201
|
Prakash H, Upadhyay D, Bandapalli OR, Jain A, Kleuser B. Host sphingolipids: Perspective immune adjuvant for controlling SARS-CoV-2 infection for managing COVID-19 disease. Prostaglandins Other Lipid Mediat 2020; 152:106504. [PMID: 33147503 PMCID: PMC7605809 DOI: 10.1016/j.prostaglandins.2020.106504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 01/12/2023]
Abstract
That Sphingolipid derivatives are promising drug candidates for the management of novel COVID-19 disease. C-1P based tailoring of Th1 effector immunity for the eradication of infection is a translationally viable approach and deserves immediate attention. That C-1P would promote the killing of infected cells and resolve infection in moderate to severely infected cases. Ceramide derivatives can be exploited as drug candidates for controlling SARS-CoV-2 against novel COVID-19 disease.
Sphingolipids are potent bioactive agents involved in the pathogenesis of various respiratory bacterial infections. To date, several sphingolipid derivatives are known, but S1P (Sphingosine-1-phosphate) and Ceramide are the best-studied sphingolipid derivatives in the context of human diseases. These are membrane-bound lipids that influence host-pathogen interactions. Based on these features, we believe that sphingolipids might control SARS-CoV-2 infection in the host. SARS-CoV-2 utilizes the ACE-II receptor (Angiotensin-converting enzyme II receptor) on epithelial cells for its entry and replication. Activation of the ACE-II receptor is indirectly associated with the activation of S1P Receptor 1 signaling which is associated with IL-6 driven fibrosis. This is expected to promote pathological responses during SARS-CoV-2 infection in COVID-19 cases. Given this, mitigating S1P signaling by application of either S1P Lyase (SPL) or S1P analog (Fingolimod / FTY720) seems to be potential approach for controlling these pathological outcomes. However, due to the immunosuppressive nature of FTY720, it can modulate hyper-inflammatory responses and only provide symptomatic relief, which may not be sufficient for controlling the novel COVID-19 infection. Since Th1 effector immune responses are essential for the clearance of infection, we believe that other sphingolipid derivatives like Cermaide-1 Phosphate with antiviral potential and adjuvant immune potential can potentially control SARS-CoV-2 infection in the host by its ability in enhancing autophagy and antigen presentation by DC to promote T cell response which can be helpful in controlling SARS-CoV-2 infection in novel COVID-19 patients.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Noida, India.
| | - Dilip Upadhyay
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Burkhard Kleuser
- Institute of Nutritional Science, Department of Nutritional Toxicology, University of Potsdam Nuthetal, Germany
| |
Collapse
|
202
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
203
|
Doyle TM, Hutchinson MR, Braden K, Janes K, Staikopoulos V, Chen Z, Neumann WL, Spiegel S, Salvemini D. Sphingosine-1-phosphate receptor subtype 1 activation in the central nervous system contributes to morphine withdrawal in rodents. J Neuroinflammation 2020; 17:314. [PMID: 33092620 PMCID: PMC7584082 DOI: 10.1186/s12974-020-01975-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P) 1 receptor (S1PR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However, the impact of S1PR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains unknown. Here, we demonstrate that naloxone-precipitated morphine withdrawal in mice altered de novo sphingolipid metabolism in the dorsal horn of the spinal cord and increased S1P that accompanied the manifestation of several withdrawal behaviors. Blocking de novo sphingolipid metabolism with intrathecal administration of myriocin, an inhibitor of serine palmitoyltransferase, blocked naloxone-precipitated withdrawal. Noteworthy, we found that competitive (NIBR-15) and functional (FTY720) S1PR1 antagonists attenuated withdrawal behaviors in mice. Mechanistically, at the level of the spinal cord, naloxone-precipitated withdrawal was associated with increased glial activity and formation of the potent inflammatory/neuroexcitatory cytokine interleukin-1β (IL-1β); these events were attenuated by S1PR1 antagonists. These results provide the first molecular insight for the role of the S1P/S1PR1 axis during opioid withdrawal. Our data identify S1PR1 antagonists as potential therapeutics to mitigate opioid-induced dependence and support repurposing the S1PR1 functional antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
Collapse
Affiliation(s)
- Timothy M Doyle
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Mark R Hutchinson
- Discipline of Physiology, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Kathryn Braden
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Kali Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Vicky Staikopoulos
- Discipline of Physiology, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhoumou Chen
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA
| | - William L Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park, Edwardsville, IL, 62026, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 1101 E Marshall St, Richmond, VA, 23298, USA
| | - Daniela Salvemini
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA. .,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
204
|
Lee K, Escobar I, Jang Y, Kim W, Ausubel FM, Mylonakis E. In the Model Host Caenorhabditis elegans, Sphingosine-1-Phosphate-Mediated Signaling Increases Immunity toward Human Opportunistic Bacteria. Int J Mol Sci 2020; 21:ijms21217813. [PMID: 33105563 PMCID: PMC7672543 DOI: 10.3390/ijms21217813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Sphingosine-1-phophate (S1P) is a sphingolipid-derived signaling molecule that controls diverse cellular functions including cell growth, homeostasis, and stress responses. In a variety of metazoans, cytosolic S1P is transported into the extracellular space where it activates S1P receptors in a concentration-dependent manner. In the free-living nematode Caenorhabditis elegans, the spin-2 gene, which encodes a S1P transporter, is activated during Gram-positive or Gram-negative bacterial infection of the intestine. However, the role during infection of spin-2 and three additional genes in the C. elegans genome encoding other putative S1P transporters has not been elucidated. Here, we report an evolutionally conserved function for S1P and a non-canonical role for S1P transporters in the C. elegans immune response to bacterial pathogens. We found that mutations in the sphingosine kinase gene (sphk-1) or in the S1P transporter genes spin-2 or spin-3 decreased nematode survival after infection with Pseudomonas aeruginosa or Enterococcus faecalis. In contrast to spin-2 and spin-3, mutating spin-1 leads to an increase in resistance to P. aeruginosa. Consistent with these results, when wild-type C. elegans were supplemented with extracellular S1P, we found an increase in their lifespan when challenged with P. aeruginosa and E. faecalis. In comparison, spin-2 and spin-3 mutations suppressed the ability of S1P to rescue the worms from pathogen-mediated killing, whereas the spin-1 mutation had no effect on the immune-enhancing activity of S1P. S1P demonstrated no antimicrobial activity toward P. aeruginosa and Escherichia coli and only minimal activity against E. faecalis MMH594 (40 µM). These data suggest that spin-2 and spin-3, on the one hand, and spin-1, on the other hand, transport S1P across cellular membranes in opposite directions. Finally, the immune modulatory effect of S1P was diminished in C. eleganssek-1 and pmk-1 mutants, suggesting that the immunomodulatory effects of S1P are mediated by the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
| | - Iliana Escobar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
| | - Yeeun Jang
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
- Correspondence: ; Tel.: +1-401-444-7856
| |
Collapse
|
205
|
Abstract
It is a great honor to be asked to write a "Reflections" article by one of the true icons of biochemistry, Herb Tabor. I felt humbled, especially since it follows many written by biochemists I admire and whose contributions have shaped major advances in biochemistry and molecular biology in the last century. Here I present my personal reflections on my adventure with the bioactive sphingolipid metabolite sphingosine-1-phosphate intertwined with those of my family life as a wife, mother, and grandmother. These reflections brought back many memories of events in my early career that played significant roles in determining the path I have taken for more than 40 years and that brought much fun and satisfaction into my life. It has been an exciting journey so far, with many surprises along the way, that still continues.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| |
Collapse
|
206
|
Sphingosine-1-phosphate receptor modulator FTY720 attenuates experimental myeloperoxidase-ANCA vasculitis in a T cell-dependent manner. Clin Sci (Lond) 2020; 134:1475-1489. [PMID: 32538435 DOI: 10.1042/cs20200497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic lysosphingolipid derived from the metabolism of plasma membrane lipids. The interaction between S1P and its ubiquitously expressed G-protein-coupled receptors (S1PR1-5) is crucial in many pathophysiological processes. Emerging evidence suggested a potential role for S1P receptors in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). In the present study, we investigated the effects of three different S1P receptors modulators (FTY720, SEW2871 and TY52156) in a recognized rat model of experimental autoimmune vasculitis (EAV). The effects of treatments were evaluated with clinico-pathological parameters including hematuria, proteinuria, crescent formation, pulmonary hemorrhage, etc. In vitro functional studies were performed in a Jurkat T-cell line following stimulations of serum from myeloperoxidase-AAV patients. We found that only the FTY720 treatment significantly alleviated hematuria and proteinuria, and diminished glomerular crescent formation, renal tubulointerstitial lesions and pulmonary hemorrhage in EAV. The attenuation was accompanied by less renal T-cell infiltration, up-regulated mRNA of S1PR1 and down-regulated IL-1β in kidneys, but not altered circulating ANCA levels, suggesting that the therapeutic effects of FTY720 were B-cell independent. Further in vitro studies demonstrated that FTY720 incubation could significantly inhibit the proliferation, adhesion, and migration, and increase apoptosis of T cells. In conclusion, the S1P modulator FTY720 could attenuate EAV through the reduction and inhibition of T cells, which might become a novel treatment of ANCA-associated vasculitis.
Collapse
|
207
|
McGowan EM, Haddadi N, Nassif NT, Lin Y. Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19. Int J Mol Sci 2020; 21:ijms21197189. [PMID: 33003377 PMCID: PMC7583882 DOI: 10.3390/ijms21197189] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918-the COVID-19 pandemic-caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world's third wake-up call this century. In 2003 and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath of hyperinflammatory complications, also referred to as the "cytokine storm syndrome", endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed.
