201
|
Wang K, Li H, Yang Y, Wang P, Zheng Y, Song L. Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
202
|
Tian Y, Li M, Wu Z, Sun Q, Yuan D, Johannessen B, Xu L, Wang Y, Dou Y, Zhao H, Zhang S. Edge-hosted Atomic Co-N 4 Sites on Hierarchical Porous Carbon for Highly Selective Two-electron Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202213296. [PMID: 36280592 PMCID: PMC10098864 DOI: 10.1002/anie.202213296] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Not only high efficiency but also high selectivity of the electrocatalysts is crucial for high-performance, low-cost, and sustainable energy storage applications. Herein, we systematically investigate the edge effect of carbon-supported single-atom catalysts (SACs) on oxygen reduction reaction (ORR) pathways (two-electron (2 e- ) or four-electron (4 e- )) and conclude that the 2 e- -ORR proceeding over the edge-hosted atomic Co-N4 sites is more favorable than the basal-plane-hosted ones. As such, we have successfully synthesized and tuned Co-SACs with different edge-to-bulk ratios. The as-prepared edge-rich Co-N/HPC catalyst exhibits excellent 2 e- -ORR performance with a remarkable selectivity of ≈95 % in a wide potential range. Furthermore, we also find that oxygen functional groups could saturate the graphitic carbon edges under the ORR operation and further promote electrocatalytic performance. These findings on the structure-property relationship in SACs offer a promising direction for large-scale and low-cost electrochemical H2 O2 production via the 2 e- -ORR.
Collapse
Affiliation(s)
- Yuhui Tian
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Meng Li
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ding Yuan
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.,Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Bernt Johannessen
- Australia Synchrotron, Australia's Nuclear Science and Technology Organization, Victoria, 3168, Australia
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shandong Institute of Advanced Technology, Jinan, 250103, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
203
|
Kim HY, Jun M, Lee K, Joo SH. Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
204
|
Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Ianasi P, Ianasi C. Vanadium (V) Adsorption from Aqueous Solutions Using Xerogel on the Basis of Silica and Iron Oxide Matrix. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8970. [PMID: 36556774 PMCID: PMC9786883 DOI: 10.3390/ma15248970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Vanadium is considered a strategic metal with wide applications in various industries due to its unique chemical and physical properties. On the basis of these considerations, the recovery of vanadium (V) is mandatory because of the lack of raw materials. Various methods are used to recover vanadium (V) from used aqueous solutions. This study develops a clean and effective process for the recovery of vanadium (V) by using the adsorption method. At the same time, this study synthesizes a material starting from silica matrices and iron oxides, which is used as an adsorbent material. To show the phase composition, the obtained material is characterized by X-ray diffraction showing that the material is present in the amorphous phase, with a crystal size of 20 nm. However, the morphological texture of the material is determined by the N2 adsorption-desorption method, proving that the adsorbent material has a high surface area of 305 m2/g with a total pore volume of 1.55 cm3/g. To determine the efficiency of the SiO2FexOy material for the recovery of vanadium through the adsorption process, the role of specific parameters, such as the L-to-V ratio, pH, contact time, temperature, and initial vanadium concentration, must be evaluated. The adsorption process mechanism was established through kinetic, thermodynamic, and equilibrium studies. In our case, the process is physical, endothermic, spontaneous, and takes place at the interface of SiO2FexOy with V2O5. Following equilibrium studies, the maximum adsorption capacity of the SiO2FexOy material was 58.8 mg (V)/g of material.
Collapse
Affiliation(s)
- Florin Matusoiu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, no. 2, 300006 Timisoara, Romania
| | - Paula Ianasi
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A.P. Podeanu Street, 300569 Timisoara, Romania
| | - Cătălin Ianasi
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania
| |
Collapse
|
205
|
Michael KH, Su ZM, Wang R, Sheng H, Li W, Wang F, Stahl SS, Jin S. Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions Enabled by a Redox Reservoir Electrode. J Am Chem Soc 2022; 144:22641-22650. [PMID: 36451553 PMCID: PMC9900757 DOI: 10.1021/jacs.2c09632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Paired electrolysis methods are appealing for chemical synthesis because they generate valuable products at both electrodes; however, development of such reactions is complicated by the need for both half-reactions to proceed under mutually compatible conditions. Here, a modular electrochemical synthesis (ModES) strategy bypasses these constraints using a "redox reservoir" (RR) to pair electrochemical half-reactions across aqueous and nonaqueous solvents. Electrochemical oxidation reactions in organic solvents, the conversion of 4-t-butyltoluene to benzylic dimethyl acetal and aldehyde in methanol or the oxidative C-H amination of naphthalene in acetonitrile, and the reduction of oxygen to hydrogen peroxide in water were paired using nickel hexacyanoferrate as an RR that can selectively store and release protons (and electrons) while serving as the counter electrode for these reactions. Selective proton transport through the RR is optimized and confirmed to enable the ion balance, and thus the successful pairing, between redox half-reactions that proceed with different rates, on different scales, and in different solvents (methanol, acetonitrile, and water).
Collapse
Affiliation(s)
- Katelyn H. Michael
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Zhi-Ming Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Rui Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Wenjie Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Fengmei Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.,State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
206
|
Feng YC, Wang X, Yi ZY, Wang YQ, Yan HJ, Wang D. In-situ ECSTM investigation of H2O2 production in cobalt—porphyrin-catalyzed oxygen reduction reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
207
|
Wang Q, Kong XY, Wang Y, Wang L, Huang Y, Li H, Ma T, Ye L. Metal-Free Photocatalysts for Conversion of H 2 O into Hydrogen Peroxide. CHEMSUSCHEM 2022; 15:e202201514. [PMID: 36177848 PMCID: PMC10100187 DOI: 10.1002/cssc.202201514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is an important green oxidizing agent for environmental protection and chemical production. In comparison to the traditional anthraquinone method, photosynthesis is a green and energy-saving process for H2 O2 production. To improve the stability and practical application value of the H2 O2 synthesized by photocatalysis, the H2 O2 photosynthesis should be conducted in pure water without involving any sacrificial reagents. In this regard, organic semiconducting catalysts pose as a suitable candidate for photocatalytic H2 O2 synthesis owing to their metal-free nature to prevent H2 O2 decomposition by the metal ions. In this Perspective, the H2 O2 photosynthesis history is firstly introduced, followed by a review of the organic semiconductor photocatalysts reported to date. Finally, the main problems to thwart the advances of current pure H2 O-to-H2 O2 photosynthesis are discussed, followed by proposed solutions to address these issues in order to pave new ways for the development of highly efficient metal-free organic photocatalysts for sustainable pure H2 O-to-H2 O2 conversion.
