflammatory innate immune responses. TREM1 was induced within hours after stroke peripherally in CD11b+CD45+ cells trafficking to ischemic brain. TREM1 inhibition genetically or pharmacologically improved outcome via protective antioxidant and anti-inflammatory mechanisms. Positron electron tomography imaging using radiolabeled antibody recognizing TREM1 revealed elevated TREM1 expression in spleen and, unexpectedly, in intestine. In the lamina propria, noradrenergic-dependent increases in gut permeability induced TREM1 on inflammatory Ly6C+MHCII+ macrophages, further increasing epithelial permeability and facilitating bacterial translocation across the gut barrier. Thus, following stroke, peripheral TREM1 induction amplifies proinflammatory responses to both brain-derived and intestinal-derived immunogenic components. Critically, targeting this specific innate immune pathway reduces cerebral injury.
Collapse
Affiliation(s)
- Qingkun Liu
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily M Johnson
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel K Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hong Bo Ye
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward N Wilson
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling Liu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Michelle S Swarovski
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie Tran
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Wang
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Swapnil S Mehta
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xi Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Samuel S Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Michelle L James
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Katrin I Andreasson
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Stanford Immunology Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
203
|
Zuo L, Feng Q, Han Y, Chen M, Guo M, Liu Z, Cheng Y, Li G. Therapeutic effect on experimental acute cerebral infarction is enhanced after nanoceria labeling of human umbilical cord mesenchymal stem cells. Ther Adv Neurol Disord 2019; 12:1756286419859725. [PMID: 31431809 PMCID: PMC6685115 DOI: 10.1177/1756286419859725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Therapeutic applications of stem cells, especially mesenchymal stem cells, were once regarded as a promising therapy for mitigating acute cerebral infarction. Unfortunately, all the stem cell clinical trials have been futile. A new stroke therapeutic strategy of combining stem cells with nanotechnology has recently gained significant attention. The objective of this study was to evaluate the application of cerium oxide nanoparticle (nanoceria)-labeled human umbilical cord mesenchymal stem cells (HucMSCs) for stroke therapy. Methods: In our study, cerium oxide nanoparticles were precovered with hyaluronic acid before labeling HucMSCs and the synergistic effects from both HucMSCs and cerium oxide nanoparticles were analyzed in in vivo and in vitro experiments Results: The nanoceria-labeled HucMSCs combined advantages from both sides, including the capacity for inflammatory modulation of HucMSCs and the antioxidant effects of nanoceria. Compared with either HucMSCs or nanoceria individually, nanoceria-labeled HucMSCs exerted significantly enhanced capacities after gaining combined antioxidant and anti-inflammatory effects. Conclusion: Our findings suggest a novel strategy with effective and well-tolerated applications of stem cells for acute cerebral infarction therapy after modification of cells with nanomaterials.
Collapse
Affiliation(s)
- Lian Zuo
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qishuai Feng
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Han
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengwei Chen
- East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Mengruo Guo
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Department of Intensive Care Center, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Cheng
- East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Gang Li
- Department of Neurology,East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
204
|
Jin J, Tang Y, Li K, Zuo X, Zhan L, Sun W, Xu E. Bone Marrow Stromal Cells Alleviate Secondary Damage in the Substantia Nigra After Focal Cerebral Infarction in Rats. Front Cell Neurosci 2019; 13:338. [PMID: 31396057 PMCID: PMC6668054 DOI: 10.3389/fncel.2019.00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/02/2022] Open
Abstract
Transplantation of bone marrow stromal cells (BMSCs) is a promising therapy for ischemic stroke. Previously, we had reported that the secondary degeneration occurred in the ipsilateral substantia nigra (SN) after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley rats. However, whether BMSCs have neurorestorative effects on the secondary damage in the SN after focal cerebral infarction has not known. In this study, rats were subjected to dMCAO followed by intravenous administration of BMSCs 1 day later. We found that transplanted BMSCs survived and migrated to cortical infarct areas and ipsilateral SN. Furthermore, BMSCs promoted neurogenesis through proliferation and differentiation in the SN after dMCAO. Rats implanted with BMSCs showed significant improvement in their performance of modified neurological severity scores and adhesive-removal test. Engrafted BMSCs enhanced survival of dopaminergic neuron, reduced gliosis in the ipsilateral SN, and increased contents of dopamine (DA) and its metabolites in the ipsilateral striatum after dMCAO. With pseudorabies virus-152 as a retrograde tracer, we also demonstrated that BMSCs could effectively enhance the cortico-striatum-nigral connections. These results suggest that BMSCs transplantation exerts neurorestorative effects after cortical infarction through promoting endogenous neurogenesis, increasing contents of DA and its metabolites, alleviating the secondary neuronal damage in the SN, enhancing the cortico-striatum-nigral projections pathway, and finally improving the neurological functional outcome.
Collapse
Affiliation(s)
- Jizi Jin
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Yanyan Tang
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Kongping Li
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Xialin Zuo
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, China
| |
Collapse
|
205
|
Wen M, Jin Y, Zhang H, Sun X, Kuai Y, Tan W. Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term Phases of Focal Cerebral Ischemia-Reperfusion Injury. J Proteome Res 2019; 18:3099-3118. [PMID: 31265301 DOI: 10.1021/acs.jproteome.9b00220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stroke is a leading cause of mortality and disability, and ischemic stroke accounts for more than 80% of the disease occurrence. Timely reperfusion is essential in the treatment of ischemic stroke, but it is known to cause ischemia-reperfusion (I/R) injury and the relevant studies have mostly focused on the acute phase. Here we reported on a global proteomic analysis to investigate the development of cerebral I/R injury in the subacute and long-term phases. A rat model was used, with 2 h-middle cerebral artery occlusion (MCAO) followed with 1, 7, and 14 days of reperfusion. The proteins of cerebral cortex were analyzed by SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS. Totally 5621 proteins were identified, among which 568, 755, and 492 proteins were detected to have significant dys-regulation in the model groups with 1, 7, and 14 days of reperfusion, respectively, when compared with the corresponding sham groups (n = 4, fold change ≥1.5 or ≤0.67 and p ≤ 0.05). Bioinformatic analysis on the functions and reperfusion time-dependent dys-regulation profiles of the proteins exhibited changes of structures and biological processes in cytoskeleton, synaptic plasticity, energy metabolism, inflammation, and lysosome from subacute to long-term phases of cerebral I/R injury. Disruption of cytoskeleton and synaptic structures, impairment of energy metabolism processes, and acute inflammation responses were the most significant features in the subacute phase. With the elongation of reperfusion time to the long-term phase, a tendency of recovery was detected on cytoskeleton, while inflammation pathways different from the subacute phase were activated. Also, lysosomal structures and functions might be restored. This is the first work reporting the proteome changes that occurred at different time points from the subacute to long-term phases of cerebral I/R injury and we expect it would provide useful information to improve the understanding of the mechanisms involved in the development of cerebral I/R injury and suggest candidates for treatment.
Collapse
Affiliation(s)
- Meiling Wen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
206
|
Peng L, Yang C, Yin J, Ge M, Wang S, Zhang G, Zhang Q, Xu F, Dai Z, Xie L, Li Y, Si JQ, Ma K. TGF-β2 Induces Gli1 in a Smad3-Dependent Manner Against Cerebral Ischemia/Reperfusion Injury After Isoflurane Post-conditioning in Rats. Front Neurosci 2019; 13:636. [PMID: 31297044 PMCID: PMC6608402 DOI: 10.3389/fnins.2019.00636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Isoflurane (ISO) post-conditioning attenuates cerebral ischemia/reperfusion (I/R) injury, but the underlying mechanism is incompletely elucidated. Transforming growth factor beta (TGF-β) and hedgehog (Hh) signaling pathways govern a wide range of mechanisms in the central nervous system. We aimed to investigate the effect of the TGF-β2/Smad3 and sonic hedgehog (Shh)/Glioblastoma (Gli) signaling pathway and their crosstalk in the hippocampus of rats with ISO post-conditioning after cerebral I/R injury. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), 1.5 h occlusion and 24 h reperfusion (MCAO/R). To assess the effect of ISO after I/R injury, various approaches were used, including neurobehavioral tests, TTC staining, HE staining, Nissl staining, TUNEL staining, immunofluorescence (IF), qRT-PCR (quantitative real-time polymerase chain reaction) and Western blot. The ISO post-conditioning group (ISO group) received 1 h ISO post-conditioning when reperfusion was initiated, leading to lower infarct volumes and neurologic deficit scores, more surviving neurons, and less damaged and apoptotic neurons. IF staining, qRT-PCR and Western blot showed high expression levels of TGF-β2, Shh and Gli1 in the hippocampal CA1 of the ISO group. Phosphorylated Smad3 (p-Smad3), Patched (Ptch), and Smoothed (Smo) were also increased at protein level in the ISO group, whereas total Smad3 expression did not change in all groups. When TGF-β2 inhibitor, pirfenidone, or Smad3 inhibitor, SIS3 HCl, were administered, the expression levels of p-Smad3 and Gli1 were reduced, and surviving pyramidal neurons decreased. By contrast, the expression levels of TGF-β2 and p-Smad3 did not change significantly after pre-injection of Smo inhibitor cyclopamine, but reduced the expression levels of Shh, Ptch, and Gli1. Moreover, Gli showed the lowest expression levels with pirfenidone combined with cyclopamine. These findings indicate that the TGF-β and hedgehog signaling pathways mediate the neuroprotection of ISO post-conditioning after cerebral I/R injury, and crosstalk between two pathways at the Gli1 level.
Collapse
Affiliation(s)
- Li Peng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Chengwei Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Mingyue Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guixing Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Qingtong Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Feng Xu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhigang Dai
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liping Xie
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun-Qiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| |
Collapse
|
207
|
Xiao W, Guo S, Chen L, Luo Y. The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental ischemic stroke. J Neuroimmunol 2019; 333:576970. [PMID: 31146104 DOI: 10.1016/j.jneuroim.2019.576970] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
Abstract
The splenic T-cell immune response to stroke has been identified as an important role in the progression of brain injury following ischemic stroke. Interleukin (IL)-33 as a novel cytokine of IL-1 family has been found to be protective for ischemic brain injury. Here, we determined the contribution of IL-33 to the T-cell immune responses in the spleen after experimental ischemic stroke. Mice were subjected to 30 min of middle cerebral artery occlusion (MCAO) for ischemic stroke induction. Recombinant mouse IL-33 (100 μg/kg) was pre-treated intraperitoneally at 30 min prior to MCAO, then the percentages of T cell subsets, related cytokines and transcription factors in the spleen tissues were measured. Intraperitoneal IL-33 pre-treatment may attenuate neurological deficit scores and infarct volumes after MCAO, which was accompanied by reduced IFN-γ+ T cells and increased Foxp3+ T cells in the spleen tissues. Meanwhile, IL-33 pre-treatment could decrease the production of IFN-γ and increase the secretion of IL-4, IL-10 and TGF-β from the spleen at 24 h after MCAO. Additionally, the mRNA level of the transcription factor T-bet was downregulated by IL-33, and the levels of GATA-3 and Foxp3 mRNA were upregulated. These results showed that the long-term protective mechanism of IL-33 in ischemic stroke may be partly associated to its modulation role for splenic T-cell immune responses through inhibiting Th1 response and promoting Treg response, suggesting that IL-33 may be a candidate treatment for human stroke via modulating the peripheral immune system following stroke.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lin Chen
- School of Physical Education, Jianghan University, Wuhan 430056, China; Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan 430056, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
208
|
Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proc Natl Acad Sci U S A 2019; 116:11010-11019. [PMID: 31097598 DOI: 10.1073/pnas.1817347116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous waves of cortical spreading depolarization (CSD) are induced in the setting of acute focal ischemia. CSD is linked to a sharp increase of extracellular K+ that induces a long-lasting suppression of neural activity. Furthermore, CSD induces secondary irreversible damage in the ischemic brain, suggesting that K+ homeostasis might constitute a therapeutic strategy in ischemic stroke. Here we report that adrenergic receptor (AdR) antagonism accelerates normalization of extracellular K+, resulting in faster recovery of neural activity after photothrombotic stroke. Remarkably, systemic adrenergic blockade before or after stroke facilitated functional motor recovery and reduced infarct volume, paralleling the preservation of the water channel aquaporin-4 in astrocytes. Our observations suggest that AdR blockers promote cerebrospinal fluid exchange and rapid extracellular K+ clearance, representing a potent potential intervention for acute stroke.
