201
|
Hebert L, Bellanger D, Guillas C, Campagne A, Dingli F, Loew D, Fievet A, Jacquemin V, Popova T, Jean D, Mechta-Grigoriou F, Margueron R, Stern MH. Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function. Oncotarget 2017; 8:72513-72527. [PMID: 29069806 PMCID: PMC5641149 DOI: 10.18632/oncotarget.19872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 07/23/2017] [Indexed: 12/30/2022] Open
Abstract
The tumor suppressor BAP1 associates with ASXL1/2 to form the core Polycomb complex PR-DUB, which catalyzes the removal of mono-ubiquitin from several substrates including histone H2A. This complex also mediates the poly-deubiquitination of HCFC1, OGT and PCG1-α, preventing them from proteasomal degradation. Surprisingly, considering its role in a Polycomb complex, no transcriptional signature was consistently found among BAP1-inactivated tumor types. It was hypothesized that BAP1 tumor suppressor activity could reside, at least in part, in stabilizing proteins through its poly-deubiquitinase activity. Quantitative mass spectrometry and gene expression arrays were used to investigate the consequences of BAP1 expression modulation in the NCI-H226 mesothelioma cell line. Analysis of differentially expressed proteins revealed enrichment in cytoskeleton organization, mitochondrial activity and ROS management, while gene expression analysis revealed enrichment in the epithelial-to-mesenchymal transition pathway. Functional assessments in BAP1 inactivated, BAP1 wild-type and BAP1 catalytically dead-expressing NCI-H226 and QR mesothelioma cell lines confirmed alteration of these pathways and demonstrated that BAP1 deubiquitinase activity was mandatory to maintain these phenotypes. Interestingly, monitoring intracellular ROS levels partly restored the morphology and the mitochondrial activity. Finally, the study suggests new tumorigenic and cellular functions of BAP1 and shows for the first time the interest of studying the proteome as readout of BAP1 inactivation.
Collapse
Affiliation(s)
- Lucie Hebert
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Dorine Bellanger
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Chloé Guillas
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Antoine Campagne
- Department of Developmental Biology and Genetics, CNRS UMR 3215/INSERM U934, Institut Curie, PSL Research University, Paris 75248, France
| | - Florent Dingli
- Mass Spectrometry and Proteomics facility, Institut Curie, PSL Research University, Paris 75248, France
| | - Damarys Loew
- Mass Spectrometry and Proteomics facility, Institut Curie, PSL Research University, Paris 75248, France
| | - Alice Fievet
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France.,Department of Genetics, Institut Curie, Paris 75248, France
| | - Virginie Jacquemin
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Tatiana Popova
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | | | - Fatima Mechta-Grigoriou
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Raphaël Margueron
- Department of Developmental Biology and Genetics, CNRS UMR 3215/INSERM U934, Institut Curie, PSL Research University, Paris 75248, France
| | - Marc-Henri Stern
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France.,Department of Genetics, Institut Curie, Paris 75248, France
| |
Collapse
|
202
|
Parrotta R, Okonska A, Ronner M, Weder W, Stahel R, Penengo L, Felley-Bosco E. A Novel BRCA1-Associated Protein-1 Isoform Affects Response of Mesothelioma Cells to Drugs Impairing BRCA1-Mediated DNA Repair. J Thorac Oncol 2017; 12:1309-1319. [DOI: 10.1016/j.jtho.2017.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
|
203
|
Abstract
Malignant mesothelioma is a universally lethal cancer that is increasing in incidence worldwide. There is a dearth of effective therapies, with only one treatment (pemetrexed and cisplatin combination chemotherapy) approved in the past 13 years. However, the past 5 years have witnessed an exponential growth in our understanding of mesothelioma pathobiology, which is set to revolutionize therapeutic strategies. From a genomic standpoint, mesothelioma is characterized by a preponderance of tumour suppressor alterations, for which novel therapies are currently in development. Other promising antitumour agents include inhibitors against angiogenesis, mesothelin and immune checkpoints, which are at various phases of clinical trial testing.
Collapse
Affiliation(s)
- Timothy A Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joachim G Aerts
- Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands
| | - Sanjay Popat
- Royal Marsden Hospital, London SW3 6JJ, UK
- National Heart and Lung Institute, Imperial College London SW3 6NP, UK
| | | |
Collapse
|
204
|
Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 2017; 45:193-205. [PMID: 28202673 PMCID: PMC5310723 DOI: 10.1042/bst20160173] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023]
Abstract
The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin.
Collapse
|
205
|
Wang XY, Wang Z, Huang JB, Ren XD, Ye D, Zhu WW, Qin LX. Tissue-specific significance of BAP1 gene mutation in prognostic prediction and molecular taxonomy among different types of cancer. Tumour Biol 2017; 39:1010428317699111. [PMID: 28618948 DOI: 10.1177/1010428317699111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BAP1 is an emerging tumor suppressor whose inactivating mutations have been found to play critical roles in tumor development. This study was conducted to elucidate the potential value of BAP1 mutation in guiding prognostic prediction and clinical stratification. We conducted a comprehensive analysis of relevant studies from multiple databases, to determine the impact of BAP1 mutation on the overall survival and disease-free survival of patients in various cancers. A total of 2457 patients from 21 studies were included in the final analysis. Although the pooled results demonstrated that BAP1 mutation was a negative indicator of overall survival (hazard ratio = 1.73; 95% confidence interval = 1.23-2.42) and disease-free survival (hazard ratio = 2.25; 95% confidence interval = 1.47-3.45), this prognostic value was only applicable to uveal melanoma and clear cell renal cell carcinoma, but not to malignant pleural mesothelioma or cholangiocarcinoma. Consistently, BAP1 mutation was correlated with critical clinicopathological features only in uveal melanoma and clear cell renal cell carcinoma. In uveal melanoma, BAP1 mutation and SF3B1/EIF1AX mutations were negatively correlated, and BAP1-mutant tumors indicated significant worse prognosis than SF3B1/EIF1AX-mutant tumors ( p = 0.028). While in clear cell renal cell carcinoma, BAP1 mutation was mutually exclusive with PBRM1 mutations, and BAP1-mutant clear cell renal cell carcinomas also showed significantly worse prognosis than PBRM1-mutant clear cell renal cell carcinomas ( p = 0.001). Our study revealed a unique tissue-specific significance of BAP1 mutation in prognostic prediction among different types of cancer. Clinically, combining detection of BAP1 mutation and other driver mutations may further allow for a more precise molecular taxonomy to stratify patients into distinct subgroups in uveal melanoma and clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Bo Huang
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu-Dong Ren
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
206
|
Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression. Oncotarget 2017; 8:61890-61900. [PMID: 28977912 PMCID: PMC5617472 DOI: 10.18632/oncotarget.18712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT-repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells.
Collapse
|
207
|
Mancuso MR, Neal JW. Novel systemic therapy against malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:295-314. [PMID: 28713675 PMCID: PMC5504105 DOI: 10.21037/tlcr.2017.06.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma is an aggressive tumor of the pleura with an overall poor prognosis. Even with surgical resection, for which only a subset of patients are eligible, long term disease free survival is rare. Standard first-line systemic treatment consists of a platinum analog, an anti-metabolite, and sometimes anti-angiogenic therapy, but there is currently no well-established standard therapy for refractory or relapsed disease. This review focuses on efforts to develop improved systemic therapy for the treatment of malignant pleural mesothelioma (MPM) including cytotoxic systemic therapy, a variety of tyrosine kinase inhibitors and their downstream effector pathways, pharmacologic targeting of the epigenome, novel approaches to target proteins expressed on mesothelioma cells (such as mesothelin), arginine depletion therapy, and the emerging role of immunotherapy. Overall, these studies demonstrate the challenges of improving systemic therapy for MPM and highlight the need to develop therapeutic strategies to control this disease.