Collapse
Affiliation(s)
- Qiao Wang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Xin Ying Kong
- Division of Chemistry and Biological ChemistrySchool of Chemistry, Chemical Engineering and BiotechnologyNanyang Technological University21 Nanyang Link637371Singapore
| | - Yongye Wang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Li Wang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir RegionMinistry of EducationChina Three Gorges UniversityYichang443002P. R. China
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir RegionMinistry of EducationChina Three Gorges UniversityYichang443002P. R. China
| | - Hui Li
- School of ScienceRMIT UniversityMelbourneVIC 3000Australia
| | - Tianyi Ma
- School of ScienceRMIT UniversityMelbourneVIC 3000Australia
| | - Liqun Ye
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir RegionMinistry of EducationChina Three Gorges UniversityYichang443002P. R. China
| |
Collapse
|
208
|
Deng B, Chen P, Xie P, Wei Z, Zhao S. Iterative machine learning method for screening high-performance catalysts for H2O2 production. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
209
|
Liu M, Yang S, Liu S, Miao Q, Yang X, Li X, Xu Q, Zeng G. Construction of Atomic Metal-N 2 Sites by Interlayers of Covalent Organic Frameworks for Electrochemical H 2 O 2 Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204757. [PMID: 36319469 DOI: 10.1002/smll.202204757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Electrosynthesis of H2 O2 is a promising alternative to the anthraquinone oxidation process because of its low energy utilization and cost-effectiveness. Heteroatom-doped carbons-based catalysts have been widely developed for H2 O2 synthesis. However, their doping degree, defective degree, and location of active sites are difficult to be preciously controlled at molecular level. Herein, a dioxin-linked covalent organic framework (COF) is used as the template to preciously construct different metal-N2 sites along the porous walls for H2 O2 synthesis. By tuning the metal centers, the catalyst with Ca-N2 sites enables to catalyze H2 O2 production with selectivity over 95% from 0.2 to 0.6 V versus RHE, while the H2 O2 yields for Co sites or Ni sites are 20% and 60% in the same potential range. In addition, the turnover frequency (TOF) values for Ca-N2 sites are 11.63 e-1 site-1 s-1 , which are 58 and 20 times higher than those of Co and Ni sites (0.20 and 0.57 e-1 site-1 s-1 ). The theoretical calculations further reveal that the OOH* desorption on Ca sites is easier than those on Co or Ni sites, and thus catalyzes the oxygen reduction reaction in the 2e- pathway with high efficiency.
Collapse
Affiliation(s)
- Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315199, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Sijia Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Qiyang Miao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
210
|
Li C, Hu C, Song Y, Sun YM, Yang W, Ma M. Active Oxygen Functional Group Modification and the Combined Interface Engineering Strategy for Efficient Hydrogen Peroxide Electrosynthesis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46695-46707. [PMID: 36210526 DOI: 10.1021/acsami.2c14780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cathodic catalytic activity and interfacial mass transfer are key factors for efficiently generating hydrogen peroxide (H2O2) via a two-electron oxygen reduction reaction (ORR). In this work, a carbonized carboxymethyl cellulose (CMC)-reduced graphene oxide (rGO) synthetic fabric cathode was designed and constructed to improve two-electron ORR activity and interfacial mass transfer. Carbonized CMC exhibits abundant active carboxyl groups and excellent two-electron ORR activity with an H2O2 selectivity of approximately 87%, higher than that of rGO and other commonly used carbonaceous catalysts. Carbonizing CMC and the agglomerates formed from it restrain the restacking of rGO sheets and thus create abundant meso/macroporous channels for the interfacial mass transfer of oxygen and H2O2. Thus, the as-constructed carbonized CMC-rGO synthetic fabric cathode exhibits exceptional H2O2 electrosynthesis performance with 11.94 mg·h-1·cm-2 yield and 82.32% current efficiency. The sufficient active sites and mass-transfer channels of the cathode also ensure its practical application performance at high current densities, which is further illustrated by the rapid organic pollutant degradation via the H2O2-based electro-Fenton process.
Collapse
Affiliation(s)
- Chang Li
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu211135, P. R. China
| | - Chaoquan Hu
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu211135, P. R. China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yang Song
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu211135, P. R. China
| | - Yi-Meng Sun
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu211135, P. R. China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan32001, Taiwan
| | - Weisheng Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, P. R. China
| | - Meng Ma
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu211135, P. R. China
| |
Collapse
|
211
|
Xu X, Sa R, Huang W, Sui Y, Chen W, Zhou G, Li X, Li Y, Zhong H. Conjugated Organic Polymers with Anthraquinone Redox Centers for Efficient Photocatalytic Hydrogen Peroxide Production from Water and Oxygen under Visible Light Irradiation without Any Additives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiahong Xu
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
| | - Rongjian Sa
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Wei Huang
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Yan Sui
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Wentong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Gangyong Zhou
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Xiaodan Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Yuntong Li
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Hong Zhong
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| |
Collapse
|
212
|
Probing the relationship between bulk and local environments to understand impacts on electrocatalytic oxygen reduction reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
213
|
Cheng M, Li Z, Xu T, Mao Y, Zhang Y, Zhang G, Yan Z. Efficient overall 2e- oxygen electrolysis to H2O2 on CeO2 nanocubes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
214
|
Singh P, Mohan B, Madaan V, Ranga R, Kumari P, Kumar S, Bhankar V, Kumar P, Kumar K. Nanomaterials photocatalytic activities for waste water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69294-69326. [PMID: 35978242 DOI: 10.1007/s11356-022-22550-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Water is necessary for the survival of life on Earth. A wide range of pollutants has contaminated water resources in the last few decades. The presence of contaminants incredibly different dyes in waste, potable, and surface water is hazardous to environmental and human health. Different types of dyes are the principal contaminants in water that need sudden attention because of their widespread domestic and industrial use. The toxic effects of these dyes and their ability to resist traditional water treatment procedures have inspired the researcher to develop an eco-friendly method that could effectively and efficiently degrade these toxic contaminants. Here, in this review, we explored the effective and economical methods of metal-based nanomaterials photocatalytic degradation for successfully removing dyes from wastewater. This study provides a tool for protecting the environment and human health. In addition, the insights into the transformation of solar energy for photocatalytic reduction of toxic metal ions and photocatalytic degradation of dyes contaminated wastewater will open a gate for water treatment research. The mechanism of photocatalytic degradation and the parameters that affect the photocatalytic activities of various photocatalysts have also been reported.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen, 361021, China
