201
|
Shibata Y, Kurokawa T, Aizawa T, Gong JP. Bactericidal effect of cationic hydrogels prepared from hydrophilic polymers. J Appl Polym Sci 2020. [DOI: 10.1002/app.49583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuki Shibata
- Graduate School of Life Science Hokkaido University Sapporo Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University Sapporo Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University Sapporo Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University Sapporo Japan
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD) Hokkaido University Sapporo Japan
| |
Collapse
|
202
|
Lin S, Chen Y, Li H, Liu J, Liu S. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents. Eur J Med Chem 2020; 202:112596. [PMID: 32659547 DOI: 10.1016/j.ejmech.2020.112596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023]
Abstract
New antimicrobial agents are urgently needed to overcome drug-resistant bacterial infections. Here we describe the design, synthesis and evaluation of a new class of amphiphilic sofalcone compounds as antimicrobial peptidomimetics. The most promising compound 14, bearing two arginine residues, showed poor hemolytic activity, low cytotoxicity, and excellent antimicrobial activity against Gram-positive bacteria, including MRSA. Compound 14, had good stability in various salt conditions, killed bacteria rapidly by directly disrupting bacterial cell membranes and was slow at developing bacterial resistance. Additionally, compound 14 exhibited effective in vivo efficacy in the murine model of bacterial keratitis caused by Staphylococcus aureus ATCC29213. Our studies suggested that compound 14 possessed promising potential to be used as a novel antimicrobial agent to combat drug-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
203
|
Jiang W, Xiao X, Wu Y, Zhang W, Cong Z, Liu J, Chen S, Zhang H, Xie J, Deng S, Chen M, Wang Y, Shao X, Dai Y, Sun Y, Fei J, Liu R. Peptide polymer displaying potent activity against clinically isolated multidrug resistant Pseudomonas aeruginosa in vitro and in vivo. Biomater Sci 2020; 8:739-745. [PMID: 31782423 DOI: 10.1039/c9bm01726g] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidrug resistant (MDR) Pseudomonas aeruginosa has caused serious nosocomial infections owing to its high intrinsic resistance and ease of acquiring resistance to common antibiotics. There is an urgent need to develop antimicrobial agents against MDR Pseudomonas aeruginosa. Here we report a 27-mer peptide polymer 90 : 10 DLL : BLG, as a synthetic mimic of a host defense peptide, that displayed potent in vitro and in vivo activities against multiple strains of clinically isolated MDR Pseudomonas aeruginosa, performing even better than antibiotics within our study. This peptide polymer also showed negligible hemolysis and low cytotoxicity, as well as quick bacterial killing efficacy. The structural diversity of peptide polymers, their easy synthesis from lithium hexamethyldisilazide-initiated fast N-carboxyanhydride polymerization, and the excellent reproducibility of their chemical structure and biological profiles altogether suggested great potential for antimicrobial applications of peptide polymers as synthetic mimics of host defense peptides.
Collapse
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Chitosan-based particulate systems for drug and vaccine delivery in the treatment and prevention of neglected tropical diseases. Drug Deliv Transl Res 2020; 10:1644-1674. [PMID: 32588282 DOI: 10.1007/s13346-020-00806-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neglected tropical diseases (NTDs) are a diverse group of infections which are difficult to prevent or control, affecting impoverished communities that are unique to tropical or subtropical regions. In spite of the low number of drugs that are currently used for the treatment of these diseases, progress on new drug discovery and development for NTDs is still very limited. Therefore, strategies on the development of new delivery systems for current drugs have been the main focus of formulators to provide improved efficacy and safety. In recent years, particulate delivery systems at micro- and nanosize, including polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, metallic nanoparticles, and nanoemulsions, have been widely investigated in the treatment and control of NTDs. Among these polymers used for the preparation of such systems is chitosan, which is a marine biopolymer obtained from the shells of crustaceans. Chitosan has been investigated as a delivery system due to the versatility of its physicochemical properties as well as bioadhesive and penetration-enhancing properties. Furthermore, chitosan can be also used to improve treatment due to its bioactive properties such as antimicrobial, tissue regeneration, etc. In this review, after giving a brief introduction to neglected diseases and particulate systems developed for the treatment and control of NTDs, the chitosan-based systems will be described in more detail and the recent studies on these systems will be reviewed. Graphical abstract.
Collapse
|
205
|
Ghosh S, Mukherjee R, Basak D, Haldar J. One-Step Curable, Covalently Immobilized Coating for Clinically Relevant Surfaces That Can Kill Bacteria, Fungi, and Influenza Virus. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27853-27865. [PMID: 32538606 DOI: 10.1021/acsami.9b22610] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Cationic polymeric coatings have gained enormous attention to tackle this scenario. However, non-biodegradable cationic polymer coated surfaces suffer from accumulation of microbial debris leading to toxicity and consequent complexities. Synthetic reproducibility and sophisticated coating techniques further limit their application. In this present study, we have developed one-step curable, covalent coatings based on two organo- and water-soluble small molecules, quaternary benzophenone-based ester and quaternary benzophenone-based amide, which can cross-link on surfaces upon UV irradiation. Upon contact, the coating completely killed bacteria and fungi in vitro including drug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and fluconazole-resistant Candida albicans spp. The coating also showed antiviral activity against notorious influenza virus with 100% killing. The coated surfaces also killed stationary-phase cells of MRSA, which cannot be eradicated by traditional antibiotics. Upon hydrolysis, the surfaces switched to an antifouling state displaying significant reduction in bacterial adherence. To the best of our knowledge, this is the first report of an antimicrobial coating which could kill all of bacteria, fungi, and influenza virus. Taken together, the antimicrobial coating reported herein holds great promise to be developed for further application in healthcare settings.
Collapse
Affiliation(s)
- Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
206
|
Abdullah T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, Tamayol A, Memic A. Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2020; 12:polym12061233. [PMID: 32485817 PMCID: PMC7361702 DOI: 10.3390/polym12061233] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
Collapse
Affiliation(s)
- Turdimuhammad Abdullah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah 08100, Malaysia
| | - Ahmed H. Hammad
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Electron Microscope and Thin Films Department, Physics Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Ahmed A. Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sidi A. Bencherif
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA;
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- UMR CNRS 7338 Biomechanics and Bioengineering, University of Technology of Compiègne, Sorbonne University, 60200 Compiègne, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA;
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (A.H.H.); (A.A.A.)
- Correspondence:
| |
Collapse
|
207
|
Deng Y, Sun J, Ni X, Yu B. Tribological properties of hierarchical structure artificial joints with poly acrylic acid (AA) - poly acrylamide (AAm) hydrogel and Ti6Al4V substrate. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02143-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
208
|
Kim TY, Kim D, Yoon J, Kim S, Yi SW, Oh WT, Park JY, Kim H, Kang M, Lee JB, Sung H. External Self‐Closing Tube to Occlude a Vessel Gradually as a Therapeutic Means of Portosystemic Shunt. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tae Young Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Dae‐Hyun Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Jeong‐Kee Yoon
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Surim Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Se Won Yi
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Won Taek Oh
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Ju Young Park
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Hye‐Seon Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Mi‐Lan Kang
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Jung Bok Lee
- Department of Biological ScienceSookmyung Women's University Seoul 04310 Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| |
Collapse
|
209
|
Lin S, Li H, Tao Y, Liu J, Yuan W, Chen Y, Liu Y, Liu S. In Vitro and in Vivo Evaluation of Membrane-Active Flavone Amphiphiles: Semisynthetic Kaempferol-Derived Antimicrobials against Drug-Resistant Gram-Positive Bacteria. J Med Chem 2020; 63:5797-5815. [DOI: 10.1021/acs.jmedchem.0c00053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yiwen Tao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wenchang Yuan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ying Liu
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
210
|
Wang Y, Wei T, Qu Y, Zhou Y, Zheng Y, Huang C, Zhang Y, Yu Q, Chen H. Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21283-21291. [PMID: 31709795 DOI: 10.1021/acsami.9b17581] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of effective antibacterial surfaces to prevent the attachment of pathogenic bacteria and subsequent bacterial colonization and biofilm formation is critically important for medical devices and public hygiene products. In the work reported herein, a smart antibacterial hybrid film based on tannic acid/Fe3+ ion (TA/Fe) complex and poly(N-isopropylacrylamide) (PNIPAAm) is deposited on diverse substrates. This surface is shown to have bacteria-killing and bacteria-releasing properties based on, respectively, near-infrared photothermal activation and subsequent cooling. The TA/Fe complex has three roles in this system: (i) as a universal adhesive "anchor" for surface modification, (ii) as a high-efficiency photothermal agent for ablation of attached bacteria (including multidrug resistant bacteria), and (iii) as a robust linker for immobilization of NH2-terminated PNIPAAm via either Michael addition or Schiff base formation. Moreover, because of the thermoresponsive properties of the immobilized PNIPAAm, almost all of the killed bacteria and other debris can be removed from the surface simply by lowering the temperature. It is shown that this hybrid film can maintain good antibacterial performance after being used for multiple "kill-and-release" cycles and can be applied to various substrates regardless of surface chemistry or topography, thus providing a broadly applicable, simple, and reliable solution to the problems associated with surface-attached bacteria in various healthcare applications.