Collapse
Affiliation(s)
- Eileen M McGowan
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
- Correspondence: ; Tel.: +61-405814048
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Yiguang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| |
Collapse
|
208
|
Neurodegeneration Caused by S1P-Lyase Deficiency Involves Calcium-Dependent Tau Pathology and Abnormal Histone Acetylation. Cells 2020; 9:cells9102189. [PMID: 32998447 PMCID: PMC7599816 DOI: 10.3390/cells9102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
We have shown that sphingosine 1-phosphate (S1P) generated by sphingosine kinase 2 (SK2) is toxic in neurons lacking S1P-lyase (SGPL1), the enzyme that catalyzes its irreversible cleavage. Interestingly, patients harboring mutations in the gene encoding this enzyme (SGPL1) often present with neurological pathologies. Studies in a mouse model with a developmental neural-specific ablation of SGPL1 (SGPL1fl/fl/Nes) confirmed the importance of S1P metabolism for the presynaptic architecture and neuronal autophagy, known to be essential for brain health. We now investigated in SGPL1-deficient murine brains two other factors involved in neurodegenerative processes, namely tau phosphorylation and histone acetylation. In hippocampal and cortical slices SGPL1 deficiency and hence S1P accumulation are accompanied by hyperphosphorylation of tau and an elevated acetylation of histone3 (H3) and histone4 (H4). Calcium chelation with BAPTA-AM rescued both tau hyperphosphorylation and histone acetylation, designating calcium as an essential mediator of these (patho)physiological functions of S1P in the brain. Studies in primary cultured neurons and astrocytes derived from SGPL1fl/fl/Nes mice revealed hyperphosphorylated tau only in SGPL1-deficient neurons and increased histone acetylation only in SGPL1-deficient astrocytes. Both could be reversed to control values with BAPTA-AM, indicating the close interdependence of S1P metabolism, calcium homeostasis, and brain health.
Collapse
|
209
|
Du X, Yang Y, Zhan X, Huang Y, Fu Y, Zhang Z, Liu H, Zhang L, Li Y, Wen Q, Zhou X, Zuo D, Zhou C, Li L, Hu S, Ma L. Vitamin B6 prevents excessive inflammation by reducing accumulation of sphingosine-1-phosphate in a sphingosine-1-phosphate lyase-dependent manner. J Cell Mol Med 2020; 24:13129-13138. [PMID: 32967056 PMCID: PMC7701526 DOI: 10.1111/jcmm.15917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/01/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022] Open
Abstract
Vitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti‐inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti‐inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine‐1‐phosphate (S1P) in a S1P lyase (SPL)‐dependent manner in macrophages. Vitamin B6 supplementation decreased the expression of pro‐inflammatory cytokines by suppressing nuclear factor‐κB and mitogen‐activated protein kinases signalling pathways. Furthermore, vitamin B6–reduced accumulation of S1P by promoting SPL activity. The anti‐inflammatory effects of vitamin B6 were inhibited by S1P supplementation or SPL deficiency. Importantly, vitamin B6 supplementation protected mice from lethal endotoxic shock and attenuated experimental autoimmune encephalomyelitis progression. Collectively, these findings revealed a novel anti‐inflammatory mechanism of vitamin B6 and provided guidance on its clinical use.
Collapse
Affiliation(s)
- Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhan
- Department of laboratory medicine, The first Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Laisheng Li
- Department of laboratory medicine, The first Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
210
|
Balaji Ragunathrao VA, Anwar M, Akhter MZ, Chavez A, Mao DY, Natarajan V, Lakshmikanthan S, Chrzanowska-Wodnicka M, Dudek AZ, Claesson-Welsh L, Kitajewski JK, Wary KK, Malik AB, Mehta D. Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Rep 2020; 29:3472-3487.e4. [PMID: 31825830 PMCID: PMC6927555 DOI: 10.1016/j.celrep.2019.11.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelial growth factor-A (VEGF-A)-VEGFR2 pathway drives tumor vascularization by activating proangiogenic signaling in endothelial cells (ECs). Here, we show that EC-sphingosine-1-phosphate receptor 1 (S1PR1) amplifies VEGFR2-mediated angiogenic signaling to enhance tumor growth. We show that cancer cells induce S1PR1 activity in ECs, and thereby, conditional deletion of S1PR1 in ECs (EC-S1pr1−/− mice) impairs tumor vascularization and growth. Mechanistically, we show that S1PR1 engages the heterotrimeric G-protein Gi, which amplifies VEGF-VEGFR2 signaling due to an increase in the activity of the tyrosine kinase c-Abl1. c-Abl1, by phosphorylating VEGFR2 at tyrosine-951, prolongs VEGFR2 retention on the plasmalemma to sustain Rac1 activity and EC migration. Thus, S1PR1 or VEGFR2 antagonists, alone or in combination, reverse the tumor growth in control mice to the level seen in EC-S1pr1−/− mice. Our findings suggest that blocking S1PR1 activity in ECs has the potential to suppress tumor growth by preventing amplification of VEGF-VEGFR2 signaling. Vijay Avin et al. demonstrate an essential role of endothelial cell (EC)-S1PR1 signaling in amplifying VEGFR2-mediated tumor growth. S1PR1 by Gi and c-Abl1 phosphorylates VEGFR2 at Y951, which retains VEGFR2 at EC plasmalemma, thus enabling EC migration, tumor angiogenesis, and growth.
Collapse
Affiliation(s)
- Vijay Avin Balaji Ragunathrao
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mumtaz Anwar
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Md Zahid Akhter
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Alejandra Chavez
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - De Yu Mao
- Department of Physiology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Arkadiusz Z Dudek
- Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Jan K Kitajewski
- Department of Physiology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kishore K Wary
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
211
|
Wang Z, Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med 2020; 9:8086-8121. [PMID: 32875727 PMCID: PMC7643687 DOI: 10.1002/cam4.3410] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunocheckpoint proteins of tumor infiltrating lymphocytes play an important role in tumor prognosis in the course of tumor clinicopathology. PD‐1 (Programmed cell death protein 1) is an important immunosuppressive molecule. By binding to PD‐L1 (programmed cell death‐ligand 1), it blocks TCR and its costimulus signal transduction, inhibits the activation and proliferation of T cells, depletes the function of effector T cells, and enables tumor cells to achieve immune escape. In recent years, immunocheckpoint blocking therapy targeting the PD‐1/PD‐L1 axis has achieved good results in a variety of malignant tumors, pushing tumor immunotherapy to a new milestone, such as anti‐PD‐1 monoclonal antibody Nivolumab, Pembrolizumab, and anti‐PD‐L1 monoclonal antibody Atezolizumab, which are considered as potential antitumor drugs. It was found in clinical use that some patients obtained long‐term efficacy, but most of them developed drug resistance recurrence in the later stage. The high incidence of drug resistance (including primary and acquired drug resistance) still cannot be ignored, which limited its clinical application and became a new problem in this field. Due to tumor heterogeneity, current limited research shows that PD‐1 or PD‐L1 monoclonal antibody drug resistance may be related to the following factors: mutation of tumor antigen and antigen presentation process, multiple immune checkpoint interactions, immune microenvironment changes dynamically, activation of oncogenic pathways, gene mutation and epigenetic changes of key proteins in tumors, tumor competitive metabolism, and accumulation of metabolites, etc, mechanisms of resistance are complex. Therefore, it is the most urgent task to further elucidate the mechanism of immune checkpoint inhibitor resistance, discover multitumor universal biomarkers, and develop new target agents to improve the response rate of immunotherapy in patients. In this study, the mechanism of anti‐PD‐1/PD‐L1 drug resistance in tumors, the potential biomarkers for predicting PD‐1 acquired resistance, and the recent development of combination therapy were reviewed one by one. It is believed that, based on the complex mechanism of drug resistance, it is of no clinical significance to simply search for and regulate drug resistance targets, and it may even produce drug resistance again soon. It is speculated that according to the possible tumor characteristics, three types of treatment methods should be combined to change the tumor microenvironment ecology and eliminate various heterogeneous tumor subsets, so as to reduce tumor drug resistance and improve long‐term clinical efficacy.
Collapse
Affiliation(s)
- Zhengyi Wang
- GCP Center of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Medical Sciences, Chengdu City, Sichuan Province, China.,Institute of Laboratory Animals of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu City, Sichuan Province, China
| | - Xiaoying Wu
- Ministry of Education and Training, Second People's Hospital, Chengdu City, Sichuan Province, China
| |
Collapse
|
212
|
Anwar M, Mehta D. Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158760. [PMID: 32585303 PMCID: PMC7409382 DOI: 10.1016/j.bbalip.2020.158760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Sphingosine-1-phosphate receptor-1 (S1PR1), a G-protein coupled receptor that is expressed in endothelium and activated upon ligation by the bioactive lipid sphingosine-1-phosphate (S1P), is an important vascular-barrier protective mechanism at the level of adherens junctions (AJ). Loss of endothelial barrier function is a central factor in the pathogenesis of various inflammatory conditions characterized by protein-rich lung edema formation, such as acute respiratory distress syndrome (ARDS). While several S1PR1 agonists are available, the challenge of arresting the progression of protein-rich edema formation remains to be met. In this review, we discuss the role of S1PRs, especially S1PR1, in regulating endothelial barrier function. We review recent findings showing that replenishment of the pool of cell-surface S1PR1 may be crucial to the effectiveness of S1P in repairing the endothelial barrier. In this context, we discuss the S1P generating machinery and mechanisms that regulate S1PR1 at the cell surface and their impact on endothelial barrier function.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America.
| |
Collapse
|
213
|
A Sphingosine 1-Phosphate Gradient Is Linked to the Cerebral Recruitment of T Helper and Regulatory T Helper Cells during Acute Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21176242. [PMID: 32872326 PMCID: PMC7503682 DOI: 10.3390/ijms21176242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests a complex relationship between sphingosine 1-phosphate (S1P) signaling and stroke. Here, we show the kinetics of S1P in the acute phase of ischemic stroke and highlight accompanying changes in immune cells and S1P receptors (S1PR). Using a C57BL/6 mouse model of middle cerebral artery occlusion (MCAO), we assessed S1P concentrations in the brain, plasma, and spleen. We found a steep S1P gradient from the spleen towards the brain. Results obtained by qPCR suggested that cells expressing the S1PR type 1 (S1P1+) were the predominant population deserting the spleen. Here, we report the cerebral recruitment of T helper (TH) and regulatory T (TREG) cells to the ipsilateral hemisphere, which was associated with differential regulation of cerebral S1PR expression patterns in the brain after MCAO. This study provides insight that the S1P-S1PR axis facilitates splenic T cell egress and is linked to the cerebral recruitment of S1PR+ TH and TREG cells. Further insights by which means the S1P-S1PR-axis orchestrates neuronal positioning may offer new therapeutic perspectives after ischemic stroke.
