201
|
Chandhok NS, Prebet T. Insights into novel emerging epigenetic drugs in myeloid malignancies. Ther Adv Hematol 2019; 10:2040620719866081. [PMID: 31431820 PMCID: PMC6685116 DOI: 10.1177/2040620719866081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetics has been defined as ‘a stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence’ and several epigenetic regulators are recurrently mutated in hematological malignancies. Epigenetic modifications include changes such as DNA methylation, histone modifications and RNA associated gene silencing. Transcriptional regulation, chromosome stability, DNA replication and DNA repair are all controlled by these modifications. Mutations in genes encoding epigenetic modifiers are a frequent occurrence in hematologic malignancies and important in both the initiation and progression of cancer. Epigenetic modifications are also frequently reversible, allowing excellent opportunities for therapeutic intervention. The goal of epigenetic therapies is to reverse epigenetic dysregulation, restore the epigenetic balance, and revert malignant cells to a more normal condition. The role of epigenetic therapies thus far is most established in hematologic malignancies, with several agents already approved by the US Food and Drug Administration. In this review, we discuss pharmacological agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| | - Thomas Prebet
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, 35 Park Street, New Haven, CT 06511, USA
| |
Collapse
|
202
|
Fomchenko EI, Erson-Omay EZ, Zhao A, Bindra RS, Huttner A, Fulbright RK, Moliterno J. DNMT3A co-mutation in an IDH1-mutant glioblastoma. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004119. [PMID: 31371348 PMCID: PMC6672028 DOI: 10.1101/mcs.a004119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Glioblastomas are highly aggressive, infiltrative, and genetically heterogeneous primary brain tumors that arise de novo or secondarily progress over time from low-grade tumors. Along with well-established signature mutational profiles, emerging research suggests that the epigenetic tumor landscape plays an important role in gliomagenesis via transcriptional regulation, DNA methylation, and histone modifications. The pursuit of targeted therapeutic approaches, based not only on expression profiles but also on somatic mutations, is fundamental to the effort of improving survival in patients with glioblastoma. Here, we describe a missense DNMT3A p.P904S mutation in an IDH1-mutant glioblastoma. Although never previously reported in gliomas, this mutation is predicted to be pathogenic and has been reported in several other malignancies. Our report suggests that elucidating epigenetic control is important to understanding glioblastoma biology and may likely unveil targets potentially important to glioblastoma treatment in an effort to improve survival.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Amy Zhao
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Robert K Fulbright
- Department of Radiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
203
|
Patel SS, Pinkus GS, Ritterhouse LL, Segal JP, Dal Cin P, Restrepo T, Harris MH, Stone RM, Hasserjian RP, Weinberg OK. High NPM1 mutant allele burden at diagnosis correlates with minimal residual disease at first remission in de novo acute myeloid leukemia. Am J Hematol 2019; 94:921-928. [PMID: 31148220 DOI: 10.1002/ajh.25544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) with mutated NPM1 is a newly recognized separate entity in the revised 2016 WHO classification, and is associated with a favorable prognosis. While previous studies have evaluated NPM1 in a binary fashion, we recently demonstrated a significant independent negative prognostic effect of high NPM1 mutant allele burden (VAF) at diagnosis in a cohort of de novo AML patients. Although the importance of minimal residual disease (MRD) monitoring in NPM1-mutated AML has been well characterized, the potential relationship between diagnostic allele burden and MRD is unknown. We retrospectively evaluated for MRD at first remission (CR1). We used either next-generation sequencing (NGS) [n = 71], and/or immunohistochemistry (IHC) for mutant NPM1 (NPM1c) [n = 60], in a subset of patients from our recently examined cohort. We identified a statistically significant positive correlation between the VAF at diagnosis, and at CR1 (Spearman r = 0.4, P = .006), and enrichment for MRD in high diagnostic VAF patients (P = .05), as previously defined. IHC-positivity also correlated significantly with a higher median diagnostic NPM1 VAF (0.42 vs 0.39, P = .02), and with the VAF at CR1 (Spearman r = 0.7, P = .003). In multivariable analyses, both high diagnostic VAF (P = .003) and MRD (P = .02) were independent predictors of shorter event-free survival (EFS). Our findings suggest a relationship between the NPM1 mutant allele burden at diagnosis, and the presence of MRD at first remission. Our findings support IHC as a potentially useful adjunctive tool for disease monitoring.
Collapse
Affiliation(s)
- Sanjay S. Patel
- Department of PathologyBrigham and Women's Hospital Boston Massachusetts
| | | | | | - Jeremy P. Segal
- Division of Genomic and Molecular PathologyUniversity of Chicago Chicago Illinois
| | - Paola Dal Cin
- Department of PathologyBrigham and Women's Hospital Boston Massachusetts
| | - Tamara Restrepo
- Department of PathologyBoston Children's Hospital Boston Massachusetts
| | - Marian H. Harris
- Department of PathologyBoston Children's Hospital Boston Massachusetts
| | - Richard M. Stone
- Department of Medical OncologyDana‐Farber Cancer Institute Boston Massachusetts
| | | | - Olga K. Weinberg
- Department of PathologyBrigham and Women's Hospital Boston Massachusetts
- Department of PathologyBoston Children's Hospital Boston Massachusetts
| |
Collapse
|
204
|
DiNardo C, Lachowiez C. Acute Myeloid Leukemia: from Mutation Profiling to Treatment Decisions. Curr Hematol Malig Rep 2019; 14:386-394. [DOI: 10.1007/s11899-019-00535-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
205
|
Li T, Wang L, Du Y, Xie S, Yang X, Lian F, Zhou Z, Qian C. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res 2019; 46:3218-3231. [PMID: 29471350 PMCID: PMC5887372 DOI: 10.1093/nar/gky104] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
UHRF1 plays multiple roles in regulating DNMT1-mediated DNA methylation maintenance during DNA replication. The UHRF1 C-terminal RING finger functions as an ubiquitin E3 ligase to establish histone H3 ubiquitination at Lys18 and/or Lys23, which is subsequently recognized by DNMT1 to promote its localization onto replication foci. Here, we present the crystal structure of DNMT1 RFTS domain in complex with ubiquitin and highlight a unique ubiquitin binding mode for the RFTS domain. We provide evidence that UHRF1 N-terminal ubiquitin-like domain (UBL) also binds directly to DNMT1. Despite sharing a high degree of structural similarity, UHRF1 UBL and ubiquitin bind to DNMT1 in a very distinct fashion and exert different impacts on DNMT1 enzymatic activity. We further show that the UHRF1 UBL-mediated interaction between UHRF1 and DNMT1, and the binding of DNMT1 to ubiquitinated histone H3 that is catalyzed by UHRF1 RING domain are critical for the proper subnuclear localization of DNMT1 and maintenance of DNA methylation. Collectively, our study adds another layer of complexity to the regulatory mechanism of DNMT1 activation by UHRF1 and supports that individual domains of UHRF1 participate and act in concert to maintain DNA methylation patterns.
Collapse
Affiliation(s)
- Tao Li
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Linsheng Wang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Yongming Du
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Si Xie
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Xi Yang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Fuming Lian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Chengmin Qian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| |
Collapse
|
206
|
Emperle M, Rajavelu A, Kunert S, Arimondo PB, Reinhardt R, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutant displays altered flanking sequence preferences. Nucleic Acids Res 2019. [PMID: 29518238 PMCID: PMC5887309 DOI: 10.1093/nar/gky168] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Paola B Arimondo
- CNRS ETaC FRE3600, Bât. IBCG. 118, Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Richard Reinhardt
- Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
207
|
Abstract
Sulfur assimilation and the biosynthesis of methionine, cysteine and S-adenosylmethionine (SAM) are critical to life. As a cofactor, SAM is required for the activity of most methyltransferases (MTases) and as such has broad impact on diverse cellular processes. Assigning function to MTases remains a challenge however, as many MTases are partially redundant, they often have multiple cellular roles and these activities can be condition-dependent. To address these challenges, we performed a systematic synthetic genetic analysis of all pairwise MTase double mutations in normal and stress conditions (16°C, 37°C, and LiCl) resulting in an unbiased comprehensive overview of the complexity and plasticity of the methyltransferome. Based on this network, we performed biochemical analysis of members of the histone H3K4 COMPASS complex and the phospholipid methyltransferase OPI3 to reveal a new role for a phospholipid methyltransferase in mediating histone methylation (H3K4) which underscores a potential link between lipid homeostasis and histone methylation. Our findings provide a valuable resource to study methyltransferase function, the dynamics of the methyltransferome, genetic crosstalk between biological processes and the dynamics of the methyltransferome in response to cellular stress.