Collapse
Affiliation(s)
- Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
211
|
Encinas N, Yang CY, Geyer F, Kaltbeitzel A, Baumli P, Reinholz J, Mailänder V, Butt HJ, Vollmer D. Submicrometer-Sized Roughness Suppresses Bacteria Adhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21192-21200. [PMID: 32142252 PMCID: PMC7226781 DOI: 10.1021/acsami.9b22621] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Biofilm formation is most commonly combatted with antibiotics or biocides. However, proven toxicity and increasing resistance of bacteria increase the need for alternative strategies to prevent adhesion of bacteria to surfaces. Chemical modification of the surfaces by tethering of functional polymer brushes or films provides a route toward antifouling coatings. Furthermore, nanorough or superhydrophobic surfaces can delay biofilm formation. Here we show that submicrometer-sized roughness can outweigh surface chemistry by testing the adhesion of E. coli to surfaces of different topography and wettability over long exposure times (>7 days). Gram-negative and positive bacterial strains are tested for comparison. We show that an irregular three-dimensional layer of silicone nanofilaments suppresses bacterial adhesion, both in the presence and absence of an air cushion. We hypothesize that a 3D topography can delay biofilm formation (i) if bacteria do not fit into the pores of the coating or (ii) if bending of the bacteria is required to adhere. Thus, such a 3D topography offers an underestimated possibility to design antibacterial surfaces that do not require biocides or antibiotics.
Collapse
Affiliation(s)
- Noemí Encinas
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ching-Yu Yang
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Florian Geyer
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Philipp Baumli
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jonas Reinholz
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstrasse
1, Mainz 55131, Germany
| | - Volker Mailänder
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University
Mainz, Langenbeckstrasse
1, Mainz 55131, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Doris Vollmer
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
212
|
Fan L, Xie J, Zheng Y, Wei D, Yao D, Zhang J, Zhang T. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22225-22236. [PMID: 32315157 DOI: 10.1021/acsami.0c06091] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to the characteristics of mimicking human skin's function and transmitting sensory signals, electronic skin (e-skin), as an emerging and exciting research field, has inspired tremendous efforts in the biomedical field. However, it is frustrating that most e-skins are prone to bacterial infections, resulting a serious threat to human health. Therefore, the construction of e-skin with an integrated perceptual signal and antibacterial properties is highly desirable. Herein, the dynamic supramolecular hydrogel was prepared through a freezing/thawing method by cross-linking the conductive graphene (G), biocompatible polyvinyl alcohol (PVA), self-adhesive polydopamine (PDA), and in situ formation antibacterial silver nanoparticles (AgNPs). Having fabricated the hierarchical network structure, the PVA-G-PDA-AgNPs composite hydrogel with a tensile strength of 1.174 MPa and an elongation of 331% paves way for flexible e-skins. Notably, the PVA-G-PDA-AgNPs hydrogel exhibits outstanding antibacterial activity to typical pathogenic microbes (e.g., Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus), which effectively prevents bacterial infections that harm human health. With self-adhesiveness to various surfaces and excellent conductivity, the PVA-G-PDA-AgNPs composite hydrogel was used as strain sensors to detect a variety of macroscale and microscale human motions successfully. Meanwhile, the excellent rehealing property allows the hydrogel to recycle as a new sensor to detect large-scale human activities or tiny movement. Based on these remarkable features, the antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels possess the great promising application in biomedical materials.
Collapse
Affiliation(s)
- Ling Fan
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 710072 Xi'an, P. R. China
| | - Jinliang Xie
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 710072 Xi'an, P. R. China
| | - Yaping Zheng
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 710072 Xi'an, P. R. China
| | - Daixu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dongdong Yao
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 710072 Xi'an, P. R. China
| | - Jing Zhang
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 710072 Xi'an, P. R. China
| | - Tuodi Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
213
|
Thappeta KRV, Vikhe YS, Yong AMH, Chan-Park MB, Kline KA. Combined Efficacy of an Antimicrobial Cationic Peptide Polymer with Conventional Antibiotics to Combat Multidrug-Resistant Pathogens. ACS Infect Dis 2020; 6:1228-1237. [PMID: 32138506 DOI: 10.1021/acsinfecdis.0c00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibiotic-resistant infections are predicted to kill 10 million people worldwide per year by 2050 and to cost the global economy 100 trillion USD. Novel approaches and alternatives to conventional antibiotics are urgently required to combat antimicrobial resistance. We have synthesized a chitosan-based oligolysine antimicrobial peptide, CSM5-K5 (where CSM denotes chitosan monomer repeat units and K denotes lysine amino acid repeat units), that targets multidrug-resistant (MDR) bacterial species. Here, we show that CSM5-K5 exhibits rapid bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA), MDR Escherichia coli, and vancomycin-resistant Enterococcus faecalis (VRE). Combinatorial therapy of CSM5-K5 with antibiotics to which each organism is otherwise resistant restores sensitivity to the conventional antibiotic. CSM5-K5 alone significantly reduced preformed bacterial biofilm by 2-4 orders of magnitude and, in combination with conventional antibiotics, reduced preformed biofilm by more than 2-3 orders of magnitude at subinhibitory concentrations. Moreover, using a mouse excisional wound infection model, CSM5-K5 treatment reduced bacterial burdens by 1-3 orders of magnitude and acted synergistically with oxacillin, vancomycin, and streptomycin to clear MRSA, VRE, and MDR E. coli, respectively. Importantly, little to no resistance against CSM5-K5 arose for any of the three MDR bacteria during 15 days of serial passage. Furthermore, low level resistance to CSM5-K5 that did arise for MRSA conferred increased susceptibility (collateral sensitivity) to the β-lactam antibiotic oxacillin. This work demonstrates the feasibility and benefits of using this synthetic cationic peptide as an alternative to, or in combination with, traditional antibiotics to treat infections caused by MDR bacteria.