Collapse
Affiliation(s)
- Michael R Mancuso
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
208
|
Abstract
Like cancer generally, malignant mesothelioma (MM) is a genetic disease at the cellular level. DNA copy number analysis of mesothelioma specimens has revealed a number of recurrent sites of chromosomal loss, including 3p21.1, 9p21.3, and 22q12.2. The key inactivated driver genes located at 9p21.1 and 22q12.2 were discovered two decades ago as being the tumor suppressor loci CDKN2A and NF2, respectively. Only relatively recently was the BAP1 gene determined to be the driver gene at 3p21.1 that is somatically inactivated. In 2011, we reported germline mutations in BAP1 in two families with a high incidence of mesothelioma and other cancers such as uveal melanoma (UM). As a result of a flurry of research activity over the last 5-6 years, the BAP1 gene is now firmly linked causally to a novel tumor predisposition syndrome (TPDS) characterized by increased susceptibility to mesothelioma, UM, cutaneous melanoma (CM) and benign melanocytic tumors, as well as several other cancer types. Moreover, results from recent in vivo studies with genetically engineered Bap1-mutant mouse models and new functional studies have provided intriguing biological insights regarding BAP1's role in tumorigenesis. These and other recent findings offer new possibilities for novel preventative and therapeutic strategies for MM patients.
Collapse
Affiliation(s)
- Mitchell Cheung
- Cancer Biology Program Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Joseph R Testa
- Cancer Biology Program Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
209
|
Ma J, Guo W, Li C. Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 2017; 6:1362-1377. [PMID: 28544818 PMCID: PMC5463089 DOI: 10.1002/cam4.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment.
Collapse
Affiliation(s)
- Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
210
|
Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets 2017; 21:627-638. [DOI: 10.1080/14728222.2017.1321635] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
211
|
Abstract
Uveal melanoma (UM), a rare cancer of the eye, is distinct from cutaneous melanoma by its etiology, the mutation frequency and profile, and its clinical behavior including resistance to targeted therapy and immune checkpoint blockers. Primary disease is efficiently controlled by surgery or radiation therapy, but about half of UMs develop distant metastasis mostly to the liver. Survival of patients with metastasis is below 1 year and has not improved in decades. Recent years have brought a deep understanding of UM biology characterized by initiating mutations in the G proteins GNAQ and GNA11. Cytogenetic alterations, in particular monosomy of chromosome 3 and amplification of the long arm of chromosome 8, and mutation of the BRCA1-associated protein 1, BAP1, a tumor suppressor gene, or the splicing factor SF3B1 determine UM metastasis. Cytogenetic and molecular profiling allow for a very precise prognostication that is still not matched by efficacious adjuvant therapies. G protein signaling has been shown to activate the YAP/TAZ pathway independent of HIPPO, and conventional signaling via the mitogen-activated kinase pathway probably also contributes to UM development and progression. Several lines of evidence indicate that inflammation and macrophages play a pro-tumor role in UM and in its hepatic metastases. UM cells benefit from the immune privilege in the eye and may adopt several mechanisms involved in this privilege for tumor escape that act even after leaving the niche. Here, we review the current knowledge of the biology of UM and discuss recent approaches to UM treatment.
Collapse
Affiliation(s)
- Adriana Amaro
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Rosaria Gangemi
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesca Piaggio
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Giovanna Angelini
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gaia Barisione
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Ulrich Pfeffer
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
212
|
O’Shea SJ, Robles-Espinoza CD, McLellan L, Harrigan J, Jacq X, Hewinson J, Iyer V, Merchant W, Elliott F, Harland M, Bishop DT, Newton-Bishop JA, Adams DJ. A population-based analysis of germline BAP1 mutations in melanoma. Hum Mol Genet 2017; 26:717-728. [PMID: 28062663 PMCID: PMC5409081 DOI: 10.1093/hmg/ddw403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and five in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in cutaneous melanoma.
Collapse
Affiliation(s)
- Sally J. O’Shea
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carla Daniela Robles-Espinoza
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Santiago de Querétaro, Qro, Mexico
| | - Lauren McLellan
- MISSION Therapeutics, Babraham Research Campus. Moneta (Building 280). Cambridge, UK
| | - Jeanine Harrigan
- MISSION Therapeutics, Babraham Research Campus. Moneta (Building 280). Cambridge, UK
| | - Xavier Jacq
- MISSION Therapeutics, Babraham Research Campus. Moneta (Building 280). Cambridge, UK
| | - James Hewinson
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Will Merchant
- Histopathology Department, Bexley Wing, St. James’s University Hospital, Leeds, UK
| | - Faye Elliott
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - D. Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Julia A. Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David J. Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| |
Collapse
|
213
|
Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Kawahara K, Iwasaki A, Okamoto T, Oda Y, Honda H, Nabeshima K. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: Comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer 2017; 104:98-105. [DOI: 10.1016/j.lungcan.2016.12.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
|
214
|
Carvajal RD, Schwartz GK, Tezel T, Marr B, Francis JH, Nathan PD. Metastatic disease from uveal melanoma: treatment options and future prospects. Br J Ophthalmol 2017; 101:38-44. [PMID: 27574175 PMCID: PMC5256122 DOI: 10.1136/bjophthalmol-2016-309034] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
Abstract
Uveal melanoma represents ∼85% of all ocular melanomas and up to 50% of patients develop metastatic disease. Metastases are most frequently localised to the liver and, as few patients are candidates for potentially curative surgery, this is associated with a poor prognosis. There is currently little published evidence for the optimal management and treatment of metastatic uveal melanoma and the lack of effective therapies in this setting has led to the widespread use of systemic treatments for patients with cutaneous melanoma. Uveal and cutaneous melanomas are intrinsically different diseases and so dedicated management strategies and therapies for uveal melanoma are much needed. This review explores the biology of uveal melanoma and how this relates to ongoing trials of targeted therapies in the metastatic disease setting. In addition, we consider the options to optimise patient management and care.
Collapse
Affiliation(s)
- Richard D Carvajal
- Division of Hematology/Oncology, Columbia University Medical Center, New York, USA
| | - Gary K Schwartz
- Division of Hematology/Oncology, Columbia University Medical Center, New York, USA
| | - Tongalp Tezel
- Department of Ophthalmology, Columbia University Medical Center, New York, USA
| | - Brian Marr
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jasmine H Francis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Paul D Nathan
- Division of Cancer Services, Mt Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
215
|
Costa WHD, Jabboure G, Cunha IWD. Urological cancer related to familial syndromes. Int Braz J Urol 2016; 43:192-201. [PMID: 27819754 PMCID: PMC5433356 DOI: 10.1590/s1677-5538.ibju.2016.0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer related to hereditary syndromes corresponds to approximately 5-10% of all tumors. Among those from the genitourinary system, many tumors had been identified to be related to genetic syndromes in the last years with the advent of new molecular genetic tests. New entities were described or better characterized, especially in kidney cancer such as hereditary leiomyomatosis renal cell carcinoma (HLRCC), succinate dehydrogenase kidney cancer (SDH-RCC), and more recently BAP1 germline mutation related RCC. Among tumors from the bladder or renal pelvis, some studies had reinforced the role of germline mutations in mismatch repair (MMR) genes, especially in young patients. In prostate adenocarcinoma, besides mutations in BRCA1 and BRCA2 genes that are known to increase the incidence of high-risk cancer in young patients, new studies have shown mutation in other gene such as HOXB13 and also polymorphisms in MYC, MSMB, KLK2 and KLK3 that can be related to hereditary prostate cancer. Finally, tumors from testis that showed an increased in 8 - 10-fold in siblings and 4 - 6-fold in sons of germ cell tumors (TGCT) patients, have been related to alteration in X chromosome. Also genome wide association studies GWAS pointed new genes that can also be related to increase of this susceptibility.
Collapse
Affiliation(s)
| | - George Jabboure
- Department of Pathology, Department of Urology and Department of Oncology, Johns Hopkins University - Baltimore, Maryland, United States
| | | |
Collapse
|
216
|
Micol JB, Abdel-Wahab O. The Role of Additional Sex Combs-Like Proteins in Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026526. [PMID: 27527698 DOI: 10.1101/cshperspect.a026526] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Additional sex combs-like (ASXL) proteins are mammalian homologs of Addition of sex combs (Asx), a protein that regulates the balance of trithorax and Polycomb function in Drosophila. All three ASXL family members (ASXL1, ASXL2, and ASXL3) are affected by somatic or de novo germline mutations in cancer or rare developmental syndromes, respectively. Although Asx is characterized as a catalytic partner for the deubiquitinase Calypso (or BAP1), there are domains of ASXL proteins that are distinct from Asx and the roles and redundancies of ASXL members are not yet well understood. Moreover, it is not yet fully clarified if commonly encountered ASXL1 mutations result in a loss of protein or stable expression of a truncated protein with dominant-negative or gain-of-function properties. This review summarizes our current knowledge of the biological and functional roles of ASXL members in development, cancer, and transcription.