| | - Vasundhara Madaan
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Rohit Ranga
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Parveen Kumari
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
215
|
Zheng YR, Hu S, Zhang XL, Ju H, Wang Z, Tan PJ, Wu R, Gao FY, Zhuang T, Zheng X, Zhu J, Gao MR, Yu SH. Black Phosphorous Mediates Surface Charge Redistribution of CoSe 2 for Electrochemical H 2 O 2 Production in Acidic Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205414. [PMID: 36042002 DOI: 10.1002/adma.202205414] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical generation of hydrogen peroxide (H2 O2 ) by two-electron oxygen reduction offers a green method to mitigate the current dependence on the energy-intensive anthraquinone process, promising its on-site applications. Unfortunately, in alkaline environments, H2 O2 is not stable and undergoes rapid decomposition. Making H2 O2 in acidic electrolytes can prevent its decomposition, but choices of active, stable, and selective electrocatalysts are significantly limited. Here, the selective and efficient two-electron reduction of oxygen toward H2 O2 in acid by a composite catalyst that is composed of black phosphorus (BP) nailed chemically on the metallic cobalt diselenide (CoSe2 ) surface is reported. It is found that this catalyst exhibits a 91% Faradic efficiency for H2 O2 product at an overpotential of 300 mV. Moreover, it can mediate oxygen to H2 O2 with a high production rate of ≈1530 mg L-1 h-1 cm-2 in a flow-cell reactor. Spectroscopic and computational studies together uncover a BP-induced surface charge redistribution in CoSe2 , which leads to a favorable surface electronic structure that weakens the HOO* adsorption, thus enhancing the kinetics toward H2 O2 formation.
Collapse
Affiliation(s)
- Ya-Rong Zheng
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - ShaoJin Hu
- Department of Chemical Physics, Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao-Long Zhang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huanxin Ju
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhenbin Wang
- CatTheory, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peng-Ju Tan
- Department of Chemical Physics, Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Wu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fei-Yue Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Taotao Zhuang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Zheng
- Department of Chemical Physics, Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Min-Rui Gao
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
216
|
Kim JH, Sa YJ, Lim T, Woo J, Joo SH. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production. Acc Chem Res 2022; 55:2672-2684. [PMID: 36067418 DOI: 10.1021/acs.accounts.2c00409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electrocatalysis is a key driver in promoting the paradigm shift from the current fossil-fuel-based hydrocarbon economy to a renewable-energy-driven hydrogen economy. The success of electrocatalysis hinges primarily on achieving high catalytic selectivity along with maximum activity and sustained longevity. Many electrochemical reactions proceed through multiple pathways, requiring highly selective catalysts.Atomically dispersed metal catalysts have emerged as a new frontier in heterogeneous catalysis. In addition to the widely perceived advantages of maximized active site utilization and substantially reduced metal content, they have shown different catalytic selectivities in some electrocatalytic reactions compared to the traditional nanoparticle (NP)-based catalysts. Although there have been significant advances in their synthesis, the highly energetic nature of a single atomic site has made the preparation of atomically dispersed metal catalysts rely on empiricism rather than rational design. Consequently, the structural comprehension of a single atomic site and the understanding of its unusual electrocatalytic selectivity remain largely elusive.In this Account, we describe our endeavors toward developing general synthetic approaches for atomically dispersed metal catalysts for the discovery of new selective and active electrocatalysts and to understand their catalytic nature. We introduce synthetic approaches to produce a wide range of nonprecious- and precious-metal-based atomically dispersed catalysts and control their coordination environments. Metallomacrocyclic-compound-driven top-down and metal salt/heteroatom layer-based bottom-up strategies, coupled with a SiO2-protective-layer-assisted method, have been developed that can effectively generate single atomic sites while mitigating the formation of metallic NPs. The low-temperature gas-phase ligand exchange method can reversibly tune the coordination structure of the atomically dispersed metal sites. We have used the prepared atomically dispersed metal catalysts as model systems to investigate their electrocatalytic reactivity for renewable energy conversion and commodity chemical production reactions, in which high selectivity is important. The reactions of our interest include the following: (i) the oxygen reduction reaction, where O2 is reduced to either H2O or H2O2 via the four-electron or two electron pathway, respectively; (ii) the CO2 reduction reaction, which should suppress the hydrogen evolution reaction; and (iii) the chlorine evolution reaction, which competes with the oxygen evolution reaction. The type of metal center to which the reactant is directly bound is found to be the most important in determining the selectivity, which originates from the dramatic changes in the binding energy of each metal center with the reactants. The coordination structure surrounding the metal center also has a significant effect on the selectivity; its control can modulate the oxidation state of the metal center, thereby altering the binding strength with the reactants.We envisage that future advances in the synthesis of atomically dispersed metal catalysts, combined with the growing power of computational, spectroscopic, and microscopic methods, will bring their synthesis to the level of rational design. Elaborately designed catalysts can overcome the current limits of catalytic selectivity, which will help establish the field of atomically dispersed metal catalysts as an important branch of catalysis.
Collapse
Affiliation(s)
- Jae Hyung Kim
- Clean Fuel Research Laboratory, Korea Institute of Energy Research, Daejeon34129, Republic of Korea
| | - Young Jin Sa
- Department of Chemistry, Kwangwoon University, Seoul01897, Republic of Korea
| | - Taejung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jinwoo Woo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
217
|
Na Zhao L, Peng Li Z, You H, Hong Jia Y. A novel three-dimensional flow-through graphite felt-matrix cathode for in-situ hydrogen peroxide generation in multi-environment systems-Multiphysics modeling for in-situ hydrogen peroxide generation. J Colloid Interface Sci 2022; 622:357-366. [PMID: 35525139 DOI: 10.1016/j.jcis.2022.04.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
In order to achieve in-situ H2O2 generation in multi-environment systems, polyvinylpyrrolidone (PVP) and modified carbon nitride (t-g-C3N4) are co-doped onto graphite felt-matrix (GF-matrix) by electrodeposition to develop a novel cathode electrode. By means of 3D-X-ray CT, High-Resolution Transmission Electron Microscope (HRTEM), X-ray Photoelectron Spectrometer (XPS), Raman and Electrochemical Workstation, microscopic physical-chemical properties of materials are researched to optimize the electrode structure. Results show that the optimal electrode presents over H2O2 production rate of 2000 mgL-1·h-1, and as high as current efficiency of 93% to 98% in simulated freshwater (50 mM Na2SO4, pH = 1-12) at 20 mAcm-2. Furthermore, we built an original three-dimensional (3D) flow-through GF-matrix cathode model on H2O2 generation in simulated freshwater, explaining solution pH change reasons from solution inlet to outlet.