Collapse
Affiliation(s)
- Kishore R. V. Thappeta
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yogesh S. Vikhe
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Adeline M. H. Yong
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Mary B. Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
214
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
215
|
Shi Z, Jin L, He C, Li Y, Jiang C, Wang H, Zhang J, Wang J, Zhao W, Zhao C. Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. J Colloid Interface Sci 2020; 576:1-9. [PMID: 32408158 DOI: 10.1016/j.jcis.2020.04.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Pathogen capture and removal from whole blood is a new strategy for extracorporeal blood purification, especially in initial treatment of sepsis before pathogen identification. Herein, hemocompatible magnetic particles with broad-spectrum bacteria capture capability were proposed for pathogen removal from whole blood, omitting the necessity of pathogen identification. Firstly, we designed and synthesized a new kind of imidazolium-based ionic liquid with good antibacterial activity, and polydopamine coating was utilized as a hemocompatible platform to immobilize ionic liquids on Fe3O4 nanoparticles, forming the hemocompatible magnetic particles (Fe3O4@PDA-IL). The magnetic particles exhibited good hemocompatibility and performed well in the removal of various species of clinically significant pathogens from human whole blood, including S. aureus, E. coli, and the hard-to-treat bacteria of P. aeruginosa and Methicillin-resistant S. aureus, which are the most common pathogens in bloodstream infections. Besides, the Fe3O4@PDA-IL particles were also capable to remove bacterial endotoxins from blood, inhibiting further aggravation of sepsis. Overall, we demonstrated the application of hemocompatible magnetic particles in the removal of pathogens and bacterial endotoxins from whole blood via electrostatic and hydrophobic interactions, without significant effects on blood cells or the activation of coagulation and complement, addressing the feasibility of using imidazolium-based ionic liquids for bacteria capture and removal from whole blood. It would contribute to the development of magnetic separation-based approaches to remove bacteria and bacterial endotoxin for extracorporeal blood purification, especially in initial sepsis therapy before pathogen identification.
Collapse
Affiliation(s)
- Zhenqiang Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yupei Li
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610225, China
| | - Chunji Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jingxia Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
216
|
Su C, Hu Y, Song Q, Ye Y, Gao L, Li P, Ye T. Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18978-18986. [PMID: 32212671 DOI: 10.1021/acsami.9b22611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report initiated chemical vapor deposition of model-graded polymer coatings enabling antibacterial, antifouling, and biocompatible surfaces. The graded coating was constructed by a bottom layer consisting of bactericidal poly(dimethyl amino methyl styrene) and a surface layer consisting of both dimethyl amino methyl styrene (DMAMS) and hydrophilic vinyl pyrrolidone (VP) moieties. Fourier transform infrared spectra showed existence of both DMAMS and VP in the coating with DMAMS as the major component, while X-ray photoelectron spectroscopy analysis and water contact angle measurement revealed a VP-enriched coating surface. The resultant coating exhibited more than 99.9% killing rate against both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis despite the incorporation of VP on the surface. We believe that such bactericidal capability resulted because of its high surface zeta potential, which could be originated from the DMAMS units distributed both on the top surface and underneath. The graded coating achieved more than 85% bacterial fouling resistance than the pristine substrate, as well as improved biocompatibility, owing to the abundant surface lactam groups from the VP moiety. Furthermore, the graded coating maintained good bactericidal capability after multicycle challenges of bacterial solutions and was durable against continuous rigorous washing, suggesting potential applications in biomedical devices.
Collapse
Affiliation(s)
- Cuicui Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yiqi Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Song
- Xi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and Engineering, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Lingling Gao
- Xi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and Engineering, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Xi'an Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Biomedical Materials and Engineering, Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
217
|
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, Ye Z, Ji J, Li P, Huang W. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci 2020; 8:278-289. [PMID: 31691698 DOI: 10.1039/c9bm01396b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Titanium (Ti)-based implants often suffer from detrimental bacterial adhesion and inefficient healing, so it is crucial to design a dual-functional coating that prevents bacterial infection and enhances bioactivity for a successful implant. Herein, we successfully devised a cationic polypeptide (Pep)-functionalized biomimetic nanostructure coating with superior activity, which could not only kill pathogenic bacteria rapidly and inhibit biofilm formation for up to two weeks, but also promote in situ hydroxyapatite (HAp) formation. Specifically, a titania (TiO2) nanospike coating (TNC) was fabricated by alkaline hydrothermal treatment firstly, followed by immobilization of rationally synthesized Pep via robust coordinative interactions, named TNPC. This coating was able to effectively kill (>99.9%) both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria, while being non-toxic to murine MC3T3-E1 osteoblastic cells. Furthermore, the in vivo infection studies denoted that the adherent bacteria numbers on the TNPC implants were significantly reduced by 6 orders of magnitude than those on the pure Ti implants (p < 0.001). Importantly, in the presence of cationic amino groups and residual Ti-OH groups, substantial HAp deposition on the TNPC surface in Kokubo's simulated body fluid (SBF) occurred after 14 days. Altogether, our results support the clinical potential of this biomimetic dual-functional coating as a new approach with desirable antibacterial properties and HAp-forming ability in orthopedic and dental applications.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Wang YL, Zhou YN, Li XY, Huang J, Wahid F, Zhong C, Chu LQ. Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. Int J Biol Macromol 2020; 156:252-261. [PMID: 32289407 DOI: 10.1016/j.ijbiomac.2020.04.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/08/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Large-scale production of an antibacterial hydrogel is of critical importance for its practical application in biomedical field. In this regard, herein we report on the construction of a double-syringe injection device by using all the commercial parts and its use for continuous production of carboxymethyl chitosan-zinc (CMCh-Zn) supramolecular hydrogel fiber. The resultant CMCh-Zn hydrogel fibers exhibit good stretchability and knittability. The Zn loading into the hydrogel fibers can be easily controlled by adjusting the concentration of Zn2+ solution. Scanning electron microscope measurements indicate that the CMCh-Zn hydrogel fibers have a relatively smooth and thin skin layer, as well as, a 3-dimensional interconnected microporous interior architecture. Antibacterial activities of the CMCh-Zn hydrogel fibers against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are also investigated. The results show that the intrinsic blue fluorescence of the as-prepared CMCh-Zn hydrogel fibers can be employed as optical indicator of their antibacterial effectiveness.
Collapse
Affiliation(s)
- Yu-Long Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ya-Ning Zhou
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xin-Yu Li
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ju Huang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Fazli Wahid
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology, No.29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
219
|
Liu G, Li K, Wang H, Ma L, Yu L, Nie Y. Stable Fabrication of Zwitterionic Coating Based on Copper-Phenolic Networks on Contact Lens with Improved Surface Wettability and Broad-Spectrum Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16125-16136. [PMID: 32202402 DOI: 10.1021/acsami.0c02143] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ocular dryness and contact lens(CL)-related microbial keratitis (MK) are two major risks of wearing CLs. The development of multifunctional surface coating for CLs with excellent hydrating and antimicrobial properties is a practical strategy to improve the comfort of CL wearers and to prevent corneal infection. Here, we develop zwitterionic and antimicrobial metal-phenolic networks (MPNs) based on the coordination of copper ions (CuII) and the poly(carboxylbetaine-co-dopamine methacrylamide) copolymer (PCBDA), which can be easily one-step prepared onto CLs due to the near-universal adherent properties of catechol groups. The zwitterionic and antifouling carboxybetaine (CB) groups of the CuII-PCBDA coating can significantly increase the wettability of CLs and reduce their protein adsorptions, resulting in a lens surface that is more water retentive and with lower protein binding to prevent tear film evaporation and eye dryness. In addition, since the immobilized copper ions in the MPNs impart them with ion-mediated antimicrobial activity, the CuII-PCBDA coating exhibits a strong and broad-spectrum antimicrobial activity against MK related pathogenic microbes, including bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and fungi, such as Candida albicans. Compared with a pristine CL, the CuII-PCBDA-coated CL effectively inhibited biofilm formation even after daily exposure to the above microbial environment for 14 days. Notably, the CuII-PCBDA coating developed in this study is not only biocompatible with 100% cell viability following direct contact with human corneal epithelial cells (HCECs) for 48 h but also maintains the optical clarity of the native CLs. Thus, the CuII-PCBDA coating has a great application potential for the development of a multifunctional surface coating for CLs for increased CL comfort and prevention of MK.