Collapse
|
209
|
Eom JW, Kim TY, Seo BR, Park H, Koh JY, Kim YH. Identifying New AMP-Activated Protein Kinase Inhibitors That Protect against Ischemic Brain Injury. ACS Chem Neurosci 2019; 10:2345-2354. [PMID: 30763060 DOI: 10.1021/acschemneuro.8b00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently reported that AMP-activated protein kinase (AMPK) contributes to zinc-induced neuronal death by inducing Bim, a pro-apoptotic Bcl-2 homology domain 3-only protein, in a liver kinase B1 (LKB1)-dependent manner. Current data suggest AMPK plays key roles in excitotoxicity and ischemic brain injury, with zinc neurotoxicity representing at least one mechanism of ischemic neuronal death. Inhibition of AMPK could be a viable therapeutic strategy to prevent ischemic brain injury following stroke. This prompted our search for novel inhibitors of AMPK activity and zinc-induced neuronal death using cultured mouse cortex and a rat model of brain injury after middle cerebral artery occlusion (MCAO). In structure-based virtual screening, 118 compounds were predicted to bind the active site of AMPK α2, and 40 showed in vitro AMPK α2 inhibitory activity comparable to compound C (a well-known, potent AMPK inhibitor). In mouse cortical neuronal cultures, 7 of 40 compound reduced zinc-induced neuronal death at levels comparable to compound C. Ultimately, only agents 2G11 and 1H10 significantly attenuated various types of neuronal death, including oxidative stress, excitotoxicity, and apoptosis. When administered as intracerebroventricular injections prior to permanent MCAO in rats, 2G11 and 1H10 reduced brain infarct volumes, whereas compound C did not. Therefore, these novel AMPK inhibitors could be drug development candidates to treat stroke.
Collapse
Affiliation(s)
- Jae-Won Eom
- Department of Molecular Biology, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Youn Kim
- Neural Injury Research Laboratory, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Bo-Ra Seo
- Neural Injury Research Laboratory, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hwangseo Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jae-Young Koh
- Neural Injury Research Laboratory, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
- Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Yang-Hee Kim
- Department of Molecular Biology, Sejong University, Seoul 05006, Republic of Korea
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
210
|
Tu Y, Guo C, Song F, Huo Y, Geng Y, Guo M, Bao H, Wu X, Fan W. Mild hypothermia alleviates diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis. Brain Res Bull 2019; 150:1-12. [PMID: 31082455 DOI: 10.1016/j.brainresbull.2019.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Diabetic patients manifest with more severe neurological deficits than non-diabetes after ischemic stroke. It has been shown that hypothermia has neuroprotective effects on cerebral ischemia, but whether it is effective for cerebral ischemia in diabetic patients remains unknown. The aim of this study was to investigate whether hypothermia can alleviate cerebral ischemic injury in diabetic rats and the regulation of autophagy and pyroptosis of the treatment. We introduced permanent middle cerebral artery occlusion (pMCAO) in a model of type 2 diabetic rats prepared by high-fat diet combined with intraperitoneal injection of STZ in vivo and mimicked cerebral ischemia with diabetes by employing high glucose stimulation and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Moreover, 3-methyladenine and bafilomycin A1 were used to evaluate the association between autophagy and pyroptosis in vitro. Our results showed that diabetes aggravated neurological deficits, increased the volume of cerebral infarction and brain edema as well as the blood brain barrier permeability after cerebral ischemia, which were alleviated by mild hypothermia. Compared with the pMCAO model in non-diabetic rats and OGD/R model without high glucose stimulation in vitro, the expression of P62, NOD-like receptor protein 3 (NLRP3), cleaved caspase-1 and Gasdermin-N increased and the ratio of microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ/Ⅰ decreased in the pMCAO model in diabetic rats and OGD/R model with high glucose stimulation, which could be reversed by mild hypothermia. In conclusion, mild hypothermia alleviated diabetes aggravated cerebral ischemic injury via activating autophagy and inhibiting pyroptosis.
Collapse
Affiliation(s)
- Yanling Tu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Cen Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Yajing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yang Geng
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China.
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032, Shanghai, China.
| |
Collapse
|
211
|
PGE 2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia. Proc Natl Acad Sci U S A 2019; 116:10019-10024. [PMID: 31036664 DOI: 10.1073/pnas.1818544116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inflammatory prostaglandin E2 (PGE2) EP2 receptor is a master suppressor of beneficial microglial function, and myeloid EP2 signaling ablation reduces pathology in models of inflammatory neurodegeneration. Here, we investigated the role of PGE2 EP2 signaling in a model of stroke in which the initial cerebral ischemic event is followed by an extended poststroke inflammatory response. Myeloid lineage cell-specific EP2 knockdown in Cd11bCre;EP2lox/lox mice attenuated brain infiltration of Cd11b+CD45hi macrophages and CD45+Ly6Ghi neutrophils, indicating that inflammatory EP2 signaling participates in the poststroke immune response. Inducible global deletion of the EP2 receptor in adult ROSA26-CreERT2 (ROSACreER);EP2lox/lox mice also reduced brain myeloid cell trafficking but additionally reduced stroke severity, suggesting that nonimmune EP2 receptor-expressing cell types contribute to cerebral injury. EP2 receptor expression was highly induced in neurons in the ischemic hemisphere, and postnatal deletion of the neuronal EP2 receptor in Thy1Cre;EP2lox/lox mice reduced cerebral ischemic injury. These findings diverge from previous studies of congenitally null EP2 receptor mice where a global deletion increases cerebral ischemic injury. Moreover, ROSACreER;EP2lox/lox mice, unlike EP2-/- mice, exhibited normal learning and memory, suggesting a confounding effect from congenital EP2 receptor deletion. Taken together with a precedent that inhibition of EP2 signaling is protective in inflammatory neurodegeneration, these data lend support to translational approaches targeting the EP2 receptor to reduce inflammation and neuronal injury that occur after stroke.
Collapse
|
212
|
Boyko M, Zvenigorodsky V, Grinshpun J, Shiyntum HN, Melamed I, Kutz R, Shelef I, Brotfain E, Frank D, Zlotnik A. Establishment of novel technical methods for evaluating brain edema and lesion volume in stroked rats: A standardization of measurement procedures. Brain Res 2019; 1718:12-21. [PMID: 31026458 DOI: 10.1016/j.brainres.2019.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/09/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
Abstract
Stroke plays a role in high morbidity and mortality. Deciphering its mechanisms and pathophysiology is critical for the creation of new drugs and therapies. Most of the previous animal models of stroke, aimed at identifying the extent and location of brain injury following stroke, require animal sacrifice, which, besides ethical considerations, also negates the ability for follow up studies with the same rats. Because of these failures, the use of clinical magnetic resonance scanners for evaluating small animal models has been increasing. Magnetic resonance imaging scanners used particularly for small-bore animals are eligible for use in high-resolution magnetic resonance imaging of rodent brains. However, high costs and scarcity factor heavily in the rare availability of these scanners. In our investigation, we sought to establish a unitary magnetic resonance imaging protocol for stroke assessment in rats. We made use of a 3-Tesla magnetic resonance imaging clinical scanner, as well as another clinical equipment, with the purpose of increasing its reproducibility. The results of inquest validated a new magnetic resonance imaging protocol, comparing a magnetic resonance imaging-measured infarcted zone to the "gold standard" of histological examination. We carried out the experimental procedure on a 3 Tesla magnetic resonance imaging clinical scanner using a conventional eight-channel receive-only coil. The two methods produced remarkable quantitative and qualitative correlations between them. Conclusively, we showed the clinical magnetic resonance imaging scanner to be a high-precision and sensitive image analysis instrument for evaluating both the infarct zone and the brain edema in a stroke experimental rat model.