Collapse
Affiliation(s)
- Jean-Baptiste Micol
- Hematology Department, INSERM UMR1170, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
217
|
Luchini C, Veronese N, Yachida S, Cheng L, Nottegar A, Stubbs B, Solmi M, Capelli P, Pea A, Barbareschi M, Fassan M, Wood LD, Scarpa A. Different prognostic roles of tumor suppressor gene BAP1 in cancer: A systematic review with meta-analysis. Genes Chromosomes Cancer 2016; 55:741-749. [PMID: 27223342 DOI: 10.1002/gcc.22381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022] Open
Abstract
Biallelic inactivation of the tumor suppressor gene BRCA1-associated protein 1 (BAP1) has been demonstrated in several cancers, but its prognostic role has not been completely explained. We aimed to investigate the risk associated with loss of BAP1 (BAP1-) for all-cause mortality, cancer-specific mortality and recurrence of disease in subjects with cancer. PubMed and SCOPUS were searched from database inception until 09/15/2015 without language restrictions. Prospective studies reporting data on prognostic parameters in subjects with cancer, comparing participants with presence of BAP1 (BAP1+) vs. BAP1- were included. Data were summarized using risk ratios (RR) for number of deaths/recurrences and hazard ratios (HR) for time-dependent risk related to BAP1- adjusted for potential confounders. From 261 hits, 12 studies (including 13 cohorts) with 3,447 participants (BAP1-: n = 697; BAP1+: n = 2,750), with a median follow-up over 60 months, were meta-analyzed. Compared to BAP1+, BAP1- significantly increased all-cause mortality, cancer-specific mortality and risk of recurrence in all the tumor types analyzed, except for mesothelioma, in which the presence of BAP1 mutations correlates with a better prognosis. Furthermore, we demonstrated that BAP1 mutated colorectal and renal carcinomas are associated with high-tumor grading (P < 0.0001), and that BAP1 mutated is more common in women than in men (P < 0.0001). In conclusion, on the basis of our meta-analysis, we have demonstrated a peculiar role of BAP1 in influencing the prognosis in cancer. Thus, BAP1 could be considered as an important potential target for personalized medicine. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
- ARC-NET Research Center, University and Hospital Trust of Verona, Verona, Italy
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | - Nicola Veronese
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Institute of Clinical Research and Education in Medicine, Padua, Italy
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Alessia Nottegar
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Brendon Stubbs
- Health Service and Population Research Department, King's College London, De Crespigny Park, London, UK
| | - Marco Solmi
- Institute of Clinical Research and Education in Medicine, Padua, Italy
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Paola Capelli
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Pea
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | | | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Laura D Wood
- Department of Pathology, the Johns Hopkins University, Baltimore, MD
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
- ARC-NET Research Center, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
218
|
Helgadottir H, Höiom V. The genetics of uveal melanoma: current insights. APPLICATION OF CLINICAL GENETICS 2016; 9:147-55. [PMID: 27660484 PMCID: PMC5019476 DOI: 10.2147/tacg.s69210] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uveal melanoma (UM) is the most common malignant eye tumor in adults affecting ~7,000 individuals per year worldwide. UM is a rare subtype of melanoma with distinct clinical and molecular features as compared to other melanoma subtypes. UMs lack the most typical cutaneous melanoma-associated mutations (BRAF, NRAS, and NF1) and are instead characterized by a different set of genes with oncogenic or loss-of-function mutations. By next-generation sequencing efforts on UM tumors, several driver genes have been detected. The most frequent ones are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1. In many cases, mutations in these genes appear in a mutually exclusive manner, have different risk of metastasis, and are consequently of prognostic importance. The majority of UM cases are sporadic but a few percentage of the cases occurs in families with an inherited predisposition for this malignancy. In recent years, germline mutations in the BAP1 gene have been found to segregate in an autosomal dominant pattern with numerous different cancer types including UM in cancer-prone families. This cancer syndrome has been denoted as the tumor predisposition syndrome.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska institutet; Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska institutet
| |
Collapse
|
219
|
Shen C, Wang Y, Wei P, Du X. BRCA1-associated protein 1 deficiency in lung adenocarcinoma predicts poor outcome and increased tumor invasion. BMC Cancer 2016; 16:670. [PMID: 27553041 PMCID: PMC4994180 DOI: 10.1186/s12885-016-2670-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
Background The major pathological type of non-small cell lung cancer is lung adenocarcinoma (LAC), which has a poor prognosis. BRCA1-associated protein-1 (BAP1) is a newly identified tumor suppressor that regulates a number of cellular functions in somatic malignancies. However, the impact of BAP1 expression in LAC has not been investigated. Methods A total of 112 cases of LAC and 101 cases of non-neoplastic lung diseases were included in this study. The study focused on BAP1 expression in lung tissues and its relationship to patients’ clinical and pathological features. BAP1 expression was detected by immunohistochemistry. A human LAC cell line NCI-H1299 was transfected with lipofectamine p3xFLAG-BAP1. BAP1 gene expression was silenced in another LAC cell line NCI-H1650, in order to test the inhibitory effect of BAP1 on cell migration and invasion, as well as cell cycle regulation. Results BAP1 expression showed a negative correlation with tumorigenesis of LAC (p <0.001) and lymph node metastasis (p = 0.010). High expression of BAP1 predicted longer disease free survival (p = 0.040) and overall survival (p = 0.021) of LAC patients. In functional assays, BAP1 was found to inhibit the migration and invasion of LAC cells, and promoted their apoptosis and necrosis. Conclusions We identify BAP1 as a LAC precursor as well as a robust prognostic indicator in LAC patients. This study provides in vitro rationale for the further investigation of BAP1 in preclinical studies.
Collapse
Affiliation(s)
- Chen Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Yiqin Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Institute of Pathology, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
220
|
Roh MR, Eliades P, Gupta S, Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res 2016; 28:661-72. [PMID: 26300491 DOI: 10.1111/pcmr.12412] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023]
Abstract
Melanocytic nevi are a benign clonal proliferation of cells expressing the melanocytic phenotype, with heterogeneous clinical and molecular characteristics. In this review, we discuss the genetics of nevi by salient nevi subtypes: congenital melanocytic nevi, acquired melanocytic nevi, blue nevi, and Spitz nevi. While the molecular etiology of nevi has been less thoroughly studied than melanoma, it is clear that nevi and melanoma share common driver mutations. Acquired melanocytic nevi harbor oncogenic mutations in BRAF, which is the predominant oncogene associated with melanoma. Congenital melanocytic nevi and blue nevi frequently harbor NRAS mutations and GNAQ mutations, respectively, while Spitz and atypical Spitz tumors often exhibit HRAS and kinase rearrangements. These initial 'driver' mutations are thought to trigger the establishment of benign nevi. After this initial phase of the cell proliferation, a senescence program is executed, causing termination of nevi growth. Only upon the emergence of additional tumorigenic alterations, which may provide an escape from oncogene-induced senescence, can malignant progression occur. Here, we review the current literature on the pathobiology and genetics of nevi in the hope that additional studies of nevi promise to inform our understanding of the transition from benign neoplasm to malignancy.