Collapse
Affiliation(s)
- Gongyan Liu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kaijun Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haibo Wang
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Ma
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
220
|
Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed Engl 2020; 59:6412-6419. [DOI: 10.1002/anie.202000505] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
221
|
Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chengzhi Dai
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhemin Ji
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Ning Shao
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuequn Wu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringKey Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
222
|
Koufakis E, Manouras T, Anastasiadis SH, Vamvakaki M. Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3482-3493. [PMID: 32168453 DOI: 10.1021/acs.langmuir.9b03266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes bearing quaternary ammonium groups of different alkyl chain lengths (ACLs) were prepared and assessed as biocidal coatings. For the synthesis of the antimicrobial brushes, first well-defined PDMAEMA chains were grown by surface-initiated atom transfer radical polymerization on glass and silicon substrates. Next, the tertiary amine groups of the polymer brushes were modified via a quaternization reaction, using alkyl halides, to obtain the cationic polymers. The polymer films were characterized by Fourier-transform infrared spectroscopy, ellipsometry, atomic force microscopy, and water contact angle measurements. The effect of the ACL of the quaternary ammonium groups on the physicochemical properties of the films as well as the contact killing efficiency of the surfaces against representative Gram-positive and Gram-negative bacteria was investigated. A hydrophilic to hydrophobic transition of the surfaces and a significant decrease of the degree of quaternization of the DMAEMA moieties was found upon increasing the ACL of the quaternization agent above six carbon atoms, allowing the wettability, the thickness, and the pH-response of the brushes to be tuned via a facile postpolymerization, quaternization reaction. At the same time, antimicrobial tests revealed that the hydrophilic polymer brushes exhibited enhanced bactericidal activity against Escherichia coli and Bacillus cereus, whereas the hydrophobic surfaces showed a significant deterioration of the in vitro bactericidal performance. Our results elucidate the antimicrobial action of quaternized polymer brushes, dictating the appropriate choice of the ACL of the quaternization agent for the development of coatings that effectively inhibit biofilm formation on surfaces.
Collapse
Affiliation(s)
- Eleftherios Koufakis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Theodore Manouras
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
| | - Spiros H Anastasiadis
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, 700 13 Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Crete, Greece
| |
Collapse
|
223
|
Chen S, Shao X, Xiao X, Dai Y, Wang Y, Xie J, Jiang W, Sun Y, Cong Z, Qiao Z, Zhang H, Liu L, Zhang Q, Zhang W, Zheng L, Yu B, Chen M, Cui W, Fei J, Liu R. Host Defense Peptide Mimicking Peptide Polymer Exerting Fast, Broad Spectrum, and Potent Activities toward Clinically Isolated Multidrug-Resistant Bacteria. ACS Infect Dis 2020; 6:479-488. [PMID: 31922723 DOI: 10.1021/acsinfecdis.9b00410] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug-resistant (MDR) bacteria have emerged quickly and have caused serious nosocomial infections. It is urgent to develop novel antimicrobial agents for treating MDR bacterial infections. In this study, we isolated 45 strains of bacteria from hospital patients and found shockingly that most of these strains were MDR to antimicrobial drugs. This inspired us to explore antimicrobial peptide polymers as synthetic mimics of host defense peptides in combating drug-resistant bacteria and the formidable antimicrobial challenge. We found that peptide polymer 80:20 DM:Bu (where DM is a hydrophilic/cationic subunit and Bu is a hydrophobic subunit) displayed fast bacterial killing, broad spectrum, and potent activity against clinically isolated strains of MDR bacteria. Moreover, peptide polymer 80:20 DM:Bu displayed potent in vivo antibacterial efficacy, comparable to the performance of polymyxin B, in a Pseudomonas aeruginosa (P. aeruginosa) infected rat full-thickness wound model. The peptide polymer can be easily synthesized from ring-opening polymerization with remarkable reproducibility in structural properties and biological activities. The peptide polymer's potent and broad spectrum antimicrobial activities against MDR bacteria in vitro and in vivo, resistance to proteolysis, and high structural diversity altogether imply a great potential of peptide polymer 80:20 DM:Bu in antimicrobial applications as synthetic mimics of host defense peptides.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Xiaoyan Shao
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yidong Dai
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Yun Wang
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Jiayang Xie
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Sun
- Shanghai Ruijin Rehabilitation Hospital, Shanghai 200023, China
| | - Zihao Cong
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongqian Qiao
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Longqiang Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiang Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Minzhang Chen
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST), Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
224
|
Mai B, Jia M, Liu S, Sheng Z, Li M, Gao Y, Wang X, Liu Q, Wang P. Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10156-10169. [PMID: 32027477 DOI: 10.1021/acsami.0c00298] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Burn infection is one of the commonest causes of death in severely burned patients. Developing multifunctional biological nanomaterials has a great significance for the comprehensive treatment of burn infection. In this paper, we developed a hydrogel-based nanodelivery system with antibacterial activity and skin regeneration function, which was used for photodynamic antimicrobial chemotherapy (PACT) in the treatment of burns. The treatment system is mainly composed of porphyrin photosensitizer sinoporphyrin sodium (DVDMS) and poly(lactic-co-glycolic acid) (PLGA)-encapsulated basic fibroblast growth factor (bFGF) nanospheres that are embedded in carboxymethyl chitosan (CMCS)-sodium alginate to form CSDP hybrid hydrogel. We systematically evaluated the inherent antibacterial performance, rheological properties, fluorescence imaging, and biocompatibility of the CSDP nanosystem. Under mild photoirradiation (30 J/cm2, 5 min), 10 μg/mL CSDP showed excellent antibacterial and anti-biofilm activities, which eradicated almost 99.99% of Staphylococcus aureus and multidrug-resistant (MDR) S. aureus in vitro. KEGG analysis identified that multiple signaling pathways were changed in MDR S. aureus after PACT. In the burn-infection model, CSDP-PACT successfully inhibited bacteria growth and concurrently promoted wound healing. Moreover, several regenerative factors were increased and some proinflammatory factors were reduced in the burn wounds of CSDP hydrogel treatment. These results suggest that the multifunctional CSDP hydrogel is a portable, light-triggered, antibacterial theranostic-platform and CSDP-PACT provides a promising strategy or the mechanically based synergistic treatment of burn infections.
Collapse
Affiliation(s)
- Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mengqi Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Shupei Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yiru Gao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
225
|
Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117641] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
226
|
Peng L, Chang L, Si M, Lin J, Wei Y, Wang S, Liu H, Han B, Jiang L. Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9718-9725. [PMID: 32027112 DOI: 10.1021/acsami.9b19873] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection is the main cause of implantation failure worldwide, and the importance of antibiotics on medical devices has been undermined because of antibiotic resistance. Antimicrobial hydrogels have emerged as a promising approach to combat infections associated with medical devices and wound healing. However, hydrogel coatings that simultaneously possess both antifouling and antimicrobial attributes are scarce. Herein, we report an antimicrobial hydrogel that incorporates adhesion-inhibiting polyethylene glycol (PEG) and colony-suppressing chitosan (CS) as a dressing to combat bacterial infections. These two polymers have important environmentally benign characteristics including low toxicity, low volatility, and biocompatibility. Although hydrogels containing PEG and CS have been reported for applications in the fields of wound dressing, tissue repair, water purification, drug delivery, and scaffolds for bone regeneration, there still has been no report on the application of CS/PEG hydrogel coatings in dental applications. Herein, this biointerface shows superior activity in early-stage adhesion inhibition (98.8%, 5 h) and displays remarkably long-lasting colony-suppression activity (93.3%, 7 d). Thus, this novel nanomaterial, which has potential as a dual-functional platform with integrated antifouling and antimicrobial functions with excellent biocompatibility, might be used as a safe and effective antimicrobial coating in biomedical device applications.