Collapse
Affiliation(s)
- Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Elena Lissina
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
208
|
Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3. Nat Chem Biol 2019; 15:822-829. [PMID: 31285596 DOI: 10.1038/s41589-019-0310-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/19/2019] [Indexed: 01/10/2023]
Abstract
Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.
Collapse
|
209
|
Coston T, Pophali P, Vallapureddy R, Lasho TL, Finke CM, Ketterling RP, Carr R, Binder M, Mangaonkar AA, Gangat N, Al‐Kali A, Litzow M, Zblewski D, Pardanani A, Tefferi A, Patnaik MM. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol 2019; 94:767-779. [PMID: 30964202 DOI: 10.1002/ajh.25488] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
Hypomethylating agents (HMA) are currently the only FDA approved therapy for patients with chronic myelomonocytic leukemia (CMML). In the current retrospective study, we assessed response rates as adjudicated by the IWG (International Working Group) MDS (myelodysplastic syndrome) and MDS/MPN myeloproliferative neoplasm overlap syndrome response criteria, in 121 CMML patients treated with Azacitidine (AZA, n = 56) and Decitabine (DAC, n = 65). The overall response rates were 41% by the IWG MDS (AZA- 45%, DAC-39%), and 56% by the IWG MDS/MPN (AZA-56%, DAC-58%) response criteria, with CR (complete remission) rates of <20% for both agents, by both criteria. There were no significant differences in response rates between proliferative and dysplastic CMML. Moreover, 29% of CMML patients in a CR with HMA progressed to AML (blast transformation), underscoring the limited impact of these agents on disease biology. Progression after HMA response was associated with a median overall-survival (OS) of 8 months, while median OS in patients with primary HMA failure was 4 months. Lower serum LDH levels (<250 Units/L) were associated with HMA responses by both criteria; while ASXL1 and TET2 mutational status had no impact. HMA treated patients had a longer median OS (31 vs 18 months; P = .01), in comparison to those treated with conventional care regimens (excluding observation only patients), without any differences between AZA vs DAC (P = .37). In conclusion, this study highlights the inadequacies of HMA therapy in CMML, retrospectively validates the IWG MDS/MPN response criteria and underscores the need for newer, rationally derived therapies.
Collapse
Affiliation(s)
- Tucker Coston
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Prateek Pophali
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Rangit Vallapureddy
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Terra L. Lasho
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Christy M. Finke
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Rhett P. Ketterling
- Division of Hematopathology, Department of Laboratory MedicineMayo Clinic Rochester Minnesota
| | - Ryan Carr
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Moritz Binder
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | | | - Naseema Gangat
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Aref Al‐Kali
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Mark Litzow
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Darci Zblewski
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Animesh Pardanani
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal MedicineMayo Clinic Rochester Minnesota
| |
Collapse
|
210
|
DNA (Hydroxy)Methylation in T Helper Lymphocytes. Trends Biochem Sci 2019; 44:589-598. [DOI: 10.1016/j.tibs.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
211
|
Rajavelu A, Lungu C, Emperle M, Dukatz M, Bröhm A, Broche J, Hanelt I, Parsa E, Schiffers S, Karnik R, Meissner A, Carell T, Rathert P, Jurkowska RZ, Jeltsch A. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res 2019; 46:9044-9056. [PMID: 30102379 PMCID: PMC6158614 DOI: 10.1093/nar/gky715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ines Hanelt
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Schiffers
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
212
|
Dukatz M, Requena CE, Emperle M, Hajkova P, Sarkies P, Jeltsch A. Mechanistic Insights into Cytosine-N3 Methylation by DNA Methyltransferase DNMT3A. J Mol Biol 2019; 431:3139-3145. [PMID: 31229457 DOI: 10.1016/j.jmb.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Recently, it has been discovered that different DNA-(cytosine C5)-methyltransferases including DNMT3A generate low levels of 3mC [Rosic et al. (2018), Nat. Genet., 50, 452-459]. This reaction resulted in the co-evolution of DNMTs and ALKB2 DNA repair enzymes, but its mechanism remained elusive. Here, we investigated the catalytic mechanism of DNMT3A for cytosine N3 methylation. We generated several DNMT3A variants with mutated catalytic residues and measured their activities in 5mC and 3mC generation by liquid chromatography linked to tandem mass spectrometry. Our data suggest that the methylation of N3 instead of C5 is caused by an inverted binding of the flipped cytosine target base into the active-site pocket of the DNA methyltransferase, which is partially compatible with the arrangement of catalytic amino acid residues. Given that all DNA-(cytosine C5)-methyltransferases have a common catalytic mechanism, it is likely that other enzymes of this class generate 3mC following the same mechanism.
Collapse
Affiliation(s)
- Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristina E Requena
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Petra Hajkova
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
213
|
Cui X, Guo Y, Wang Q, Li X. MiR‐199‐3p–Dnmt3a–STAT3 signalling pathway in ovalbumin‐induced allergic rhinitis. Exp Physiol 2019; 104:1286-1295. [PMID: 31124216 DOI: 10.1113/ep087751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Xinhua Cui
- Department of Otolaryngology–Head and Neck SurgeryQianfoshan Hospital Affiliated to Shandong University 16766 Jingshi Road Jinan 250014 Shandong China
- Department of Otolaryngology–Head and Neck SurgeryQilu Hospital of Shandong University, NHC key laboratory of Otolaryngology 107 West Wenhua Road Jinan 250012 Shandong China
| | - Ying Guo
- Department of Otolaryngology–Head and Neck SurgeryQianfoshan Hospital Affiliated to Shandong University 16766 Jingshi Road Jinan 250014 Shandong China
| | - Qirong Wang
- Department of Otolaryngology–Head and Neck SurgeryQianfoshan Hospital Affiliated to Shandong University 16766 Jingshi Road Jinan 250014 Shandong China
| | - Xuezhong Li
- Department of Otolaryngology–Head and Neck SurgeryQilu Hospital of Shandong University, NHC key laboratory of Otolaryngology 107 West Wenhua Road Jinan 250012 Shandong China
| |
Collapse
|
214
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
215
|
Ahn JS, Kim T, Kim YK, Cho YC, Cho S, Jung SH, Ahn SY, Jung SY, Yang DH, Lee JJ, Choi S, Lee JY, Shin MG, Yoshida K, Ogawa S, Kim IC, Zhang Z, Kim HJ, Kim DDH. Remission clone in acute myeloid leukemia shows growth advantage after chemotherapy but is distinct from leukemic clone. Exp Hematol 2019; 75:26-30. [PMID: 31199945 DOI: 10.1016/j.exphem.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
In a previously published case study of acute myeloid leukemia, we tracked the dynamics of somatic mutations over 9 years. Interestingly, we observed a group of mutations that expanded during remission, which we named the "remission clone." To determine the nature of the remission clones, we performed flow cytometry-based cell sorting followed by ultradeep sequencing. The remission clone repeatedly expanded after chemotherapeutic cycles and was suppressed during relapse in the myeloid lineage (multipotent hematopoietic stem, progenitor, and myeloid cells). On the other hand, the remission clone was consistently observed in lymphoid lineages (B and T cells) regardless of the disease state. When transfected into the HEK-293 cell line, the NR2C2(A93V) mutant exhibited a growth advantage (all p values < 0.05). The results indicate that the remission clone seems to be another form of clonal hematopoiesis, but without a clear association with leukemia. As the remission clone is present in both myeloid and lymphoid lineages, it likely originates from ancestral hematopoietic cell lineages. More importantly, the remission clone is distinct from the leukemic clone; therefore, mutations expanded during remission require special interpretation when performing next-generation sequencing-based measurable residual disease assessment.