Collapse
Affiliation(s)
- Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Julia Grinshpun
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Honore N Shiyntum
- Department of Biophysics and Biochemistry, Faculty of Biology, Ecology, and Medicine, Oles' Honchar Dnipro National University, Gagarin avenue 72, Dnipro 49010, Ukraine
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Evgeni Brotfain
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Dmitry Frank
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| |
Collapse
|
213
|
Gao X, Wu D, Dou L, Zhang H, Huang L, Zeng J, Zhang Y, Yang C, Li H, Liu L, Ma B, Yuan Q. Protective effects of mesenchymal stem cells overexpressing extracellular regulating kinase 1/2 against stroke in rats. Brain Res Bull 2019; 149:42-52. [PMID: 31002912 DOI: 10.1016/j.brainresbull.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although transplantation of bone marrow-derived mesenchymal stem cells (MSCs) has shown beneficial effects on stroke, lower survival of MSCs limits effects. Extracellular regulating kinase 1/2 signaling (ERK1/2) is crucial for cell survival, differentiation, and proliferation. This study was designed to explore whether MSCs modified by over-expressing ERK1/2 may reinforce beneficial effects on stroke in rats. METHODS rat MSCs transfected with ERK1/2 and empty lentivirus to generate MSCs overexpressing ERK1/2 (ERK/MSCs) and MSCs (as a control), respectively. In vitro, ERK/MSCs were plated and exposed to glutamate-induced condition, and viability of ERK/MSCs was measured. Furthermore, neural induction of ERK/MSCs was investigated in vitro. Cerebral ischemic rats were induced by occluding middle cerebral artery, and then were stereotaxically injected into ipsilateral right lateral ventricle with ERK/MSCs or MSCs 3 days after stroke and survived for 7 or 14 days after injection. RESULTS ERK/MSCs showed better viability in physiological and glutamate-induced neurotoxic conditions compared to MSCs. After neural induction, more neurons were be differentiated from ERK/MSCs than from MSCs. After transplantation, more numbers of grafted cells and improved functional recovery were observed in ERK/MSCs-treated rats compared with MSCs-treated rats. Compared with MSCs treatment, ERK/MSCs treatment significantly increased proliferation of neural stem cells in the subventricle zone (SVZ) and the MAP2/nestin double-labeled cells adjacent to the SVZ, enhanced the numbers of reactive astrocytes while suppressed microglial activation. Besides, TNF-α level was elevated in ERK/MSCs-treated rats. CONCLUSION ERK/MSCs transplantation showed better functional recovery after stroke in rats, likely in part through enhancing survival of MSCs and possibly by modulating the proliferation, neuronal de-differentiation and neuroinflammation.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China; Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, 646000, China
| | - Dandan Wu
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ling Dou
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Haibo Zhang
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jiaqi Zeng
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yiiie Zhang
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chaoxian Yang
- Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, 646000, China
| | - Huanhuan Li
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lifen Liu
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bin Ma
- Department of Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Qionglan Yuan
- Department of Neurology, Shanghai Tongji hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
214
|
MicroRNA-365 Knockdown Prevents Ischemic Neuronal Injury by Activating Oxidation Resistance 1-Mediated Antioxidant Signals. Neurosci Bull 2019; 35:815-825. [PMID: 30977043 DOI: 10.1007/s12264-019-00371-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-365 (miR-365) is upregulated in the ischemic brain and is involved in oxidative damage in the diabetic rat. However, it is unclear whether miR-365 regulates oxidative stress (OS)-mediated neuronal damage after ischemia. Here, we used a transient middle cerebral artery occlusion model in rats and the hydrogen peroxide-induced OS model in primary cultured neurons to assess the roles of miR-365 in neuronal damage. We found that miR-365 exacerbated ischemic brain injury and OS-induced neuronal damage and was associated with a reduced expression of OXR1 (Oxidation Resistance 1). In contrast, miR-365 antagomir alleviated both the brain injury and OXR1 reduction. Luciferase assays indicated that miR-365 inhibited OXR1 expression by directly targeting the 3'-untranslated region of Oxr1. Furthermore, knockdown of OXR1 abolished the neuroprotective and antioxidant effects of the miR-365 antagomir. Our results suggest that miR-365 upregulation increases oxidative injury by inhibiting OXR1 expression, while its downregulation protects neurons from oxidative death by enhancing OXR1-mediated antioxidant signals.
Collapse
|
215
|
Shan W, Li J, Xu W, Li H, Zuo Z. Critical role of UQCRC1 in embryo survival, brain ischemic tolerance and normal cognition in mice. Cell Mol Life Sci 2019; 76:1381-1396. [PMID: 30666338 PMCID: PMC6421091 DOI: 10.1007/s00018-019-03007-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Ubiquinol cytochrome c reductase core protein I (UQCRC1) is a component of the complex III in the respiratory chain. Its biological functions are unknown. Here, we showed that knockout of UQCRC1 led to embryonic lethality. Disrupting one UQCRC1 allele in mice (heterozygous mice) of both sexes did not affect their growth but reduced UQCRC1 mRNA and protein in the brain. These mice had decreased complex III formation, complex III activity and ATP content in the brain at baseline. They developed worsened neurological outcome after brain ischemia/hypoxia or focal brain ischemia compared with wild-type mice. The ischemic cerebral cortex of the heterozygous mice had decreased mitochondrial membrane potential and ATP content as well as increased free radicals. Also, the heterozygous mice performed poorly in the Barnes maze and novel object recognition tests. Finally, UQCRC1 was expressed abundantly in neurons and astrocytes. These results suggest a critical role of UQCRC1 in embryo survival. UQCRC1 may also be important by forming the complex III to maintain normal brain ischemic tolerance, learning and memory.
Collapse
Affiliation(s)
- Weiran Shan
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
| | - Jun Li
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model Core, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, PO Box 800710, Charlottesville, VA, 22908-0710, USA.
- Department of Neuroscience and Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
216
|
Lee HK, Park JY, Lee H, Kim ID, Kim SW, Yoon SH, Lee JK. Anti-Inflammatory and Neuroprotective Effects of DIPOPA (N,N-Diisopropyl-2-Oxopropanamide), an Ethyl Pyruvate Bioisoster, in the Postischemic Brain. Neurotherapeutics 2019; 16:523-537. [PMID: 30680637 PMCID: PMC6554410 DOI: 10.1007/s13311-019-00711-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have protective properties, which have been attributed to its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop better derivatives of EP, we previously synthesized DEOPA (N,N-diethyl-2-oxopropanamide, a novel isoster of EP) which has greater neuroprotective effects than EP, probably due to its anti-inflammatory and anti-excitotoxic effects. In the present study, we synthesized 3 DEOPA derivatives, in which its diethylamino group was substituted with diisopropylamino, dipropylamino, or diisobutylamino groups. Among them, DIPOPA (N,N-diisopropyl-2-oxopropanamide) containing diisopropylamino group had a greater neuroprotective effect than DEOPA or EP when administered intravenously to a rat middle cerebral artery occlusion (MCAO) model at 9 h after MCAO. Furthermore, DIPOPA had a wider therapeutic window than DEOPA and a marked reduction of infarct volume was accompanied by greater neurological and behavioral improvements. In particular, DIPOPA exerted robust anti-inflammatory effects, as evidenced by marked suppressions of microglia activation and neutrophil infiltration in the MCAO model, in microglial cells, and in neutrophil-endothelial cocultures at lower concentration, and did so more effectively than DEOPA. In particular, DIPOPA remarkably suppressed neutrophil infiltration into brain parenchyma, and this effect was attributed to the expressional inhibitions of cell adhesion molecules in neutrophils of brain parenchyma and in circulating neutrophils via NF-κB inhibition. Together, these results indicate the robust neuroprotective effects of DIPOPA are attributable to its anti-inflammatory effects and suggest that DIPOPA offers a potential therapeutic means of ameliorating cerebral ischemic injury and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon, South Korea
| | - Seung-Woo Kim
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon, South Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea.
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea.
| |
Collapse
|
217
|
Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis. Neurochem Res 2019; 44:1582-1592. [PMID: 30911982 DOI: 10.1007/s11064-019-02782-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of death and disability in neonatal or perinatal all over the world, seriously affecting children, families and society. Unfortunately, only few satisfactory therapeutic strategies have been developed. It has been demonstrated that Echinacoside (ECH), the major active component of Cistanches Herba, exerts many beneficial effects, including antioxidative, anti-apoptosis, and neuroprotective in the traditional medical practice in China. Previous research has demonstrated that ECH plays a protective effect on ischemic brain injury. This study aimed to investigate whether ECH provides neuroprotection against HIBD in neonatal rats. We subjected 120 seven-day-old Sprague-Dawley rats to cerebral hypoxia-ischemia (HI) and randomly divided into the following groups: sham group, HI group and ECH (40, 80 and 160 mg/kg, intraperitoneal) post-administration group. After 48 h of HI, 2,3,5-Triphenyltetrazolium chloride, Hematoxylin-Eosin and Nissl staining were conducted to evaluate the extent of brain damage. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) production were assessed to determine the antioxidant capacity of ECH. TUNEL staining and Western blot analysis was performed to respectively estimate the extent of brain cell apoptosis and the expression level of the apoptosis-related proteins caspase-3, Bax, and Bcl-2. Results showed that ECH remarkably reduced the brain infarct volume and ameliorated the histopathological damage to neurons. ECH post-administration helped recovering the antioxidant enzyme activities and decreasing the MDA production. Furthermore, ECH treatment suppressed neuronal apoptosis in the rats with HIBD was by reduced TUNEL-positive neurons, the caspase-3 levels and increased the Bcl-2/Bax ratio. These results suggested that ECH treatment was beneficial to reducing neuronal damage by attenuating oxidative stress and apoptosis in the brain under HIBD.
Collapse
|
218
|
Chen X, Nakada S, Donahue JE, Chen RH, Tucker R, Qiu J, Lim YP, Stopa EG, Stonestreet BS. Neuroprotective effects of inter-alpha inhibitor proteins after hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 2019; 317:244-259. [PMID: 30914159 DOI: 10.1016/j.expneurol.2019.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in the perinatal period. Hypothermia is the only approved intervention for neonatal HI encephalopathy. However, this treatment is only partially protective, has a narrow therapeutic time window after birth and only can be used to treat full-term infants. Consequently, additional therapies are critically needed. Inflammation is an important contributing factor to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins with anti-inflammatory properties. We have previously shown that IAIPs reduce neuronal cell death and improve behavioral outcomes when given after carotid artery ligation, but before hypoxia in male neonatal rats. The objective of the current study was to investigate the neuroprotective effects of treatment with IAIPs given immediately or 6 h after HI in both male and female neonatal rats. HI was induced with the Rice-Vannucci method in postnatal (P) day 7 rats. After ligation of the right common carotid artery, P7 rats were exposed to 90 min of hypoxia (8% oxygen). Human plasma-derived IAIPs or placebo (phosphate buffered saline) was given at zero, 24, and 48 h after HI. Brains were perfused, weighed and fixed 72 h after HI at P10. In a second, delayed treatment group, the same procedure was followed except that IAIPs or placebo were given at 6, 24 and 48 h after HI. Separate sham-operated, placebo-treated groups were exposed to identical protocols but were not exposed to carotid artery ligation and remained in room air. Rat sex was recorded. The effects of IAIPs on HI brain injury were examined using histopathological scoring and immunohistochemical analyses of the brain and by using infarct volume measurements on frozen tissue of the entire brain hemispheres ipsilateral and contralateral to HI injury. IAIPs given immediately after HI improved (P < 0.050) histopathological brain injury across and within the cingulate, caudate/putamen, thalamus, hippocampus and parietal cortex in males, but not in females. In contrast, IAIPs given immediately after HI reduced (P < 0.050) infarct volumes of the hemispheres ipsilateral to HI injury in similarly both the males and females. Treatment with IAIPs also resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI group, reduced (P < 0.050) neuronal and non-neuronal cell death in the cortex and total hemisphere, and also increased the total area of oligodendrocytes determined by CNPase in the ipsilateral hemisphere and corpus callosum (P < 0.050) of male, but not female subjects exposed to HI. Delayed treatment with IAIPs 6 h after HI did not improve histopathological brain injury in males or females, but resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI males. Therefore, treatment with IAIPs immediately after HI improved brain weights and reduced neuropathological brain injury and cell death in male rats, and reduced infarct volume in both male and female neonatal rats. We conclude that IAIPs exert neuroprotective effects after exposure to HI in neonatal rats and may exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - John E Donahue
- The Warren Alpert Medical School of Brown University, USA; Department of Pathology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, USA
| | - Ray H Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA
| | - Richard Tucker
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA
| | - Joseph Qiu
- ProThera Biologics, Inc, Providence, RI, USA
| | - Yow-Pin Lim
- The Warren Alpert Medical School of Brown University, USA; ProThera Biologics, Inc, Providence, RI, USA; Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Edward G Stopa
- The Warren Alpert Medical School of Brown University, USA; Department of Pathology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Warren Alpert Medical School of Brown University, USA.