Collapse
|
214
|
Tsuchida J, Nagahashi M, Nakajima M, Katsuta E, Rashid OM, Qi Q, Yan L, Okuda S, Takabe K, Wakai T. Sphingosine Kinase 1 is Associated With Immune Cell-Related Gene Expressions in Human Breast Cancer. J Surg Res 2020; 256:645-656. [PMID: 32810665 DOI: 10.1016/j.jss.2020.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although previous experiments have implicated sphingosine-1-phosphate (S1P) as a links between immune reactions and cancer progression, the exact mechanism of this interaction has not comprehensively studied in clinical human samples. This study sought to evaluate the S1P regulation by sphingosine kinase 1 (SPHK1), an S1P-producing enzyme, in the immunity/immuno-reactivity of clinical human breast cancer surgical specimens. METHODS S1P levels were examined in tumor, peritumoral, and normal human breast samples using mass spectrometry. Genomics Data Commons data portal of The Cancer Genome Atlas cohort was used to assess the expression of S1P-related and immune-related genes. RESULTS S1P levels were significantly higher in tumor samples compared to peritumoral (P < 0.05) or normal human breast samples (P < 0.001). SPHK1 gene expression was elevated in tumoral samples compared to normal breast samples (P < 0.01). Furthermore, the elevated expression of SPHK1 in breast cancer tissue was associated with an increased expression of the different kinds of immune-related genes, such as CD68, CD163, CD4, and FOXP3 (forkhead box P3), in HER2-negative breast cancer. Network analysis showed the central role of SPHK1 in the interaction of S1P signaling and expression of immune cell-related proteins. CONCLUSIONS We demonstrated that S1P is mainly produced by tumor tissue, rather than peritumoral tissue, in breast cancer patients. Our data revealed the involvement of S1P signaling in the regulation of immune-related genes, suggesting the links between S1P and complicated immune-cancer interactions in breast cancer patients.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Eriko Katsuta
- Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Omar M Rashid
- Division of Surgical Oncology, Holy Cross Hospital Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, Florida; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Surgery, Nova Southeastern University School of Medicine, Fort Lauderdale, Florida
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan; Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| |
Collapse
|
215
|
Zhong L, Xie L, Yang Z, Li L, Song S, Cao D, Liu Y. Prognostic value of S1PR1 and its correlation with immune infiltrates in breast and lung cancers. BMC Cancer 2020; 20:766. [PMID: 32799825 PMCID: PMC7429796 DOI: 10.1186/s12885-020-07278-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sphingosine-1-phosphate receptor (S1PR1) is involved in vascular development, a key process in tumorigenesis. This study aimed to evaluate its roles in tumor development and prognosis. METHODS S1PR1 expression levels were analyzed using TIMER and Oncomine database, and the prognostic significance of S1PR1 was assessed using PrognoScan and Kaplan-Meier plotter databases. The relationship between S1PR1 and tumor-infiltrated immune cells was analyzed using TIMER. RESULTS S1PR1 expression was remarkably lower in breast and lung cancer tissues than in the corresponding normal tissues. Lower expression was related to poor overall survival and disease-free survival in breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). A functional network analysis confirmed the function of S1PR1 in regulating vasculogenesis. In addition, S1PR1 levels were significantly negative with regard to the tumor purity of BRCA (r = - 0.508, P = 1.76e-66), LUAD (r = - 0.353, P = 6.05e-16), and LUSC (r = - 0.402, P = - 5.20e-20). Furthermore, S1PR1 levels were significantly positive with regard to infiltrating CD8+ (r = 0.38, P = 5.91e-35) and CD4+ T cells (r = 0.335, P = 1.03e-26), macrophages (r = 0.219, P = 3.67e-12), neutrophils (r = 0.168, P = 2.03e-7), and dendritic cells (DCs) (r = 0.208, P = 9.14e-11) in BRCA; S1PR1 levels were significantly positive with regard to CD8+ T cells (r = 0.308, P = 3.61e-12), macrophages (r = 0.376, P = 1.01e-17), neutrophils (r = 0.246, P = 4.15e-8), and DCs (r = 0.207, P = 4.16e-6) in LUAD; and positive with regard to B cells (r = 0.356, P = 1.57e-15), CD8+ (r = 0.459, P = 3.83e-26) and CD4+ T cells (r = 0.338, P = 3.98e-14), macrophages (r = 0.566, P = 2.61e-45), neutrophils (r = 0.453, P = 1.79e-25), and DCs (r = 0.56, P = 2.12e-40) in LUSC. CONCLUSIONS S1PR1 levels are positively correlated with multiple immune markers in breast and lung cancer. These observed correlations between S1PR1 and the prognosis and immune cell infiltration provide a foundation for further research on its immunomodulatory role in cancer.
Collapse
Affiliation(s)
- Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Linling Xie
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, 510407, China
| | - Zhiyong Yang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Lijuan Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Shaohua Song
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China.
| | - Yufeng Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, 510407, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China.
| |
Collapse
|
216
|
Bargagli E, Refini RM, d’Alessandro M, Bergantini L, Cameli P, Vantaggiato L, Bini L, Landi C. Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21165663. [PMID: 32784632 PMCID: PMC7461042 DOI: 10.3390/ijms21165663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin–angiotensin–aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.
Collapse
Affiliation(s)
- Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Miriana d’Alessandro
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Luca Bini
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Claudia Landi
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
- Correspondence: ; Tel.: +39-0577-234-937
| |
Collapse
|
217
|
Plasma sphingosine 1-phosphate concentrations and cardiovascular autonomic neuropathy in individuals with type 2 diabetes. Sci Rep 2020; 10:12768. [PMID: 32728147 PMCID: PMC7391653 DOI: 10.1038/s41598-020-69566-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to test the hypothesis that plasma sphingosine 1-phosphate (S1P) levels are associated with the risk of cardiovascular autonomic neuropathy (CAN) in type 2 diabetes patients. This cross-sectional study included 287 individuals with type 2 diabetes. CAN was evaluated using cardiovascular reflex tests. Logistic regression analyses were conducted to assess the relationship between plasma S1P levels and CAN. Plasma S1P concentrations were significantly lower in individuals with CAN than in those without CAN. There was a significant interaction between plasma S1P levels and sex with respect to CAN (p for interaction = 0.003). When stratified by sex, the association between plasma S1P levels and CAN exhibited a sex difference; in multivariable analysis, plasma S1P levels were significantly associated with CAN in women (odds ratio per standard deviation increase in the log-transformed value, 0.40; 95% confidence interval, 0.23–0.70, p = 0.001). However, there was no significant association between plasma S1P and CAN in men. Plasma S1P concentrations were inversely associated with CAN only in women with type 2 diabetes.
Collapse
|
218
|
Chiba K. Discovery of fingolimod based on the chemical modification of a natural product from the fungus, Isaria sinclairii. J Antibiot (Tokyo) 2020; 73:666-678. [PMID: 32681100 DOI: 10.1038/s41429-020-0351-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Fingolimod is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator and is widely used a therapeutic drug for multiple sclerosis (MS), autoimmune disease in the central nervous system. About 25 year ago, a natural product, myriocin was isolated from culture broths of the fungus Isaria sinclairii. Myriocin, a rather complex amino acid having three successive asymmetric centers, was found to show a potent immunosuppressive activity in vitro; however, it induced a strong toxicity in vivo. To find out a less toxic immunosuppressive candidate, the chemical structure of myriocin was simplified to a nonchiral symmetric 2-substituted-2-aminoproane-1,3-diol framework. Finally, a highly potent immunosuppressant, fingolimod was found by the extensive chemical modification and pharmacological evaluation using skin allograft model in vivo. Throughout the analyses of the mechanism action of fingolimod, it is revealed that S1P receptor 1 (S1P1) plays an essential role in lymphocyte circulation and that the molecular target of fingolimod is S1P1. Phosphorylated fingolimod acts as a "functional" antagonist at S1P1, modulates lymphocyte circulation, and shows a potent immunosuppressive activity. Fingolimod significantly reduced the relapse rate of MS in the clinical studies and has been approved as a new therapeutic drug for MS in more than 80 countries.
Collapse
Affiliation(s)
- Kenji Chiba
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan.
| |
Collapse
|
219
|
Newton J, Palladino END, Weigel C, Maceyka M, Gräler MH, Senkal CE, Enriz RD, Marvanova P, Jampilek J, Lima S, Milstien S, Spiegel S. Targeting defective sphingosine kinase 1 in Niemann-Pick type C disease with an activator mitigates cholesterol accumulation. J Biol Chem 2020; 295:9121-9133. [PMID: 32385114 PMCID: PMC7335787 DOI: 10.1074/jbc.ra120.012659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder arising from mutations in the cholesterol-trafficking protein NPC1 (95%) or NPC2 (5%). These mutations result in accumulation of low-density lipoprotein-derived cholesterol in late endosomes/lysosomes, disruption of endocytic trafficking, and stalled autophagic flux. Additionally, NPC disease results in sphingolipid accumulation, yet it is unique among the sphingolipidoses because of the absence of mutations in the enzymes responsible for sphingolipid degradation. In this work, we examined the cause for sphingosine and sphingolipid accumulation in multiple cellular models of NPC disease and observed that the activity of sphingosine kinase 1 (SphK1), one of the two isoenzymes that phosphorylate sphingoid bases, was markedly reduced in both NPC1 mutant and NPC1 knockout cells. Conversely, SphK1 inhibition with the isotype-specific inhibitor SK1-I in WT cells induced accumulation of cholesterol and reduced cholesterol esterification. Of note, a novel SphK1 activator (SK1-A) that we have characterized decreased sphingoid base and complex sphingolipid accumulation and ameliorated autophagic defects in both NPC1 mutant and NPC1 knockout cells. Remarkably, in these cells, SK1-A also reduced cholesterol accumulation and increased cholesterol ester formation. Our results indicate that a SphK1 activator rescues aberrant cholesterol and sphingolipid storage and trafficking in NPC1 mutant cells. These observations highlight a previously unknown link between SphK1 activity, NPC1, and cholesterol trafficking and metabolism.