Collapse
Affiliation(s)
- Li Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi Peng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Hong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
218
|
Arshi S, Xiao X, Belochapkine S, Magner E. Electrochemical Immobilisation of Glucose Oxidase for the Controlled Production of H 2O 2 in a Biocatalytic Flow Reactor. ChemElectroChem 2022; 9:e202200319. [PMID: 36246851 PMCID: PMC9545823 DOI: 10.1002/celc.202200319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Electrochemical methods can be used to selectively modify the surfaces of electrodes, enabling the immobilisation of enzymes on defined areas on the surfaces of electrodes. Such selective immobilisation methods can be used to pattern catalysts on surfaces in a controlled manner. Using this approach, the selective patterning of the enzyme glucose oxidase on the electrodes was used to develop a flow reactor for the controlled delivery of the oxidant H2O2. GOx was immobilised on a glassy carbon electrode using polypyrrole, silica films, and diazonium linkers. The rate of production of H2O2 and the stability of the response was dependent on the immobilisation method. GOx encapsulated in polypyrrole was selected as the optimal method of immobilisation, with a rate of production of 91±11 μM h-1 for 4 hours of continuous operation. The enzyme was subsequently immobilised on carbon rod electrodes (surface area of 5.76 cm2) using a polypyrrole/Nafion® film and incorporated into a flow reactor. The rate of production of H2O2 was 602±57 μM h-1, with 100 % retention of activity after 7 h of continuous operation, demonstrating that such a system can be used to prepare H2O2 at continuous and stable rate for use in downstream oxidation reactions.
Collapse
Affiliation(s)
- Simin Arshi
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Xinxin Xiao
- Department of ChemistryTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Serguei Belochapkine
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Edmond Magner
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| |
Collapse
|
219
|
Revealing *OOH key intermediates and regulating H 2O 2 photoactivation by surface relaxation of Fenton-like catalysts. Proc Natl Acad Sci U S A 2022; 119:e2205562119. [PMID: 36037332 PMCID: PMC9457417 DOI: 10.1073/pnas.2205562119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen peroxide (H2O2) molecules play important roles in many green chemical reactions. However, the high activation energy limits their application efficiency, and there is still huge controversy about the activation path of H2O2 molecules over the presence of *OOH intermediates. Here, we confirmed the formation of the key species *OOH in the heterogeneous system, via in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), isotope labeling, and theoretical calculation. In addition, we found that compared with *H2O2, *OOH was more conducive to the charge transfer behavior with the catalyst and the activation of an O-O bond. Furthermore, we proposed to improve the local coordination structure and electronic density of the YFeO3 catalyst by regulating the surface relaxation with Ti modification so as to reduce the activation barrier of H2O2 and to improve the production efficiency of •OH. As a result, the kinetics rates of the Fenton-like (photo-Fenton) reaction had been significantly increased several times. The •OH free radical activity mechanism and molecular transformation pathways of 4-chloro phenol (4-CP) were also revealed. This may provide a clearer vision for the further study of H2O2 activation and suggest a means of designing catalysts for efficient H2O2 activation.
Collapse
|
220
|
Perivoliotis DK, Stangel C, Sato Y, Suenaga K, Tagmatarchis N. Photo/Electrocatalytic Hydrogen Peroxide Production by Manganese and Iron Porphyrin/Molybdenum Disulfide Nanoensembles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203032. [PMID: 35980982 DOI: 10.1002/smll.202203032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The oxygen reduction reaction (ORR) 2e- pathway provides an alternative and green route for industrial hydrogen peroxide (H2 O2 ) production. Herein, the ORR photo/electrocatalytic activity in the alkaline electrolyte of manganese and iron porphyrin (MnP and FeP, respectively) electrostatically associated with modified 1T/2H MoS2 nanosheets is reported. The best performing catalyst, MnP/MoS2 , exhibits excellent electrocatalytic performance towards selective H2 O2 formation, with a low overpotential of 20 mV for the 2e- ORR pathway (Eons = 680 mV vs RHE) and an H2 O2 yield up to 99%. Upon visible light irradiation, MnP/MoS2 catalyst shows significant activity enhancement along with good stability. Electrochemical impedance spectroscopy assays suggest a reduced charge transfer resistance value at the interface with the electrolyte, indicating an efficient intra-ensemble transfer process of the photo-excited electrons through the formation of a type II heterojunction or Schottky contact, and therefore justifies the boosted electrochemical activities in the presence of light. Overall, this work is expected to inspire the design of novel advanced photo/electrocatalysts, paving the way for sustainable industrial H2 O2 production.