Collapse
Affiliation(s)
- Mi Ryung Roh
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Philip Eliades
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Sameer Gupta
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
221
|
Tarlan B, Kıratlı H. Uveal Melanoma: Current Trends in Diagnosis and Management. Turk J Ophthalmol 2016; 46:123-137. [PMID: 27800275 PMCID: PMC5076295 DOI: 10.4274/tjo.37431] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/14/2015] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma, which is the most common primary intraocular malignancy in adults, arises from melanocytes within the iris, ciliary body and choroid. The diagnosis is based principally on clinical examination of the tumor with biomicroscopy and indirect ophthalmoscopy and confirmed by diagnostic techniques such as ultrasonography, fundus fluorescein angiography and optical coherence tomography. The clinical diagnosis of posterior uveal melanomas can be made when the classical appearance of a pigmented dome-shaped mass is detected on dilated fundus exam. Uveal melanomas classically show low to medium reflectivity on A-scan ultrasonography and on B-scan ultrasonography the tumor appears as a hyperechoic, acoustically hollow intraocular mass. Management of a suspicious pigmented lesion is determined by its risk factors of transforming into a choroidal melanoma, such as documentation of growth, thickness greater than 2 mm, presence of subretinal fluid, symptoms and orange pigment, margin within 3 mm of the optic disc, and absence of halo and drusen. Advances in the diagnosis and local and systemic treatment of uveal melanoma have caused a shift from enucleation to eye-conserving treatment modalities including transpupillary thermotherapy and radiotherapy over the past few decades. Prognosis can be most accurately predicted by genetic profiling of fine needle aspiration biopsy of the tumor before the treatment, and high-risk patients can now be identified for clinical trials that may lead to target-based therapies for metastatic disease and adjuvant therapy which aims to prevent metastatic disease.
Collapse
Affiliation(s)
| | - Hayyam Kıratlı
- Hacettepe University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| |
Collapse
|
222
|
Paulucci DJ, Sfakianos JP, Yadav SS, Badani KK. BAP1 is overexpressed in black compared with white patients with Mx-M1 clear cell renal cell carcinoma: A report from the cancer genome atlas. Urol Oncol 2016; 34:259.e9-259.e14. [DOI: 10.1016/j.urolonc.2015.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 12/17/2022]
|
223
|
Sacco JJ, Kenyani J, Butt Z, Carter R, Chew HY, Cheeseman LP, Darling S, Denny M, Urbé S, Clague MJ, Coulson JM. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget 2016; 6:13757-71. [PMID: 25970771 PMCID: PMC4537048 DOI: 10.18632/oncotarget.3765] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/10/2015] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors.
Collapse
Affiliation(s)
- Joseph J Sacco
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jenna Kenyani
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Zohra Butt
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rachel Carter
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Hui Yi Chew
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Current address: Cancer Stem Cell Biology, Agency for Science Technology and Research, Genome Institute of Singapore, Singapore
| | - Liam P Cheeseman
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Current address: MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sarah Darling
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael Denny
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael J Clague
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Judy M Coulson
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
224
|
Yu M, Liang H, Fu Z, Wang X, Liao Z, Zhou Y, Liu Y, Wang Y, Hong Y, Zhou X, Yan X, Yu M, Ma M, Zhang W, Guo B, Zhang J, Zen K, Zhang CY, Wang T, Zhang Q, Chen X. BAP1 suppresses lung cancer progression and is inhibited by miR-31. Oncotarget 2016; 7:13742-13753. [PMID: 26885612 PMCID: PMC4924675 DOI: 10.18632/oncotarget.7328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is an important nuclear-localized deubiquitinating enzyme that serves as a tumor suppressor in lung cancer; however, its function and its regulation are largely unknown. In this study, we found that BAP1 protein levels were dramatically diminished in lung cancer tissues while its mRNA levels did not differ significantly, suggesting that a post-transcriptional mechanism was involved in BAP1 regulation. Because microRNAs (miRNAs) are powerful post-transcriptional regulators of gene expression, we used bioinformatic analyses to search for miRNAs that could potentially bind BAP1. We predicted and experimentally validated miR-31 as a direct regulator of BAP1. Moreover, we showed that miR-31 promoted proliferation and suppressed apoptosis in lung cancer cells and accelerated the development of tumor growth in xenograft mice by inhibiting BAP1. Taken together, this study highlights an important role for miR-31 in the suppression of BAP1 in lung cancer cells and may provide insights into the molecular mechanisms of lung carcinogenesis.
Collapse
Affiliation(s)
- Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zheng Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xueliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhicong Liao
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, Jiangsu, China
| | - Yong Zhou
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, Jiangsu, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yeting Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xinyan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Yu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Miao Ma
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weijie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, Jiangsu, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
225
|
Sneddon S, Creaney J. BAP1 mutations in mesothelioma: advances and controversies. CURRENT PULMONOLOGY REPORTS 2016. [DOI: 10.1007/s13665-016-0132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
226
|
New concepts on BARD1: Regulator of BRCA pathways and beyond. Int J Biochem Cell Biol 2016; 72:1-17. [DOI: 10.1016/j.biocel.2015.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/09/2023]
|
227
|
Gerami P, Yélamos O, Lee CY, Obregon R, Yazdan P, Sholl LM, Guitart GE, Njauw CN, Tsao H. Multiple Cutaneous Melanomas and Clinically Atypical Moles in a Patient With a Novel Germline BAP1 Mutation. JAMA Dermatol 2016; 151:1235-9. [PMID: 26154183 DOI: 10.1001/jamadermatol.2015.1701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Several kindreds having germline BAP1 mutations with a propensity for uveal and cutaneous melanomas and other internal malignancies have been described in an autosomal dominant tumor predisposition syndrome. However, clinically atypical moles have not been previously recognized as a component of this syndrome, to our knowledge. We describe the first kindred to date with a germline mutation in BAP1 associated with multiple cutaneous melanomas and classic dysplastic nevus syndrome. OBSERVATIONS We describe a 53-year-old man who was initially seen in 2003 with dysplastic nevus syndrome, multiple atypical melanocytic proliferations showing loss of immunostaining for BAP1, and 7 cutaneous melanomas. Germline testing was performed in the proband, his 16-year-old son, and his 13-year-old daughter, revealing a germline mutation in the BAP1 gene (c.592G>T, p.Glu198X) in the proband and in his 16-year-old son. CDKN2A and CDK4 genes were wild type. No members of this kindred reported a history of uveal melanoma. CONCLUSIONS AND RELEVANCE To our knowledge, this is the first report of a patient with multiple melanomas, dysplastic nevus syndrome, and an inactivating germline BAP1 mutation. The coexistence of dysplastic nevus syndrome and a BAP1 germline mutation extends the spectrum of the BAP1 tumor predisposition syndrome and may confer a greater risk for cutaneous melanomas.
Collapse
Affiliation(s)
- Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois2Robert H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Oriol Yélamos
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christina Y Lee
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Roxana Obregon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pedram Yazdan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lauren M Sholl
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gerta E Guitart
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard University, Boston4Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard University, Boston4Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
228
|
Abstract
Renal cell carcinomas associated with syndromes of a heritable nature account for about 4% of all renal cell carcinomas. They are characterized by an earlier age of onset, and are often multicentric and bilateral. Some of these patients may fit into well-characterized kidney cancer syndromes, while many more may have a genetic component that is not fully recognized or understood. The presence of extrarenal clinical features may suggest a specific renal tumor susceptibility syndrome. Moreover, each syndrome is associated with specific renal pathology findings. Recognition of individuals and families with a high risk of renal neoplasia is important so that surveillance for renal tumors may be initiated. This manuscript reviews the clinical, pathological, and molecular features of hereditary renal cell carcinoma syndromes with emphasis on the morphologic features of these tumors and the molecular mechanisms of hereditary renal tumorigenesis.