Collapse
Affiliation(s)
- Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - TaeHyung Kim
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - SaYeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sung-Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Yeon Jung
- St. Carollo General Hospital, Jeollanam-do, Republic of Korea
| | - Deok-Hwan Yang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea
| | - SeungHyun Choi
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Ja-Yeon Lee
- Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Kyoto University Kyoto, Japan
| | - Il-Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Republic of Korea; Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea.
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
216
|
Song G, Tian L, Cheng Y, Liu J, Wang K, Li S, Li T. Antitumor activity of sevoflurane in HCC cell line is mediated by miR‐29a‐induced suppression of Dnmt3a. J Cell Biochem 2019; 120:18152-18161. [PMID: 31190353 DOI: 10.1002/jcb.29121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Guangming Song
- Department of Anesthesiology Dongying People's Hospital Dongying Shandong China
| | - Ling Tian
- Department of Operating Room Dongying People's Hospital Dongying Shandong China
| | - Yi Cheng
- Department of Anesthesiology Dongying People's Hospital Dongying Shandong China
| | - Jinshan Liu
- Department of Anesthesiology Dongying People's Hospital Dongying Shandong China
| | - Kun Wang
- Department of Operating Room Dongying People's Hospital Dongying Shandong China
| | - Shuai Li
- Department of Anesthesiology Dongying People's Hospital Dongying Shandong China
| | - Tianhua Li
- Department of Anesthesiology Dongying People's Hospital Dongying Shandong China
| |
Collapse
|
217
|
Nagy Á, Ősz Á, Budczies J, Krizsán S, Szombath G, Demeter J, Bödör C, Győrffy B. Elevated HOX gene expression in acute myeloid leukemia is associated with NPM1 mutations and poor survival. J Adv Res 2019; 20:105-116. [PMID: 31333881 PMCID: PMC6614546 DOI: 10.1016/j.jare.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cells and the most common malignant myeloid disorder in adults. Several gene mutations such as in NPM1 (nucleophosmin 1) are involved in the pathogenesis and progression of AML. The aim of this study was to identify genes whose expression is associated with driver mutations and survival outcome. Genotype data (somatic mutations) and gene expression data including RNA-seq, microarray, and qPCR data were used for the analysis. Multiple datasets were utilized as training sets (GSE6891, TCGA, and GSE1159). A new clinical sample cohort (Semmelweis set) was established for in vitro validation. Wilcoxon analysis was used to identify genes with expression alterations between the mutant and wild type samples. Cox regression analysis was performed to examine the association between gene expression and survival outcome. Data analysis was performed in the R statistical environment. Eighty-five genes were identified with significantly altered expression when comparing NPM1 mutant and wild type patient groups in the GSE6891 set. Additional training sets were used as a filter to condense the six most significant genes associated with NPM1 mutations. Then, the expression changes of these six genes were confirmed in the Semmelweis set: HOXA5 (P = 3.06E-12, FC = 8.3), HOXA10 (P = 2.44E-09, FC = 3.3), HOXB5 (P = 1.86E-13, FC = 37), MEIS1 (P = 9.82E-10, FC = 4.4), PBX3 (P = 1.03E-13, FC = 5.4) and ITM2A (P = 0.004, FC = 0.4). Cox regression analysis showed that higher expression of these genes - with the exception of ITM2A - was associated with worse overall survival. Higher expression of the HOX genes was identified in tumors harboring NPM1 gene mutations by computationally linking genotype and gene expression. In vitro validation of these genes supports their potential therapeutic application in AML.
Collapse
Key Words
- AML, acute myeloid leukemia
- Acute myeloid leukemia
- Clinical samples
- FAB classification, French–American–British classification
- FC, fold change
- Gene expression
- HOX genes
- HOX, homeobox
- HR, hazard ratio
- ITD, internal tandem duplication
- MEIS, myeloid ecotropic viral integration site
- Mutation
- NCBI GEO, National Center for Biotechnology Gene expression Omnibus
- OS, overall survival
- PBX, pre-B-cell leukemia homeobox
- Survival
- TCGA, The Cancer Genome Atlas
- WHO, World Health Organization
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Ádám Nagy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| | - Ágnes Ősz
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Szilvia Krizsán
- MTA-SE Lendület Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergely Szombath
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Demeter
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- MTA-SE Lendület Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| |
Collapse
|
218
|
Lu R, Wang J, Ren Z, Yin J, Wang Y, Cai L, Wang GG. A Model System for Studying the DNMT3A Hotspot Mutation (DNMT3A R882) Demonstrates a Causal Relationship between Its Dominant-Negative Effect and Leukemogenesis. Cancer Res 2019; 79:3583-3594. [PMID: 31164355 DOI: 10.1158/0008-5472.can-18-3275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/03/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
Mutation of DNA methyltransferase 3A at arginine 882 (DNMT3AR882mut) is prevalent in hematologic cancers and disorders. Recently, DNMT3AR882mut has been shown to have hypomorphic, dominant-negative, and/or gain-of-function effects on DNA methylation under different biological contexts. However, the causal role for such a multifaceted effect of DNMT3AR882mut in leukemogenesis remains undetermined. Here, we report TF-1 leukemia cells as a robust system useful for modeling the DNMT3AR882mut-dependent transformation and for dissecting the cause-effect relationship between multifaceted activities of DNMT3AR882mut and leukemic transformation. Ectopic expression of DNMT3AR882mut and not wild-type DNMT3A promoted TF-1 cell transformation characterized by cytokine-independent growth, and induces CpG hypomethylation predominantly at enhancers. This effect was dose dependent, acted synergistically with the isocitrate dehydrogenase 1 (IDH1) mutation, and resembled what was seen in human leukemia patients carrying DNMT3AR882mut. The transformation- and hypomethylation-inducing capacities of DNMT3AR882mut relied on a motif involved in heterodimerization, whereas its various chromatin-binding domains were dispensable. Mutation of the heterodimerization motif that interferes with DNMT3AR882mut binding to endogenous wild-type DNMT proteins partially reversed the CpG hypomethylation phenotype caused by DNMT3AR882mut, thus supporting a dominant-negative mechanism in cells. In mice, bromodomain inhibition repressed gene-activation events downstream of DNMT3AR882mut-induced CpG hypomethylation, thereby suppressing leukemogenesis mediated by DNMT3AR882mut. Collectively, this study reports a model system useful for studying DNMT3AR882mut, shows a requirement of the dominant-negative effect by DNMT3AR882mut for leukemogenesis, and describes an attractive strategy for the treatment of leukemias carrying DNMT3AR882mut. SIGNIFICANCE: These findings highlight a model system to study the functional impact of a hotspot mutation of DNMT3A at R882 in leukemia.
Collapse
Affiliation(s)
- Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zhihong Ren
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, California.,Department of Chemistry, University of California, Riverside, California
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California.,Department of Chemistry, University of California, Riverside, California
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
219
|
Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell 2019; 22:157-170. [PMID: 29395053 DOI: 10.1016/j.stem.2018.01.011] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clonal hematopoiesis (CH) broadly describes the expansion of a clonal population of blood cells with one or more somatic mutations. Individuals with CH are at greater risk for hematological malignancies, cardiovascular disease, and increased mortality from non-hematological cancers. Understanding the causes of CH and how these mutant cells interact with cells of other tissues will provide critical insights into preleukemic development, stem cell biology, host-immune interactions, and cancer evolution. Here we discuss the clinical manifestations of CH, mechanisms contributing to its development, the role of CH in clonal evolution toward leukemia, and the contribution of CH to non-hematological disease states.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lambert Busque
- Research Centre, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC, Canada
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
220
|
Ng SY, Jacobsen ED. Peripheral T-Cell Lymphoma: Moving Toward Targeted Therapies. Hematol Oncol Clin North Am 2019; 33:657-668. [PMID: 31229161 DOI: 10.1016/j.hoc.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Therapeutic advances for peripheral T-cell non-Hodgkin lymphoma (PTCL) have lagged behind their B-cell NHL counterparts in part because novel agents to treat PTCL have been developed empirically. The recent clinical success of brentuximab-vedotin suggests that novel therapies for PTCL can significantly improve outcomes when properly targeted. Aberrancies in T-cell receptor, Jak/STAT, and DNA methylation pathways play critical roles in T-NHL pathogenesis based on genomic studies and preclinical experimental validation. New strategies targeting these pathways in patients with PTCL are underway, and this clinical trial experience will possibly contribute to additional improvements in outcome for patients with these diseases.