Collapse
Affiliation(s)
- Dimitrios K Perivoliotis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
- Department of Physics, Umeå University, Umeå, 90187, Sweden
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Yuta Sato
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Osaka, 567-0047, Japan
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
221
|
Li Y, Cao W, Zuo X. O- and F-doped porous carbon bifunctional catalyst derived from polyvinylidene fluoride for sulfamerazine removal in the metal-free electro-Fenton process. ENVIRONMENTAL RESEARCH 2022; 212:113508. [PMID: 35613635 DOI: 10.1016/j.envres.2022.113508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom-doped carbon materials can effectively activate H2O2 into •OH during the metal-free electro-Fenton (EF) process. However, information on bifunctional catalysts for the simultaneous generation and activation of H2O2 is scarce. In this study, O- and F-doped porous carbon cathode materials (PPCs) were prepared by the direct carbonization of polyvinylidene fluoride (PVDF) for sulfamerazine (SMR) removal in a metal-free EF process. The porous structure and chemical composition of the PPCs were regulated by the carbonization temperature. PPC-6 (carbonized at 600 °C) exhibited optimal electrocatalytic performance in terms of electrochemical H2O2 generation and activation owing to its high specific surface area, mesoporous structure, and optimum fractions of doped O and F. Excellent performance of the 2e- oxygen reduction reaction was found with an H2O2 selectivity of 93.5% and an average electron transfer number of 2.13. An H2O2 accumulative concentration of 103.9 mg/L and an SMR removal efficiency of 90.1% were achieved during the metal-free EF process. PPC-6 was able to stably remove SMR over five consecutive cycles, retaining 92.6% of its original performance. Quantitative structure-activity relationship analysis revealed that doped oxygen functional groups contributed substantially to H2O2 generation, and semi-ionic C-F bonds with high electronegativity were the cause of the activation of H2O2 to •OH. These findings suggest that the PVDF-derived carbonaceous catalysts are feasible and desirable for metal-free EF processes.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - WenXing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - XiaoJun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
222
|
He B, Wang Z, Xiao P, Chen T, Yu J, Zhang L. Cooperative Coupling of H 2 O 2 Production and Organic Synthesis over a Floatable Polystyrene-Sphere-Supported TiO 2 /Bi 2 O 3 S-Scheme Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203225. [PMID: 35944441 DOI: 10.1002/adma.202203225] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Cooperative coupling of photocatalytic H2 O2 production with organic synthesis has an expansive perspective in converting solar energy into storable chemical energy. However, traditional powder photocatalysts suffer from severe agglomeration, limited light absorption, poor gas reactant accessibility, and reusable difficulty, which greatly hinders their large-scale application. Herein, floatable composite photocatalysts are synthesized by immobilizing hydrophobic TiO2 and Bi2 O3 on lightweight polystyrene (PS) spheres via hydrothermal and photodeposition methods. The floatable photocatalysts are not only solar transparent, but also upgrade the contact between reactants and photocatalysts. Thus, the floatable step-scheme (S-scheme) TiO2 /Bi2 O3 photocatalyst exhibits a drastically enhanced H2 O2 yield of 1.15 mm h-1 and decent furfuryl alcohol conversion to furoic acid synchronously. Furthermore, the S-scheme mechanism and dynamics are systematically investigated by in situ irradiated X-ray photoelectron spectroscopy and femtosecond transient absorption spectrum analyses. In situ Fourier transform infrared spectroscopy and density functional theory calculations reveal the mechanism of furoic acid evolution. The ingenious design of floatable photocatalysts not only furnishes insight into maximizing photocatalytic reaction kinetics but also provides a new route for highly efficient heterogeneous catalysis.
Collapse
Affiliation(s)
- Bowen He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhongliao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
223
|
Xu S, Lu R, Sun K, Tang J, Cen Y, Luo L, Wang Z, Tian S, Sun X. Synergistic Effects in N,O-Comodified Carbon Nanotubes Boost Highly Selective Electrochemical Oxygen Reduction to H 2 O 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201421. [PMID: 35901499 PMCID: PMC9507382 DOI: 10.1002/advs.202201421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical 2-electron oxygen reduction reaction (ORR) is a promising route for renewable and on-site H2 O2 production. Oxygen-rich carbon nanotubes have been demonstrated their high selectivity (≈80%), yet tailoring the composition and structure of carbon nanotubes to further enhance the selectivity and widen working voltage range remains a challenge. Herein, combining formamide condensation coating and mild temperature calcination, a nitrogen and oxygen comodified carbon nanotubes (N,O-CNTs) electrocatalyst is synthesized, which shows excellent selective (>95%) H2 O2 selectivity in a wide voltage range (from 0 to 0.65 V versus reversible hydrogen electrode). It is significantly superior to the corresponding selectivity values of CNTs (≈50% in 0-0.65 V vs RHE) and O-CNTs (≈80% in 0.3-0.65 V vs RHE). Density functional theory calculations revealed that the C neighbouring to N is the active site. Introducing O-related species can strengthen the adsorption of intermediates *OOH, while N-doping can weaken the adsorption of in situ generated *O and optimize the *OOH adsorption energy, thus improving the 2-electron pathway. With optimized N,O-CNTs catalysts, a Janus electrode is designed by adjusting the asymmetric wettability to achieve H2 O2 productivity of 264.8 mol kgcat -1 h-1 .
Collapse
Affiliation(s)
- Shuhui Xu
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029China
| | - Ruihu Lu
- School of Chemical SciencesThe University of AucklandAuckland1010New Zealand
| | - Kai Sun
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029China
| | - Jialun Tang
- State Power Investment Corporation hydrogen energy Co., Ltd.Beijing100029China
| | - Yaping Cen
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029China
| | - Liang Luo
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029China
| | - Ziyun Wang
- School of Chemical SciencesThe University of AucklandAuckland1010New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
224
|
Hou J, Zhang X, Wang K, Ma P, Hu H, Zhou X, Zheng K. Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules 2022; 27:molecules27175535. [PMID: 36080302 PMCID: PMC9457636 DOI: 10.3390/molecules27175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
As a promising metal-free photocatalyst, graphitic carbon nitride (g-C3N4) is still limited by insufficient visible light absorption and rapid recombination of photogenerated carriers, resulting in low photocatalytic activity. Here, we adjusted the microstructure of the pristine bulk-g-C3N4 (PCN) and further loaded silver (Ag) nanoparticles. Abundant Ag nanoparticles were grown on the thin-layer g-C3N4 nanosheets (CNNS), and the Ag nanoparticles decorated g-C3N4 nanosheets (Ag@CNNS) were successfully synthesized. The thin-layer nanosheet-like structure was not only beneficial for the loading of Ag nanoparticles but also for the adsorption and activation of reactants via exposing more active sites. Moreover, the surface plasmon resonance (SPR) effect induced by Ag nanoparticles enhanced the absorption of visible light by narrowing the band gap of the substrate. Meanwhile, the composite band structure effectively promoted the separation and transfer of carriers. Benefiting from these merits, the Ag@CNNS reached a superior hydrogen peroxide (H2O2) yield of 120.53 μmol/g/h under visible light irradiation in pure water (about 8.0 times higher than that of PCN), significantly surpassing most previous reports. The design method of manipulating the microstructure of the catalyst combined with the modification of metal nanoparticles provides a new idea for the rational development and application of efficient photocatalysts.