| |
Collapse
|
219
|
Cheng Z, Zhang M, Ling C, Zhu Y, Ren H, Hong C, Qin J, Liu T, Wang J. Neuroprotective Effects of Ginsenosides against Cerebral Ischemia. Molecules 2019; 24:molecules24061102. [PMID: 30897756 PMCID: PMC6471240 DOI: 10.3390/molecules24061102] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ginseng has been used worldwide as traditional medicine for thousands of years, and ginsenosides have been proved to be the main active components for their various pharmacological activities. Based on their structures, ginsenosides can be divided into ginseng diol-type A and ginseng triol-type B with different pharmacological effects. In this study, six ginsenosides, namely ginsenoside Rb1, Rh2, Rg3, Rg5 as diol-type ginseng saponins, and Rg1 and Re as triol-type ginseng saponins, which were reported to be effective for ischemia-reperfusion (I/R) treatment, were chosen to compare their protective effects on cerebral I/R injury, and their mechanisms were studied by in vitro and in vivo experiments. It was found that all ginsenosides could reduce reactive oxygen species (ROS), inhibit apoptosis and increase mitochondrial membrane potential in cobalt chloride-induced (CoCl₂-induced) PC12 cells injury model, and they could reduce cerebral infarction volume, brain neurological dysfunction of I/R rats in vivo. The results of immunohistochemistry and western blot showed that the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), silencing information regulator (SIRT1) and nuclear transcription factor P65 (NF-κB) in hippocampal CA1 region of some ginsenoside groups were also reduced. In general, the effect on cerebral ischemia of Rb1 and Rg3 was significantly improved compared with the control group, and was the strongest among all the ginsenosides. The effect on SIRT1 activation of ginsenoside Rb1 and the inhibition effect of TLR4/MyD88 protein expression of ginsenoside Rb1 and Rg3 were significantly stronger than that of other groups. The results indicated that ginsenoside Rg1, Rb1, Rh2, Rg3, Rg5 and Re were effective in protecting the brain against ischemic injury, and ginsenoside Rb1 and Rg3 have the strongest therapeutic activities in all the tested ginsenosides. Their neuroprotective mechanism is associated with TLR4/MyD88 and SIRT1 activation signaling pathways, and they can reduce cerebral ischemic injury by inhibiting NF-κB transcriptional activity and the expression of proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).
Collapse
Affiliation(s)
- Zhekang Cheng
- School of Pharmacy, Minzu University of China & Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China.
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Meng Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chengli Ling
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Ying Zhu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Hongwei Ren
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China & Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
- Institute of Integrative Medicine, Fudan University, Shanghai 201203, China.
| |
Collapse
|
220
|
Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis 2019; 127:287-302. [PMID: 30885791 DOI: 10.1016/j.nbd.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.
Collapse
|
221
|
Dimopoulos C, Damaskos C, Papadakis M, Garmpis N, Kontzoglou K, Perrea D, Moraitis S, Daskalopoulou A, Papaspirou I, Georgopoulos S, Nikiteas N. Expression of S100B Protein in Ischemia/Reperfusion-Induced Brain Injury After Cyclosporine Therapy: A Biochemical Serum Marker with Prognostic Value? Med Sci Monit 2019; 25:1637-1644. [PMID: 30826814 PMCID: PMC6410611 DOI: 10.12659/msm.912810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Accumulating evidence has indicated that S100B protein may be involved in the pathophysiology of ischemia-reperfusion brain injury. Cyclosporine has been shown to have neuroprotective functions. This study investigated the effect of cyclosporine on S100B serum levels and the severity of brain tissue damage in a rat model of cerebral ischemia-reperfusion (I/R). Material/Methods Twelve-week-old Wistar male rats were randomly divided into Control I/R and Cyclosporine I/R groups (n=10 each). Cyclosporine was given orally by gavage for 5 days prior to cerebral I/R, at a total volume of 15 mg/kg/day. The Control group received an equal volume of saline. Body weight was measured and all animals were subjected to 60-min focal ischemia by filament occlusion of the middle cerebral artery. ELISA was used to assess the concentrations of serum S100B and development of brain infarct size and neurological outcomes were determined at 2 and 24 h after occlusion withdrawal. Results Cyclosporine improved the neurological deficit score and decreased the cerebral infarct size and body weight. S100B serum levels were significantly elevated in Cyclosporine-treated rats compared with untreated Control rats during the reperfusion phase. Total infarct size was positively associated with S100B serum levels in the Control I/R group, but no significant correlation was observed in the Cyclosporine I/R group. Conclusions Cyclosporine seems to affect both ischemia-reperfusion brain tissue damage and S100B protein serum levels. S100B serum level appears to be a state marker for the severity of the cerebral ischemia-reperfusion, rather than a trait marker for Cyclosporine responsiveness.
Collapse
Affiliation(s)
- Christos Dimopoulos
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Medical School of Athens, Athens, Greece.,Department of Vascular and Endovascular Surgery, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Christos Damaskos
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece.,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Papadakis
- Department of Plastic Surgery, Helios Clinic Wuppertal, University Hospital Witten-Herdecke, Wuppertal, Germany
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece
| | - Stavros Moraitis
- Department of Pathology, Alexandra Hospital Athens, Athens, Greece
| | - Afroditi Daskalopoulou
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece
| | - Irini Papaspirou
- Department of Pathology, Alexandra Hospital Athens, Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Surgery, Vascular Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- Laboratory for Experimental Surgery and Surgical Research "N.S Christeas", Medical School of Athens, Athens, Greece.,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
222
|
Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp Neurol 2019; 313:60-78. [DOI: 10.1016/j.expneurol.2018.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
|
223
|
Bonetti NR, Diaz-Cañestro C, Liberale L, Crucet M, Akhmedov A, Merlini M, Reiner MF, Gobbato S, Stivala S, Kollias G, Ruschitzka F, Lüscher TF, Beer JH, Camici GG. Tumour Necrosis Factor-α Inhibition Improves Stroke Outcome in a Mouse Model of Rheumatoid Arthritis. Sci Rep 2019; 9:2173. [PMID: 30778120 PMCID: PMC6379411 DOI: 10.1038/s41598-019-38670-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disorder where incidence and severity of myocardial infarction are increased. Data on the incidence and outcome of stroke are conflicting. Thus, we investigated outcome after Ischemia/Reperfusion (I/R) brain injury in a mouse model of RA and assessed for the role of the tumour necrosis factor-α (TNF-α) inhibitor Infliximab herein. We used a TNF-α reliant mouse model of RA. RA and wildtype (WT) animals were treated with vehicle (RA/WT) or Infliximab (RA Infliximab) for 4 weeks, before undergoing I/R brain injury. RA-animals displayed larger strokes and poorer neurological performance. Immunohistochemistry on brain sections revealed increased numbers of resident and peripheral innate immune cells (microglia and macrophages); increased Blood-Brain-Barrier (BBB)-disruption; decreased levels of the tight junction proteins (TJPs) claudin-5 and occludin; increased expression of matrix-metalloproteinases (MMP)-3 and -9 and enhanced lipid peroxidation. Treatment with Infliximab corrected these alterations. We show that RA associates to worse stroke-outcome via exacerbated BBB degradation by decrease of the TJPs claudin-5 and occludin. We identified MMPs-3 and -9 and increased oxidative stress as potential mediators thereof. Increased numbers of resident and peripheral innate immune cells (microglia and macrophages) may in turn contribute to all these effects. Infliximab-treatment restored the phenotype of RA-mice to baseline. Our data provide evidence clearly linking RA to adverse stroke-outcome in mice and indicate an approved TNF-α inhibitor as a potential strategy to reduce stroke-burden in this setting.
Collapse
Affiliation(s)
- N R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - C Diaz-Cañestro
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - L Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - M Crucet
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - A Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - M Merlini
- Gladstone Institute of Neurological Disease; UCSF, San Francisco, CA, USA
| | - M F Reiner
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - S Gobbato
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - S Stivala
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - G Kollias
- Biomedical Sciences Research Center, Varkiza, Greece
| | - F Ruschitzka
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - T F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Royal Brompton and Harefield Hospitals Trust, London, UK
| | - J H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - G G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
224
|
Koch S, Mueller S, Foddis M, Bienert T, von Elverfeldt D, Knab F, Farr TD, Bernard R, Dopatka M, Rex A, Dirnagl U, Harms C, Boehm-Sturm P. Atlas registration for edema-corrected MRI lesion volume in mouse stroke models. J Cereb Blood Flow Metab 2019; 39:313-323. [PMID: 28829217 PMCID: PMC6360485 DOI: 10.1177/0271678x17726635] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lesion volume measurements with magnetic resonance imaging are widely used to assess outcome in rodent models of stroke. In this study, we improved a mathematical framework to correct lesion size for edema which is based on manual delineation of the lesion and hemispheres. Furthermore, a novel MATLAB toolbox to register mouse brain MR images to the Allen brain atlas is presented. Its capability to calculate edema-corrected lesion size was compared to the manual approach. Automated image registration performed equally well in in a mouse middle cerebral artery occlusion model (Pearson r = 0.976, p = 2.265e-11). Information encapsulated in the registration was used to generate maps of edema induced tissue volume changes. These showed discrepancies to simplified tissue models underlying the manual approach. The presented techniques provide biologically more meaningful, voxel-wise biomarkers of vasogenic edema after stroke.
Collapse
Affiliation(s)
- Stefan Koch
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Susanne Mueller
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- Charité Core Facility 7T Experimental
MRIs,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Marco Foddis
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Thomas Bienert
- Department of Radiology – Medical
Physics, and BrainLinks-BrainTools Excellence Cluster, Medical Center – University
of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology – Medical
Physics, and BrainLinks-BrainTools Excellence Cluster, Medical Center – University
of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Felix Knab
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Tracy D Farr
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- School of Life Sciences, University of
Nottingham, Nottingham, UK
| | - René Bernard
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Monika Dopatka
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - André Rex
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- German Center for Neurodegenerative
Diseases (DZNE), Berlin, Germany
- Berlin Institute of Health, Berlin,
Germany
| | - Christoph Harms
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology,
Center for Stroke Research Berlin (CSB), and NeuroCure,
Charité
University Medicine Berlin, Berlin,
Germany
- Charité Core Facility 7T Experimental
MRIs,
Charité
University Medicine Berlin, Berlin,
Germany
- Philipp Boehm-Sturm, Department of
Experimental Neurology, Center for Stroke Research, Charitéplatz 1, Berlin
10117, Germany.
| |
Collapse
|
225
|
Selakovic V, Arsenijevic L, Jovanovic M, Sivcev S, Jovanovic N, Leontijevic M, Stojanovic M, Radenkovic M, Andjus P, Radenovic L. Functional and pharmacological analysis of agmatine administration in different cerebral ischemia animal models. Brain Res Bull 2019; 146:201-212. [PMID: 30641119 DOI: 10.1016/j.brainresbull.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
Agmatine (AgM, 100 mg/kg i.p.) effect was tested in parallel at two animal models of cerebral ischemia - rat MCAO model (60'/24 h, 60'/48 h, 90'/24 h, 90'/48 h) and gerbil global ischemia (10') model, administrated 5 min after reperfusion. Aim was to evaluate AgM effect on functional outcome 24 and 48 h after MCAO on neurological and sensor-motor function, and coordination in rats. AgM administration significantly reduced infarct volume, improved neurological score and improved post-ischemic oxidative status. Results of behavioral tests (cylinder test, beam walking test, and adhesive removal test) have shown very effective functional recovery after AgM administration. Efficiency of AgM administration in gerbils was observed in forebrain cortex, striatum, hippocampus, and cerebellum at the level of each examined oxidative stress parameter (nitric oxide level, superoxide production, superoxide dismutase activity, and index of lipid peroxidation) measured in four different time points starting at 3 h up to 48 h after reperfusion. The highest levels were obtained 6 h after the insult. The most sensitive oxidative stress parameter to AgM was nitric oxide. Additionally, we performed pharmacological analysis of AgM on rat isolated common carotid arteries. The findings imply that mixed population of potassium channels located on the smooth muscle cells was involved in common carotid artery response to AgM, with predominance of inward rectifying K+ channels. In our comparative experimental approach, judged by behavioral, biochemical, as well as pharmacological data, the AgM administration showed an effective reduction of ischemic neurological damage and oxidative stress, hence indicating a direction towards improving post-stroke recovery.