Collapse
Affiliation(s)
- Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Eric D Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
221
|
Overexpression of DNMT3A promotes proliferation and inhibits differentiation of porcine intramuscular preadipocytes by methylating p21 and PPARg promoters. Gene 2019; 696:54-62. [DOI: 10.1016/j.gene.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
|
222
|
Sendžikaitė G, Hanna CW, Stewart-Morgan KR, Ivanova E, Kelsey G. A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat Commun 2019; 10:1884. [PMID: 31015495 PMCID: PMC6478690 DOI: 10.1038/s41467-019-09713-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/26/2019] [Indexed: 11/08/2022] Open
Abstract
DNA methyltransferases (DNMTs) deposit DNA methylation, which regulates gene expression and is essential for mammalian development. Histone post-translational modifications modulate the recruitment and activity of DNMTs. The PWWP domains of DNMT3A and DNMT3B are posited to interact with histone 3 lysine 36 trimethylation (H3K36me3); however, the functionality of this interaction for DNMT3A remains untested in vivo. Here we present a mouse model carrying a D329A point mutation in the DNMT3A PWWP domain. The mutation causes dominant postnatal growth retardation. At the molecular level, it results in progressive DNA hypermethylation across domains marked by H3K27me3 and bivalent chromatin, and de-repression of developmental regulatory genes in adult hypothalamus. Evaluation of non-CpG methylation, a marker of de novo methylation, further demonstrates the altered recruitment and activity of DNMT3AD329A at bivalent domains. This work provides key molecular insights into the function of the DNMT3A-PWWP domain and role of DNMT3A in regulating postnatal growth.
Collapse
Affiliation(s)
| | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Kathleen R Stewart-Morgan
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Biotech Research & Innovation Centre, 2200, Copenhagen, Denmark
| | - Elena Ivanova
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
223
|
Lesch BJ, Tothova Z, Morgan EA, Liao Z, Bronson RT, Ebert BL, Page DC. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. eLife 2019; 8:e39380. [PMID: 30963999 PMCID: PMC6456297 DOI: 10.7554/elife.39380] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Susceptibility to cancer is heritable, but much of this heritability remains unexplained. Some 'missing' heritability may be mediated by epigenetic changes in the parental germ line that do not involve transmission of genetic variants from parent to offspring. We report that deletion of the chromatin regulator Kdm6a (Utx) in the paternal germ line results in elevated tumor incidence in genetically wild type mice. This effect increases following passage through two successive generations of Kdm6a male germline deletion, but is lost following passage through a wild type germ line. The H3K27me3 mark is redistributed in sperm of Kdm6a mutants, and we define approximately 200 H3K27me3-marked regions that exhibit increased DNA methylation, both in sperm of Kdm6a mutants and in somatic tissue of progeny. Hypermethylated regions in enhancers may alter regulation of genes involved in cancer initiation or progression. Epigenetic changes in male gametes may therefore impact cancer susceptibility in adult offspring.
Collapse
Affiliation(s)
| | - Zuzana Tothova
- Department of Medicine, Division of HematologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Elizabeth A Morgan
- Department of PathologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Zhicong Liao
- Department of GeneticsYale School of MedicineNew HavenUnited States
- Yale Cancer CenterYale School of MedicineNew HavenUnited States
| | - Roderick T Bronson
- Department of PathologyTufts University School of Medicine and Veterinary MedicineNorth GraftonUnited States
| | - Benjamin L Ebert
- Department of Medicine, Division of HematologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - David C Page
- Whitehead InstituteCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Whitehead InstituteCambridgeUnited States
| |
Collapse
|
224
|
Han M, Jia L, Lv W, Wang L, Cui W. Epigenetic Enzyme Mutations: Role in Tumorigenesis and Molecular Inhibitors. Front Oncol 2019; 9:194. [PMID: 30984620 PMCID: PMC6449417 DOI: 10.3389/fonc.2019.00194] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation and histone modification, result in heritable changes in gene expression without changing the DNA sequence. Epigenetic regulatory enzymes such as DNA methyltransferases, histone methyltransferases, and histone deacetylases are involved in epigenetic modification. Studies have shown that the dysregulation caused by changes in the amino acid sequence of these enzymes is closely correlated with tumor onset and progression. In addition, certain amino acid changes in the metabolic enzyme isocitrate dehydrogenase (IDH) are linked to altered epigenetic modifications in tumors. Some small molecule inhibitors targeting these aberrant enzymes have shown promising anti-cancer efficacy in preclinical and clinical trials. For example, the small molecule inhibitor ivosidenib, which targets IDH1 with a mutation at R132, has been approved by the FDA for the clinical treatment of acute myeloid leukemia. In this review, we summarize the recurrent “hotspot” mutations in these enzymes in various tumors and their role in tumorigenesis. We also describe candidate inhibitors of the mutant enzymes which show potential therapeutic value. In addition, we introduce some previously unreported mutation sites in these enzymes, which may be related to tumor development and provide opportunities for future study.
Collapse
Affiliation(s)
- Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wencai Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
225
|
Richter A, Roolf C, Hamed M, Gladbach YS, Sender S, Konkolefski C, Knübel G, Sekora A, Fuellen G, Vollmar B, Murua Escobar H, Junghanss C. Combined Casein Kinase II inhibition and epigenetic modulation in acute B-lymphoblastic leukemia. BMC Cancer 2019; 19:202. [PMID: 30841886 PMCID: PMC6404304 DOI: 10.1186/s12885-019-5411-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background The tumor suppressor protein phosphatase and tensin homolog (PTEN) is a key regulator of the PI3K/AKT pathway which is frequently altered in a variety of tumors including a subset of acute B-lymphoblastic leukemias (B-ALL). While PTEN mutations and deletions are rare in B-ALL, promoter hypermethylation and posttranslational modifications are the main pathways of PTEN inactivation. Casein Kinase II (CK2) is often upregulated in B-ALL and phosphorylates both PTEN and DNA methyltransferase 3A, resulting in increased PI3K/AKT signaling and offering a potential mechanism for further regulation of tumor-related pathways. Methods Here, we evaluated the effects of CK2 inhibitor CX-4945 alone and in combination with hypomethylating agent decitabine on B-ALL proliferation and PI3K/AKT pathway activation. We further investigated if CX-4945 intensified decitabine-induced hypomethylation and identified aberrantly methylated biological processes after CK2 inhibition. In vivo tumor cell proliferation in cell line and patient derived xenografts was assessed by longitudinal full body bioluminescence imaging and peripheral blood flow cytometry of NSG mice. Results CX-4945 incubation resulted in CK2 inhibition and PI3K pathway downregulation thereby inducing apoptosis and anti-proliferative effects. CX-4945 further affected methylation patterns of tumor-related transcription factors and regulators of cellular metabolism. No overlap with decitabine-affected genes or processes was detected. Decitabine alone revealed only modest anti-proliferative effects on B-ALL cell lines, however, if combined with CX-4945 a synergistic inhibition was observed. In vivo assessment of CX-4945 in B-ALL cell line xenografts resulted in delayed proliferation of B-ALL cells. Combination with DEC further decelerated B-ALL expansion significantly and decreased infiltration in bone marrow and spleen. Effects in patient-derived xenografts all harboring a t(4;11) translocation were heterogeneous. Conclusions We herein demonstrate the anti-leukemic potential of CX-4945 in synergy with decitabine in vitro as well as in vivo identifying CK2 as a potentially targetable kinase in B-ALL. Electronic supplementary material The online version of this article (10.1186/s12885-019-5411-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Catrin Roolf
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing, Rostock University Medical Center, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany
| | - Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing, Rostock University Medical Center, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Sina Sender
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Christoph Konkolefski
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Gudrun Knübel
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Anett Sekora
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing, Rostock University Medical Center, Ernst-Heydemann-Straße 8, 18057, Rostock, Germany
| | - Brigitte Vollmar
- Small Animal Imaging Core Facility, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
226
|
Abstract
Clonal hematopoiesis is a common, age-related process in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. This phenomenon has been observed in populations across the globe and, while virtually non-existent in children is estimated to affect >10% of the 70-and-older age group. The mutations are thought to occur in stem cells, which makes them pre-cancerous, and precursors to cancer stem cells. Many of the genes most commonly mutated in clonal hematopoiesis are also recurrently mutated in leukemia, genes such as DNMT3A, TET2, ASXL1, JAK2, and TP53. However, between 40% and 60% of cases arise from the accumulation of what appear to be random mutations outside of known driver genes. Clonal hematopoiesis is frequently present in otherwise healthy individuals and may persist for many years. Though largely asymptomatic, carrying these somatic mutations confers a small but significantly increased risk of leukemic transformation, affecting 0.5-1% carriers per year; although most genes confer an increased risk of transformation, mutations in TP53 and U2AF1 appear to carry a particularly high risk for transformation. Additionally, a patient's history of prior treatment with cytotoxic chemotherapy and/or radiation are correlated with the development of clonal hematopoiesis; in the setting of chemotherapy treatment of solid tumors, hematopoietic mutations in TP53 and PPM1D appear to contribute to outgrowth of clones that may lead to subsequent malignancy. The presence of a clone also imparts a significantly increased risk of cardiovascular disease, which in some cases appears to be due to increased inflammation and atherosclerosis. Clonal hematopoiesis is correlated with several other diseases as well, including diabetes, chronic pulmonary disease, and aplastic anemia, with other associations probably yet to be uncovered.