Collapse
|
225
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical Reactors for Continuous Decentralized H 2 O 2 Production. Angew Chem Int Ed Engl 2022; 61:e202205972. [PMID: 35698896 DOI: 10.1002/anie.202205972] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 12/21/2022]
Abstract
The global utilization of H2 O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2 O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid-liquid extraction of H2 O2 . The energy-intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low-carbon development. The electrocatalytic two-electron (2 e- ) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low-carbon, and greener route to produce H2 O2 . However, continuous and decentralized H2 O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2 O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Collapse
Affiliation(s)
- Yichan Wen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhelun Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
226
|
Baek DS, Joo SH. Non‐siliceous
ordered mesoporous materials via nanocasting for small molecule conversion electrocatalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Du San Baek
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| |
Collapse
|
227
|
Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat Catal 2022. [DOI: 10.1038/s41929-022-00826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
228
|
Machine learning-based inverse design for electrochemically controlled microscopic gradients of O 2 and H 2O 2. Proc Natl Acad Sci U S A 2022; 119:e2206321119. [PMID: 35914135 PMCID: PMC9371721 DOI: 10.1073/pnas.2206321119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In microbiology, extracellular oxygen (O2) and reactive oxygen species (ROS) are spatiotemporally heterogenous, ubiquitously, at macroscopic level. Such spatiotemporal heterogeneities are critical to microorganisms, yet a well-defined method of studying such heterogenous microenvironments is lacking. This work develops a machine learning–based inverse design strategy that builds an electrochemical platform for achieving spatiotemporal control of O2 and ROS microenvironments relevant to microbiology. The inverse design strategy not only demonstrates the power of machine learning to design concentration profiles in electrochemistry but also accelerates the development of custom microenvironments for specific microbial systems and allows researchers to better study how microenvironments affect microorganisms in myriads of environmental, biomedical, and sustainability-related applications. A fundamental understanding of extracellular microenvironments of O2 and reactive oxygen species (ROS) such as H2O2, ubiquitous in microbiology, demands high-throughput methods of mimicking, controlling, and perturbing gradients of O2 and H2O2 at microscopic scale with high spatiotemporal precision. However, there is a paucity of high-throughput strategies of microenvironment design, and it remains challenging to achieve O2 and H2O2 heterogeneities with microbiologically desirable spatiotemporal resolutions. Here, we report the inverse design, based on machine learning (ML), of electrochemically generated microscopic O2 and H2O2 profiles relevant for microbiology. Microwire arrays with suitably designed electrochemical catalysts enable the independent control of O2 and H2O2 profiles with spatial resolution of ∼101 μm and temporal resolution of ∼10° s. Neural networks aided by data augmentation inversely design the experimental conditions needed for targeted O2 and H2O2 microenvironments while being two orders of magnitude faster than experimental explorations. Interfacing ML-based inverse design with electrochemically controlled concentration heterogeneity creates a viable fast-response platform toward better understanding the extracellular space with desirable spatiotemporal control.
Collapse
|
229
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
230
|
Huang A, Delima RS, Kim Y, Lees EW, Parlane FGL, Dvorak DJ, Rooney MB, Jansonius RP, Fink AG, Zhang Z, Berlinguette CP. Direct H 2O 2 Synthesis, without H 2 Gas. J Am Chem Soc 2022; 144:14548-14554. [PMID: 35917450 DOI: 10.1021/jacs.2c03158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here the direct hydrogenation of O2 gas to form hydrogen peroxide (H2O2) using a membrane reactor without H2 gas. Hydrogen is sourced from water, and the reactor is driven by electricity. Hydrogenation chemistry is achieved using a hydrogen-permeable Pd foil that separates an electrolysis chamber that generates reactive H atoms, from a hydrogenation chamber where H atoms react with O2 to form H2O2. Our results show that the concentration of H2O2 can be increased ∼8 times (from 56.5 to 443 mg/L) by optimizing the ratio of methanol-to-water in the chemical chamber, and through catalyst design. We demonstrate that the concentration of H2O2 is acutely sensitive to the H2O2 decomposition rate. This decomposition rate can be minimized by using AuPd alloy catalysts instead of pure Pd. This study presents a new pathway to directly synthesize H2O2 using water electrolysis without ever using H2 gas.
Collapse
Affiliation(s)
- Aoxue Huang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Roxanna S Delima
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eric W Lees
- Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Fraser G L Parlane
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - David J Dvorak
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael B Rooney
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryan P Jansonius
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Arthur G Fink
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zishuai Zhang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
231
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
232
|
Cui W, Zhao Y, Han Y, Wang X, Guan R, Liu S, Zhang T, He T. Electrochemically Accessing ROS‐Related Cytotoxicity through the Oxygen Reduction Reaction to Identify Antimicrobial Agents. ChemElectroChem 2022. [DOI: 10.1002/celc.202200560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Cui
- Yantai University Department of Applied Chemistry CHINA
| | - Yuhua Zhao
- Yantai University Department of Applied Chemistry CHINA
| | - Yanyang Han
- Yantai University Department of Applied Chemistry CHINA
| | - Xiumin Wang
- Chinese Academy of Agricultural Sciences Institute of Feed Research CHINA
| | - Rengui Guan
- Yantai University Department of Applied Chemistry CHINA
| | - Shanshan Liu
- Yantai University Department of Applied Chemistry CHINA
| | - Tao Zhang
- Yantai University Applied Chemistry 30th Clearspring RDLaishan district 264005 Yantai CHINA
| | - Tao He
- Yantai University Department of Applied Chemistry CHINA
| |
Collapse
|
233
|
Enhanced nonsacrificial photocatalytic generation of hydrogen peroxide under visible light using modified graphitic carbon nitride with doped phosphorus and loaded carbon quantum dots: constructing electron transfer channel. J Colloid Interface Sci 2022; 628:259-272. [DOI: 10.1016/j.jcis.2022.07.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
|
234
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
235
|
Ma R, Zhang Z, Iyoda T, Wang F. Electrochemical grafting of a pyridinium‐conjugated assembly on graphite for H2O2 electrochemical production. ChemElectroChem 2022. [DOI: 10.1002/celc.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Ma
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Chaoyang District North Third Ring Road 15 CHINA
| | - Zhengping Zhang
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials CHINA
| | - Tomokazu Iyoda
- Doshisha university Harris Science Research Institute, Doshisha University 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 611-0394, Japan JAPAN
| | - Feng Wang
- Beijing University of Chemical Technology Chaoyang District North Third Ring Road 15 CHINA