Collapse
Affiliation(s)
- V Selakovic
- Institute of Medical Research, Medical Faculty Military Medical Academy, University of Defense, Serbia
| | | | - M Jovanovic
- Faculty of Biology, University of Belgrade, Serbia
| | - S Sivcev
- Faculty of Biology, University of Belgrade, Serbia
| | - N Jovanovic
- Faculty of Biology, University of Belgrade, Serbia
| | | | - M Stojanovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - M Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - P Andjus
- Faculty of Biology, University of Belgrade, Serbia
| | - L Radenovic
- Faculty of Biology, University of Belgrade, Serbia.
| |
Collapse
|
226
|
Zhang L, Chopp M, Wang C, Zhang Y, Lu M, Zhang T, Zhang ZG. Prospective, double blinded, comparative assessment of the pharmacological activity of Cerebrolysin and distinct peptide preparations for the treatment of embolic stroke. J Neurol Sci 2019; 398:22-26. [PMID: 30665068 DOI: 10.1016/j.jns.2019.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Our previous work in acute ischemic stroke and TBI models focused on efficacy and pharmacological parameters of Cerebrolysin®. In this prospective, randomized, blinded, placebo-controlled study we compared efficacy of neuropeptide preparations with putative neurotrophic potential to the reference product Cerebrolysin® by assessing functional outcome and lesion volumes after embolic stroke in a rodent model. METHODS Male Wistar rats were subjected to embolic right middle cerebral artery occlusion and were treated with: 1) Cognistar® (Cerebroprotein Hydrolysate) 2.5 ml/kg, 2) Cerebrolysat® 2.5 ml/kg, 3) Cortexin® 1.7 mg/kg, 4) Cerebrolysin® 2.5 ml/kg, or 5) 1 ml of saline according to a pre-generated randomization plan. Dosages were defined according to the packet leaflet of the corresponding preparation and were adapted to the animal model as previously described. All enrolled rats received intraperitoneal injections once daily for 10 consecutive days, starting 4 h after occlusion. Functional outcome was assessed once weekly over four weeks by using a battery of behavioral tests. Infarct volume was measured four weeks after occlusion. Generalized Estimation Equations (GEE) was performed to study the treatment effect on overall functional recovery at day 28 (primary outcome), compared to saline controls. RESULTS Similar functional outcome was observed for saline control, Cognistar®, Cerebrolysat® and Cortexin®; in contrast, a significantly improved neurological outcome was observed with Cerebrolysin® treatment in comparison to saline as well as to the comparator drug treatment (p < .002). However, there was no significant difference in lesion volumes between rats treated with either Cortexin® (33.5 ± 1.9%), Cerebrolysat® (28.5 ± 2.4%), Cognistar® (34.7 ± 2.0%), or Cerebrolysin® (26.5 ± 2.3%) compared to saline-treated rats (30.8 ± 2.1%). CONCLUSION Among all tested neuropeptide preparations, Cerebrolysin® was the only agent that was associated with a significant improvement of neurological outcome after stroke.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Chunyang Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Talan Zhang
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA.
| |
Collapse
|
227
|
He F, Zhang N, Lv Y, Sun W, Chen H. Low‑dose lipopolysaccharide inhibits neuronal apoptosis induced by cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1 signaling pathway in rats. Mol Med Rep 2019; 19:1443-1452. [PMID: 30628689 PMCID: PMC6390019 DOI: 10.3892/mmr.2019.9827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/03/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of low‑dose lipopolysaccharide (LPS) on ischemia/reperfusion (I/R)‑induced brain injury, and to explore the mechanism of phosphoinositide 3‑kinase (PI3K)/Akt/forkhead box protein (Fox)O1 signaling pathway. Male Sprague‑Dawley rats were divided into control group (control), ischemia/reperfusion surgery group (I/R) and low‑dose LPS treatment group (LPS). An I/R model was established and the hemodynamic parameters were recorded at the end of I/R injury. The brain tissues were observed by hematoxylin and eosin staining, immunohistochemistry and terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling staining. Microglia were treated with LPS following hypoxia/reoxygenation. The cellular viability was detected by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. The apoptotic rate of microglia was detected using AnnexinV/propidium iodide staining. The expression of B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated X (Bax), and caspase‑3 were detected by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Akt, phosphorylated (p)‑Akt, FoxO1 and p‑FoxO1 expression were detected by western blotting. It was previously reported that, following I/R injury, neuronal cells were disorderly and brain injury markers (neuron‑specific enolase and S100 β), inflammatory cytokines [interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α] levels were significantly upregulated. In the present study, the expression levels of Bax, caspase‑3 Akt and p‑Akt were significantly higher, while that of Bcl‑2, FoxO1 and p‑FoxO1 were significantly lower in the I/R group. LPS treatment significantly increased the viability of neuronal cells and decreased the rate of neuronal cell apoptosis. Following the addition of PI3K signaling pathway inhibitor LY294002 to microglia, LPS reduced the levels of activated Akt, increased the downstream regulatory gene phosphorylation of FoxO1 and reduced microglia apoptosis. It was concluded that LPS can alleviate I/R‑induced brain injury, inhibit neuronal cells apoptosis and protect neuronal cells via the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Fan He
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Nannan Zhang
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Lv
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Wenhao Sun
- Department of Neurology, The General Hospital of Tianjin Medical University, Tianjin 300020, P.R. China
| | - Huisheng Chen
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
228
|
Zheng Y, He R, Wang P, Shi Y, Zhao L, Liang J. Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomater Sci 2019; 7:2037-2049. [DOI: 10.1039/c8bm01449c] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inflammation occurs throughout the progression of cerebral ischemia/reperfusion and mediates myriads of pathological events following an ischemic insult.
Collapse
Affiliation(s)
- Yan Zheng
- School of Pharmacy
- Jinzhou Medical University
- Jinzhou 121000
- P R China
| | - Ruyi He
- School of Pharmacy
- Jinzhou Medical University
- Jinzhou 121000
- P R China
| | - Peng Wang
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province
- Jinzhou Medical University
- Jinzhou 121000
- P R China
| | - Yijie Shi
- School of Pharmacy
- Jinzhou Medical University
- Jinzhou 121000
- P R China
| | - Liang Zhao
- School of Pharmacy
- Jinzhou Medical University
- Jinzhou 121000
- P R China
| | - Jia Liang
- Life Science Institution
- Jinzhou Medical University
- Jinzhou 121000
- P R China
| |
Collapse
|
229
|
Li X, Zhang D, Bai Y, Xiao J, Jiao H, He R. Ginaton improves neurological function in ischemic stroke rats via inducing autophagy and maintaining mitochondrial homeostasis. Neuropsychiatr Dis Treat 2019; 15:1813-1822. [PMID: 31308674 PMCID: PMC6613354 DOI: 10.2147/ndt.s205612] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The present study was carried out to confirm the protective effect of extract of Ginkgo biloba (Ginaton) against ischemic neuronal damage post-treatment at 24 h after reperfusion in rats with middle cerebral artery occlusion (MCAO) and further reveal its possible mechanisms. METHODS Adult male Sprague-Dawley rats were modeled by MCAO for 2 h. The rats were divided into three groups: sham, model, and Ginaton (50 mg/kg). All animals received treatment once a day for 14 days from 24 h after reperfusion. Modified neurological severity score test was performed in 1, 7 and 14 days after MCAO, and beam walking test was performed only 14 days after MCAO. Hematoxylin-eosin straining was implemented to measure infarct volume and immunohistochemical analysis was performed to calculate the number of neurons in ischemic cortex penumbra. Western blot was used to evaluate the expression of autophagy (Beclin1, LC3, AMPK, mTOR, ULK), mitochondrial dynamic protein (Parkin, DRP1, OPA1) and apoptosis (Bcl-2, Bax). RESULTS Post-treatment with Ginaton for 14 days decreased neurological deficit score, promoted the recovery of motor function, and noticeably reduced infarct size. Besides, Ginaton also alleviated the loss of NeuN-positive cells in ischemic cortex penumbra. In ischemic cortex, Ginaton increased the expression of Beclin1 and LC3-Ⅱ, elevated the AMPK, mTOR and ULK1, and induced autophagy. Moreover, Ginaton treatment upregulated Parkin, DRP1, and OPA1, and elevated the ratio of Bcl-2/Bax in 14 days after MCAO reperfusion injury. CONCLUSION Ginaton exhibited obvious neuroprotective effects in MCAO rats with initial administered 24 h after MCAO. The mechanism of Ginaton included induction of autophagy via activation of the AMPK pathway, maintenance of mitochondrial homeostasis and inhibition of apoptosis.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
| | - Deli Zhang
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
| | - Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
| | - Jiyuan Xiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
| | - Rongxia He
- Department of Gynecology, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China
| |
Collapse
|
230
|
Lin W, Hsuan YCY, Lin MT, Kuo TW, Lin CH, Su YC, Niu KC, Chang CP, Lin HJ. Human Umbilical Cord Mesenchymal Stem Cells Preserve Adult Newborn Neurons and Reduce Neurological Injury after Cerebral Ischemia by Reducing the Number of Hypertrophic Microglia/Macrophages. Cell Transplant 2018; 26:1798-1810. [PMID: 29338384 PMCID: PMC5784525 DOI: 10.1177/0963689717728936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microglia are the first source of a neuroinflammatory cascade, which seems to be involved in every phase of stroke-related neuronal damage. Two weeks after transient middle cerebral artery occlusion (MCAO), vehicle-treated rats displayed higher numbers of total ionized calcium-binding adaptor molecule 1 (Iba-1)-positive cells, greater cell body areas of Iba-1-positive cells, and higher numbers of hypertrophic Iba-1-positive cells (with a cell body area over 80 μm2) in the ipsilateral ischemic brain regions including the frontal cortex, striatum, and parietal cortex. In addition, MCAO decreased the number of migrating neuroblasts (or DCX- and 5-ethynyl-2′-deoxyuridine-positive cells) in the cortex, subventricular zone, and hippocampus of the ischemic brain, followed by neurological injury (including brain infarct and neurological deficits). Intravenous administration of human umbilical cord–derived mesenchymal stem cells (hUC-MSCs; 1 × 106 or 4 × 106) at 24 h after MCAO reduced neurological injury, decreased the number of hypertrophic microglia/macrophages, and increased the number of newborn neurons in rat brains. Thus, the accumulation of hypertrophic microglia/macrophages seems to be detrimental to neurogenesis after stroke. Treatment with hUC-MSCs preserved adult newborn neurons and reduced functional impairment after transient cerebral ischemia by reducing the number of hypertrophic microglia/macrophages.