Collapse
Affiliation(s)
- Alexander J Silver
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
227
|
Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 2019; 21:152-161. [PMID: 30602726 DOI: 10.1038/s41556-018-0258-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Research over the past several decades has unmasked a major contribution of disrupted chromatin regulatory processes to human disease, particularly cancer. Advances in genome-wide technologies have highlighted frequent mutations in genes encoding chromatin-associated proteins, identified unexpected synthetic lethal opportunities and enabled increasingly comprehensive structural and functional dissection. Here, we review recent progress in our understanding of oncogenic mechanisms at each level of chromatin organization and regulation, and discuss new strategies towards therapeutic intervention.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
228
|
Orsini P, Impera L, Parciante E, Cumbo C, Minervini CF, Minervini A, Zagaria A, Anelli L, Coccaro N, Casieri P, Tota G, Brunetti C, Ricco A, Carluccio P, Specchia G, Albano F. Droplet digital PCR for the quantification of Alu methylation status in hematological malignancies. Diagn Pathol 2018; 13:98. [PMID: 30579366 PMCID: PMC6303857 DOI: 10.1186/s13000-018-0777-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background Alu repeats, belonging to the Short Interspersed Repetitive Elements (SINEs) class, contain about 25% of CpG sites in the human genome. Alu sequences lie in gene-rich regions, so their methylation is an important transcriptional regulation mechanism. Aberrant Alu methylation has been associated with tumor aggressiveness, and also previously discussed in hematological malignancies, by applying different approaches. Moreover, today different techniques designed to measure global DNA methylation are focused on the methylation level of specific repeat elements. In this work we propose a new method of investigating Alu differential methylation, based on droplet digital PCR (ddPCR) technology. Methods Forty-six patients with hematological neoplasms were included in the study: 30 patients affected by chronic lymphocytic leukemia, 7 patients with myelodysplastic syndromes at intermediate/high risk, according with the International Prognostic Scoring System, and 9 patients with myelomonocytic leukemia. Ten healthy donors were included as controls. Acute promyelocytic leukemia-derived NB4 cell line, either untreated or treated with decitabine (DEC) hypomethylating agent, was also analyzed. DNA samples were investigated for Alu methylation level by digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation, followed by ddPCR. Results Using ddPCR, a significant decrease of the global Alu methylation level in DNA extracted from NB4 cells treated with DEC, as compared to untreated cells, was observed. Moreover, comparing the global Alu methylation levels at diagnosis and after azacytidine (AZA) treatment in MDS patients, a statistically significant decrease of Alu sequences methylation after therapy as compared to diagnosis was evident. We also observed a significant decrease of the Alu methylation level in CLL patients compared to HD, and, finally, for CMML patients, a decrease of Alu sequences methylation was observed in patients harboring the SRSF2 hotspot gene mutation c.284C>D. Conclusions In our work, we propose a method to investigate Alu differential methylation based on ddPCR technology. This assay introduces ddPCR as a more sensitive and immediate technique for Alu methylation analysis. To date, this is the first application of ddPCR to study DNA repetitive elements. This approach may be useful to profile patients affected by hematologic malignancies for diagnostic/prognostic purpose. Electronic supplementary material The online version of this article (10.1186/s13000-018-0777-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Elisa Parciante
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Crescenzio F Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, P.zza G. Cesare, 11 70124, Bari, Italy.
| |
Collapse
|
229
|
Božić T, Frobel J, Raic A, Ticconi F, Kuo CC, Heilmann-Heimbach S, Goecke TW, Zenke M, Jost E, Costa IG, Wagner W. Variants of DNMT3A cause transcript-specific DNA methylation patterns and affect hematopoiesis. Life Sci Alliance 2018; 1:e201800153. [PMID: 30582132 PMCID: PMC6293073 DOI: 10.26508/lsa.201800153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Modulation of DNMT3A splice variants causes transcript-specific DNA methylation and gene expression changes and affects differentiation. Particularly, transcript 2 is relevant in acute myeloid leukemia. De novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing of DNMT3A has characteristic epigenetic and functional sequels. Specific DNMT3A transcripts were either down-regulated or overexpressed in human hematopoietic stem and progenitor cells, and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that, particularly, transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia expression of transcript 2 correlates with its in vitro DNA methylation and gene expression signatures and is associated with overall survival, indicating that DNMT3A variants also affect malignancies. Our results demonstrate that specific DNMT3A variants have a distinct epigenetic and functional impact. Particularly, DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in acute myeloid leukemia.
Collapse
Affiliation(s)
- Tanja Božić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Annamarija Raic
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Fabio Ticconi
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Chao-Chung Kuo
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Tamme W Goecke
- Department of Obstetrics and Gynecology, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Edgar Jost
- Clinic for Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
230
|
Ren W, Gao L, Song J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes (Basel) 2018; 9:genes9120620. [PMID: 30544982 PMCID: PMC6316889 DOI: 10.3390/genes9120620] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, one of the major epigenetic mechanisms, plays critical roles in regulating gene expression, genomic stability and cell lineage commitment. The establishment and maintenance of DNA methylation in mammals is achieved by two groups of DNA methyltransferases (DNMTs): DNMT3A and DNMT3B, which are responsible for installing DNA methylation patterns during gametogenesis and early embryogenesis, and DNMT1, which is essential for propagating DNA methylation patterns during replication. Both groups of DNMTs are multi-domain proteins, containing a large N-terminal regulatory region in addition to the C-terminal methyltransferase domain. Recent structure-function investigations of the individual domains or large fragments of DNMT1 and DNMT3A have revealed the molecular basis for their substrate recognition and specificity, intramolecular domain-domain interactions, as well as their crosstalk with other epigenetic mechanisms. These studies highlight a multifaceted regulation for both DNMT1 and DNMT3A/3B, which is essential for the precise establishment and maintenance of lineage-specific DNA methylation patterns in cells. This review summarizes current understanding of the structure and mechanism of DNMT1 and DNMT3A-mediated DNA methylation, with emphasis on the functional cooperation between the methyltransferase and regulatory domains.