Collapse
Affiliation(s)
- Liying Peng
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Li Chang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Mengting Si
- Department of Geriatric Dentistry , Peking University School and Hospital of Stomatology, Beijing Laboratory of Biomedical Materials , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Jiuxiang Lin
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry , Peking University School and Hospital of Stomatology, Beijing Laboratory of Biomedical Materials , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Bing Han
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
227
|
Wang H, Guo L, Wang Y, Feng L. Bactericidal activity-tunable conjugated polymers as a human-friendly bactericide for the treatment of wound infections. Biomater Sci 2020; 7:3788-3794. [PMID: 31218306 DOI: 10.1039/c9bm00695h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has been reported to be an effective alternative to combat bacterial infections even those triggered by drug-resistant strains as there is little chance to develop resistance to this therapy. Therefore, it is imperative to design and synthesize a superior photo-active bactericide for the treatment of bacterial infections. Herein, we synthesized three bactericidal activity-tunable conjugated polymers (P1-P3) with various photoactive capabilities and employed them for the treatment of wound infections with little damage to cells; by altering the construction unit of π-conjugated backbone structures with electron-rich and electron-deficient aromatic heterocycles, the optical properties and ability of reactive oxygen species (ROS) generation could be regulated; this resulted in a tunable killing ability. The cationic quaternary ammonium (QA) groups on the side chains endowed the CPs with not only good dispersibility but also a better interaction with the negatively charged membrane of bacteria. The antibacterial experiments towards ampicillin-resistant Escherichia coli TOP10 (E. coli) and the treatment of wound infections in mice indicate that the P1-P3 have varied bactericidal activities; moreover, P3 has been demonstrated to be a human-friendly bactericide with excellent antibacterial capability. It not only acts as a potential bactericide for the practical treatment of infectious wounds, but also offers guidance for the design and structure control of photo-active bactericides.
Collapse
Affiliation(s)
- Haoping Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China.
| | | | | | | |
Collapse
|
228
|
Cui F, Ye Y, Ping J, Sun X. Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 2020; 156:112085. [PMID: 32275580 DOI: 10.1016/j.bios.2020.112085] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
Pathogenic bacterial infections are a significant threat to human safety and health. Recent researches on the application of nanoparticles as imaging, detecting agents have evidenced their huge potential for infectious disease management. Among these nanoparticles, carbon dots (CDs) have attracted much attention as a new and innovative nanoparticle owing to their unique optical and physicochemical properties as well as their higher biosafety. Thus, CDs are becoming superior candidates for imaging and detection of pathogenic bacteria. This review provides an overview of research advances and the mechanisms in the imaging and detection pathogenic bacteria such as "switch on" sensor, "on-off" sensor, förster resonance energy transfer (FRET), etc. Further, our discussion extends to exploring the antibacterial effects of CDs, which is considered to be a potentially promising antibacterial agent. This review would provide the basis and the direction for the further commercial applications of CDs in imaging, detecting and eliminating pathogenic bacteria. The challenges associated with CDs in monitoring of pathogenic bacteria and future directions in this field are also presented.
Collapse
Affiliation(s)
- Fangchao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
229
|
Zhou S, Wang Z, Wang Y, Feng L. Near-Infrared Light-Triggered Synergistic Phototherapy for Antimicrobial Therapy. ACS APPLIED BIO MATERIALS 2020; 3:1730-1737. [DOI: 10.1021/acsabm.0c00034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sirong Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P.R. China
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
230
|
Lopez-Silva TL, Leach DG, Azares A, Li IC, Woodside DG, Hartgerink JD. Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 2020; 231:119667. [PMID: 31855625 PMCID: PMC7049098 DOI: 10.1016/j.biomaterials.2019.119667] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Multidomain Peptide (MDP) hydrogels are nanofibrous materials with many potential biomedical applications. The peptide sequence design of these materials offers high versatility and allows for the incorporation of various chemical functionalities into the nanofibrous scaffold. It is known that host response to biomaterials is strongly affected by factors such as size, shape, stiffness, and chemistry. However, there is a lack of fundamental understanding of the host response to different MDP hydrogels. In particular, it is unknown what effect the chemical functionality displayed on the nanofiber has on biological activity. Here we evaluated the early inflammatory host response to four MDP hydrogels displaying amines, guanidinium ions, and carboxylates in a subcutaneous injection model. While all the studied peptide materials possess similar nanostructure and physical properties, they trigger markedly different inflammatory responses. These were characterized by immunophenotyping of the cellular infiltrate using multi-color flow cytometry. The negatively-charged peptides elicit minimal inflammation characterized by tissue-resident macrophage infiltration, fast remodeling, and no collagen deposition or blood vessel formation within the implants. In contrast, the positively-charged peptides are highly infiltrated by immune cells, are remodeled at a slower rate, promote angiogenesis, and result in a high degree of collagen deposition. The presence of dynamic cell phenotypes characterizes the inflammation caused by the lysine-based peptide, including inflammatory monocytes, macrophages, and lymphoid cells, which is seen to be resolving over time. The arginine-based hydrogel shows higher inflammatory response with a persistent and significant infiltration of polymorphonuclear myeloid-derived cells, even ten days after implantation. This understanding of the immune response to peptide biomaterials improves our ability to design effective materials and to tailor their use for specific biomedical applications.
Collapse
Affiliation(s)
| | - David G Leach
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Alon Azares
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, 77030, USA
| | - I-Che Li
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Darren G Woodside
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, 77030, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
231
|
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics (Basel) 2020; 9:E56. [PMID: 32024064 PMCID: PMC7168299 DOI: 10.3390/antibiotics9020056] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The epidermal skin barrier protects the body from a host of daily challenges, providing protection against mechanical insults and the absorption of chemicals and xenobiotics. In addition to the physical barrier, the epidermis also presents an innate defense against microbial overgrowth. This is achieved through the presence of a diverse collection of microorganisms on the skin (the "microbiota") that maintain a delicate balance with the host and play a significant role in overall human health. When the skin is wounded, the local tissue with a compromised barrier can become colonized and ultimately infected if bacterial growth overcomes the host response. Wound infections present an immense burden in healthcare costs and decreased quality of life for patients, and treatment becomes increasingly important because of the negative impact that infection has on slowing the rate of wound healing. In this review, we discuss specific challenges of treating wound infections and the advances in drug delivery platforms and formulations that are under development to improve topical delivery of antimicrobial treatments.
Collapse
Affiliation(s)
- R. Smith
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
| | - J. Russo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - J. Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - N. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
- Department of Dermatology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
232
|
Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials. Int J Biol Macromol 2020; 144:483-490. [DOI: 10.1016/j.ijbiomac.2019.12.126] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/09/2023]
|
233
|
Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int J Biol Macromol 2020; 150:1-8. [PMID: 32007552 DOI: 10.1016/j.ijbiomac.2020.01.259] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023]
Abstract
Antimicrobial cotton textiles (CT) show great promise for wound dressings. However, modifying CTs to have antimicrobial properties requires balancing the killing of microbes while protecting normal cells. In this study, the surface of CT was modified using maleopimaric acid quaternary ammonium cations (MPA-N+) from rosin acid. The surfaces morphology and chemical composition were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), which confirmed that the MPA-N+ modified CT (CT-g-MPA-N+) was prepared. CT-g-MPA-N+ shows strong and broad spectrum antimicrobial activities against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). It also exhibits prominent durability of antimicrobial capability even after soaking in PBS for 6 days, and can effectively inhibit bacterial biofilm formation. Most importantly, the excellent biocompatibility of CT-g-MPA-N+ was verified by hemocompatible and cytotoxic assays. This work is believed to be promising method to prepare antimicrobial cotton textiles by surface modification and suggest the great potential application in wound dressing.