Collapse
Affiliation(s)
- Willie Lin
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | | | - Mao-Tsun Lin
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ting-Wei Kuo
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | | | - Yu-Chin Su
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | - Ko-Chi Niu
- 4 Department of Hyperbaric Oxygen, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ching-Ping Chang
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan.,3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,5 The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Jung Lin
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,6 Department of Emergency Medicine, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
231
|
Kim T, Mehta SL, Morris-Blanco KC, Chokkalla AK, Chelluboina B, Lopez M, Sullivan R, Kim HT, Cook TD, Kim JY, Kim H, Kim C, Vemuganti R. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci Signal 2018; 11:eaat4285. [PMID: 30538177 PMCID: PMC7005928 DOI: 10.1126/scisignal.aat4285] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic stroke, which is caused by a clot that blocks blood flow to the brain, can be severely disabling and sometimes fatal. We previously showed that transient focal ischemia in a rat model induces extensive temporal changes in the expression of cerebral microRNAs, with a sustained decrease in the abundance of miR-7a-5p (miR-7). Here, we evaluated the therapeutic efficacy of a miR-7 mimic oligonucleotide after cerebral ischemia in rodents according to the Stroke Treatment Academic Industry Roundtable (STAIR) criteria. Rodents were injected locally or systemically with miR-7 mimic before or after transient middle cerebral artery occlusion. Decreased miR-7 expression was observed in both young and aged rats of both sexes after cerebral ischemia. Pre- or postischemic treatment with miR-7 mimic decreased the lesion volume in both sexes and ages studied. Furthermore, systemic injection of miR-7 mimic into mice at 30 min (but not 2 hours) after cerebral ischemia substantially decreased the lesion volume and improved motor and cognitive functional recovery with minimal peripheral toxicity. The miR-7 mimic treatment substantially reduced the postischemic induction of α-synuclein (α-Syn), a protein that induces mitochondrial fragmentation, oxidative stress, and autophagy that promote neuronal cell death. Deletion of the gene encoding α-Syn abolished miR-7 mimic-dependent neuroprotection and functional recovery in young male mice. Further analysis confirmed that the transcript encoding α-Syn was bound and repressed by miR-7. Our findings suggest that miR-7 mimics may therapeutically minimize stroke-induced brain damage and disability.
Collapse
Affiliation(s)
- TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Lopez
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ruth Sullivan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hung Tae Kim
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thomas D Cook
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Joo Yong Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - HwuiWon Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Chanul Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA.
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53792, USA
- Williams S. Middleton Veterans Administration Hospital Madison, Madison, WI 53705, USA
| |
Collapse
|
232
|
Enhancing Base Excision Repair of Mitochondrial DNA to Reduce Ischemic Injury Following Reperfusion. Transl Stroke Res 2018; 10:664-671. [PMID: 30535792 PMCID: PMC6842339 DOI: 10.1007/s12975-018-0680-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023]
Abstract
We hypothesize that enhancing mitochondrial base excision repair (BER) capability in brain will reduce reperfusion-associated ischemic brain injury. Post-stroke reperfusion was modeled in mice via transient filament occlusion of the middle cerebral artery (60 min) (transient MCAO). Administration of a TAT-modified form of a DNA glycosylase (EndoIII) following reperfusion of the brain reduced resultant brain infarct volume. Protection was dose-dependent, BER enzyme specific, and regionally specific (more effective via the jugular vein). EndoIII is compatible with tissue plasminogen activator (tPA). The time window of a single dose of EndoIII effect is 3 h following reperfusion onset. These data suggest a novel approach to enhance protection of reperfused brain in the setting of revascularization procedures (thrombectomy or thrombolytic therapy) following stroke.
Collapse
|
233
|
Sun WH, He F, Zhang NN, Zhao ZA, Chen HS. Time dependent neuroprotection of dexamethasone in experimental focal cerebral ischemia: The involvement of NF-κB pathways. Brain Res 2018; 1701:237-245. [DOI: 10.1016/j.brainres.2018.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
|
234
|
Deuchar GA, van Kralingen JC, Work LM, Santosh C, Muir KW, McCabe C, Macrae IM. Preclinical Validation of the Therapeutic Potential of Glasgow Oxygen Level Dependent (GOLD) Technology: a Theranostic for Acute Stroke. Transl Stroke Res 2018; 10:583-595. [PMID: 30506268 PMCID: PMC6733820 DOI: 10.1007/s12975-018-0679-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
In acute stroke patients, penumbral tissue is non-functioning but potentially salvageable within a time window of variable duration and represents target tissue for rescue. Reperfusion by thrombolysis and/or thrombectomy can rescue penumbra and improve stroke outcomes, but these treatments are currently available to a minority of patients. In addition to the utility of Glasgow Oxygen Level Dependent (GOLD) as an MRI contrast capable of detecting penumbra, its constituent perfluorocarbon (PFC) oxygen carrier, combined with normobaric hyperoxia, also represents a potential acute stroke treatment through improved oxygen delivery to penumbra. Preclinical studies were designed to test the efficacy of an intravenous oxygen carrier, the perfluorocarbon emulsion Oxycyte® (O-PFC), combined with normobaric hyperoxia (50% O2) in both in vitro (neuronal cell culture) and in vivo rat models of ischaemic stroke. Outcome was assessed through the quantification of lipid peroxidation and oxidative stress levels, mortality, infarct volume, neurological scoring and sensorimotor tests of functional outcome in two in vivo models of stroke. Additionally, we investigated evidence for any positive or negative interactions with the thrombolytic recombinant tissue plasminogen activator (rt-PA) following embolus-induced stroke in rats. Treatment with intravenous O-PFC + normobaric hyperoxia (50% O2) provided evidence of reduced infarct size and improved functional recovery. It did not exacerbate oxidative stress and showed no adverse interactions with rt-PA. The positive results and lack of adverse effects support human trials of O-PFC + 50% O2 normobaric hyperoxia as a potential therapeutic approach. Combined with the diagnostic data presented in the preceding paper, O-PFC and normobaric hyperoxia is a potential theranostic for acute ischaemic stroke.
Collapse
Affiliation(s)
- Graeme A Deuchar
- Aurum Biosciences Ltd, 20-23 Woodside Place, Glasgow, Scotland, G3 7QL, UK.
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Josie C van Kralingen
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Celestine Santosh
- Aurum Biosciences Ltd, 20-23 Woodside Place, Glasgow, Scotland, G3 7QL, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, G51 4TF, UK
| | - Keith W Muir
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, G51 4TF, UK
| | - Chris McCabe
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - I Mhairi Macrae
- Institute of Neuroscience & Psychology, College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
235
|
Jeanneret V, Ospina JP, Diaz A, Manrique LG, Merino P, Gutierrez L, Torre E, Wu F, Cheng L, Yepes M. Tissue-type plasminogen activator protects the postsynaptic density in the ischemic brain. J Cereb Blood Flow Metab 2018; 38:1896-1910. [PMID: 29547062 PMCID: PMC6259311 DOI: 10.1177/0271678x18764495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia causes the presynaptic release of tissue-type plasminogen activator (tPA). The postsynaptic density (PSD) is a postsynaptic structure that provides a matrix where signaling transduction of excitatory synapses takes place. The postsynaptic density protein-95 (PSD-95) is the most abundant scaffolding protein in the postsynaptic density (PSD), where it modulates the postsynaptic response to the presynaptic release of glutamate by regulating the anchoring of glutamate receptors to the PSD. We found that tPA induces the local translation of PSD-95 mRNA and the subsequent recruitment of PSD-95 protein to the PSD, via plasminogen-independent activation of TrkB receptors. Our data show that PSD-95 is removed from the PSD during the early stages of cerebral ischemia, and that this effect is abrogated by either the release of neuronal tPA, or intravenous administration of recombinant tPA (rtPA). We report that the effect of tPA on PSD-95 is associated with inhibition of the phosphorylation and recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the PSD, known to amplify the effect of the excitotoxic injury, and that this is followed by TrkB-mediated protection of dendritic spines from the harmful effects of the hypoxic insult. These data reveal that tPA is a synaptic protector in the ischemic brain.
Collapse
Affiliation(s)
- Valerie Jeanneret
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juan P Ospina
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ariel Diaz
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Luis G Manrique
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura Gutierrez
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Fang Wu
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Lihong Cheng
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,3 Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
236
|
Progesterone improves functional outcomes after transient focal cerebral ischemia in both aged male and female rats. Exp Gerontol 2018; 113:29-35. [DOI: 10.1016/j.exger.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022]
|
237
|
Meadows KL. Experimental models of focal and multifocal cerebral ischemia: a review. Rev Neurosci 2018; 29:661-674. [PMID: 29397392 DOI: 10.1515/revneuro-2017-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Rodent and rabbit stroke models have been instrumental in our current understanding of stroke pathophysiology; however, translational failure is a significant problem in preclinical ischemic stroke research today. There are a number of different focal cerebral ischemia models that vary in their utility, pathophysiology of causing disease, and their response to treatments. Unfortunately, despite active preclinical research using these models, treatment options for ischemic stroke have not significantly advanced since the food and drug administration approval of tissue plasminogen activator in 1996. This review aims to summarize current stroke therapies, the preclinical experimental models used to help develop stroke therapies, as well as their advantages and limitations. In addition, this review discusses the potential for naturally occurring canine ischemic stroke models to compliment current preclinical models and to help bridge the translational gap between small mammal models and human clinical trials.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, Grafton, MA 01536, USA
| |
Collapse
|
238
|
Administration of Downstream ApoE Attenuates the Adverse Effect of Brain ABCA1 Deficiency on Stroke. Int J Mol Sci 2018; 19:ijms19113368. [PMID: 30373276 PMCID: PMC6274914 DOI: 10.3390/ijms19113368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The ATP-binding cassette transporter member A1 (ABCA1) and apolipoprotein E (ApoE) are major cholesterol transporters that play important roles in cholesterol homeostasis in the brain. Previous research demonstrated that specific deletion of brain-ABCA1 (ABCA1-B/-B) reduced brain grey matter (GM) and white matter (WM) density in the ischemic brain and decreased functional outcomes after stroke. However, the downstream molecular mechanism underlying brain ABCA1-deficiency-induced deficits after stroke is not fully understood. Adult male ABCA1-B/-B and ABCA1-floxed control mice were subjected to distal middle-cerebral artery occlusion and were intraventricularly infused with artificial mouse cerebrospinal fluid as vehicle control or recombinant human ApoE2 into the ischemic brain starting 24 h after stroke for 14 days. The ApoE/apolipoprotein E receptor 2 (ApoER2)/high-density lipoprotein (HDL) levels and GM/WM remodeling and functional outcome were measured. Although ApoE2 increased brain ApoE/HDL levels and GM/WM density, negligible functional improvement was observed in ABCA1-floxed-stroke mice. ApoE2-administered ABCA1-B/-B stroke mice exhibited elevated levels of brain ApoE/ApoER2/HDL, increased GM/WM density, and neurogenesis in both the ischemic ipsilateral and contralateral brain, as well as improved neurological function compared with the vehicle-control ABCA1-B/-B stroke mice 14 days after stroke. Ischemic lesion volume was not significantly different between the two groups. In vitro supplementation of ApoE2 into primary cortical neurons and primary oligodendrocyte-progenitor cells (OPCs) significantly increased ApoER2 expression and enhanced cholesterol uptake. ApoE2 promoted neurite outgrowth after oxygen-glucose deprivation and axonal outgrowth of neurons, and increased proliferation/survival of OPCs derived from ABCA1-B/-B mice. Our data indicate that administration of ApoE2 minimizes the adverse effects of ABCA1 deficiency after stroke, at least partially by promoting cholesterol traffic/redistribution and GM/WM remodeling via increasing the ApoE/HDL/ApoER2 signaling pathway.