Collapse
Affiliation(s)
- Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany
| | - Can E Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ricardo D Enriz
- Facultad de Quimica, Bioquimica, y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-CONICET), San Luis, Argentina
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
220
|
Syed SN, Weigert A, Brüne B. Sphingosine Kinases are Involved in Macrophage NLRP3 Inflammasome Transcriptional Induction. Int J Mol Sci 2020; 21:ijms21134733. [PMID: 32630814 PMCID: PMC7370080 DOI: 10.3390/ijms21134733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggested an important contribution of sphingosine-1-phospate (S1P) signaling via its specific receptors (S1PRs) in the production of pro-inflammatory mediators such as Interleukin (IL)-1β in cancer and inflammation. In an inflammation-driven cancer setting, we previously reported that myeloid S1PR1 signaling induces IL-1β production by enhancing NLRP3 (NOD-, LRR- and Pyrin Domain-Containing Protein 3) inflammasome activity. However, the autocrine role of S1P and enzymes acting on the S1P rheostat in myeloid cells are unknown. Using human and mouse macrophages with pharmacological or genetic intervention we explored the relative contribution of sphingosine kinases (SPHKs) in NLRP3 inflammasome activity regulation. We noticed redundancy in SPHK1 and SPHK2 activities towards macrophage NLRP3 inflammasome transcriptional induction and IL-1β secretion. However, pharmacological blockade of both kinases in unison completely abrogated NLRP3 inflammasome induction and IL-1β secretion. Interestingly, human and mouse macrophages demonstrate varied responses towards SPHKs inhibition and IL-1β secretion. Clinical datasets of renal cell carcinoma and psoriasis patients showed a positive correlation between enzymes affecting the S1P rheostat with NLRP3 inflammasome components expression, which corroborates our finding. Our data provide a better understanding on the role of SPHKs and de novo synthesized S1P in macrophage NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.W.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-7424
| |
Collapse
|
221
|
Guo XF, Tong WF, Ruan Y, Sinclair AJ, Li D. Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102033. [PMID: 31740197 DOI: 10.1016/j.plefa.2019.102033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022]
Abstract
This study aimed to compare eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) incorporated into red blood cells (RBC) phospholipids (PL), plasma PL, plasma triglyceride (TAG), and plasma cholesteryl ester (CE) fractions, and the metabolomics profiles in a double-blind cross-over study. Twelve female healthy subjects randomly consumed 1 g per day for 6 days of pure EPA, DPA, or DHA. The placebo treatment was olive oil. The fasting venous blood was taken at days 0, 3 and 6, and the RBC PL and plasma lipid fractions were separated for fatty acid determination using thin layer chromatography followed by gas chromatography. Plasma metabolites were analyzed by UHPLC-Q-Exactive Orbitrap/MS. Supplemental EPA significantly increased the concentrations of EPA in RBC PL (days 3 and 6). For subjects consuming the DPA supplement, the concentrations of both DPA and EPA were significantly increased in RBC PL over a 6-day period, respectively. For plasma PL fraction, EPA and DPA supplementation significantly increased the concentrations of EPA and DPA at both days 3 and 6, respectively. Supplemental DHA significantly increased the concentrations of DHA in plasma PL at day 6. For plasma TAG fraction, supplementation with EPA and DPA significantly increased the concentrations of EPA and DPA at both days 3 and 6, respectively. After DHA supplementation, significant increases in the concentrations of DHA were found relative to baseline at both days 3 and 6. For plasma CE fraction, EPA supplementation significantly increased the concentrations of EPA (days 3 and 6) and DPA (days 6), respectively. Supplemental DPA significantly increased the concentrations of EPA at day 6. Meanwhile, the concentrations of DHA were significantly increased over a 6-day period of intervention after subjects consuming the DHA supplements. There were a total of 922 plasma metabolites identified using metabolomics analyses. Supplementation with DPA and DHA significantly increased the levels of sphingosine 1-phosphate (P for DPA = 0.025, P for DHA = 0.029) and 15-deoxy-Δ12,14-prostaglandin A1 (P for DPA = 0.034; P for DHA = 0.021) in comparison with olive oil group. Additionally, supplementation with EPA (P = 0.007) and DHA (P = 0.005) significantly reduced the levels of linoleyl carnitine, compared with olive oil group. This study shows that DPA might act as a reservoir of n-3 LCP incorporated into blood lipid fractions, metabolized into DHA, and retro-converted back to EPA. Metabolomics analyses indicate that supplemental EPA, DPA and DHA have shared and differentiated metabolites. The differences of these metabolic biomarkers should be investigated in additional studies.
Collapse
Affiliation(s)
- Xiao-Fei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Wen-Feng Tong
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yue Ruan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Andrew J Sinclair
- Faculty of Health, Deakin University, Geelong, Australia; Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Australia
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.
| |
Collapse
|
222
|
Chen Q, Rehman J, Chan M, Fu P, Dudek SM, Natarajan V, Malik AB, Liu Y. Angiocrine Sphingosine-1-Phosphate Activation of S1PR2-YAP Signaling Axis in Alveolar Type II Cells Is Essential for Lung Repair. Cell Rep 2020; 31:107828. [PMID: 32610129 PMCID: PMC7371431 DOI: 10.1016/j.celrep.2020.107828] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Lung alveolar epithelium is composed of alveolar type I (AT1) and type II (AT2) cells. AT1 cells mediate gas exchange, whereas AT2 cells act as progenitor cells to repair injured alveoli. Lung microvascular endothelial cells (LMVECs) play a crucial but still poorly understood role in regulating alveolar repair. Here, we studied the role of the LMVEC-derived bioactive lipid sphingosine-1-phosphate (S1P) in promoting alveolar repair using mice with endothelial-specific deletion of sphingosine kinase 1 (Sphk1), the key enzyme promoting S1P generation. These mutant lungs developed airspace-enlargement lesions and exhibited a reduced number of AT1 cells after Pseudomonas-aeruginosa-induced lung injury. We demonstrated that S1P released by LMVECs acted via its receptor, S1PR2, on AT2 cells and induced nuclear translocation of yes-associated protein (YAP), a regulator of AT2 to AT1 transition. Thus, angiocrine S1P released after injury acts via the S1PR2-YAP signaling axis on AT2 cells to promote AT2 to AT1 differentiation required for alveolar repair.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Manwai Chan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Panfeng Fu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA; Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuru Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
223
|
Gläser A, Hammerl F, Gräler MH, Coldewey SM, Völkner C, Frech MJ, Yang F, Luo J, Tönnies E, von Bohlen und Halbach O, Brandt N, Heimes D, Neßlauer AM, Korenke GC, Owczarek-Lipska M, Neidhardt J, Rolfs A, Wree A, Witt M, Bräuer AU. Identification of Brain-Specific Treatment Effects in NPC1 Disease by Focusing on Cellular and Molecular Changes of Sphingosine-1-Phosphate Metabolism. Int J Mol Sci 2020; 21:ijms21124502. [PMID: 32599915 PMCID: PMC7352403 DOI: 10.3390/ijms21124502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.
Collapse
Affiliation(s)
- Anne Gläser
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Franziska Hammerl
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
| | - Markus H. Gräler
- Department of Anaesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Fan Yang
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
| | - Jiankai Luo
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Eric Tönnies
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, 17487 Greifswald, Germany; (E.T.); (O.v.B.u.H.)
| | - Oliver von Bohlen und Halbach
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, 17487 Greifswald, Germany; (E.T.); (O.v.B.u.H.)
| | - Nicola Brandt
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Anna-Maria Neßlauer
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | | | - Marta Owczarek-Lipska
- Human Genetics, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; (M.O.-L.); (J.N.)
- Junior Research Group, Genetics of childhood brain malformations, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; (M.O.-L.); (J.N.)
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg,26129 Oldenburg, Germany
| | | | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Anja Ursula Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg,26129 Oldenburg, Germany
- Correspondence: ; Tel.: +49-441-798-3995
| |
Collapse
|
224
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
225
|
Xue Y, Jiang W, Ma Q, Wang X, Jia P, Li Q, Chen S, Song B, Wang Y, Zhang J, Liu J, Yang G, Lin Y, Liu J, Wei L, Dong C, Li H, Xie Z, Bai L, Ma A. U-shaped association between plasma sphingosine-1-phosphate levels and mortality in patients with chronic systolic heart failure: a prospective cohort study. Lipids Health Dis 2020; 19:125. [PMID: 32498720 PMCID: PMC7273664 DOI: 10.1186/s12944-020-01262-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/08/2020] [Indexed: 11/22/2022] Open
Abstract
Background The endogenous lipid molecule sphingosine-1-phosphate (S1P) has received attention in the cardiovascular field due to its significant cardioprotective effects, as revealed in animal studies. The purpose of our study was to identify the distribution characteristics of S1P in systolic heart failure patients and the prognostic value of S1P for long-term prognosis. Methods We recruited 210 chronic systolic heart failure patients from June 2014 to December 2015. Meanwhile 54 healthy people in the same area were selected as controls. Plasma S1P was measured by liquid chromatography-tandem mass spectrometry. Patients were grouped according to the baseline S1P level quartiles, and restricted cubic spline plots described the association between S1P and all-cause death. Cox proportional hazard analysis was used to determine the relationship between category of S1P and all-cause death. Results Compared with the control group, the plasma S1P in chronic heart failure patients demonstrated a higher mean level (1.269 μmol/L vs 1.122 μmol/L, P = 0.006) and a larger standard deviation (0.441 vs 0.316, P = 0.022). Based on multivariable Cox regression with restricted cubic spline analysis, a non-linear and U-shaped association between S1P levels and the risk of all-cause death was observed. After a follow-up period of 31.7 ± 10.3 months, the second quartile (0.967–1.192 μml/L) with largely normal S1P levels had the lowest all-cause mortality and either an increase (adjusted HR = 2.368, 95%CI 1.006–5.572, P = 0.048) or a decrease (adjusted HR = 0.041, 95%CI 0.002–0.808, P = 0.036) predicted a worse prognosis. The survival curves showed that patients in the lowest quartile and highest quartile were at a higher risk of death. Conclusions Plasma S1P levels in systolic heart failure patients are related to the long-term all-cause mortality with a U-shaped correlation. Trial registration CHiCTR, ChiCTR-ONC-14004463. Registered 20 March 2014.