Collapse
|
229
|
Whole-genome copy-number analysis identifies new leads for chromosomal aberrations involved in the oncogenesis and metastastic behavior of uveal melanomas. Melanoma Res 2016; 25:200-9. [PMID: 25756553 DOI: 10.1097/cmr.0000000000000152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To further elucidate the genetic underpinnings of uveal melanoma (UM) and identify new markers that correlate with disease outcome, archival formalin-fixed, paraffin-embedded enucleation specimens from 25 patients with UM and a mean follow-up of 14 years were analyzed for whole-genome copy-number alterations using OncoScan analysis. Copy-number alterations of chromosomes 1, 3, 6, and 8 were also analyzed in these tumors using multiplex ligation-dependent probe-amplification, and mutations in GNAQ, GNA11, and BAP1 were searched for by Sanger sequencing. Our study confirms the previously reported GNAQ and GNA11 mutation frequencies in UMs as well as the presence of monosomy 3 as a factor strongly indicating poor prognosis. Two cases with metastatic disease, but without monosomy of chromosome 3, showed loss of a small region in the distal part of chromosome 2p. Also, UMs leading to metastatic disease had more chromosomal aberrations than those without metastases. Three UMs lacking a GNAQ or a GNA11 mutation showed a gain of chromosome 8q; one of these cases showed extensive chromothripsis. Another case (with suspect lung metastasis) showed focal chromothripsis. Our whole-genome copy-number analysis shows that focal loss of chromosome 2p may be involved in the metastatic spread of UMs without monosomy 3; metastatic UMs carry more chromosomal aberrations than those without metastases; and chromothripsis may play a role in the oncogenesis of UMs, but does not necessarily indicate a poor prognosis. The clinical and particularly diagnostic utility of these findings needs to be corroborated in a larger set of patients with UM.
Collapse
|
230
|
Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A 2016; 113:1309-14. [PMID: 26787877 DOI: 10.1073/pnas.1518375113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin, and components of the ubiquitin-proteasome system, feature extensively in the regulation of gene transcription. Although there are many examples of how ubiquitin controls the activity of transcriptional regulators and coregulators, there are few examples of core components of the transcriptional machinery that are directly controlled by ubiquitin-dependent processes. The budding yeast protein Asr1 is the prototypical member of the RPC (RING, PHD, CBD) family of ubiquitin-ligases, characterized by the presence of amino-terminal RING (really interesting new gene) and PHD (plant homeo domain) fingers and a carboxyl-terminal domain that directly binds the largest subunit of RNA polymerase II (pol II), Rpb1, in response to phosphorylation events tied to the initiation of transcription. Asr1-mediated oligo-ubiquitylation of pol II leads to ejection of two core subunits of the enzyme and is associated with inhibition of polymerase function. Here, we present evidence that Asr1-mediated ubiquitylation of pol II is required for silencing of subtelomeric gene transcription. We show that Asr1 associates with telomere-proximal chromatin and that disruption of the ubiquitin-ligase activity of Asr1--or mutation of ubiquitylation sites within Rpb1--induces transcription of silenced gene sequences. In addition, we report that Asr1 associates with the Ubp3 deubiquitylase and that Asr1 and Ubp3 play antagonistic roles in setting transcription levels from silenced genes. We suggest that control of pol II by nonproteolytic ubiquitylation provides a mechanism to enforce silencing by transient and reversible inhibition of pol II activity at subtelomeric chromatin.
Collapse
|
231
|
Tse JY, Walls BE, Pomerantz H, Yoon CH, Buchbinder EI, Werchniak AE, Dong F, Lian CG, Granter SR. Melanoma arising in a nevus of Ito: novel genetic mutations and a review of the literature on cutaneous malignant transformation of dermal melanocytosis. J Cutan Pathol 2016; 43:57-63. [PMID: 26260725 DOI: 10.1111/cup.12568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022]
Abstract
Dermal melanocytosis refers to a spectrum of benign melanocytic proliferations that includes Mongolian spot, nevus of Ota and nevus of Ito. These lesions most commonly occur in persons of Asian or African descent and are often present at birth or develop during childhood. Very rarely, dermal melanocytoses undergo malignant transformation. There have been only 13 reports in the literature of primary cutaneous melanoma arising in dermal melanocytoses. We report a case of a Chinese woman with melanoma arising in a congenital nevus of Ito. We performed targeted next-generation sequencing of the tumor which revealed mutations of GNAQ and BAP1, suggesting that alterations in these two genes led to malignant transformation of the nevus of Ito. We also provide a summary of reports in the literature regarding primary cutaneous melanoma arising in the context of dermal melanocytosis.
Collapse
Affiliation(s)
- Julie Y Tse
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Brooke E Walls
- Department of Dermatology, Brigham & Women's Hospital, Boston, MA, USA
| | - Hyemin Pomerantz
- Department of Dermatology, Brigham & Women's Hospital, Boston, MA, USA
| | - Charles H Yoon
- Department of Surgery, Brigham & Women's Hospital, Boston, MA, USA
| | | | | | - Fei Dong
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Christine G Lian
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Scott R Granter
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| |
Collapse
|
232
|
Cheung M, Kadariya Y, Talarchek J, Pei J, Ohar JA, Kayaleh OR, Testa JR. Germline BAP1 mutation in a family with high incidence of multiple primary cancers and a potential gene-environment interaction. Cancer Lett 2015; 369:261-5. [PMID: 26409435 PMCID: PMC4634709 DOI: 10.1016/j.canlet.2015.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022]
Abstract
We report a high-risk cancer family with multiple mesotheliomas, cutaneous melanomas, basal cell carcinomas, and meningiomas segregating with a germline nonsense mutation in BAP1 (c.1938T>A; p.Y646X). Notably, most (four of five) mesotheliomas were peritoneal rather than the usually more common pleural form of the disease, and all five mesothelioma patients also developed second or third primary cancers, including two with meningiomas. Another family member developed both cutaneous melanoma and breast cancer. Two family members had basal cell carcinomas, and six others had melanocytic tumors, including four cutaneous melanomas, one uveal melanoma, and one benign melanocytic tumor. The family resides in a subtropical area, and several members had suspected exposure to asbestos either occupationally or in the home. We hypothesize that the concurrence of a genetic predisposing factor and environmental exposure to asbestos and UV irradiation contributed to the high incidence of multiple cancers seen in this family, specifically mesothelioma and various uveal/skin tumors, respectively.
Collapse
Affiliation(s)
- Mitchell Cheung
- Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yuwaraj Kadariya
- Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jacqueline Talarchek
- Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jianming Pei
- Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jill A Ohar
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1054, USA
| | - Omar R Kayaleh
- University of Florida Health Cancer Center at Orlando Health, Orlando, FL 32806, USA
| | - Joseph R Testa
- Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
233
|
McDonnell KJ, Gallanis GT, Heller KA, Melas M, Idos GE, Culver JO, Martin SE, Peng DH, Gruber SB. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet 2015; 209:75-81. [PMID: 26774355 DOI: 10.1016/j.cancergen.2015.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Germline mutations in the tumor suppressor gene, BRCA-1 associated protein (BAP1), underlie a tumor predisposition syndrome characterized by increased risk for numerous cancers including uveal melanoma, melanocytic tumors and mesothelioma, among others. In the present study we report the identification of a novel germline BAP1 mutation, c.1777C>T, which produces a truncated BAP1 protein product and segregates with cancer. Family members with this mutation demonstrated a primary clinical phenotype of autosomal dominant, early-onset melanocytic neoplasms with immunohistochemistry (IHC) of these tumors demonstrating lack of BAP1 protein expression. In addition, family members harboring the BAP1 c.1777C>T germline mutation developed other neoplastic disease including thyroid cancer. IHC analysis of the thyroid cancer, as well, demonstrated loss of BAP1 protein expression. Our investigation identifies a new BAP1 mutation, further highlights the relevance of BAP1 as a clinically important tumor suppressor gene, and broadens the range of cancers associated with BAP1 inactivation. Further study will be required to understand the full scope of BAP1-associated neoplastic disease.
Collapse
Affiliation(s)
- Kevin J McDonnell
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Gregory T Gallanis
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kathleen A Heller
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Marilena Melas
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Gregory E Idos
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Julie O Culver
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Sue-Ellen Martin
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Keck School of Medicine, Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - David H Peng
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen B Gruber
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
234
|
Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun 2015; 6:10086. [PMID: 26689913 PMCID: PMC4703835 DOI: 10.1038/ncomms10086] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.