Collapse
Affiliation(s)
- Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
231
|
Sensitization of Drug Resistant Cancer Cells: A Matter of Combination Therapy. Cancers (Basel) 2018; 10:cancers10120483. [PMID: 30518036 PMCID: PMC6315347 DOI: 10.3390/cancers10120483] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer drug resistance is an enormous problem. It is responsible for most relapses in cancer patients following apparent remission after successful therapy. Understanding cancer relapse requires an understanding of the processes underlying cancer drug resistance. This article discusses the causes of cancer drug resistance, the current combination therapies, and the problems with the combination therapies. The rational design of combination therapy is warranted to improve the efficacy. These processes must be addressed by finding ways to sensitize the drug-resistant cancers cells to chemotherapy, and to prevent formation of drug resistant cancer cells. It is also necessary to prevent the formation of cancer progenitor cells by epigenetic mechanisms, as cancer progenitor cells are insensitive to standard therapies. In this article, we emphasize the role for the rational development of combination therapy, including epigenetic drugs, in achieving these goals.
Collapse
|
232
|
Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation. Blood 2018; 132:2707-2721. [PMID: 30366920 DOI: 10.1182/blood-2018-04-846220] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of blood cancers that arise following the sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells (HSPCs). We identify mutational cooperation between Jak2V617F expression and Dnmt3a loss that drives progression from early-stage polycythemia vera to advanced myelofibrosis. Using in vivo, clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) disruption of Dnmt3a in Jak2V617F knockin HSPC, we show that Dnmt3a loss blocks the accumulation of erythroid elements and causes fibrotic infiltration within the bone marrow and spleen. Transcriptional analysis and integration with human data sets identified a core DNMT3A-driven gene-expression program shared across multiple models and contexts of Dnmt3a loss. Aberrant self-renewal and inflammatory signaling were seen in Dnmt3a-/- Jak2V617F HSPC, driven by increased chromatin accessibility at enhancer elements. These findings identify oncogenic cooperativity between Jak2V617F-driven MPN and Dnmt3a loss, leading to activation of HSPC enhancer-driven inflammatory signaling.
Collapse
|
233
|
Gowher H, Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans 2018; 46:1191-1202. [PMID: 30154093 PMCID: PMC6581191 DOI: 10.1042/bst20170574] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
As part of the epigenetic network, DNA methylation is a major regulator of chromatin structure and function. In mammals, it mainly occurs at palindromic CpG sites, but asymmetric methylation at non-CpG sites is also observed. Three enzymes are involved in the generation and maintenance of DNA methylation patterns. DNMT1 has high preference for hemimethylated CpG sites, and DNMT3A and DNMT3B equally methylate unmethylated and hemimethylated DNA, and also introduce non-CpG methylation. Here, we review recent observations and novel insights into the structure and function of mammalian DNMTs (DNA methyltransferases), including new structures of DNMT1 and DNMT3A, data on their mechanism, regulation by post-translational modifications and on the function of DNMTs in cells. In addition, we present news findings regarding the allosteric regulation and targeting of DNMTs by chromatin modifications and chromatin proteins. In combination, the recent publications summarized here impressively illustrate the intensity of ongoing research in this field. They provide a deeper understanding of key mechanistic properties of DNMTs, but they also document still unsolved issues, which need to be addressed in future research.
Collapse
Affiliation(s)
- Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
234
|
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, South Korea
| | - Minjung Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
235
|
Keogh MJ, Wei W, Aryaman J, Walker L, van den Ameele J, Coxhead J, Wilson I, Bashton M, Beck J, West J, Chen R, Haudenschild C, Bartha G, Luo S, Morris CM, Jones NS, Attems J, Chinnery PF. High prevalence of focal and multi-focal somatic genetic variants in the human brain. Nat Commun 2018; 9:4257. [PMID: 30323172 PMCID: PMC6189186 DOI: 10.1038/s41467-018-06331-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
Somatic mutations during stem cell division are responsible for several cancers. In principle, a similar process could occur during the intense cell proliferation accompanying human brain development, leading to the accumulation of regionally distributed foci of mutations. Using dual platform >5000-fold depth sequencing of 102 genes in 173 adult human brain samples, we detect and validate somatic mutations in 27 of 54 brains. Using a mathematical model of neurodevelopment and approximate Bayesian inference, we predict that macroscopic islands of pathologically mutated neurons are likely to be common in the general population. The detected mutation spectrum also includes DNMT3A and TET2 which are likely to have originated from blood cell lineages. Together, these findings establish developmental mutagenesis as a potential mechanism for neurodegenerative disorders, and provide a novel mechanism for the regional onset and focal pathology in sporadic cases.
Collapse
Affiliation(s)
- Michael J Keogh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Wei Wei
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Juvid Aryaman
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Lauren Walker
- Institute of Neuroscience, Newcastle University, Campus for Aging and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jon Coxhead
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Ian Wilson
- Institute of Genetic Medicine, Central Parkway, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jon Beck
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - John West
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Richard Chen
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | | | - Gabor Bartha
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Shujun Luo
- Personalis Inc, 1330O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Chris M Morris
- Institute of Neuroscience, Newcastle University, Campus for Aging and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Nick S Jones
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, SW7 2AZ, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Aging and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
236
|
A Novel t(8;14)(q24;q11) Rearranged Human Cell Line as a Model for Mechanistic and Drug Discovery Studies of NOTCH1-Independent Human T-Cell Leukemia. Cells 2018; 7:cells7100160. [PMID: 30304769 PMCID: PMC6209910 DOI: 10.3390/cells7100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
MYC-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with CDKN2A/B deletions, PTEN inactivation, and absence of NOTCH1 or FBXW7 mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited. Here, we established a human NOTCH1-independent MYC-translocated T-ALL cell line that maintains the genetic and phenotypic characteristics of the parental leukemic clone at diagnosis. The University of Padua T-cell acute lymphoblastic leukemia 13 (UP-ALL13) cell line has all the main features of the above described MYC-translocated T-ALL. Interestingly, UP-ALL13 was found to harbor a heterozygous R882H DNMT3A mutation typically found in myeloid leukemia. Chromatin immunoprecipitation coupled with high-throughput sequencing for histone H3 lysine 27 (H3K27) acetylation revealed numerous putative super-enhancers near key transcription factors, including MYC, MYB, and LEF1. Marked cytotoxicity was found following bromodomain-containing protein 4 (BRD4) inhibition with AZD5153, suggesting a strict dependency of this particular subtype of T-ALL on the activity of super-enhancers. Altogether, this cell line may be a useful model system for dissecting the signaling pathways implicated in NOTCH1-independent T-ALL and for the screening of targeted anti-leukemia agents specific for this T-ALL subgroup.
Collapse
|
237
|
Abdalla BA, Li Z, Ouyang H, Jebessa E, Sun T, Yu JA, Cai B, Chen B, Nie Q, Zhang X. A Novel Dnmt3a1 Transcript Inhibits Adipogenesis. Front Physiol 2018; 9:1270. [PMID: 30333755 PMCID: PMC6176318 DOI: 10.3389/fphys.2018.01270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
DNA (cytosine-5)-methyltransferase 3a (Dnmt3a) is an enzyme that catalyzes the transfer of methyl groups to specific CpG forms in DNA. In mammals, two variant transcripts of Dnmt3a have been successfully identified. To the best of our knowledge, no Dnmt3a transcripts in an avian have been successfully identified. This study was performed to detect different transcripts of Dnmt3a in chickens and to examine whether a novel Dnmt3a transcript named Dnmt3a1 may regulate adipogenesis. In addition to cloning, sequencing, transcript detection, and expression studies, a novel Dnmt3a1 transcript overexpression and knockdown were conducted to explore the potential role of Dnmt3a1 in preadipocyte proliferation and the early stage of adipocyte differentiation. In chicken abdominal fat tissue, we detected a novel Dnmt3a1 transcript that differs from Dnmt3a by lacking 23 amino acids at the exon-1/exon-2 border. Dnmt3a1 mRNA was ubiquitously expressed in a variety of tissues or cells and highly expressed in chicken adipose tissue/cells. The expression of Dnmt3a1 was regulated under different physiological conditions including aging, fasting, and high-fat diet. In addition, overexpression of Dnmt3a1 significantly decreased preadipocyte proliferation and induced cell-cycle arrest while its inhibition increased cell proliferation and S-phase cells. Furthermore, the overexpression of Dnmt3a1 significantly upregulated the mRNA level of cell-cycle-related genes, such as CDKN1A, CDKN1B, CCNB3, CCND2, CCNG2, CDKN2B, and CDK9, or the protein level of CDKN1A, CDKN1B, and CCNG2. Conversely, the knockdown of Dnmt3a1 by siRNA had the opposite effects. Moreover, during early adipocyte differentiation, the overexpression of Dnmt3a1 significantly decreased the mRNA and the protein levels of PPAR-γ, C/EBP-α, ADIPOR1, and STAT3, and the mRNA levels of FAS, LEPR, LPL, PRKAB2, and ATGL. In contrast, their expression was significantly increased after the knockdown of Dnmt3a1. Taken together, we identified a novel transcript of Dnmt3a, and it played a potential role in adipogenesis.