Collapse
Affiliation(s)
- Yanbo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Wei Jiang
- Department of Pharmacy, the Second Affiliated Hospital of Air Force Medical University, No. 1 Xinsi Road, Xi'an, Shaanxi, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Xiqiang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, No. 299 Taibai Road, Xi'an, Shaanxi, China
| | - Qiang Li
- Department of Epidemiology and Biostatistic, School of Public Health Xi'an Jiaotong University Health Science Center, No. 76 West Yanta Road, Xi'an, Shaanxi, China
| | - Shuping Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Bingxue Song
- The Affiliated Hospital of Qingdao University, No. 1 Jiangsu Road, Qingdao, Shandong, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Jingwen Zhang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road, Guangzhou, China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Guodong Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Yuyao Lin
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Linyan Wei
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Haiquan Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Zhonglei Xie
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China.
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Molecular Cardiology; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, People's Republic of China.
| |
Collapse
|
226
|
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; 5:84. [PMID: 32467561 PMCID: PMC7255975 DOI: 10.1038/s41392-020-0191-1] [Citation(s) in RCA: 424] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
To date, no vaccines or effective drugs have been approved to prevent or treat COVID-19 and the current standard care relies on supportive treatments. Therefore, based on the fast and global spread of the virus, urgent investigations are warranted in order to develop preventive and therapeutic drugs. In this regard, treatments addressing the immunopathology of SARS-CoV-2 infection have become a major focus. Notably, while a rapid and well-coordinated immune response represents the first line of defense against viral infection, excessive inflammatory innate response and impaired adaptive host immune defense may lead to tissue damage both at the site of virus entry and at systemic level. Several studies highlight relevant changes occurring both in innate and adaptive immune system in COVID-19 patients. In particular, the massive cytokine and chemokine release, the so-called "cytokine storm", clearly reflects a widespread uncontrolled dysregulation of the host immune defense. Although the prospective of counteracting cytokine storm is compelling, a major limitation relies on the limited understanding of the immune signaling pathways triggered by SARS-CoV-2 infection. The identification of signaling pathways altered during viral infections may help to unravel the most relevant molecular cascades implicated in biological processes mediating viral infections and to unveil key molecular players that may be targeted. Thus, given the key role of the immune system in COVID-19, a deeper understanding of the mechanism behind the immune dysregulation might give us clues for the clinical management of the severe cases and for preventing the transition from mild to severe stages.
Collapse
Affiliation(s)
- Michele Catanzaro
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
- Scuola Universitaria Superiore IUSS Pavia, P.zza Vittoria, 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Stefano Govoni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
227
|
Wang Z, Zheng Y, Wang F, Zhong J, Zhao T, Xie Q, Zhu T, Ma F, Tang Q, Zhou B, Zhu J. Mfsd2a and Spns2 are essential for sphingosine-1-phosphate transport in the formation and maintenance of the blood-brain barrier. SCIENCE ADVANCES 2020; 6:eaay8627. [PMID: 32523984 PMCID: PMC7259944 DOI: 10.1126/sciadv.aay8627] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/18/2020] [Indexed: 05/21/2023]
Abstract
To maintain brain homeostasis, a unique interface known as the blood-brain barrier (BBB) is formed between the blood circulation and the central nervous system (CNS). Major facilitator superfamily domain-containing 2a (Mfsd2a) is a specific marker of the BBB. However, the mechanism by which Mfsd2a influences the BBB is poorly understood. In this study, we demonstrated that Mfsd2a is essential for sphingosine-1-phosphate (S1P) export from endothelial cells in the brain. We found that Mfsd2a and Spinster homolog 2 (Spns2) form a protein complex to ensure the efficient transport of S1P. Furthermore, the S1P-rich microenvironment in the extracellular matrix (ECM) in the vascular endothelium dominates the formation and maintenance of the BBB. We demonstrated that different concentrations of S1P have different effects on BBB integrity. These findings help to unravel the mechanism by which S1P regulates BBB and also provide previously unidentified insights into the delivery of neurological drugs in the CNS.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Fan Wang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Tong Zhao
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Qiang Xie
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| |
Collapse
|
228
|
Sphingosine Kinase Blockade Leads to Increased Natural Killer T Cell Responses to Mantle Cell Lymphoma. Cells 2020; 9:cells9041030. [PMID: 32326225 PMCID: PMC7226300 DOI: 10.3390/cells9041030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin’s lymphoma. Despite being responsive to combination chemotherapy, median survival remains around 5 years due to high rates of relapse. Sphingolipid metabolism regulates MCL survival and proliferation and we found that sphingosine-1-phosphate (S1P) is upregulated in MCL cells. Therapeutic targeting of the S1P1 receptor or knockdown of sphingosine kinase 1 (SK1), the enzyme responsible for generating S1P, in human MCL cells results in a significant increase in Natural Killer T (NKT) cell activation. NKT cells recognize glycolipid antigens presented on CD1d and can reduce MCL tumor burden in vivo. Lipidomic studies identified cardiolipin, which has been reported to bind to CD1d molecules, as being upregulated in SK1 knockdown cells. We found that the pretreatment of antigen presenting cells with cardiolipin leads to increased cytokine production by NKT cell hybridomas. Furthermore, the ability of cardiolipin to activate NKT cells was dependent on the structure of its acyl chains. Collectively, these studies delineate novel pathways important for immune recognition of malignant cells and could lead to the development of new treatments for lymphoma.
Collapse
|
229
|
Colombo E, Bassani C, De Angelis A, Ruffini F, Ottoboni L, Comi G, Martino G, Farina C. Siponimod (BAF312) Activates Nrf2 While Hampering NFκB in Human Astrocytes, and Protects From Astrocyte-Induced Neurodegeneration. Front Immunol 2020; 11:635. [PMID: 32322257 PMCID: PMC7156595 DOI: 10.3389/fimmu.2020.00635] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/19/2020] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) with heterogeneous pathophysiology. In its progressive course oligodendrocyte and neuroaxonal damage is sustained by compartmentalized inflammation due to glial dysregulation. Siponimod (BAF312), a modulator of two sphingosine-1-phosphate (S1P) receptors (S1P1 and S1P5) is the first oral treatment specifically approved for active secondary progressive MS. To address potential direct effects of BAF312 on glial function and glia-neuron interaction, we set up a series of in vitro functional assays with astrocytes generated from human fibroblasts. These cells displayed the typical morphology and markers of astroglia, and were susceptible to the action of inflammatory mediators and BAF312, because expressing receptors for IL1, IL17, and S1P (namely S1P1 and S1P3). Targeting of S1P signaling by BAF312 inhibited NFκB translocation evoked by inflammatory cytokines, indicating a direct anti-inflammatory activity of the drug on the human astrocyte. Further, while glia cells exposed to IL1 or IL17 downregulated protein expression of glutamate transporters, BAF312-treated astrocytes maintained high levels of GLAST and GLT1 regardless of the presence of inflammatory mediators. Interestingly, despite potential glial susceptibility to S1P signaling via S1P3, which is not targeted by BAF312, NFκB translocation and downregulation of glutamate transporters in response to S1P were inhibited at similar levels by BAF312 and FTY720, another S1P signaling modulator targeting also S1P3. Accordingly, specific inhibition of S1P1 via NIBR-0213 blocked S1P-evoked NFκB translocation, demonstrating that modulation of S1P1 is sufficient to dampen signaling via other S1P receptors. Considering that NFκB-dependent responses are regulated by Nrf2, we measured activation of this critical transcription factor for anti-oxidant reactions, and observed that BAF312 rapidly induced nuclear translocation of Nrf2, but this effect was attenuated in the presence of an inflammatory milieu. Finally, in vitro experiments with spinal neurons exposed to astrocyte-conditioned media showed that modulation of S1P or cytokine signaling in astrocytes via BAF312 prevented neurons from astrocyte-induced degeneration. Overall, these experiments on human astrocytes suggest that during neuroinflammation targeting of S1P1 via BAF312 may modulate key astrocyte functions and thereby attain neuroprotection indirectly.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Bassani
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Anthea De Angelis
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ruffini
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Ottoboni
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giancarlo Comi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
230
|
Huang L, Ye M, Wu J, Liu W, Chen H, Rui W. A metabonomics and lipidomics based network pharmacology study of qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1146:122102. [PMID: 32330807 DOI: 10.1016/j.jchromb.2020.122102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Honey-processed Astragalus is a dosage form of radix Astragali processed with honey, which is deemed to contain better qi-tonifying effects in traditional Chinese medicine theroy. Our previous study has demonstrated that honey-processed Astragalus exhibited a better effect on reinforcing qi (vital energy) and immune improvement toward spleen qi deficiency compared with radix Astragali. However, the detailed mechanisms related to qi-tonifying effects of honey-processed Astragalus is still unclear. In this study, we evaluated the qi-tonifying effects of honey-processed Astragalus on spleen qi deficiency rats and predicted the mechanisms by aggregating metabonomics, lipidomics and network pharmacology. The results revealed that body weights, symptom scores, the levels of red blood cell, white blood cell, lymphocyte, spleen and thymus indexes, and three cytokines (TNF-α, IL-6, IFN-γ) in honey-processed Astragalus treated rats were improved in comparison with spleen qi deficiency rats. In parallel, based on the 26 biomarkers screened in metabonomics and lipidomics, we inferred that glycerophospholipid metabolism significantly regulated in pathway analysis was connected with qi-tonifying effects. Moreover, the network pharmacology analysis concluded that the compounds targets of honey-processed Astragalus CDK2, NOS3, MAPK14, PTGS1 and PTGS2 interacted with markers targets PLA2G(s) family and LYPLA1 could be responsible for regulation of glycerophospholipid metabolism to develop qi-tonifying effects. What's more, the above processes were possibly through VEGF signaling and MAPK signaling pathways.