Collapse
|
235
|
Abstract
Uveal melanoma (UM) is the second-most common form of melanoma and the most common primary intraocular malignancy. Up to one-half of patients are at risk for fatal metastatic disease. The metastatic potential of an individual tumor can be accurately determined by analysis of a fine-needle aspirate with gene expression profiling assay that is available for routine clinical use through a commercial Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. The test renders one of two results-class 1 (low metastatic risk) or class 2 (high metastatic risk)-and has been extensively validated in multiple centers. Until recently, the genetic mutations and signaling aberrations in UM were largely unknown. With the advent of new genomic sequencing technologies, however, the molecular landscape of UM is rapidly emerging. Mutations in the Gq alpha subunits GNAQ and GNA11 are mutually exclusive and represent early or initiating events that constitutively activate the MAPK pathway. Mutations in BRCA1-associated protein-1 (BAP1) and splicing factor 3B subunit 1 (SF3B1) also appear to be largely mutually exclusive, and they occur later in tumor progression. BAP1 mutations are strongly associated with metastasis, whereas SF3B1 mutations are associated with a more favorable outcome. BAP1 mutations can arise in the germ line, leading to a newly described BAP1 familial cancer syndrome. These discoveries have led to new clinical trials to assess several classes of compounds, including MEK, protein kinase C, and histone deacetylase inhibitors, in the adjuvant setting for high-risk patients identified as class 2, as well as in the setting of advanced disseminated disease.
Collapse
Affiliation(s)
- J William Harbour
- From the Ocular Oncology Service, Bascom Palmer Eye Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
236
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
237
|
Yan S, He F, Luo R, Wu H, Huang M, Huang C, Li Y, Zhou Z. Decreased expression of BRCA1-associated protein 1 predicts unfavorable survival in gastric adenocarcinoma. Tumour Biol 2015; 37:6125-33. [PMID: 26611647 DOI: 10.1007/s13277-015-3983-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022] Open
Abstract
BRCA1-associated protein 1 (BAP1) has been reported as a novel tumor suppressor, while in gastric adenocarcinoma, the function of this protein was still await to be uncovered. Based on a large group of patients with gastric adenocarcinoma, our study aimed to have a further understanding about the correlation of BAP1 expression and patients' clinical outcomes. We performed quantitative PCR and Western blot to examine BAP1 expression in 38 cases of gastric adenocarcinoma samples and adjacent non-cancerous tissues. Immunochemistry was used to evaluate BAP1 expression in a large cohort of 474 paraffin-embedded specimens. The clinical and prognostic significance of BAP1 expression was statistically analyzed. Postoperative survival between groups was using Kaplan-Meier analysis. BAP1 was overexpressed in paracancerous normal mucosa compared with gastric cancer. Decreased BAP1 expression was associated with higher histologic grade (P = 0.044), tumor infiltration (P < 0.001), metastasis status (P = 0.023), and TNM stage (P < 0.001). Patients with low expression of BAP1 had shorter overall survival compared with those with high expression (P < 0.001). Patients' survival in stage N0 could be stratified by the expression of BAP1. Multivariate analysis showed that in gastric adenocarcinoma, BAP1 expressing level was an independent prognostic factor (RR = 0.575, P < 0.001). Decreased expression of BAP1 suggests pessimistic prognosis for gastric adenocarcinoma patients. Further studies are warranted.
Collapse
Affiliation(s)
- Shumei Yan
- State Key Laboratory of Oncology in South China, Department of Pathology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Fan He
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Rongzhen Luo
- State Key Laboratory of Oncology in South China, Department of Pathology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Huini Wu
- Department of Biological Science, University of Illinois, Chicago, IL, 60607, USA
| | - Mayan Huang
- State Key Laboratory of Oncology in South China, Department of Pathology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chunyu Huang
- Department of Endoscopy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yong Li
- State Key Laboratory of Oncology in South China, Department of Pathology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Zhiwei Zhou
- State Key Laboratory of Oncology in South China, Department of Gastric and Pancreatic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, 510060, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
238
|
Testa JR, Malkin D, Schiffman JD. Connecting molecular pathways to hereditary cancer risk syndromes. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2015. [PMID: 23714463 DOI: 10.1200/edbook_am.2013.33.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An understanding of the genetic causes and molecular pathways of hereditary cancer syndromes has historically informed our knowledge and treatment of all types of cancers. For this review, we focus on three rare syndromes and their associated genetic mutations including BAP1, TP53, and SDHx (SDHA, SDHB, SDHC, SDHD, SDHAF2). BAP1 encodes an enzyme that catalyzes the removal of ubiquitin from protein substrates, and germline mutations of BAP1 cause a novel cancer syndrome characterized by high incidence of benign atypical melanocytic tumors, uveal melanomas, cutaneous melanomas, malignant mesotheliomas, and potentially other cancers. TP53 mutations cause Li-Fraumeni syndrome (LFS), a highly penetrant cancer syndrome associated with multiple tumors including but not limited to sarcomas, breast cancers, brain tumors, and adrenocortical carcinomas. Genomic modifiers for tumor risk and genotype-phenotype correlations in LFS are beginning to be identified. SDH is a mitochondrial enzyme complex involved in the tricarboxylic acid (TCA) cycle, and germline SDHx mutations lead to increased succinate with subsequent paragangliomas, pheochromocytomas, renal cell carcinomas (RCCs), gastrointestinal stromal tumors (GISTs), and other rarer cancers. In all of these syndromes, the molecular pathways have informed our understanding of tumor risk and successful early tumor surveillance and screening programs.
Collapse
Affiliation(s)
- Joseph R Testa
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA; Division of Hematology/Oncology, University of Toronto, and Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; High Risk Pediatric Cancer Clinic, and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | |
Collapse
|
239
|
WU YALAN, XUE JIANXIN, ZHOU LIN, DENG LEI, SHANG YANNA, LIU FANG, MO XIANMING, LU YOU. SNAILs promote G1 phase in selected cancer cells. Int J Oncol 2015. [DOI: 10.3892/ijo_2015.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
240
|
Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, Liu R, Chen C. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 2015; 6:8471. [PMID: 26419610 PMCID: PMC4598844 DOI: 10.1038/ncomms9471] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor KLF5 is highly expressed in basal-like breast cancer and promotes breast cancer cell proliferation, survival, migration and tumour growth. Here we show that, in breast cancer cells, KLF5 is stabilized by the deubiquitinase (DUB) BAP1. With a genome-wide siRNA library screen of DUBs, we identify BAP1 as a bona fide KLF5 DUB. BAP1 interacts directly with KLF5 and stabilizes KLF5 via deubiquitination. KLF5 is in the BAP1/HCF-1 complex, and this newly identified complex promotes cell cycle progression partially by inhibiting p27 gene expression. Furthermore, BAP1 knockdown inhibits tumorigenicity and lung metastasis, which can be rescued partially by ectopic expression of KLF5. Collectively, our findings not only identify BAP1 as the DUB for KLF5, but also reveal a critical mechanism that regulates KLF5 expression in breast cancer. Our findings indicate that BAP1 could be a potential therapeutic target for breast and other cancers. The zinc finger-containing transcription factor KLF5 drives cell proliferation and migration. Here, the authors show that the debuquitinase BAP1 directly stabilizes KLF5, thus promoting basal-like breast cancer cell-cycle progression and metastasis.
Collapse
Affiliation(s)
- Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Wenlin Chen
- Department of Breast Surgery, Breast Cancer Clinical Research Center, Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Chunyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China.,Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Guangzhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dingyun You
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Zhixiang Fan
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Houjun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| |
Collapse
|
241
|
Daou S, Hammond-Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono NVG, Nkwe NS, Motorina A, Pak H, Yu H, Wurtele H, Milot E, Mallette FA, Carbone M, Affar EB. The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. J Biol Chem 2015; 290:28643-63. [PMID: 26416890 DOI: 10.1074/jbc.m115.661553] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 01/03/2023] Open
Abstract
The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A Lys-119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for maintaining proper protein levels of this DUB. Conversely, BAP1 is essential for maintaining ASXL2, but not ASXL1, protein stability. Notably, cancer-associated loss of BAP1 expression results in ASXL2 destabilization and hence loss of its function. ASXL1 and ASXL2 use their ASXM domains to interact with the C-terminal domain (CTD) of BAP1, and these interactions are required for ubiquitin binding and H2A deubiquitination. The deubiquitination-promoting effect of ASXM requires intramolecular interactions between catalytic and non-catalytic domains of BAP1, which generate a composite ubiquitin-binding interface (CUBI). Notably, the CUBI engages multiple interactions with ubiquitin involving (i) the ubiquitin carboxyl hydrolase catalytic domain of BAP1, which interacts with the hydrophobic patch of ubiquitin, and (ii) the CTD domain, which interacts with a charged patch of ubiquitin. Significantly, we identified cancer-associated mutations of BAP1 that disrupt the CUBI and notably an in-frame deletion in the CTD that inhibits its interaction with ASXL1/2 and DUB activity and deregulates cell proliferation. Moreover, we demonstrated that BAP1 interaction with ASXL2 regulates cell senescence and that ASXL2 cancer-associated mutations disrupt BAP1 DUB activity. Thus, inactivation of the BAP1/ASXL2 axis might contribute to cancer development.