Collapse
|
234
|
Hu D, Deng Y, Jia F, Jin Q, Ji J. Surface Charge Switchable Supramolecular Nanocarriers for Nitric Oxide Synergistic Photodynamic Eradication of Biofilms. ACS NANO 2020; 14:347-359. [PMID: 31887012 DOI: 10.1021/acsnano.9b05493] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biofilm has resulted in numerous obstinate clinical infections, posing severe threats to public health. It is urgent to develop original antibacterial strategies for eradicating biofilms. Herein, we develop a surface charge switchable supramolecular nanocarrier exhibiting pH-responsive penetration into an acidic biofilm for nitric oxide (NO) synergistic photodynamic eradication of the methicillin-resistant Staphylococcus aureus (MRSA) biofilm with negligible damage to healthy tissues under laser irradiation. Originally, by integrating the glutathione (GSH)-sensitive α-cyclodextrin (α-CD) conjugated nitric oxide (NO) prodrug (α-CD-NO) and chlorin e6 (Ce6) prodrug (α-CD-Ce6) into the pH-sensitive poly(ethylene glycol) (PEG) block polypeptide copolymer (PEG-(KLAKLAK)2-DA) via host-guest interaction, the supramolecular nanocarrier α-CD-Ce6-NO-DA was finely prepared. The supramolecular nanocarrier shows complete surface charge reversal from negative charge at physiological pH (7.4) to positive charge at acidic biofilm pH (5.5), promoting efficient penetration into the biofilm. Once infiltrated into the biofilm, the nanocarrier exhibits rapid NO release triggered by the overexpressed GSH in the biofilm, which not only produces abundant NO for killing bacteria but also reduces the biofilm GSH level to improve photodynamic therapy (PDT) efficiency. On the other hand, NO can react with reactive oxygen species (ROS) to produce reactive nitrogen species (RNS), further improving the PDT efficiency. Due to the effective penetration into the biofilm and depletion of biofilm GSH, the surface charge switchable GSH-sensitive NO nanocarrier can greatly improve the PDT efficiency at a low photosensitizer dose and laser intensity and cause negligible side effect to healthy tissues. Considering the above advantages, the strategy developed in this work may offer great possibilities to fight against biofilm infections.
Collapse
Affiliation(s)
- Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
235
|
Zhao M, Wan S, Peng X, Zhang B, Pan Q, Li S, He B, Pu Y. Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo-photodynamic therapy. J Mater Chem B 2020; 8:1235-1244. [PMID: 31957757 DOI: 10.1039/c9tb02400j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we reported a primary amine containing polycationic polymer to load an oppositely charged anticancer drug (doxorubicin, DOX) and a photosensitizer (chlorin e6, Ce6) for combinational chemo-photodynamic therapy. The electrostatic interactions as well as other multiple interactions between the polymer and payloads endowed the drug-loaded nanoparticles with excellent stability. Moreover, the electrostatic attraction between the cationic polymer and anionic Ce6 dictated that Ce6 had higher loading efficiency than DOX. DOX showed pH-responsive drug release owing to the increased solubility of protonated DOX and reduced interaction with the partially protonated polymer under acidic conditions. In contrast, Ce6 showed pH-insensitive release because of the smaller change in solubility and the intense interactions between Ce6 and the polymer. Synergistic chemo/photodynamic therapy of 4T1 cancer cells was achieved by light-triggered reactive oxygen species (ROS)-mediated enhanced cellular uptake and effective endo/lysosomal escape of drug-loaded nanoparticles. Our study demonstrated that the polycationic polymer could act as a robust carrier for differential loading and release of oppositely charged cargos for combinational therapy.
Collapse
Affiliation(s)
- Mingying Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiyu Wan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xinyu Peng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Boya Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Qingqing Pan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
236
|
Gao Q, Li X, Yu W, Jia F, Yao T, Jin Q, Ji J. Fabrication of Mixed-Charge Polypeptide Coating for Enhanced Hemocompatibility and Anti-Infective Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2999-3010. [PMID: 31845798 DOI: 10.1021/acsami.9b19335] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Medical catheters are prone to fouling by protein adsorption and platelet adhesion/activation due to their hydrophobic surface, resulting in bacterial adhesion/biofilm formation, associated infection, and thrombosis. Hence, an ultralow-fouling and exceptional infection-resistant coating on devices is urgently needed. Herein, we synthesized mussel-inspired cationic polypeptide (cPep) and mixed-charge polypeptide (mPep) via an N-carboxyanhydride ring opening polymerization method. In the view of the chemical structure, in addition to the catechol group of levodopa, the cationic group of l-lysine (K), and the hydrophobic group of l-phenylalanine (F), the mPep, comparing with cPep, contains the anionic group of l-glutamic acid (E) since the negatively charge amino acid sequence is newly introduced, so as to guarantee its bactericidal ability, low toxicity, and surface self-deposition. Both cPep and mPep coatings are conveniently obtained by a dopamine-assisted codeposition technique. Compared with the cPep coating, the mPep coating has a similar antibacterial activity level (>99%) against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Meanwhile, it is demonstrated that the mPep coating has most effective antibiofilm activity (>3 days) and protein/platelet-resistant ability in vitro, as well as improving hemocompatibility. Furthermore, the mPep-coated silicone catheter induces no inflammatory response and significantly lowers the bacterial cell number with 6 log reduction in a mouse model of infection. Consequently, the rationally designed mPep with a simple coating technique has great potential in combating against medical catheter-related clinical infections.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xu Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Tiantian Yao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
237
|
Lv X, Zhang J, Yang D, Shao J, Wang W, Zhang Q, Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B 2020; 8:10700-10711. [DOI: 10.1039/d0tb02177f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design and synthesis of pH-responsive antibacterial nanomaterials and their applications in anti-infective therapy.
Collapse
Affiliation(s)
- Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Jiayao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Wenjun Wang
- School of Physical Science and Information Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Qi Zhang
- School of Pharmaceutical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
- School of Chemistry and Materials Science
| |
Collapse
|
238
|
Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185:110627. [DOI: 10.1016/j.colsurfb.2019.110627] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023]
|
239
|
Xu J, Pu L, Ma J, Kumar SK, Duan H. Antibacterial properties of synthesized cyclic and linear cationic copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00755b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibacterial activities of cationic cyclic copolymers compared to those of their linear counterparts were investigated.
Collapse
Affiliation(s)
- Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Lu Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Jielin Ma
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Sagar Kundan Kumar
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| |
Collapse
|
240
|
Park JY, Lee JB, Shin WB, Kang ML, Shin YC, Son DH, Yi SW, Yoon JK, Kim JY, Ko J, Kim CS, Yoon JS, Sung HJ. Nasolacrimal stent with shape memory as an advanced alternative to silicone products. Acta Biomater 2020; 101:273-284. [PMID: 31707084 DOI: 10.1016/j.actbio.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/27/2023]
Abstract
Epiphora is the overflow of tears typically caused by obstruction or occlusion of the nasolacrimal duct. More attention is required to address this global health issue owing to the increase in air pollution. Implantation of a silicone stent is the preferred treatment for epiphora; however, introducing a silicone stent into a narrow duct with complex geometry is challenging as it requires guidance by a sharp metal needle. Additionally, silicone can cause adverse reactions such as biofilm formation and tear flow resistance due to its extreme hydrophobicity. To overcome these problems, in this study we developed a new type of biocompatible shape memory polymer (SMP) stent with elasticity capacity for self-expansion. First, SMPs in the form of x%poly(ε-caprolactone)-co-y%poly(glycidyl methacrylate) (x%PCL-y%PGMA) were synthesized via ring opening polymerization by varying the molar ratio of PCL (x%) and PGMA (y%). Second, the shape memory and mechanical properties were tuned by controlling the crosslinking degree and concentration of x%PCL-y%PGMA solution to produce a test type of SMP stent. Lastly, this 94%PCL-06%PGMA stent exhibited more standout critical functions in a series of in vitro and in vivo experiments such as a cell growth-supporting level of biocompatibility with nasal epithelial cells without significant inflammatory responses, better resistance to biofilm formation, and more efficient capacity to drain tear than the silicone control. Overall, 94%PCL-06%PGMA can be suggested as a superior alternative to the currently used materials for nasolacrimal stents. STATEMENT OF SIGNIFICANCE: Silicone intubation (stenting) has been widely used to treat nasolacrimal duct obstruction, however, it can cause adverse clinical effects such as bacterial infection; presents procedural challenges because of the curved nasolacrimal duct structure; and shows poor drainage efficiency stemming from the highly hydrophobic nature of silicone. In this work, we describe an innovative shape memory polymer (SMP) as a superior alternative to conventional silicone-based materials for nasolacrimal duct intubation. We demonstrate the clear advantages of the SMP over conventional silicone, including a much higher drainage capacity and superior resistance to bacterial infection.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woo Beom Shin
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Mi-Lan Kang
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; TMD Lab Co., Ltd., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Yong Cheol Shin
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Deok Hyeon Son
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Se Won Yi
- TMD Lab Co., Ltd., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Chang-Soo Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Numais Co., Ltd., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea.
