201
|
Ji C, Yang B, Huang SY, Huang JW, Cheng B. Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis. Biochem Biophys Res Commun 2017; 493:1371-1376. [DOI: 10.1016/j.bbrc.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 01/10/2023]
|
202
|
Abstract
Parkinson’s disease (PD) is a chronic and progressive neurodegeneration of dopamine neurons in the substantia nigra. The reason for the death of these neurons is unclear; however, studies have demonstrated the potential involvement of mitochondria, endoplasmic reticulum, α-synuclein or dopamine levels in contributing to cellular oxidative stress as well as PD symptoms. Even though those papers had separately described the individual roles of each element leading to neurodegeneration, recent publications suggest that neurodegeneration is the product of various cellular interactions. This review discusses the role of oxidative stress in mediating separate pathological events that together, ultimately result in cell death in PD. Understanding the multi-faceted relationships between these events, with oxidative stress as a common denominator underlying these processes, is needed for developing better therapeutic strategies.
Collapse
|
203
|
Jung H, Mbimba T, Unal M, Akkus O. Repetitive short‐span application of extracellular calcium is osteopromotive to osteoprogenitor cells. J Tissue Eng Regen Med 2017; 12:e1349-e1359. [PMID: 28715143 DOI: 10.1002/term.2518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hyungjin Jung
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Thomas Mbimba
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Mustafa Unal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland OH USA
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH USA
- Department of Orthopedics Case Western Reserve University Cleveland OH USA
| |
Collapse
|
204
|
Minakshi R, Rahman S, Jan AT, Archana A, Kim J. Implications of aging and the endoplasmic reticulum unfolded protein response on the molecular modality of breast cancer. Exp Mol Med 2017; 49:e389. [PMID: 29123254 PMCID: PMC5704197 DOI: 10.1038/emm.2017.215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca2+. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.
Collapse
Affiliation(s)
- Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
205
|
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C, Dolga AM. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 2017; 3:17076. [PMID: 29367884 PMCID: PMC5672593 DOI: 10.1038/cddiscovery.2017.76] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/20/2023] Open
Abstract
The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and intracellular Ca2+ homeostasis. The chaperone glucose-regulated protein 75 (GRP75) is a key protein expressed at the MAM interface which regulates ER–mitochondrial Ca2+ transfer. Previous studies revealed that modulation of GRP75 expression largely affected mitochondrial integrity and vulnerability to cell death. In the present study, we show that genetic ablation of GRP75, by weakening ER–mitochondrial junctions, provided protection against mitochondrial dysfunction and cell death in a model of glutamate-induced oxidative stress. Interestingly, GRP75 silencing attenuated both cytosolic and mitochondrial Ca2+ overload in conditions of oxidative stress, blocked the formation of reactive oxygen species and preserved mitochondrial respiration. These data revealed a major role for GRP75 in regulating mitochondrial function, Ca2+ and redox homeostasis. In line, GRP75 overexpression enhanced oxidative cell death induced by glutamate. Overall, our findings suggest weakening ER–mitochondrial connectivity by GRP75 inhibition as a novel protective approach in paradigms of oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Isabell Metz
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Nadia Bendridi
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
206
|
Shelly A, Banerjee C, Saurav GK, Ray A, Rana VS, Raman R, Mazumder S. Aeromonas hydrophila-induced alterations in cytosolic calcium activate pro-apoptotic cPKC-MEK1/2-TNFα axis in infected headkidney macrophages of Clarias gariepinus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:392-402. [PMID: 28713009 DOI: 10.1016/j.dci.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Alterations in intracellular-calcium (Ca2+)i homeostasis is critical to Aeromonas hydrophila-induced headkidney macrophages (HKM) apoptosis of Clarias gariepinus, though the implications are poorly understood. Here, we describe the role of intermediate molecules of Ca2+-signaling pathway that are involved in HKM apoptosis. We observed phosphoinositide-3-kinase/phospholipase C is critical for (Ca2+)i release in infected HKM. Heightened protein kinase-C (PKC) activity and phosphorylation of MEK1/2-ERK1/2 was noted which declined in presence of 2-APB, Go6976 and PD98059, inhibitors to IP3-receptor, conventional PKC isoforms (cPKC) and MEK1/2 respectively implicating Ca2+/cPKC/MEK-ERK1/2 axis imperative in A. hydrophila-induced HKM apoptosis. Significant tumor necrosis factor-α (TNFα) production and its subsequent reduction in presence of MEK-ERK1/2 inhibitor U0126 suggested TNFα production downstream to cPKC-mediated signaling via MEK1/2-ERK1/2 pathway. RNAi and inhibitor studies established the role of TNFα in inducing caspase-8-mediated apoptosis of infected HKM. We conclude, alterations in A. hydrophila-induced (Ca2+)i alterations activate cPKC-MEK1/2-ERK1/2-TNFα signaling cascade triggering HKM apoptosis.