Collapse
Affiliation(s)
- Salima Daou
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Ian Hammond-Martel
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Nazar Mashtalir
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Haithem Barbour
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Jessica Gagnon
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Nicholas V G Iannantuono
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Nadine Sen Nkwe
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Alena Motorina
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Helen Pak
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Helen Yu
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Hugo Wurtele
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Eric Milot
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Frédérick A Mallette
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Michele Carbone
- the Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813
| | - El Bachir Affar
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| |
Collapse
|
242
|
Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015; 6:282. [PMID: 26442100 PMCID: PMC4561801 DOI: 10.3389/fgene.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam Netherlands
| |
Collapse
|
243
|
Bononi A, Napolitano A, Pass HI, Yang H, Carbone M. Latest developments in our understanding of the pathogenesis of mesothelioma and the design of targeted therapies. Expert Rev Respir Med 2015; 9:633-54. [PMID: 26308799 DOI: 10.1586/17476348.2015.1081066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Malignant mesothelioma is an aggressive cancer whose pathogenesis is causally linked to occupational exposure to asbestos. Familial clusters of mesotheliomas have been observed in settings of genetic predisposition. Mesothelioma incidence is anticipated to increase worldwide in the next two decades. Novel treatments are needed, as current treatment modalities may improve the quality of life, but have shown modest effects in improving overall survival. Increasing knowledge on the molecular characteristics of mesothelioma has led to the development of novel potential therapeutic strategies, including: molecular targeted approaches, that is the inhibition of vascular endothelial growth factor with bevacizumab; immunotherapy with chimeric monoclonal antibody, immunotoxin, antibody drug conjugate, vaccine and viruses; inhibition of asbestos-induced inflammation, that is aspirin inhibition of HMGB1 activity may decrease or delay mesothelioma onset and/or growth. We elaborate on the rationale behind new therapeutic strategies, and summarize available preclinical and clinical results, as well as efforts still ongoing.
Collapse
Affiliation(s)
- Angela Bononi
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Andrea Napolitano
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.,b 2 Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Harvey I Pass
- c 3 Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Haining Yang
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michele Carbone
- a 1 University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
244
|
Peng J, Ma J, Li W, Mo R, Zhang P, Gao K, Jin X, Xiao J, Wang C, Fan J. Stabilization of MCRS1 by BAP1 prevents chromosome instability in renal cell carcinoma. Cancer Lett 2015; 369:167-74. [PMID: 26300492 DOI: 10.1016/j.canlet.2015.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
Characterization of the exome and genome of carcinoma (ccRCC) by next-generation sequencing identified numerous genetic alternations. BRCA1-associated protein-1 (BAP1) was identified as one of the most frequently mutated genes in ccRCC, suggesting that BAP1 is a potential key driver for ccRCC cancer initiation and progression. However, how BAP1 mutations contribute to ccRCC remains to be elucidated. BAP1 is a nuclear de-ubiquitinating enzyme and cleaves the ubiquitin chain from the substrates. Here, we identified MCRS1 as a bona fide substrate for BAP1. MCRS1 is a component of the centrosome proteins, and plays an essential role in spindle assembly. BAP1 binds to MCRS1 and stabilizes MCRS1 by de-ubiquitination. BAP1 contributes to chromosome stability partially via MCRS1. A positive correlation was identified between BAP1 and MCRS1 expression in ccRCC tissues. Both BAP1 loss and MCRS1 down-regulation in ccRCC were associated with adverse clinicopathological features. This study revealed a novel mechanism for BAP1 involved in MCRS1 stability regulation, and provided insight in understanding the relationship between BAP1 mutations and chromosome instability in ccRCC.
Collapse
Affiliation(s)
- Jingtao Peng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai 200080, China
| | - Jian Ma
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai 200080, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai 200080, China
| | - Ren Mo
- Department of Urology, Inner Mongolia Autonomous Region Peoples Hospital, 20 Zhaowuda Road, Hohhot 010017, China
| | - Pingzhao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Kun Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Xiaofeng Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Jiantao Xiao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai 200080, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai 200080, China.
| |
Collapse
|
245
|
Mori T, Sumii M, Fujishima F, Ueno K, Emi M, Nagasaki M, Ishioka C, Chiba N. Somatic alteration and depleted nuclear expression of BAP1 in human esophageal squamous cell carcinoma. Cancer Sci 2015; 106:1118-29. [PMID: 26081045 PMCID: PMC4582980 DOI: 10.1111/cas.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023] Open
Abstract
BRCA1-associated protein 1 (BAP1) is a deubiquitinating enzyme that is involved in the regulation of cell growth. Recently, many somatic and germline mutations of BAP1 have been reported in a broad spectrum of tumors. In this study, we identified a novel somatic non-synonymous BAP1 mutation, a phenylalanine-to-isoleucine substitution at codon 170 (F170I), in 1 of 49 patients with esophageal squamous cell carcinoma (ESCC). Multiplex ligation-dependent probe amplification (MLPA) of BAP1 gene in this ESCC tumor disclosed monoallelic deletion (LOH), suggesting BAP1 alterations on both alleles in this tumor. The deubiquitinase activity and the auto-deubiquitinase activity of F170I-mutant BAP1 were markedly suppressed compared with wild-type BAP1. In addition, wild-type BAP1 mostly localizes to the nucleus, whereas the F170I mutant preferentially localized in the cytoplasm. Microarray analysis revealed that expression of the F170I mutant drastically altered gene expression profiles compared with expressed wild-type BAP1. Gene-ontology analyses indicated that the F170I mutation altered the expression of genes involved in oncogenic pathways. We found that one candidate, TCEAL7, previously reported as a putative tumor suppressor gene, was significantly induced by wild-type BAP1 as compared to F170I mutant BAP1. Furthermore, we found that the level of BAP1 expression in the nucleus was reduced in 44% of ESCC examined by immunohistochemistry (IHC). Because the nuclear localization of BAP1 is important for its tumor suppressor function, BAP1 may be functionally inactivated in a substantial portion of ESCC. Taken together, BAP1 is likely to function as a tumor suppressor in at least a part of ESCC.