Collapse
|
239
|
Lv B, Cheng X, Sharp FR, Ander BP, Liu DZ. MicroRNA-122 Mimic Improves Stroke Outcomes and Indirectly Inhibits NOS2 After Middle Cerebral Artery Occlusion in Rats. Front Neurosci 2018; 12:767. [PMID: 30405345 PMCID: PMC6207613 DOI: 10.3389/fnins.2018.00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/03/2018] [Indexed: 01/19/2023] Open
Abstract
Aim: Our previous study demonstrated miR-122 mimic decreased NOS2 expression in blood leucocytes and improved stroke outcomes when given immediately after middle cerebral artery occlusion (MCAO) in rats. Since NOS2 is associated with neuro-inflammation in stroke and decreasing NOS2 expression alone in leucocytes is insufficient to improve stroke outcomes, we hypothesized that miR-122 mimic may also decrease NOS2 expression in brain microvascular endothelial cells (BMVECs) even at extended time windows. Methods: We administered PEG-liposome wrapped miR-122 mimic (2.4 mg/kg, i.v.) 0 or 6 h after MCAO, and assessed stroke volume and NOS2 expression in BMVECs 24 h following MCAO in rats. Luciferase reporter assays were used to determine if miR-122 binds to 3′ untranslated regions (3′UTR) of NOS2. Results: The data showed that miR-122 mimic decreased infarct volumes and decreased MCAO-induced NOS2 over-expression in BMVECs. However, miR-122 did not bind to 3′UTR of NOS2 in the luciferase assays. Conclusion: The data show the 6-h period of therapeutic efficacy of miR-122 mimic which could relate to indirect knockdown of NOS2 in both BMVECs and leucocytes.
Collapse
Affiliation(s)
- Bo Lv
- Department of Neurology, University of California, Davis, Davis, CA, United States.,Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiyuan Cheng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Bradley P Ander
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Da Zhi Liu
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
240
|
Sehara Y, Inaba T, Urabe T, Kurosaki F, Urabe M, Kaneko N, Shimazaki K, Kawai K, Mizukami H. Survivin overexpression via adeno-associated virus vector Rh10 ameliorates ischemic damage after middle cerebral artery occlusion in rats. Eur J Neurosci 2018; 48:3466-3476. [DOI: 10.1111/ejn.14169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yoshihide Sehara
- Division of Genetic Therapeutics; Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| | - Toshiki Inaba
- Department of Neurology; Juntendo University Urayasu Hospital; Urayasu Japan
| | - Takao Urabe
- Department of Neurology; Juntendo University Urayasu Hospital; Urayasu Japan
| | - Fumio Kurosaki
- Division of Pulmonary Medicine; Department of Medicine; Jichi Medical University; Tochigi Japan
| | - Masashi Urabe
- Division of Genetic Therapeutics; Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| | - Naoki Kaneko
- Department of Neurosurgery; Jichi Medical University; Tochigi Japan
- Department of Radiology; University of California Los Angeles; Los Angeles CA USA
| | - Kuniko Shimazaki
- Department of Neurosurgery; Jichi Medical University; Tochigi Japan
| | - Kensuke Kawai
- Department of Neurosurgery; Jichi Medical University; Tochigi Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics; Center for Molecular Medicine; Jichi Medical University; Tochigi Japan
| |
Collapse
|
241
|
Hu J, Huang S, Zhu L, Huang W, Zhao Y, Jin K, ZhuGe Q. Tissue Plasminogen Activator-Porous Magnetic Microrods for Targeted Thrombolytic Therapy after Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32988-32997. [PMID: 30192506 DOI: 10.1021/acsami.8b09423] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue plasminogen activator (tPA) is the only FDA approved thrombolytic drug for acute ischemic stroke but concerns regarding its limitations remain. Here, we developed a new strategy by incorporating tPA into porous magnetic iron oxide (Fe3O4)-microrods (tPA-MRs) for targeted thrombolytic therapy in ischemic stroke induced by distal middle cerebral artery occlusion. We showed that intra-arterial injection of tPA-MRs could target the cerebral blood clot in vivo under the guidance of an external magnet, where tPA was subsequently released at the site of embolism. When applied with an external rotating magnetic field, rotating tPA-MRs significantly improved not only the mass transport of the tPA-clot reaction, but also mechanically disrupted the clot network, which thus increased clot interaction and penetration of tPA. Importantly, intravenously injected MRs could be discharged from the kidney, and the function of liver and kidney were not damaged at different durations after administration of tPA-MRs. Our data suggest that tPA-MRs overcome the limitations of thrombolytic therapy with tPA alone, which may be not only just for the treatment of ischemic stroke but also have majorly impact on other thrombotic diseases.
Collapse
Affiliation(s)
- Jiangnan Hu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Shengwei Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lu Zhu
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Weijie Huang
- Department of Physics and Astronomy , University of Georgia , Athens , Georgia 30602 , United States
| | - Yiping Zhao
- Department of Physics and Astronomy , University of Georgia , Athens , Georgia 30602 , United States
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Pharmacology and Neuroscience , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine , Xuanwu Hospital , Capital Medical University , Beijing , 100053 , China
| | - Qichuan ZhuGe
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
242
|
Park J, Kim JH, Suk K, Han HS, Ohk B, Kim DG. Selective Brain Hypothermia Augmenting Neuroprotective Effects of Decompressive Craniectomy for Permanent Middle Cerebral Artery Infarction in a Rat Model. World Neurosurg 2018; 121:e181-e190. [PMID: 30261392 DOI: 10.1016/j.wneu.2018.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the combined effects of a decompressive craniectomy and prolonged selective brain hypothermia on large hemispheric infarction in a rat model. METHODS Permanent middle cerebral artery infarction using an endovascular occlusion technique was created in rats assigned to 4 groups. Normothermia was maintained without a craniectomy in group A (n = 20) as the control, prolonged (>44 hours), selective brain hypothermic treatment was performed on group B (n = 20), a craniectomy was performed on group C (n = 18), and prolonged, selective brain hypothermic treatment using a cooling coil implanted in the craniectomy site was combined with a craniectomy for group D (n = 18). RESULTS Group B and C exhibited a significantly reduced infarct volume when compared with the control. Furthermore, group D showed a significantly reduced infarct volume when compared with group C, plus a significantly improved neurologic score. These results for group D were associated with an increased neuronal cell count and reduced hyperactive microglia and hypertrophic astrocytes in the cortical penumbra (P < 0.01). Moreover, a greater preservation of normal-appearing axonal bundles and the blood-brain barrier was observed in the core infarct region at the caudoputamen. CONCLUSIONS A decompressive craniectomy reduced the infarct volume and improved the neurologic outcomes in a rat model of middle cerebral artery infarction. Furthermore, when combined with prolonged selective brain hypothermia, significant additional benefits were observed for the neurologic outcomes, infarct volume, and degree of neuroinflammation.
Collapse
Affiliation(s)
- Jaechan Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jong-Heon Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Boram Ohk
- Clinical Trial Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
243
|
Pires PW, Earley S. Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. eLife 2018; 7:35316. [PMID: 30239332 PMCID: PMC6177258 DOI: 10.7554/elife.35316] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Hypoxia and ischemia are linked to oxidative stress, which can activate the oxidant-sensitive transient receptor potential ankyrin 1 (TRPA1) channel in cerebral artery endothelial cells, leading to vasodilation. We hypothesized that TRPA1 channels in endothelial cells are activated by hypoxia-derived reactive oxygen species, leading to cerebral artery dilation and reduced ischemic damage. Using isolated cerebral arteries expressing a Ca2+ biosensor in endothelial cells, we show that 4-hydroxynonenal and hypoxia increased TRPA1 activity, detected as TRPA1 sparklets. TRPA1 activity during hypoxia was blocked by antioxidants and by TRPA1 antagonism. Hypoxia caused dilation of cerebral arteries, which was disrupted by antioxidants, TRPA1 blockade and by endothelial cell-specific Trpa1 deletion (Trpa1 ecKO mice). Loss of TRPA1 channels in endothelial cells increased cerebral infarcts, whereas TRPA1 activation with cinnamaldehyde reduced infarct in wildtype, but not Trpa1 ecKO, mice. These data suggest that endothelial TRPA1 channels are sensors of hypoxia leading to vasodilation, thereby reducing ischemic damage.
Collapse
Affiliation(s)
- Paulo Wagner Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno, United States
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno, United States
| |
Collapse
|
244
|
Chen H, Shen J, Li H, Zheng X, Kang D, Xu Y, Chen C, Guo H, Xie L, Wang G, Liang Y. Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABA A receptor expression. J Ginseng Res 2018; 44:86-95. [PMID: 32095096 PMCID: PMC7033341 DOI: 10.1016/j.jgr.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/02/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022] Open
Abstract
Background Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.