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
241
|
Yang Z, Wu C, Kanamori K, Kamei T, Shimada T, Nakanishi K. On-site formation of small Ag nanoparticles on superhydrophobic mesoporous silica for antibacterial application. NEW J CHEM 2020. [DOI: 10.1039/d0nj02502j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A superhydrophobic mesoporous silica material loaded with on-site formed small Ag nanoparticles has been prepared via surface modification with octadecylsilane (C18H37SiH3) and subsequent reduction of silver ions with residual hydrido groups on-site.
Collapse
Affiliation(s)
- Zhu Yang
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto
- Japan
| | - Chunhua Wu
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- China
| | - Kazuyoshi Kanamori
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto
- Japan
| | | | - Toyoshi Shimada
- Institute for Integrated Cell-Material Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for Sustainability
- Nagoya University
- Nagoya
- Japan
- Institute for Integrated Cell-Material Sciences
| |
Collapse
|
242
|
Liu H, Hu Y, Zhu Y, Wu X, Zhou X, Pan H, Chen S, Tian P. A simultaneous grafting/vinyl polymerization process generates a polycationic surface for enhanced antibacterial activity of bacterial cellulose. Int J Biol Macromol 2020; 143:224-234. [DOI: 10.1016/j.ijbiomac.2019.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
|
243
|
Antimicrobial Polymer with Enhanced Activity and Reduced Toxicity upon Grafting to Chitosan Oligosaccharide. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04260-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
244
|
Zeng M, Xu J, Luo Q, Hou C, Qiao S, Fu S, Fan X, Liu J. Constructing antibacterial polymer nanocapsules based on pyridine quaternary ammonium salt. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110383. [PMID: 31923992 DOI: 10.1016/j.msec.2019.110383] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
Excessive use of antibiotics accelerates the development and spread of drug-resistant strains, which is a huge challenge for the field of medical health worldwide. Quaternary ammonium salt polymers are considered to be membrane-active bactericidal groups with vast potential to control bacterial infections and inhibit drug resistance. Herein, we report on the creative synthesis and characterization of novel antimicrobial polymer nanocapsules based on pyridine quaternary ammonium salt. The antimicrobial polymer nanocapsules were formed by reaction of C3 symmetrical rigid monomer 2,4,6‑tris(4‑pyridyl)‑1,3,5‑triazine (TPT) and a flexible linker 1,2‑dibromoethane. The polymer nanocapsule was constructed as a cationic hollow sphere composed of a two-dimensional sheet whose main chain was formed by the pyridine quaternary ammonium salt, and a part of the bromide ion was adsorbed on the sphere. This hollow nanocapsule was characterized in detail by DLS, SEM, TEM, AFM, EDS and EA. When the cationic polymer nanocapsules are close to the Gram-negative Escherichia coli, the negatively charged phospholipid molecules in the bacterial membrane are attracted to the cationic surface and lead to rupture of cells. SEM confirmed the breakage of Escherichia coli membranes. The minimum inhibitory concentration was found to be 0.04 mg/mL, and the minimum bactericidal concentration was 0.1 mg/mL. Our experiments demonstrated that the adsorption of negatively charged phospholipid molecules on the surface of the pyridine quaternary ammonium salt polymer can kill Gram-negative bacteria without inserting quaternary ammonium salt hydrophobic groups into the cell membrane.
Collapse
Affiliation(s)
- Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shanpeng Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuang Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
245
|
Wang YW, Liu CC, Cherng JH, Lin CS, Chang SJ, Hong ZJ, Liu CC, Chiu YK, Hsu SD, Chang H. Biological Effects of Chitosan-Based Dressing on Hemostasis Mechanism. Polymers (Basel) 2019; 11:E1906. [PMID: 31752424 PMCID: PMC6918334 DOI: 10.3390/polym11111906] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022] Open
Abstract
There have been numerous recent advances in wound care management. Nevertheless, the assessment of hemostatic dressing is essential to enable surgeons and other physicians and healthcare professionals to make the correct decisions regarding the disposition of severe hemorrhage. Here, we investigated the relative efficacies of chitosan-based and conventional gauze dressings in a rat model of femoral artery hemorrhage and in patients with surgical wounds. Dressing effectiveness was evaluated based on hemostatic profiles, biocompatibility, antimicrobial activity, and blood factor responses in coagulation. Relative to standard gauze dressing, the chitosan fiber (CF) dressing treatment significantly shortened the time to hemostasis in injured rats. Moreover, the CF dressing significantly prolonged partial thromboplastin time, enhanced blood absorption, and reduced antithrombin production without altering the prothrombin ratio. Unlike regular gauze bandages, the CF dressing demonstrated remarkable antibacterial activity. The results of this study indicate the effectiveness of chitosan as a hemostatic dressing and elucidate its underlying mechanism. It is possible that chitosan surgical dressings could serve as first-line intervention in hospital emergency care for uncontrolled hemorrhage.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 100, Taiwan; (Y.-W.W.); (J.-H.C.)
| | - Chuan-Chieh Liu
- School of Medicine, Fu-Jen Catholic University, New Taipei City 100, Taiwan;
- Department of Cardiology, Cardinal Tien Hospital, Taipei 100, Taiwan
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 100, Taiwan; (Y.-W.W.); (J.-H.C.)