Collapse
Affiliation(s)
- Li Huang
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Mingzhu Ye
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Jiacai Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Wuping Liu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Guangdong Cosmetics Engineering & Technology Research Center, 510006 Guangzhou, People's Republic of China
| | - Wen Rui
- New Drug Research and Development Center, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Key Laboratory of Digital Quality Evaluation of Chinese Materia of State Administration of TCM, 510006 Guangzhou, People's Republic of China; Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, 510006 Guangzhou, People's Republic of China; Guangdong Cosmetics Engineering & Technology Research Center, 510006 Guangzhou, People's Republic of China.
| |
Collapse
|
231
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
232
|
Potential sphingosine-1-phosphate-related therapeutic targets in the treatment of cerebral ischemia reperfusion injury. Life Sci 2020; 249:117542. [PMID: 32169519 DOI: 10.1016/j.lfs.2020.117542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates lymphocyte trafficking, glial cell activation, vasoconstriction, endothelial barrier function, and neuronal death pathways in the brain. Research has increasingly implicated S1P in the pathology of cerebral ischemia reperfusion (IR) injury. As a high-affinity agonist of S1P receptor, fingolimod exhibits excellent neuroprotective effects against ischemic challenge both in vivo and in vitro. By summarizing recent progress on how S1P participates in the development of brain IR injury, this review identifies potential therapeutic targets for the treatment of brain IR injury.
Collapse
|
233
|
Silva JE, Mayordomo AC, Dave MN, Aguilera Merlo C, Eliçabe RJ, Di Genaro MS. Dendritic Cells of Mesenteric and Regional Lymph Nodes Contribute to Yersinia enterocolitica O:3-Induced Reactive Arthritis in TNFRp55-/- Mice. THE JOURNAL OF IMMUNOLOGY 2020; 204:1859-1868. [PMID: 32122996 DOI: 10.4049/jimmunol.1901137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023]
Abstract
Dendritic cells (DCs) participate in the pathogenesis of several diseases. We investigated DCs and the connection between mucosa and joints in a murine model of Yersinia enterocolitica O:3-induced reactive arthritis (ReA) in TNFRp55-/- mice. DCs of mesenteric lymph nodes (MLN) and joint regional lymph nodes (RLN) were analyzed in TNFRp55-/- and wild-type mice. On day 14 after Y. enterocolitica infection (arthritis onset), we found that under TNFRp55 deficiency, migratory (MHChighCD11c+) DCs increased significantly in RLN. Within these RLN, resident (MHCintCD11c+) DCs increased on days 14 and 21. Similar changes in both migratory and resident DCs were also detected on day 14 in MLN of TNFRp55-/- mice. In vitro, LPS-stimulated migratory TNFRp55-/- DCs of MLN increased IL-12/23p40 compared with wild-type mice. In addition, TNFRp55-/- bone marrow-derived DCs in a TNFRp55-/- MLN microenvironment exhibited higher expression of CCR7 after Y. enterocolitica infection. The major intestinal DC subsets (CD103+CD11b-, CD103-CD11b+, and CD103+CD11b+) were found in the RLN of Y. enterocolitica-infected TNFRp55-/- mice. Fingolimod (FTY720) treatment of Y. enterocolitica-infected mice reduced the CD11b- subset of migratory DCs in RLN of TNFRp55-/- mice and significantly suppressed the severity of ReA in these mice. This result was associated with decreased articular IL-12/23p40 and IFN-γ levels. In vitro FTY720 treatment downregulated CCR7 on Y. enterocolitica-infected bone marrow-derived DCs and purified MLN DCs, which may explain the mechanism underlying the impairment of DCs in RLN induced by FTY720. Taken together, data indicate the migration of intestinal DCs to RLN and the contribution of these cells in the immunopathogenesis of ReA, which may provide evidence for controlling this disease.
Collapse
Affiliation(s)
- Juan E Silva
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and.,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - Andrea C Mayordomo
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - Mabel N Dave
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - Claudia Aguilera Merlo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and
| | - Ricardo J Eliçabe
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and.,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| | - María S Di Genaro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina; and .,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Luis, 5700 San Luis, Argentina
| |
Collapse
|
234
|
Sakai E, Kurano M, Morita Y, Aoki J, Yatomi Y. Establishment of a Measurement System for Sphingolipids in the Cerebrospinal Fluid Based on Liquid Chromatography-Tandem Mass Spectrometry, and Its Application in the Diagnosis of Carcinomatous Meningitis. J Appl Lab Med 2020; 5:656-670. [DOI: 10.1093/jalm/jfaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Sphingolipids have been demonstrated to be involved in many human diseases. However, measurement of sphingolipids, especially of sphingosine 1-phosphate (S1P) and dihydro-sphingosine 1-phosphate (dhS1P), in blood samples requires strict sampling, since blood cells easily secrete these substances during sampling and storage, making it difficult to introduce measurement of sphingolipids in clinical laboratory medicine. On the other hand, cerebrospinal fluid (CSF) contains few blood cells. Therefore, we attempted to establish a system based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the measurement of sphingolipids in the CSF, and applied it for the diagnosis of carcinomatous meningitis.
Methods
We developed and validated a LC-MS/MS-based measurement system for S1P and dhS1P and for ceramides and sphingosines, used this system to measure the levels of these sphingolipids in the CSF collected from the subjects with cancerous meningitis, and compared the levels with those in normal routine CSF samples.
Results
Both the measurement systems for S1P/dhS1P and for ceramides/sphingosines provided precision with the coefficient of variation below 20% for sphingolipids in the CSF samples. We also confirmed that the levels of S1P, as well as ceramides/sphingosines, in the CSF samples did not increase after the sampling. In the CSF samples collected from patients with cancerous meningitis, we observed that the ratio of S1P to ceramides/sphingosine and that of dhS1P to dihydro-sphingosine were higher than those in control samples.
Conclusions
We established and validated a measurement system for sphingolipids in the CSF. The system offers promise for being introduced into clinical laboratory testing.
Collapse
Affiliation(s)
- Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
235
|
Clinical Findings and Management of Pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1183:151-160. [PMID: 31359365 DOI: 10.1007/5584_2019_410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pertussis is an endemic highly infectious vaccine-preventable disease. The disease is a major cause of childhood morbidity and mortality. In the most recent years, the re-emergence of pertussis occurred, and many efforts were done to identify the possible causes. Certainly, more effective laboratory methods have a role in making the diagnosis easier. However, sub-optimal efficacy of available vaccines as well as their limited duration of protection could explain the resurgence of the disease. Many forms and clinical features of the disease, ranging from the most classical to atypical and very nuanced forms, have been reported. There are many aspects that influence the clinical features of the pathology, such as a previous immunization or infection, patient's age, gender and antibiotic treatment. A prompt suspect and a rapid diagnosis of pertussis is fundamental for an appropriate clinical management and for preventing pertussis complications, especially in children. However, under a clinical point of view, pertussis is often difficult to be diagnosed. A prompt treatment may decrease the duration and severity of cough; the cornerstone drugs are the macrolides. Although prompt diagnosis and effective therapy are important for pertussis control, only with a broad vaccination coverage will be possible to reduce circulation of Bordetella pertussis.
Collapse
|
236
|
Abstract
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes that function as signaling molecules for regulating a diverse range of cellular processes, including cell proliferation, growth, survival, immune-cell trafficking, vascular and epithelial integrity, and inflammation. Recently, several studies have highlighted the pivotal role of sphingolipids in neuroinflammatory regulation. Sphingolipids have multiple functions, including induction of the expression of various inflammatory mediators and regulation of neuroinflammation by directly effecting the cells of the central nervous system. Accumulating evidence points to sphingolipid engagement in neuroinflammatory disorders, including Alzheimer’s and Parkinson’s diseases. Abnormal sphingolipid alterations, which involves an increase in ceramide and a decrease in sphingosine kinase, are observed during neuroinflammatory disease. These trends are observed early during disease development, and thus highlight the potential of sphingolipids as a new therapeutic and diagnostic target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ju Youn Lee
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jae-sung Bae
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
237
|
Nadella V, Sharma L, Kumar P, Gupta P, Gupta UD, Tripathi S, Pothani S, Qadri SSYH, Prakash H. Sphingosine-1-Phosphate (S-1P) Promotes Differentiation of Naive Macrophages and Enhances Protective Immunity Against Mycobacterium tuberculosis. Front Immunol 2020; 10:3085. [PMID: 32038629 PMCID: PMC6993045 DOI: 10.3389/fimmu.2019.03085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingosine-1-phosphate (S-1P) is a key sphingolipid involved in the pathobiology of various respiratory diseases. We have previously demonstrated the significance of S-1P in controlling non-pathogenic mycobacterial infection in macrophages, and here we demonstrate the therapeutic potential of S-1P against pathogenic Mycobacterium tuberculosis (H37Rv) in the mouse model of infection. Our study revealed that S-1P is involved in the expression of iNOS proteins in macrophages, their polarization toward M1 phenotype, and secretion of interferon (IFN)-γ during the course of infection. S-1P is also capable of enhancing infiltration of pulmonary CD11b+ macrophages and expression of S-1P receptor-3 (S-1PR3) in the lungs during the course of infection. We further revealed the influence of S-1P on major signaling components of inflammatory signaling pathways during M. tuberculosis infection, thus highlighting antimycobacterial potential of S-1P in animals. Our data suggest that enhancing S-1P levels by sphingolipid mimetic compounds/drugs can be used as an immunoadjuvant for boosting immunity against pathogenic mycobacteria.