Collapse
Affiliation(s)
- Huimin Chen
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiajia Shen
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haofeng Li
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiao Zheng
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dian Kang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yangfan Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chong Chen
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huimin Guo
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
245
|
Tao MX, Xue X, Gao L, Lu JL, Zhou JS, Jiang T, Zhang YD. Involvement of angiotensin-(1-7) in the neuroprotection of captopril against focal cerebral ischemia. Neurosci Lett 2018; 687:16-21. [PMID: 30219484 DOI: 10.1016/j.neulet.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that brain angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin II type I receptor axis is activated and thus contributes to the neuronal injury during ischemic stroke. Conversely, inhibition of this axis using centrally active ACE inhibitor captopril was proven neuroprotective in rodents with focal cerebral ischemia. Interestingly, captopril was able to increase angiotensin-(1-7) [Ang-(1-7)] levels in the peripheral organs. As the main component of the alternative renin-angiotensin system axis in the brain, Ang-(1-7) was revealed to protect against focal cerebral ischemia via a MAS1 receptor-dependent manner. Based on this evidence, we hypothesized that Ang-(1-7) might contribute to the neuroprotection of captopril during ischemic stroke. In this study, we evaluated this hypothesis using a rat model of focal cerebral ischemia. We revealed that brain ACE2 activity and Ang-(1-7) levels were significantly elevated following captopril treatment in rats with focal cerebral ischemia. More importantly, we showed that the neuroprotection provided by captopril was partially reversed by A-779, an antagonist for Ang-(1-7) receptor MAS1, indicating that Ang-(1-7) was involved in the neuroprotection of captopril. These findings have uncovered new mechanisms by which captopril protects against focal cerebral ischemia and further suggest that captopril may have practical clinical use for stroke prevention and treatment in addition to its antihypertensive effect.
Collapse
Affiliation(s)
- Meng-Xing Tao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Xiao Xue
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Jun-Ling Lu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
246
|
Liu C, Fu Q, Mu R, Wang F, Zhou C, Zhang L, Yu B, Zhang Y, Fang T, Tian F. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res 2018; 1701:246-254. [PMID: 30201260 DOI: 10.1016/j.brainres.2018.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Dexmedetomidine (Dex) has the neuroprotective effect on cerebral ischemia-reperfusion injury (CIRI). But the mechanism is not yet clear. In this study, we established a model of middle cerebral artery occlusion (MCAO) and treated primary cortical neurons with oxygen glucose deprivation (OGD), followed by Dex treatment. Neurological protection of Dex was then assessed by neurological deficit score, brain edema, TTC staining, TUNEL assay, Western blot analysis, immunohistochemistry, and RT-PCR. The results showed that Dex significantly reduced the neurological deficit score, brain edema and cerebral infarction area due to CIRI. After Dex treatment, the expression levels of ER stress-related apoptosis pathway proteins (GRP78, p-PERK, CHOP and Cleaved-caspase-3) were significantly decreased and the apoptosis of brain cells was also significantly reduced. Immunohistochemistry showed that expression and nuclear localization of CHOP decreased significantly after the application of Dex. The downstream apoptotic protein caspase-11 mediated by PERK-CHOP was also markedly inhibited by Dex. In conclusion, our results suggested that Dex reduced ER stress-induced apoptosis after CIRI. Its protective mechanism may be related to PERK-CHOP-Caspase-11 dependent signaling pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| | - Rong Mu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fang Wang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Chunjing Zhou
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Li Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Baojin Yu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Yang Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fengshi Tian
- Department of Cardiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| |
Collapse
|
247
|
Zhao Q, Yan T, Li L, Chopp M, Venkat P, Qian Y, Li R, Wu R, Li W, Lu M, Zhang T, Chen J. Immune Response Mediates Cardiac Dysfunction after Traumatic Brain Injury. J Neurotrauma 2018; 36:619-629. [PMID: 30045672 DOI: 10.1089/neu.2018.5766] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cardiovascular complications are common after traumatic brain injury (TBI) and are associated with increased morbidity and mortality. In this study, we investigated the possible role of the immune system in mediating cardiac dysfunction post-TBI in mice. Adult male C57BL/6J mice were subjected to a TBI model of controlled cortical impact (CCI) with or without splenectomy (n = 20/group). Splenectomy was performed immediately prior to induction of TBI. Cardiac function was measured using echocardiography prior to and after TBI. Neurological and cognitive functional tests and flow cytometry and immunostaining were performed. TBI mice exhibited significant cardiac dysfunction identified by decreased left ventricular ejection fraction and fractional shortening at 3 and 30 days post-TBI. In addition, these mice exhibited significantly increased cardiomyocyte apoptosis, inflammation, and oxidative stress at 3 and 30 days post-TBI, as well as cardiac hypertrophy and fibrosis and ventricular dilatation at 30 days after TBI. TBI mice subjected to splenectomy showed significantly improved cardiac function, and decreased cardiac fibrosis, oxidative stress, cardiomyocyte apoptosis, and infiltration of immune cells and inflammatory factor expression in the heart compared with TBI control mice. TBI mice exhibited severe neurological and cognitive function deficits. However, splenectomy did not improve neurological and cognitive functional outcome after TBI compared with the TBI control group. TBI induces immune cell infiltration and inflammatory factor expression in the heart as well as cardiac dysfunction. Splenectomy decreases heart inflammation and improves cardiac function after TBI. Immune response may contribute to TBI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Qiang Zhao
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Tao Yan
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Linlin Li
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Michael Chopp
- 3 Department of Neurology, Henry Ford Hospital , Detroit, Michigan.,4 Department of Physics, Oakland University , Rochester, Michigan
| | - Poornima Venkat
- 3 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Yu Qian
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Ran Li
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Ruixia Wu
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Wei Li
- 1 Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China .,2 Tianjin Neurological Institute , Neurology, Key Laboratory of Post Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China .,3 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Mei Lu
- 5 Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Talan Zhang
- 5 Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Jieli Chen
- 3 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
248
|
Thow LA, MacDonald K, Holmes WM, Muir KW, Macrae IM, Dewar D. Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats. Brain Neurosci Adv 2018; 2:2398212818794820. [PMID: 32166145 PMCID: PMC7058243 DOI: 10.1177/2398212818794820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. Methods: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. Results: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. Conclusions: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear.
Collapse
Affiliation(s)
- Lisa A Thow
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathleen MacDonald
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - William M Holmes
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Keith W Muir
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - I Mhairi Macrae
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Deborah Dewar
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
249
|
Bao N, Fang B, Lv H, Jiang Y, Chen F, Wang Z, Ma H. Upregulation of miR-199a-5p Protects Spinal Cord Against Ischemia/Reperfusion-Induced Injury via Downregulation of ECE1 in Rat. Cell Mol Neurobiol 2018; 38:1293-1303. [PMID: 29948551 PMCID: PMC11481941 DOI: 10.1007/s10571-018-0597-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion (I/R)-induced spinal cord injury can cause apoptotic damage and subsequently act as a blood-spinal cord barrier damage. MicroRNAs (miRNAs) contributed to the process of I/R injury by regulating their target mRNAs. miR-199a-5p is involved in brain and heart I/R injury; however, its function in the spinal cord is not yet completely clarified. In this study, we investigated the role of miR-199a-5p on spinal cord I/R via the endothelin-converting enzyme 1, especially the apoptosis pathway. In the current study, the rat spinal cord I/R injury model was established, and the Basso Beattie Bresnahan scoring, Evans blue staining, HE staining, and TUNEL assay were used to assess the I/R-induced spinal cord injury. The differentially expressed miRNAs were screened using microarray. miR-199a-5p was selected by unsupervised hierarchical clustering analysis. The dual-luciferase reporter assay was used for detecting the regulatory effects of miR-199a-5p on ECE1. In addition, neuron expression was detected by immunostaining assay, while the expressions of p-ERK, ERK, p-JNK, JNK, caspase-9, Bcl-2, and ECE1 were evaluated by Western blot. The results indicated the successful establishment of the I/R-induced spinal cord injury model; the I/R induced the damage to the lower limb motor. Furthermore, 18 differentially expressed miRNAs were detected in the I/R group compared to the sham group, and miR-199a-5p protected the rat spinal cord injury after I/R. Moreover, miR-199a-5p negatively regulated ECE1, and silencing the ECE1 gene also protected the rat spinal cord injury after I/R. miR-199a-5p or silencing of ECE1 also regulated the expressions of caspase-9, Bcl-2, p-JNK, p-ERK, and ECE1 in rat spinal cord injury after I/R. Therefore, we demonstrated that miR-199a-5p might protect the spinal cord against I/R-induced injury by negatively regulating the ECE1, which could aid in developing new therapeutic strategies for I/R-induced spinal cord injury.
Collapse
Affiliation(s)
- Ning Bao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
- Shenyang Women's and Children's Hospital, No. 87 Danan Street, Shenhe Dinstrict, Shenyang, Liaoning, People's Republic of China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Huangwei Lv
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Yanhua Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Fengshou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Zhilin Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
250
|
Huang SY, Chang CH, Hung HY, Lin YW, Lee EJ. Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats. Neurol Res 2018; 40:130-138. [PMID: 29262766 DOI: 10.1080/01616412.2017.1411454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives Focal cerebral ischemia may induce synaptic, electrophysiological, and metabolic dysfunction in remote areas. We have shown that the remote dendritic spine density changes and electrophysiological diaschisis in the acute and subacute stages after stroke previously. Here, we further evaluated electrophysiological outcomes and synapto-dendritic plasticity in long-term recovery in the contralateral cortex following focal cerebral ischemia. Methods Male Sprague-Dawley rats were subjected to intraluminal suture occlusion for 90 min or sham-occlusion. Somatosensory electrophysiological recordings (SSEPs) and neurobehavioral tests were recorded each day for 28 days. Postmortem brains were sectioned and subjected to Nissl staining and Golgi-Cox impregnation through a 28-day period following ischemic stroke. Results In the ipsilateral cortex, infarct size in the cortex and striatum was decreased after the subacute stage; the brains showed reduced swelling in the cortex and stratum 3 days after ischemic insults. Dendritic spine density and SSEP amplitude decreased significantly during a 28-day recovery period. In the contralateral cortex, dendritic spine density and SSEP amplitude decreased significantly for 21 days after ischemic stroke, but recovered to baseline by day 28. The deterioration of the dendritic spine (density reduction) in the ischemic cortex was observed; however, this increased neuroplasticity in the contralateral cortex in the subacute stage. Discussion Focal cerebral ischemia-reperfusion induces time-dependent reduction of dendritic spine density and electrophysiological depression in both the ipsilateral and contralateral cortices and intact brain. This neuroanatomical and electrophysiological evidence suggests that neuroplasticity and functional re-organization in the contralateral cortex is possible following focal cerebral ischemia.
Collapse
Affiliation(s)
- Sheng-Yang Huang
- a Institute of Biomedical Engineering , National Cheng Kung University , Tainan , Taiwan.,b Neurophysiology Laboratory, Department of Surgery , National Cheng Kung University Medical Center and Medical School , Tainan , Taiwan
| | - Chih-Han Chang
- a Institute of Biomedical Engineering , National Cheng Kung University , Tainan , Taiwan
| | - Hsin-Yi Hung
- c School of Pharmacy , National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Yu-Wen Lin
- b Neurophysiology Laboratory, Department of Surgery , National Cheng Kung University Medical Center and Medical School , Tainan , Taiwan
| | - E-Jian Lee
- b Neurophysiology Laboratory, Department of Surgery , National Cheng Kung University Medical Center and Medical School , Tainan , Taiwan
| |
Collapse
|