Collapse
Affiliation(s)
- Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Tianhao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Jia-Ao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Biao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, the Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
238
|
Study of DNA methyl transferase 3A mutation in acute myeloid leukemic patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
239
|
Katayama K, Noguchi K, Sugimoto Y. Heat shock protein 90 inhibitors overcome the resistance to Fms-like tyrosine kinase 3 inhibitors in acute myeloid leukemia. Oncotarget 2018; 9:34240-34258. [PMID: 30344940 PMCID: PMC6188142 DOI: 10.18632/oncotarget.26045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022] Open
Abstract
Internal tandem duplication (ITD) in Fms-like tyrosine kinase 3 (FLT3) is frequently observed in acute myeloid leukemia (AML). Quizartinib, gilteritinib, and midostaurin are inhibitors against FLT3-ITD that have good efficacy for FLT3-ITD-positive AML patients. Long-term administration leads to drug resistance through acquired tyrosine kinase domain (TKD) mutations in FLT3-ITD, such as N676K, F691L, D835V, and Y842C. Here, our screen to detect inhibitors capable of overcoming resistance to FLT3 inhibitors identified heat shock protein (HSP) 90 inhibitors as potential candidates. Although Ba/F3 cells expressing FLT3-ITD with TKD mutations (Ba/F3-ITD+N676K, Ba/F3-ITD+F691L, Ba/F3-ITD+D835V, and Ba/F3-ITD+Y842C) showed various resistance patterns to FLT3 inhibitors compared with Ba/F3-ITD cells that express FLT3-ITD lacking TKD mutations, they were more sensitive to HSP90 inhibitors than Ba/F3 cells. Notably, the Ba/F3-ITD+D835V cells were the most sensitive to HSP90 inhibitors. Treatment with HSP90 inhibitors downregulated FLT3 and its downstream signaling and induced G1 arrest followed by apoptosis in Ba/F3-ITD+N676K, Ba/F3-ITD+F691L, Ba/F3-ITD+Y842C, and especially Ba/F3-ITD+D835V cells at lower concentrations compared with Ba/F3-ITD cells. The downregulation of FLT3-ITD+D835V was caused by rapid proteolysis in autophagy. Similar results were also observed in the quizartinib-resistant MV4-11 cells, QR1 and QR2, which were established by culturing cells in the presence of quizartinib and harbored FLT3-ITD+D835H and FLT3-ITD+D835V, respectively, in a single allele. Interestingly, the efficacies of HSP90 inhibitors in QR cells are reversely correlated with that of quizartib, but not to gilteritinib and midostaurin. Collectively, HSP90 inhibitors are good candidates to overcome drug resistance in AML with various FLT3-ITD TKD mutations.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kohji Noguchi
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
240
|
Genetic and Epigenetic Perturbations by DNMT3A-R882 Mutants Impaired Apoptosis through Augmentation of PRDX2 in Myeloid Leukemia Cells. Neoplasia 2018; 20:1106-1120. [PMID: 30245403 PMCID: PMC6153424 DOI: 10.1016/j.neo.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023] Open
Abstract
DNA methyltransferase 3A (DNMT3A) is mutated in various myeloid neoplasms including acute myeloid leukemia (AML), especially at the Arg882 and associated with inferior outcomes. Here, we report that the DNMT3A-Arg882His/Cys (R882H/C) mutations led to inactivation of apoptosis through DNA damage signaling following the impairment of differentiation of myeloid leukemia cells. Gene expression profiling analysis revealed aberrant expression of several cell-cycle and apoptosis-related genes, and the DNA methylation assay identified both hypo- and hypermethylation features in different regions throughout the whole genome of DNMT3A mutants-transduced myeloid cells. We found that DNMT3A-R882H/C mutations upregulated the expression of an antioxidant protein, pyroxiredoxin-2 (PRDX2), at the mRNA and protein levels with decreased accumulation of reactive oxygen species (ROS). Augmentation of ROS generation by ROS accumulating agent or by knockdown of PRDX2 from myeloid cells effectively increased drug sensitivity and apoptosis as a consequence of reduced cell proliferation. DNMT3A-R882C/H mutations decreased apoptosis induction in part by increasing the antioxidant capacity of the cell owing to upregulation of PRDX2. Molecularly, both DNMT3A-WT and R882H/C mutants interacted with PRDX2; and R882C/H mutation-induced hypomethylation increased PRDX2 expression which enhanced cell proliferation and growth with impairment of apoptosis, thereby contributing to leukemogenesis.
Collapse
|
241
|
Emperle M, Dukatz M, Kunert S, Holzer K, Rajavelu A, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutation does not cause dominant negative effects in purified mixed DNMT3A/R882H complexes. Sci Rep 2018; 8:13242. [PMID: 30185810 PMCID: PMC6125428 DOI: 10.1038/s41598-018-31635-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase DNMT3A R882H mutation is observed in 25% of all AML patients. DNMT3A is active as tetramer and the R882H mutation is located in one of the subunit/subunit interfaces. Previous work has reported that formation of mixed wildtype/R882H complexes leads to a strong loss of catalytic activity observed in in vitro DNA methylation assays (Russler-Germain et al., 2014, Cancer Cell 25:442–454). To investigate this effect further, we have prepared mixed wildtype/R882H DNMT3A complexes by incubation of individually purified subunits of the DNMT3A catalytic domain and full-length DNMT3A2. In addition, we have used a double affinity tag approach and specifically purified mixed catalytic domain complexes formed after co-expression of R882H and wildtype subunits in E. coli cells. Afterwards, we determined the catalytic activity of the mixed complexes and compared it to that of purified complexes only consisting of one subunit type. In both settings, the expected catalytic activities of mixed R882H/wildtype complexes were observed demonstrating an absence of a dominant negative effect of the R882H mutation in purified DNMT3A enzymes. This result suggests that heterocomplex formation of DNMT3A and R882H is unlikely to cause dominant negative effects in human cells as well. The limitations of this conclusion and its implications are discussed.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Katharina Holzer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,Rajiv Gandhi Center for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,BioMed X Innovation Center, Im Neuenheimer Feld 583, D-69120, Heidelberg, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
242
|
|
243
|
Gallipoli P, Huntly BJP. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin Cancer Biol 2018; 51:198-210. [PMID: 28782607 DOI: 10.1016/j.semcancer.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Over the last decade transcriptional dysregulation and altered epigenetic programs have emerged as a hallmark in the majority of hematological cancers. Several epigenetic regulators are recurrently mutated in many hematological malignancies. In addition, in those cases that lack epigenetic mutations, altered function of epigenetic regulators has been shown to play a central role in the pathobiology of many hematological neoplasms, through mechanisms that are becoming increasingly understood. This, in turn, has led to the development of small molecule inhibitors of dysregulated epigenetic pathways as novel targeted therapies for hematological malignancies. In this review, we will present the most recent advances in our understanding of the role played by dysregulated epigenetic programs in the development and maintenance of hematological neoplasms. We will describe novel therapeutics targeting altered epigenetic programs and outline their mode of action. We will then discuss their use in specific conditions, identify potential limitations and putative toxicities while also providing an update on their current clinical development. Finally, we will highlight the opportunities presented by epigenetically targeted therapies in hematological malignancies and introduce the challenges that need to be tackled by both the research and clinical communities to best translate these novel therapies into clinical practice and to improve patient outcomes.