Collapse
Affiliation(s)
- Vinod Nadella
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Lalita Sharma
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Pankaj Kumar
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Pushpa Gupta
- Department of Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Disease, Agra, India
| | - Umesh D Gupta
- Department of Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Disease, Agra, India
| | - Srikant Tripathi
- Department of Bacteriology, National Institute of Research in Tuberculosis, Chennai, India
| | - Suresh Pothani
- National Animal Resource Facility for Biomedical Research, National Institute of Nutrition, Indian Council of Medical Research Hyderabad, Hyderabad, India
| | - S S Y H Qadri
- National Animal Resource Facility for Biomedical Research, National Institute of Nutrition, Indian Council of Medical Research Hyderabad, Hyderabad, India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| |
Collapse
|
238
|
Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat Commun 2020; 11:437. [PMID: 31974367 PMCID: PMC6978345 DOI: 10.1038/s41467-019-14218-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically modified the prognosis of several advanced cancers, however many patients still do not respond to treatment. Optimal results might be obtained by targeting cancer cell metabolism to modulate the immunosuppressive tumor microenvironment. Here, we identify sphingosine kinase-1 (SK1) as a key regulator of anti-tumor immunity. Increased expression of SK1 in tumor cells is significantly associated with shorter survival in metastatic melanoma patients treated with anti-PD-1. Targeting SK1 markedly enhances the responses to ICI in murine models of melanoma, breast and colon cancer. Mechanistically, SK1 silencing decreases the expression of various immunosuppressive factors in the tumor microenvironment to limit regulatory T cell (Treg) infiltration. Accordingly, a SK1-dependent immunosuppressive signature is also observed in human melanoma biopsies. Altogether, this study identifies SK1 as a checkpoint lipid kinase that could be targeted to enhance immunotherapy. There are many patients who do not respond to immune checkpoint inhibitor (ICI) immunotherapy. Here, the authors show a significant negative correlation between sphingosine kinase-1 (SK1) expression and survival for ICI-treated melanoma patients, and further show that targeting SK1 improves response to ICI in mouse cancer models.
Collapse
|
239
|
Wang H, Li T, Wang X, Yin X, Zhao N, Zou S, Duan P, Bonewald LF. The role of sphingosine-1-phosphate signaling pathway in cementocyte mechanotransduction. Biochem Biophys Res Commun 2020; 523:595-601. [PMID: 31941604 DOI: 10.1016/j.bbrc.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023]
Abstract
Iatrogenic external root resorption can become a serious pathological condition with clinical tooth movement. Little is known regarding how cementum responds to mechanical loading in contrast to bone, especially under compressive stress. In the field of bone biology, several studies have established the contribution of sphingosine-1-phosphate (S1P) signaling in bone remodeling, mechanical transduction and homeostasis. As osteocytes and cementocytes share similar morphological and functional characteristics, this study aimed to investigate the mechanotransduction ability of cementocytes and to explore the contribution of S1P signaling under compressive stress induced mechanotransduction. We found that compressive stress inhibited major S1P signaling and promoted the expression of anabolic factors in IDG-CM6 cells, a novel immortalized murine cementocyte cell line. By inhibiting S1P signaling, we verified that S1P signaling played a vital role in regulating the expression of the mechanotransduction factors prostaglandin E2 (PGE2) and β-catenin, as well as factors responsible for cementogenesis and cementoclastogenesis in IDG-CM6 cells. These results support the hypothesis that cementocytes act as key mechanically responsive cells in cementum, responding to compressive stress and directing local cementum metabolism.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wang
- Oral Diagnosis and Treatment Center, Aviation General Hospital, China Medical University, Beijing, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Lynda F Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
240
|
Li W, Du H, Zhou G, Song D. Euxanthone represses the proliferation, migration, and invasion of glioblastoma cells by modulating STAT3/SHP-1 signaling. Anat Rec (Hoboken) 2020:ar.24363. [PMID: 31922313 DOI: 10.1002/ar.24363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/22/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Glioblastoma is one of the most prevalent primary malignant brain tumors. Glioblastoma often develops resistance to conventional chemoradiotherapy, and thus, new ways to treat glioblastoma are urgently required. The aim of this study was to investigate the effect of euxanthone on the anticancer activities of glioblastoma and its potential mechanism. The U87 and U251 glioblastoma cell lines were cultured in media containing different concentrations of euxanthone. CCK-8 and colony formation assay were used to evaluate the cell proliferation. Cell migration and invasion were evaluated by wound healing and Transwell assays. Flow cytometry was used to assess the cell cycle and apoptosis rate. TUNEL assay was also employed to evaluate the apoptosis rate. Gene and protein expressions were determined by RT-qPCR and western blotting, respectively. A xenograft model was established to evaluate the efficacy of euxanthone in vivo. Euxanthone significantly repressed cell viability, migration, invasion, and epithelial-to-mesenchymal transition of U87 and U251 cells; and increased the rate of apoptosis. Western blotting results revealed that the levels of p21, p27, cleaved caspase-3, Bax, TIMP-3, and E-cadherin were upregulated while, the levels of CDK4, CDK6, pro-caspase-3, Bcl-2, MMP-2, MMP-9, N-cadherin, and Vimentin were downregulated by euxanthone. In addition, the expression of p-STAT3 was decreased, while the expression of SHP-1 was upregulated by euxanthone. We proposed that euxanthone could repress the malignant behavior of glioblastoma cells through suppression of STAT3 phosphorylation and activation of SHP-1. Further, in vivo data demonstrated that euxanthone repressed tumor growth and promoted apoptosis.
Collapse
Affiliation(s)
- Wen Li
- Jining First People's Hospital, Jining, China
| | - Hongmei Du
- Jining First People's Hospital, Jining, China
| | | | - Daqing Song
- Jining First People's Hospital, Jining, China
| |
Collapse
|
241
|
Guo XM, Chen JL, Zeng BH, Lai JC, Lin CY, Lai MY. Ultrasound-mediated delivery of RGD-conjugated nanobubbles loaded with fingolimod and superparamagnetic iron oxide nanoparticles: targeting hepatocellular carcinoma and enhancing magnetic resonance imaging. RSC Adv 2020; 10:39348-39358. [PMID: 35518389 PMCID: PMC9057352 DOI: 10.1039/d0ra06415g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022] Open
Abstract
Nanobubbles (NBs) are considered to be a new generation of ultrasound-responsive nanocarriers that can effectively target tumors, accurately release multi-drugs at desired locations, as well as simultaneously perform diagnosis and treatment. In this study, we designed theranostic NBs (FTY720@SPION/PFP/RGD-NBs) composed of RGD-modified liposomes as the shell, and perflenapent (PFP), superparamagnetic iron oxide nanoparticles (SPION), and fingolimod (2-amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol, FTY720) encapsulated as the core. The prepared FTY720@SPION/PFP/RGD-NBs were black spheres with a diameter range of 160–220 nm, eligible for enhanced permeability and retention (EPR) effects. The calculated average drug loading efficiency (LE) and encapsulation efficiency (EE) of the FTY720@SPION/PFP/RGD-NBs were 9.18 ± 0.61% and 88.26 ± 2.31%, respectively. With the promotion of low-intensity focused ultrasound (LIFU), the amount and the rate of FTY720 released from the prepared NB complex were enhanced when compared to the samples without LIFU treatment. In vitro magnetic resonance imaging (MRI) trials showed that the prepared FTY720@SPION/PFP/RGD-NBs had a high relaxation rate and MRI T2-weighted imaging (T2WI) scanning sensitivity conditions. The cell viability studies demonstrated that both HepG2 and Huh7 cells co-cultured with FTY720@SPION/PFP/RGD-NB (100 μg mL−1) + LIFU treatment had the lowest survival rate compared with the other groups at 24 h and 48 h, showing that FTY720@SPION/PFP/RGD-NB had the strongest anti-tumor efficiency among the prepared NBs. The cytotoxicity study also demonstrated that the prepared NBs had low toxicity to normal fibroblast 3T3 cells. Cellular uptake studies further indicated that both LIFU treatment and RGD modification could effectively improve the tumor-targeted effects, thereby enhancing the antitumor efficacy. The qRT-PCR results indicated that LIFU-mediated FTY720@SPION/PFP/RGD-NB could significantly cause the activation of Caspase3, Caspase9 and p53 compared to the control group, inducing HepG2 apoptosis. These results together indicated that FTY720@SPION/PFP/RGD-NBs combined with LIFU may serve as a multifunctional drug delivery platform for hepatocellular carcinoma treatment and provide a new strategy for tumor visualization by MRI. Nanobubbles (NBs) are considered to be a new generation of ultrasound-responsive nanocarriers that can effectively target tumors, accurately release multi-drugs at desired locations, as well as simultaneously perform diagnosis and treatment.![]()
Collapse
Affiliation(s)
- Xin-Min Guo
- Department of Ultrasound
- Guangzhou Red Cross Hospital
- Medical College
- Jinan University
- Guangzhou
| | - Jia-Lin Chen
- Department of Ultrasound
- Guangzhou Red Cross Hospital
- Medical College
- Jinan University
- Guangzhou
| | - Bao-Hui Zeng
- Department of Ultrasound
- Guangzhou Red Cross Hospital
- Medical College
- Jinan University
- Guangzhou
| | - Ji-Chuang Lai
- Department of Ultrasound
- Guangzhou Red Cross Hospital
- Medical College
- Jinan University
- Guangzhou
| | - Cui-Yan Lin
- Department of Ultrasound
- Guangzhou Red Cross Hospital
- Medical College
- Jinan University
- Guangzhou
| | - Mei-Yan Lai
- Department of Ultrasound
- Guangzhou Red Cross Hospital
- Medical College
- Jinan University
- Guangzhou
| |
Collapse
|
242
|
Graber K, Khan F, Glück B, Weigel C, Marzo S, Doshi H, Ehrhardt C, Heller R, Gräler M, Henke A. The role of sphingosine-1-phosphate signaling in HSV-1-infected human umbilical vein endothelial cells. Virus Res 2020; 276:197835. [DOI: 10.1016/j.virusres.2019.197835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/14/2023]
|
243
|
Abstract
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK.