Collapse
Affiliation(s)
- Takahiro Mori
- Tohoku Community Cancer Services Program, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makiko Sumii
- Tohoku Community Cancer Services Program, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Kazuko Ueno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mitsuru Emi
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
246
|
BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol 2015; 28:1043-57. [PMID: 26022455 DOI: 10.1038/modpathol.2015.65] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 01/18/2023]
Abstract
The distinction between malignant mesothelioma and reactive mesothelial proliferation can be challenging both on histology and cytology. Recently, variants of the BRCA1-associated protein 1 (BAP1) gene resulting in nuclear protein loss were reported in hereditary and sporadic mesothelioma. Using immunohistochemistry, we evaluated the utility of BAP1 expression in the differential diagnosis between mesothelioma and other mesothelial proliferations on a large series of biopsies that included 212 mesotheliomas, 12 benign mesothelial tumors, and 42 reactive mesothelial proliferations. BAP1 stain was also performed in 70 cytological samples (45 mesotheliomas and 25 reactive mesothelial proliferations). BAP1 was expressed in all benign mesothelial tumors, whereas 139/212 (66%) mesotheliomas were BAP1 negative, especially in epithelioid/biphasic compared with sarcomatoid/desmoplastic subtypes (69% vs 15%). BAP1 loss was homogeneous in neoplastic cells except for two epithelioid mesotheliomas showing tumor heterogeneity. By fluorescence in situ hybridization, BAP1 protein loss was paralleled by homozygous deletion of the BAP1 locus in the vast majority of BAP1-negative tumors (31/41, 76%), whereas 9/10 BAP1-positive mesotheliomas were normal. In biopsies interpreted as reactive mesothelial proliferation BAP1 loss was 100% predictive of malignancy, as all 6 cases subsequently developed BAP1-negative mesothelioma, whereas only 3/36 (8%) BAP1-positive cases progressed to mesothelioma. On cytology/cell blocks, benign mesothelial cells were invariably positive for BAP1, whereas 64% of mesotheliomas showed loss of protein; all 6 cases showing BAP1 negativity were associated with histological diagnosis of BAP1-negative mesothelioma. BAP1 stain also showed utility in the differential of mesothelioma from most common pleural and peritoneal mimickers, such as lung and ovary carcinomas, with specificity and sensitivity of 99/70% and 100/70%, respectively. Our results show that BAP1 protein is frequently lost in mesothelioma, especially of epithelioid/biphasic subtype and is commonly associated with homozygous BAP1 deletion. BAP1 immunostain represents an excellent biomarker with an unprecedented specificity (100%) in the distinction between benign and malignant mesothelial proliferations. Finding BAP1 loss in mesothelial cells should prompt to immediately reevaluate the patient; moreover, it might be useful in mapping tumor extent and planning surgical resection.
Collapse
|
247
|
Nickerson ML, Dancik GM, Im KM, Edwards MG, Turan S, Brown J, Ruiz-Rodriguez C, Owens C, Costello JC, Guo G, Tsang SX, Li Y, Zhou Q, Cai Z, Moore LE, Lucia MS, Dean M, Theodorescu D. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res 2015; 20:4935-48. [PMID: 25225064 DOI: 10.1158/1078-0432.ccr-14-0330] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic analysis of bladder cancer has revealed a number of frequently altered genes, including frequent alterations of the telomerase (TERT) gene promoter, although few altered genes have been functionally evaluated. Our objective is to characterize alterations observed by exome sequencing and sequencing of the TERT promoter, and to examine the functional relevance of histone lysine (K)-specific demethylase 6A (KDM6A/UTX), a frequently mutated histone demethylase, in bladder cancer. EXPERIMENTAL DESIGN We analyzed bladder cancer samples from 54 U.S. patients by exome and targeted sequencing and confirmed somatic variants using normal tissue from the same patient. We examined the biologic function of KDM6A using in vivo and in vitro assays. RESULTS We observed frequent somatic alterations in BRCA1 associated protein-1 (BAP1) in 15% of tumors, including deleterious alterations to the deubiquitinase active site and the nuclear localization signal. BAP1 mutations contribute to a high frequency of tumors with breast cancer (BRCA) DNA repair pathway alterations and were significantly associated with papillary histologic features in tumors. BAP1 and KDM6A mutations significantly co-occurred in tumors. Somatic variants altering the TERT promoter were found in 69% of tumors but were not correlated with alterations in other bladder cancer genes. We examined the function of KDM6A, altered in 24% of tumors, and show depletion in human bladder cancer cells, enhanced in vitro proliferation, in vivo tumor growth, and cell migration. CONCLUSIONS This study is the first to identify frequent BAP1 and BRCA pathway alterations in bladder cancer, show TERT promoter alterations are independent of other bladder cancer gene alterations, and show KDM6A loss is a driver of the bladder cancer phenotype.
Collapse
Affiliation(s)
- Michael L Nickerson
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | | | - Kate M Im
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Michael G Edwards
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| | - Sevilay Turan
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | | | - Christina Ruiz-Rodriguez
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Charles Owens
- Department of Surgery, University of Colorado, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | | | | | | | | | - Zhiming Cai
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - M Scott Lucia
- Department of Pathology, University of Colorado, Aurora, Colorado
| | - Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Dan Theodorescu
- Department of Surgery, University of Colorado, Aurora, Colorado. Department of Pharmacology, University of Colorado, Aurora, Colorado. University of Colorado Comprehensive Cancer Center, Aurora, Colorado.
| |
Collapse
|
248
|
Rai K, Pilarski R, Cebulla CM, Abdel-Rahman MH. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet 2015; 89:285-94. [PMID: 26096145 DOI: 10.1111/cge.12630] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Abstract
The BRCA1-associated protein-1 (BAP1) tumor predisposition syndrome (BAP1-TPDS) is a recently identified hereditary cancer syndrome. Germline mutations in this tumor suppressor gene predispose families to the development of various malignancies. The molecular functions of the gene as well as the clinical phenotype of the syndrome are still being clarified. We sought to conduct a comprehensive review of published research into BAP1-TPDS to more thoroughly delineate the clinical implications of germline BAP1 mutations. We also report two additional families with germline BAP1 mutations. Current evidence demonstrates that germline BAP1 mutations predispose families to uveal melanoma, renal cell carcinoma, malignant mesothelioma, cutaneous melanoma, and possibly to a range of other cancers as well. Some of these cancers tend to be more aggressive, have a propensity to metastasize, and onset earlier in life in patients with BAP1 mutations as compared to non-predisposed patients with equivalent cancers. Although further research is necessary, this information can aid in the management, diagnosis, and therapy of these patients and their families, and highlights the importance of genetic counseling.
Collapse
Affiliation(s)
- K Rai
- Division of Human Genetics, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - R Pilarski
- Division of Human Genetics, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - C M Cebulla
- Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, OH, USA
| | - M H Abdel-Rahman
- Division of Human Genetics, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology and Visual Science, Havener Eye Institute, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Menoufiya University, Shebin Elkoum, Egypt
| |
Collapse
|
249
|
Randall JM, Millard F, Kurzrock R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev 2015; 33:1109-24. [PMID: 25365943 DOI: 10.1007/s10555-014-9533-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2-3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.
Collapse
Affiliation(s)
- J Michael Randall
- Department of Medicine, Division of Hematology/Oncology, UCSD Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, #0987, La Jolla, CA, 92093-0987, USA,
| | | | | |
Collapse
|
250
|
Napolitano A, Pellegrini L, Dey A, Larson D, Tanji M, Flores EG, Kendrick B, Lapid D, Powers A, Kanodia S, Pastorino S, Pass HI, Dixit V, Yang H, Carbone M. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene 2015; 35:1996-2002. [PMID: 26119930 DOI: 10.1038/onc.2015.243] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/16/2015] [Accepted: 04/20/2015] [Indexed: 01/04/2023]
Abstract
Germline BAP1 mutations predispose to several cancers, in particular malignant mesothelioma. Mesothelioma is an aggressive malignancy generally associated with professional exposure to asbestos. However, to date, we found that none of the mesothelioma patients carrying germline BAP1 mutations were professionally exposed to asbestos. We hypothesized that germline BAP1 mutations might influence the asbestos-induced inflammatory response that is linked to asbestos carcinogenesis, thereby increasing the risk of developing mesothelioma after minimal exposure. Using a BAP1(+/-) mouse model, we found that, compared with their wild-type littermates, BAP1(+/-) mice exposed to low-dose asbestos fibers showed significant alterations of the peritoneal inflammatory response, including significantly higher levels of pro-tumorigenic alternatively polarized M2 macrophages, and lower levels of several chemokines and cytokines. Consistent with these data, BAP1(+/-) mice had a significantly higher incidence of mesothelioma after exposure to very low doses of asbestos, doses that rarely induced mesothelioma in wild-type mice. Our findings suggest that minimal exposure to carcinogenic fibers may significantly increase the risk of malignant mesothelioma in genetically predisposed individuals carrying germline BAP1 mutations, possibly via alterations of the inflammatory response.
Collapse
Affiliation(s)
- A Napolitano
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - L Pellegrini
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A Dey
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - D Larson
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Tanji
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - E G Flores
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - B Kendrick
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - D Lapid
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A Powers
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - S Kanodia
- Department of Biomedical Sciences and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - S Pastorino
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - H I Pass
- Department of Cardiothoracic Surgery, New York University, New York, NY, USA
| | - V Dixit
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - H Yang
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Carbone
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|