| |
Collapse
|
236
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical reactors for continuously decentralized H2O2 production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yichan Wen
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Ting Zhang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Jianying Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Zhelun Pan
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Tianfu Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Hiromi Yamashita
- Shanghai Jiao Tong University Division of Materials and Manufacturing Science, Graduate School of Engineering CHINA
| | - Xufang Qian
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Yixin Zhao
- Shanghai Jiao Tong University Environmental Science and Engineering 800 Dongchuan Road 44106 Shanghai CHINA
| |
Collapse
|
237
|
Zhang L, Jiang S, Ma W, Zhou Z. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63961-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
238
|
Sun X, Zhu X, Wang Y, Li Y. 1T′-MoTe2 monolayer: A promising two-dimensional catalyst for the electrochemical production of hydrogen peroxide. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
239
|
Zhang T, Wang Y, Li X, Zhuang Q, Zhang Z, Zhou H, Ding Q, Wang Y, Dang Y, Duan L, Liu J. Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
240
|
Yang X, Zeng Y, Alnoush W, Hou Y, Higgins D, Wu G. Tuning Two-Electron Oxygen-Reduction Pathways for H 2 O 2 Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107954. [PMID: 35133688 DOI: 10.1002/adma.202107954] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The hydrogen peroxide (H2 O2 ) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy-intensive anthraquinone process and unsafe direct synthesis using H2 and O2 . It enables on-site and decentralized H2 O2 production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)-free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2 O2 production via the 2e- ORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2 to H2 O2 reduction are summarized. Combined with theoretical computation and advanced characterization, a structure-property correlation to guide rational catalyst design with a favorable 2e- ORR process is aimed to provide. Due to the oxidative nature of H2 O2 and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2 O2 are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wajdi Alnoush
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
241
|
Nichols F, Ozoemena KI, Chen S. Electrocatalytic generation of reactive species and implications in microbial inactivation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
242
|
Zhou X, Yan F, Lyubartsev A, Shen B, Zhai J, Conesa JC, Hedin N. Efficient Production of Solar Hydrogen Peroxide Using Piezoelectric Polarization and Photoinduced Charge Transfer of Nanopiezoelectrics Sensitized by Carbon Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105792. [PMID: 35451215 PMCID: PMC9218770 DOI: 10.1002/advs.202105792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Piezoelectric semiconductors have emerged as redox catalysts, and challenges include effective conversion of mechanical energy to piezoelectric polarization and achieving high catalytic activity. The catalytic activity can be enhanced by simultaneous irradiation of ultrasound and light, but the existing piezoelectric semiconductors have trouble absorbing visible light. A piezoelectric catalyst is designed and tested for the generation of hydrogen peroxide (H2 O2 ). It is based on Nb-doped tetragonal BaTiO3 (BaTiO3 :Nb) and is sensitized by carbon quantum dots (CDs). The photosensitizer injects electrons into the conduction band of the semiconductor, while the piezoelectric polarization directed electrons to the semiconductor surface, allowing for a high-rate generation of H2 O2 . The piezoelectric polarization field restricts the recombination of photoinduced electron-hole pairs. A production rate of 1360 µmol gcatalyst -1 h-1 of H2 O2 is achieved under visible light and ultrasound co-irradiation. Individual piezo- and photocatalysis yielded lower production rates. Furthermore, the CDs enhance the piezocatalytic activity of the BaTiO3 :Nb. It is noted that moderating the piezoelectricity of BaTiO3 :Nb via microstructure modulation influences the piezophotocatalytic activity. This work shows a new methodology for synthesizing H2 O2 by using visible light and mechanical energy.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Shanghai Key Laboratory for R&D and Application of Metallic Functional MaterialsFunctional Materials Research LaboratorySchool of Materials Science and EngineeringTongji UniversityShanghai201804China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE 106 91Sweden
| | - Fei Yan
- Shanghai Key Laboratory for R&D and Application of Metallic Functional MaterialsFunctional Materials Research LaboratorySchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Alexander Lyubartsev
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE 106 91Sweden
| | - Bo Shen
- Shanghai Key Laboratory for R&D and Application of Metallic Functional MaterialsFunctional Materials Research LaboratorySchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Jiwei Zhai
- Shanghai Key Laboratory for R&D and Application of Metallic Functional MaterialsFunctional Materials Research LaboratorySchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - José C. Conesa
- Institute of Catalysis and PetrochemistryCSICMarie Curie 2CantoblancoMadrid28049Spain
| | - Niklas Hedin
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE 106 91Sweden
| |
Collapse
|
243
|
Zhang X, Zhao X, Zhu P, Adler Z, Wu ZY, Liu Y, Wang H. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat Commun 2022; 13:2880. [PMID: 35610199 PMCID: PMC9130276 DOI: 10.1038/s41467-022-30337-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemical oxygen reduction to hydrogen peroxide (H2O2) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H2O2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm-2) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a "shielding effect" of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H2O2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H2O2 via implementing this cation effect for practical applications.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
| | - Xunhua Zhao
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Peng Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zachary Adler
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zhen-Yu Wu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Haotian Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
244
|
Chen J, Ma Q, Zheng X, Fang Y, Wang J, Dong S. Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat Commun 2022; 13:2808. [PMID: 35606351 PMCID: PMC9127111 DOI: 10.1038/s41467-022-30411-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Hydrogen peroxide has been synthesized mainly through the electrocatalytic and photocatalytic oxygen reduction reaction in recent years. Herein, we synthesize a single-atom rhodium catalyst (Rh1/NC) to mimic the properties of flavoenzymes for the synthesis of hydrogen peroxide under mild conditions. Rh1/NC dehydrogenates various substrates and catalyzes the reduction of oxygen to hydrogen peroxide. The maximum hydrogen peroxide production rate is 0.48 mol gcatalyst-1 h-1 in the phosphorous acid aerobic oxidation reaction. We find that the selectivity of oxygen reduction to hydrogen peroxide can reach 100%. This is because a single catalytic site of Rh1/NC can only catalyze the removal of two electrons per substrate molecule; thus, the subsequent oxygen can only obtain two electrons to reduce to hydrogen peroxide through the typical two-electron pathway. Similarly, due to the restriction of substrate dehydrogenation, the hydrogen peroxide selectivity in commercial Pt/C-catalyzed enzymatic reactions can be found to reach 75%, which is 30 times higher than that in electrocatalytic oxygen reduction reactions.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