Collapse
Affiliation(s)
- Paolo Gallipoli
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Brian J P Huntly
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
244
|
Martín I, Navarro B, Villamón E, Solano C, Serrano A, Calabuig M, Amat P, Domingo F, Abellán R, García F, Olivares MD, Chaves FJ, Tormo M, Hernández-Boluda JC. Therapy-related acute myeloid leukemia developing 14 years after allogeneic hematopoietic stem cell transplantation, from a persistent R882H- DNMT3A mutated clone of patient origin. Exp Mol Pathol 2018; 105:139-143. [DOI: 10.1016/j.yexmp.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/24/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
|
245
|
Heuser M, Yun H, Thol F. Epigenetics in myelodysplastic syndromes. Semin Cancer Biol 2018; 51:170-179. [PMID: 28778402 PMCID: PMC7116652 DOI: 10.1016/j.semcancer.2017.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Epigenetic regulators are the largest group of genes mutated in MDS patients. Most mutated genes belong to one of three groups of genes with normal functions in DNA methylation, in H3K27 methylation/acetylation or in H3K4 methylation. Mutations in the majority of epigenetic regulators disrupt their normal function and induce a loss-of-function phenotype. The transcriptional consequences are often failure to repress differentiation programs and upregulation of self-renewal pathways. However, the mechanisms how different epigenetic regulators result in similar transcriptional consequences are not well understood. Hypomethylating agents are active in higher risk MDS patients, but their efficacy does not correlate with mutations in epigenetic regulators and the median duration of hematologic response is limited to 10-13 months. Inhibitors of histone deacetylases (HDAC) yielded disappointing results so far, questioning this approach in MDS patients. We review the clinical relevance of epigenetic mutations in MDS, discuss their functional consequences and highlight the role of epigenetic therapies in this difficult to treat disease.
Collapse
Affiliation(s)
- Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | - Haiyang Yun
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, UK; Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
246
|
Fujisawa M, Chiba S, Sakata-Yanagimoto M. Recent Progress in the Understanding of Angioimmunoblastic T-cell Lymphoma. J Clin Exp Hematop 2018; 57:109-119. [PMID: 29279549 DOI: 10.3960/jslrt.17019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) has been classified as a subtype of mature T-cell neoplasms. The recent revision of the WHO classification proposed a new category of nodal T-cell lymphoma with follicular helper T (TFH)-cell phenotype, which was classified into three diseases: AITL, follicular T-cell lymphoma, and nodal peripheral T-cell lymphoma with TFH phenotype. These lymphomas are defined by the expression of TFH-related antigens, CD279/PD-1, CD10, BCL6, CXCL13, ICOS, SAP, and CXCR5. Although recurrent mutations in TET2, IDH2, DNMT3A, RHOA, and CD28, as well as gene fusions, such as ITK-SYK and CTLA4-CD28, were not diagnostic criteria, they may be considered as novel criteria in the near future. Notably, premalignant mutations, tumor-specific mutations, and mutations specific to tumor-infiltrating B cells were identified in AITL. Thus, multi-step and multi-lineage genetic events may lead to the development of AITL.
Collapse
Affiliation(s)
- Manabu Fujisawa
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Shigeru Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| |
Collapse
|
247
|
Norvil AB, Petell CJ, Alabdi L, Wu L, Rossie S, Gowher H. Dnmt3b Methylates DNA by a Noncooperative Mechanism, and Its Activity Is Unaffected by Manipulations at the Predicted Dimer Interface. Biochemistry 2018; 57:4312-4324. [PMID: 27768276 PMCID: PMC5992102 DOI: 10.1021/acs.biochem.6b00964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catalytic domains of the de novo DNA methyltransferases Dnmt3a-C and Dnmt3b-C are highly homologous. However, their unique biochemical properties could potentially contribute to differences in the substrate preferences or biological functions of these enzymes. Dnmt3a-C forms tetramers through interactions at the dimer interface, which also promote multimerization on DNA and cooperativity. Similar to the case for processive enzymes, cooperativity allows Dnmt3a-C to methylate multiple sites on the same DNA molecule; however, it is unclear whether Dnmt3b-C methylates DNA by a cooperative or processive mechanism. The importance of the tetramer structure and cooperative mechanism is emphasized by the observation that the R882H mutation in the dimer interface of DNMT3A is highly prevalent in acute myeloid leukemia and leads to a substantial loss of its activity. Under conditions that distinguish between cooperativity and processivity, we show that in contrast to that of Dnmt3a-C, the activity of Dnmt3b-C is not cooperative and confirm the processivity of Dnmt3b-C and the full length Dnmt3b enzyme. Whereas the R878H mutation (mouse homologue of R882H) led to the loss of cooperativity of Dnmt3a-C, the activity and processivity of the analogous Dnmt3b-C R829H variant were comparable to those of the wild-type enzyme. Additionally, buffer acidification that attenuates the dimer interface interactions of Dnmt3a-C had no effect on Dnmt3b-C activity. Taken together, these results demonstrate an important mechanistic difference between Dnmt3b and Dnmt3a and suggest that interactions at the dimer interface may play a limited role in regulating Dnmt3b-C activity. These new insights have potential implications for the distinct biological roles of Dnmt3a and Dnmt3b.
Collapse
Affiliation(s)
- Allison B. Norvil
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J. Petell
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lama Alabdi
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lanchen Wu
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandra Rossie
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Humaira Gowher
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
248
|
Feng Y, Zhong M, Zeng S, Xiao D, Liu Y. Metachronous triple primary neoplasms with primary prostate cancer, lung cancer, and colon cancer: A case report. Medicine (Baltimore) 2018; 97:e11332. [PMID: 29953024 PMCID: PMC6039669 DOI: 10.1097/md.0000000000011332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Multiple primary neoplasms (MPNs) are rare. Most MPNs are double, and triple primary neoplasms are extremely rarer. Here, we describe a case of a 66-year-old man diagnosed with metachronous triple primary neoplasms with primary prostate cancer, lung cancer and colon cancer. PATIENT CONCERNS The patient complained of dysuria in January 2015, and he underwent transurethral resection of the prostate. The pathological results showed acinar adenocarcinoma of prostate with a Gleason score of 3+3. In January 2017, he complained of lower abdominal pain, then he took an enteroscopy examination, found a mass in the sigmoid colon, and positron emission tomography/computed tomography examination showed masses in the sigmoid colon and right upper lobe of the lung. Biopsy of the colon showed moderately differentiated adenocarcinoma with Kirsten rat sarcoma viral oncogene homolog exon 2 mutation, and biopsy of the lung showed moderately differentiated adenocarcinoma with epidermal rowth factor receptor exon 21 mutation. DIAGNOSES Metachronous triple primary neoplasms with primary prostate cancer, lung cancer and colon cancer. INTERVENTIONS The patient underwent surgical resection of the right upper lobe of the lung, postoperative stage was T1bN0M0 (stage IA). After 8 cycles of chemotherapy with modified FOLFOX6 regimen (oxaliplatin 85 mg/m, leucovorin 400 mg/m, 5-fluorouracil 400 mg/m on day 1, followed by 5-fluorouracil 2400 mg/m intravenous infusion over 46 hours every 2 weeks), the patient underwent radical resection of colon cancer, and he finished the remaining 4 cycles of modified FOLFOX6 regimen chemotherapy in November 2017. OUTCOMES The patient takes examination every three months, and the results show no recurrence. LESSONS When considering MPNs, thorough surveillance by new screening methods is required to detect a second or even third neoplasm at an early stage.
Collapse
Affiliation(s)
| | | | | | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | | |
Collapse
|
249
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol 2018; 93:824-840. [PMID: 29878489 DOI: 10.1002/ajh.25104] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (∼15%-20% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ∼ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (∼60%), SRSF2 (∼50%), ASXL1 (∼40%) and the oncogenic RAS pathway (∼30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM), and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count > 10 × 109 /L, hemoglobin <10 gm/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into 4 groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ∼30%-40% and complete remission rates of ∼7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo ClinicRochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo ClinicRochester Minnesota
| |
Collapse
|
250
|
Benetatos L, Vartholomatos G. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 2018; 75:1999-2009. [PMID: 29484447 PMCID: PMC11105366 DOI: 10.1007/s00018-018-2783-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression 'fine-tuners', are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers' activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers' activity in normal and mainly myeloid malignancies.
Collapse
|