| |
Collapse
|
244
|
Simon J, Ouro A, Ala-Ibanibo L, Presa N, Delgado TC, Martínez-Chantar ML. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int J Mol Sci 2019; 21:40. [PMID: 31861664 PMCID: PMC6982102 DOI: 10.3390/ijms21010040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the main causes of chronic liver disease worldwide. NAFLD comprises a group of conditions characterized by the accumulation of hepatic lipids that can eventually lead to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), the fifth most common cancer type with a poor survival rate. In this context, several works have pointed out perturbations in lipid metabolism and, particularly, changes in bioactive sphingolipids, as a hallmark of NAFLD and derived HCC. In the present work, we have reviewed existing literature about sphingolipids and the development of NAFLD and NAFLD-derived HCC. During metabolic syndrome, considered a risk factor for steatosis development, an increase in ceramide and sphigosine-1-phosphate (S1P) have been reported. Likewise, other reports have highlighted that increased sphingomyelin and ceramide content is observed during steatosis and NASH. Ceramide also plays a role in liver fibrosis and cirrhosis, acting synergistically with S1P. Finally, during HCC, metabolic fluxes are redirected to reduce cellular ceramide levels whilst increasing S1P to support tumor growth.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Lolia Ala-Ibanibo
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48980 Leioa, Bizkaia, Spain; (A.O.); (N.P.)
| | - Teresa Cardoso Delgado
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; (L.A.-I.); (T.C.D.); (M.L.M.-C.)
| |
Collapse
|
245
|
Panta CR, Ruisanchez É, Móré D, Dancs PT, Balogh A, Fülöp Á, Kerék M, Proia RL, Offermanns S, Tigyi GJ, Benyó Z. Sphingosine-1-Phosphate Enhances α 1-Adrenergic Vasoconstriction via S1P2-G 12/13-ROCK Mediated Signaling. Int J Mol Sci 2019; 20:ijms20246361. [PMID: 31861195 PMCID: PMC6941080 DOI: 10.3390/ijms20246361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P–S1P2–G12/13–ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.
Collapse
Affiliation(s)
- Cecília R. Panta
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Dorottya Móré
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Péter T. Dancs
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD 20892, USA;
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| |
Collapse
|
246
|
SPHK1 deficiency protects mice from acetaminophen-induced ER stress and mitochondrial permeability transition. Cell Death Differ 2019; 27:1924-1937. [PMID: 31827236 DOI: 10.1038/s41418-019-0471-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) is the leading cause of drug-induced acute liver failure. Sphingosine-1-phosphate (S1P), whose formation is catalyzed by sphingosine kinase (SPHK)-1 or -2, is a bioactive lipid implicated in human health and disease. Here, we show that APAP-treated sphK1-deficient (sphK1-/-) mice exhibited markedly less liver damage and reduced inflammation compared with the wild-type mice. SPHK1 deficiency alleviated APAP-induced endoplasmic reticulum (ER) stress by affecting the phosphorylation of inositol-requiring enzyme 1α (IRE1α) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α), levels of activating transcription factor 4 (ATF4), and activation of activating transcription factor 6 (ATF6). SPHK1 deficiency also inhibited mitochondrial permeability transition (MPT), as evidenced by the impaired phosphorylation of JNK, apoptosis signal-regulated kinase 1 (ASK1), and glycogen synthase kinase 3β (GSK3β). In addition, SPHK1 deficiency reduced the levels of histone deacetylase and promoted the acetylation of p65 and STAT1, thereby impairing the transcription of inflammatory genes. Supplementation with exogenous S1P significantly reversed the activation of the PERK-eIF2α-ATF4 pathway and ATF6 during ER stress as well as the activation of GSK3β, ASK1, and JNK during MPT. Both FTY720, a functional S1P receptor antagonist, and PF543, an SPHK1 inhibitor, significantly ameliorated APAP-induced liver injury and improved animal survival. Our study reveals a critical role for SPHK1 in mediating APAP-induced hepatotoxicity by promoting ER stress and MPT.
Collapse
|
247
|
Gupta P, Mohammad T, Dahiya R, Roy S, Noman OMA, Alajmi MF, Hussain A, Hassan MI. Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Sci Rep 2019; 9:18727. [PMID: 31822735 PMCID: PMC6904568 DOI: 10.1038/s41598-019-55199-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) has recently gained attention as a potential drug target for its association with cancer and other inflammatory diseases. Here, we have investigated the binding affinity of dietary phytochemicals viz., ursolic acid, capsaicin, DL-α tocopherol acetate, quercetin, vanillin, citral, limonin and simvastatin with the SphK1. Docking studies revealed that all these compounds bind to the SphK1 with varying affinities. Fluorescence binding and isothermal titration calorimetric measurements suggested that quercetin and capsaicin bind to SphK1 with an excellent affinity, and significantly inhibits its activity with an admirable IC50 values. The binding mechanism of quercetin was assessed by docking and molecular dynamics simulation studies for 100 ns in detail. We found that quercetin acts as a lipid substrate competitive inhibitor, and it interacts with important residues of active-site pocket through hydrogen bonds and other non-covalent interactions. Quercetin forms a stable complex with SphK1 without inducing any significant conformational changes in the protein structure. In conclusion, we infer that quercetin and capsaicin provide a chemical scaffold to develop potent and selective inhibitors of SphK1 after required modifications for the clinical management of cancer.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Omar Mohammed Ali Noman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
248
|
Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019; 8:cells8121573. [PMID: 31817238 PMCID: PMC6952831 DOI: 10.3390/cells8121573] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Human pathologies such as Alzheimer’s disease, type 2 diabetes-induced insulin resistance, cancer, and cardiovascular diseases have altered lipid homeostasis. Among these imbalanced lipids, the bioactive sphingolipids ceramide and sphingosine-1 phosphate (S1P) are pivotal in the pathophysiology of these diseases. Several enzymes within the sphingolipid pathway contribute to the homeostasis of ceramide and S1P. Ceramidase is key in the degradation of ceramide into sphingosine and free fatty acids. In humans, five different ceramidases are known—acid ceramidase, neutral ceramidase, and alkaline ceramidase 1, 2, and 3—which are encoded by five different genes (ASAH1, ASAH2, ACER1, ACER2, and ACER3, respectively). Notably, the neutral ceramidase N-acylsphingosine amidohydrolase 2 (ASAH2) shows considerable differences between humans and animals in terms of tissue expression levels. Besides, the subcellular localization of ASAH2 remains controversial. In this review, we sum up the results obtained for identifying gene divergence, structure, subcellular localization, and manipulating factors and address the role of ASAH2 along with other ceramidases in human diseases.
Collapse
|
249
|
Emerging Connections of S1P-Metabolizing Enzymes with Host Defense and Immunity During Virus Infections. Viruses 2019; 11:v11121097. [PMID: 31783527 PMCID: PMC6950728 DOI: 10.3390/v11121097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
The sphingosine 1-phosphate (S1P) metabolic pathway is a dynamic regulator of multiple cellular and disease processes. Identification of the immune regulatory role of the sphingosine analog FTY720 led to the development of the first oral therapy for the treatment of an autoimmune disease, multiple sclerosis. Furthermore, inhibitors of sphingosine kinase (SphK), which mediate S1P synthesis, are being evaluated as a therapeutic option for the treatment of cancer. In conjunction with these captivating discoveries, S1P and S1P-metabolizing enzymes have been revealed to display vital functions during virus infections. For example, S1P lyase, which is known for metabolizing S1P, inhibits influenza virus replication by promoting antiviral type I interferon innate immune responses. In addition, both isoforms of sphingosine kinase have been shown to regulate the replication or pathogenicity of many viruses. Pro- or antiviral activities of S1P-metabolizing enzymes appear to be dependent on diverse virus–host interactions and viral pathogenesis. This review places an emphasis on summarizing the functions of S1P-metabolizing enzymes during virus infections and discusses the opportunities for designing pioneering antiviral drugs by targeting these host enzymes.
Collapse
|
250
|
Brown EM, Ke X, Hitchcock D, Jeanfavre S, Avila-Pacheco J, Nakata T, Arthur TD, Fornelos N, Heim C, Franzosa EA, Watson N, Huttenhower C, Haiser HJ, Dillow G, Graham DB, Finlay BB, Kostic AD, Porter JA, Vlamakis H, Clish CB, Xavier RJ. Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host Microbe 2019; 25:668-680.e7. [PMID: 31071294 DOI: 10.1016/j.chom.2019.04.002] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
Abstract
Sphingolipids are structural membrane components and important eukaryotic signaling molecules. Sphingolipids regulate inflammation and immunity and were recently identified as the most differentially abundant metabolite in stool from inflammatory bowel disease (IBD) patients. Commensal bacteria from the Bacteroidetes phylum also produce sphingolipids, but the impact of these metabolites on host pathways is largely uncharacterized. To determine whether bacterial sphingolipids modulate intestinal health, we colonized germ-free mice with a sphingolipid-deficient Bacteroides thetaiotaomicron strain. A lack of Bacteroides-derived sphingolipids resulted in intestinal inflammation and altered host ceramide pools in mice. Using lipidomic analysis, we described a sphingolipid biosynthesis pathway and revealed a variety of Bacteroides-derived sphingolipids including ceramide phosphoinositol and deoxy-sphingolipids. Annotating Bacteroides sphingolipids in an IBD metabolomic dataset revealed lower abundances in IBD and negative correlations with inflammation and host sphingolipid production. These data highlight the role of bacterial sphingolipids in maintaining homeostasis and symbiosis in the gut.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaobo Ke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | | | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Toru Nakata
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Nadine Fornelos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cortney Heim
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicki Watson
- W. M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, MA 02142, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Henry J Haiser
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Glen Dillow
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandar D Kostic
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Porter
- Novartis Institute for Biomedical Research Inc., Cambridge, MA 02139, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|