245
|
Zhao X, Yin Q, Mao X, Cheng C, Zhang L, Wang L, Liu TF, Li Y, Li Y. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H 2O 2 production in acid. Nat Commun 2022; 13:2721. [PMID: 35581214 PMCID: PMC9114359 DOI: 10.1038/s41467-022-30523-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
The pursuit of selective two-electron oxygen reduction reaction to H2O2 in acids is demanding and largely hampered by the lack of efficient non-precious-metal-based electrocatalysts. Metal macrocycles hold promise, but have been relatively underexplored. Efforts are called for to promote their inherent catalytic activities and/or increase the surface exposure of active sites. In this contribution, we perform the high-throughput computational screening of thirty-two different metalloporphyrins by comparing their adsorption free energies towards key reaction intermediates. Cobalt porphyrin is revealed to be the optimal candidate with a theoretical overpotential as small as 40 mV. Guided by the computational predictions, we prepare hydrogen-bonded cobaltoporphyrin frameworks in order to promote the solution accessibility of catalytically active sites for H2O2 production in acids. The product features an onset potential at ~0.68 V, H2O2 selectivity of >90%, turnover frequency of 10.9 s-1 at 0.55 V and stability of ~30 h, the combination of which clearly renders it stand out from existing competitors for this challenging reaction.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
246
|
CO 2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nat Commun 2022; 13:2668. [PMID: 35562346 PMCID: PMC9106728 DOI: 10.1038/s41467-022-30251-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Electrochemical water oxidation reaction (WOR) to hydrogen peroxide (H2O2) via a 2e− pathway provides a sustainable H2O2 synthetic route, but is challenged by the traditional 4e− counterpart of oxygen evolution. Here we report a CO2/carbonate mediation approach to steering the WOR pathway from 4e− to 2e−. Using fluorine-doped tin oxide electrode in carbonate solutions, we achieved high H2O2 selectivity of up to 87%, and delivered unprecedented H2O2 partial currents of up to 1.3 A cm−2, which represents orders of magnitude improvement compared to literature. Molecular dynamics simulations, coupled with electron paramagnetic resonance and isotope labeling experiments, suggested that carbonate mediates the WOR pathway to H2O2 through the formation of carbonate radical and percarbonate intermediates. The high selectivity, industrial-relevant activity, and good durability open up practical opportunities for delocalized H2O2 production. Electrochemical H2O oxidation to H2O2 is challenged by the competitive O2 evolution reaction. Here, the authors report a CO2/carbonate mediation approach to steering the H2O oxidation pathway from O2 evolution to H2O2 generation.
Collapse
|
247
|
Venugopal A, Egberts LHT, Meeprasert J, Pidko EA, Dam B, Burdyny T, Sinha V, Smith WA. Polymer Modification of Surface Electronic Properties of Electrocatalysts. ACS ENERGY LETTERS 2022; 7:1586-1593. [PMID: 35601628 PMCID: PMC9112331 DOI: 10.1021/acsenergylett.2c00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
Finding alternative ways to tailor the electronic properties of a catalyst to actively and selectively drive reactions of interest has been a growing research topic in the field of electrochemistry. In this Letter, we investigate the tuning of the surface electronic properties of electrocatalysts via polymer modification. We show that when a nickel oxide water oxidation catalyst is coated with polytetrafluoroethylene, stable Ni-CF x bonds are introduced at the nickel oxide/polymer interface, resulting in shifting of the reaction selectivity away from the oxygen evolution reaction and toward hydrogen peroxide formation. It is shown that the electron-withdrawing character of the surface fluorocarbon molecule leaves a slight positive charge on the water oxidation intermediates at the adjacent active nickel sites, making their bonds weaker. The concept of modifying the surface electronic properties of an electrocatalyst via stable polymer modification offers an additional route to tune multipathway reactions in polymer/electrocatalyst environments, like with ionomer-modified catalysts or with membrane electrode assemblies.
Collapse
Affiliation(s)
- Anirudh Venugopal
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Delft 2629HZ, The Netherlands
| | - Laurentius H. T. Egberts
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Delft 2629HZ, The Netherlands
| | - Jittima Meeprasert
- Inorganic
Systems Engineering (ISE), Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2629HZ, The Netherlands
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering (ISE), Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2629HZ, The Netherlands
| | - Bernard Dam
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Delft 2629HZ, The Netherlands
| | - Thomas Burdyny
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Delft 2629HZ, The Netherlands
| | - Vivek Sinha
- Inorganic
Systems Engineering (ISE), Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2629HZ, The Netherlands
| | - Wilson A. Smith
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Delft 2629HZ, The Netherlands
- Renewable
and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
248
|
Pt–Pd Bimetallic Aerogel as High-Performance Electrocatalyst for Nonenzymatic Detection of Hydrogen Peroxide. Catalysts 2022. [DOI: 10.3390/catal12050528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen peroxide (H2O2) plays an indispensable role in the biological, medical, and chemical fields. The development of an effective H2O2 detecting method is of great importance. In the present work, a series of PtxPdy bimetallic aerogels and Pt, Pd monometallic aerogels were controllably synthesized by one-step gelation method. Their morphologies and compositions were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and so forth. These aerogels were used as nonenzyme electrocatalysts for the detection of H2O2. The cyclic voltammetric and amperometric results demonstrated that the performance of the metal aerogels showed volcano-type behavior, with the Pt50Pd50 aerogel sitting on top. The Pt50Pd50 aerogel-based electrochemical sensor exhibited excellent comprehensive performance, with a low overpotential of −0.023 V vs. Ag/AgCl, a broad linear range from 5.1 to 3190 μM (R2 = 0.9980), and a high sensitivity of 0.19 mA mM−1 cm−2, in combination with good anti-interference ability and stability. A comprehensive study indicated that the superior sensing performance of the Pt50Pd50 aerogel is closely related to its optimized d-band center and larger cumulative pore volume. This work first applied Pt–Pd bimetallic aerogels into the detection of H2O2 and shows the promising application of noble metal aerogels in the electrochemical sensing area.
Collapse
|
249
|
Dong K, Liang J, Wang Y, Zhang L, Xu Z, Sun S, Luo Y, Li T, Liu Q, Li N, Tang B, Alshehri AA, Li Q, Ma D, Sun X. Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O 2 Electroreduction to H 2O 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kai Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education and School of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Zhaoquan Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Na Li
- College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Bo Tang
- College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education and School of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
250
|
Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63946-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|