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 100, Taiwan
| | - Chien-Seng Lin
- Department of Emergency and Critical Care Medicine, Cheng Hsin Rehabilitation Medical Center, Taipei 100, Taiwan;
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan;
| | - Zhi-Jie Hong
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan;
| | - Cheng-Che Liu
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 100, Taiwan;
| | - Yaw-Kwan Chiu
- Department of Pediatrics, School of Medicine, National Defense Medical Center, Tri-Service General Hospital, National Defense Medical Center, Songshan Branch, Taipei 100, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 100, Taiwan
| | - Sheng-Der Hsu
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan;
| | - Hung Chang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 100, Taiwan
| |
Collapse
|
246
|
Zhou L, Lv F, Liu L, Wang S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc Chem Res 2019; 52:3211-3222. [PMID: 31609571 DOI: 10.1021/acs.accounts.9b00427] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apart from the wide applications in the field of electronic and optoelectronic devices, conjugated molecules have been established as useful functional materials for biological applications. By introducing hydrophilic side chains to conjugated backbones, water-soluble conjugated polymers or oligomers (CPs or COs) inherit the attractive optical and electronic properties from conjugated molecules, while their water solubility ensures interaction with biological substrates such as biomacromolecules, microorganisms, and living cells for further biological applications. Benefiting from high brightness, large extinction coefficients, excellent photostability, low cytotoxicity, stability in bodily fluids, and versatile structural modifications, water-soluble conjugated polymers and oligomers have offered powerful alternatives in a variety of biological applications including biological and chemical sensors, fluorescence imaging, disease diagnostics, and therapy. This Account will focus on our recent advances in design, synthesis, and interdisciplinary biological applications of a series of new water-soluble CP and CO materials, starting with a brief introduction to water-soluble CPs and COs and various methods and strategies developed for the preparation of advanced water-soluble CPs and COs. Since their properties can be tuned by rational design and synthesis at the level of the conjugated repeat unit and versatile pendant groups, CPs and COs provide a diverse toolbox for satisfying interdisciplinary biological applications. The application of water-soluble CPs and COs in the past five years can be broadly categorized into four areas. Specifically, integrating the unique optoelectronic properties of water-soluble CPs and COs with self-assembly and supramolecular strategies, efficacy regulation of antibiotic and anticancer drugs has been achieved, meanwhile drug resistance could be overcome and drug resistant "superbacteria" can be inhibited. For applications regulating cellular functions and biological processes, we introduce CPs and COs with the ability to regulate intracellular oxidative stress, cell-cell communication, cellular proliferation, cell membrane permeability, and quorum sensing of bacteria cells. By covalent linkage of reactive groups upon CPs and COs, these molecules are endowed with abilities like disassembly of amyloid polypeptides, biased distribution in cells, selective imaging of organelles, and distinguished interactions with biomolecules. For photothermal therapy (PTT) applications, photothermal-responsive conjugated polymer materials have been utilized for remote control of gene expression in living cells and in vivo photothermal therapy of cancer. Beyond these applications, we have achieved new interdisciplinary applications of water-soluble CP and CO materials for biological optoelectronic devices including photosynthesis, photocatalysis, and bioenergy. Specific features or properties of water-soluble CPs and COs are leveraged to bring opportunities for each of these applications. These studies open a new frontier for development of new functional conjugated molecule materials and provide better understanding of their interactions with biological systems as well as structure/property relationships. Current limitations confronted by CPs and COs are raised, and developmental direction for the future is proposed.
Collapse
Affiliation(s)
- Lingyun Zhou
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | | | - Shu Wang
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
247
|
Abri S, Ghatpande AA, Ress J, Barton HA, Leipzig ND. Polyionic Complexed Antibacterial Heparin–Chitosan Particles for Antibiotic Delivery. ACS APPLIED BIO MATERIALS 2019; 2:5848-5858. [DOI: 10.1021/acsabm.9b00833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shahrzad Abri
- Department of Chemical and Biomolecular Engineering and ‡Department of Biology, University of Akron, Akron, Ohio 44325, United States of America
| | | | - Jacob Ress
- Department of Chemical and Biomolecular Engineering and ‡Department of Biology, University of Akron, Akron, Ohio 44325, United States of America
| | | | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering and ‡Department of Biology, University of Akron, Akron, Ohio 44325, United States of America
| |
Collapse
|
248
|
Dong W, Chen R, Lin YT, Huang ZX, Bao GJ, He XY. A novel zinc oxide eugenol modified by polyhexamethylene biguanide: Physical and antimicrobial properties. Dent Mater J 2019; 39:200-205. [PMID: 31694998 DOI: 10.4012/dmj.2018-425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was to prepare and screen a novel root canal sealing agent modified by polyhexamethylene biguanide (PHMB) that was in accordance with the ISO 6876:2001 standard and to study its physical and antimicrobial properties. The modified sealers were produced by mixing a certain amount of zinc oxide with eugenol containing different concentrations of PHMB (0.05, 0.1, 0.2, 0.4, 0.6 and 0.8%) at a ratio of 1:1 (w/v). The setting time, flow, film thickness, solubility and dimensional change after solidifying were assessed to screen out the modified sealing agents that the physical properties met the mentioned standards. The modified direct contact test (DCT) was used to evaluate the antimicrobial activity against Enterococcus faecalis. The results suggested that when the concentrations of PHMB were 0.05, 0.1 and 0.2%, the modified root canal sealers showed the best performance in physical and antimicrobial properties.
Collapse
Affiliation(s)
- Wei Dong
- Department of Prosthodontics, School of Stomatology, Lanzhou University.,Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest University for Nationalities
| | - Rui Chen
- Department of Prosthodontics, School of Stomatology, Lanzhou University.,Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest University for Nationalities
| | - Yue-Ting Lin
- Department of Prosthodontics, School of Stomatology, Lanzhou University.,Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest University for Nationalities
| | - Zi-Xiao Huang
- Department of Prosthodontics, School of Stomatology, Lanzhou University
| | - Guang-Jie Bao
- Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest University for Nationalities
| | - Xiang-Yi He
- Department of Prosthodontics, School of Stomatology, Lanzhou University
| |
Collapse
|
249
|
Deng H, Yu Z, Chen S, Fei L, Sha Q, Zhou N, Chen Z, Xu C. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohydr Polym 2019; 230:115565. [PMID: 31887966 DOI: 10.1016/j.carbpol.2019.115565] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Nowadays, photothermal killing of pathogenic bacteria and treatment of wound infection have attracted great attention owing to effectively avoiding the drawbacks of traditional antibiotics. In this work, an agarose (AG)-based hydrogel containing tannic acid-Fe(III) (TA-Fe) nanoparticles was fabricated by a facile and eco-friendly strategy. The optimal nanocomposite hydrogel showed the good mechanical property and superior processability. More importantly, the nanocomposite hydrogel revealed outstanding photothermal effect, which exhibited a sharp temperature increase of 58 °C during NIR exposure for 10 min. With in vitro antibacterial experiment, the hydrogel could effectively kill of nearly 99 % of bacteria with 10 min of NIR irradiation. Additionally, for the in vivo experiment, the nanocomposite hydrogel could effectively cure wound infection and promote wound healing. Moreover, the hydrogel possessed high biocompatibility. Based on the good mechanical property, outstanding photothermal effect and high biocompatibility, the nanocomposite hydrogel could become a promising antibacterial wound dressings for biomedical applications.
Collapse
Affiliation(s)
- Hongling Deng
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Zhongpeng Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Shangui Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Liting Fei
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Qiuyang Sha
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Nan Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Zhiting Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chen Xu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, PR China.
| |
Collapse
|
250
|
Zhao H, Feng H, Liu J, Tang F, Du Y, Ji N, Xie L, Zhao X, Wang Z, Chen Q. Dual-functional guanosine-based hydrogel integrating localized delivery and anticancer activities for cancer therapy. Biomaterials 2019; 230:119598. [PMID: 31722785 DOI: 10.1016/j.biomaterials.2019.119598] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023]
Abstract
Supramolecular hydrogel delivery systems have attracted widely attention owing to incorporating various therapeutic agents in carriers to decrease unpredictable toxicities, improve curative efficacy, and protect drug bioactivity. Nonetheless, the dual-functional supramolecular hydrogel integrating localized delivery and antineoplastic activities in one system have rarely observed. In this study, we successfully developed a novel supramolecular hydrogel, isoguanosine-borate-guanosine (isoGBG), with reversibly and dynamic borate ester bonds formed via boric acids and diols derived from nature products guanosine and isoguanosine in one pot by following a simple procedure. Both in vivo and in vitro results demonstrated that the isoGBG hydrogel not only displays excellent stability, self-healing properties and biocompatibility, but also has highly anti-tumor activities through inducing tumor cell apoptosis and excellent inhibition effect of tumor recurrence. These findings suggested that isoGBG hydrogel can serve as a dual-function hydrogel system integrating drug carrier and anti-cancer compound in one system, which provided a promising strategy for the design of functional supramolecular hydrogel in the local management of cancer in the future.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hui Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China; XiangYa Stomatological Hospital, Central South University, Changsha, Hunan, 410000, PR China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuqi Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xuefeng Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|