Collapse
Affiliation(s)
- Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Gunjan Kumar Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vipin Singh Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
207
|
Rahman S, Jan AT, Ayyagari A, Kim J, Kim J, Minakshi R. Entanglement of UPR ER in Aging Driven Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:341. [PMID: 29114219 PMCID: PMC5660724 DOI: 10.3389/fnagi.2017.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is an indispensable cellular organelle that remains highly active in neuronal cells. The ER bears the load of maintaining protein homeostasis in the cellular network by managing the folding of incoming nascent peptides; however, the stress imposed by physiological/environmental factors can cause ER dysfunctions that lead to the activation of ER unfolded protein response (UPRER). Aging leads to deterioration of several cellular pathways and therefore weakening of the UPRER. The decline in functioning of the UPRER during aging results in accumulation of misfolded proteins that becomes intracellular inclusions in neuronal cells, resulting in toxicity manifested as neurodegenerative diseases. With ascension in cases of neurodegenerative diseases, understanding the enigma behind aging driven UPRER dysfunction may lead to possible treatments.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Archana Ayyagari
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jiwoo Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| |
Collapse
|
208
|
Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 2017; 111:127-139. [PMID: 28040472 DOI: 10.1016/j.freeradbiomed.2016.12.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| |
Collapse
|
209
|
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma. Oncotarget 2017; 8:22876-22893. [PMID: 28206967 PMCID: PMC5410270 DOI: 10.18632/oncotarget.15283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.
Collapse
|
210
|
Li Y, Chen Y, Huang H, Shi M, Yang W, Kuang J, Yan J. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int J Mol Med 2017; 40:1405-1414. [PMID: 28949381 PMCID: PMC5627881 DOI: 10.3892/ijmm.2017.3145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/18/2017] [Indexed: 12/28/2022] Open
Abstract
Caffeine has been identified to have beneficial effects against chronic liver diseases, particularly liver fibrosis. Many studies have reported that caffeine ameliorates liver fibrosis by directly inducing hepatic stellate cell (HSC) apoptosis; however, the molecular mechanisms involved in this process remain unclear. The presents study aimed to detect the underlying mechanisms by which caffeine mediates HSC apoptosis and eliminates activated HSCs. For this purpose, the LX-2 cell line was applied in this study and the cells were exposed to various concentrations of caffeine for the indicated times. The effects of caffeine on cell viability and apoptosis were assessed by Cell Counting Kit-8 assay and flow cytometry, respectively. Autophagy and endoplasmic reticulum (ER) stress were explored by morphological assessment and western blotting. In the present study, caffeine was found to inhibit the viability and increase the apoptosis of the LX-2 cells in dose- and time-dependent manners. ER stress was stimulated by caffeine as demonstrated by increased levels of GRP78/BiP, CHOP and inositol-requiring enzyme 1 (IRE1)-α as well as many enlarged ERs detected by electron microscopy. Caffeine induced autophagy as shown by increased p62 and LC3II accumulation and the number of GFP/RFP-LC3 puncta and autophagosomes/autolysosomes. Moreover, IRE1-α knockdown decreased the level of autophagic flux, and inhibition of autophagy protected LX-2 cells from apoptotic death. In conclusion, our study showed that the caffeine-enhanced autophagic flux in HSCs was stimulated by ER stress via the IRE1-α signaling pathway, which further weakened HSC viability via the induction of apoptosis. These findings provide new insight into the mechanism of caffeine's anti-fibrotic effects.
Collapse
Affiliation(s)
- Yongjian Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yunyang Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Minmin Shi
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiping Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jie Kuang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jiqi Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
211
|
Abstract
Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue.
Collapse
|
212
|
Asano M, Tanaka S, Sakaguchi M, Matsumura H, Yamaguchi T, Fujita Y, Tabuse K. Normothermic Microwave Irradiation Induces Death of HL-60 Cells through Heat-Independent Apoptosis. Sci Rep 2017; 7:11406. [PMID: 28900243 PMCID: PMC5595850 DOI: 10.1038/s41598-017-11784-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/21/2017] [Indexed: 11/21/2022] Open
Abstract
Microwaves have been used in various cancer therapies to generate heat and increase tumor cell temperature; however, their use is limited by their side-effects in normal cells and the acquisition of heat resistance. We previously developed a microwave irradiation method that kills cultured cancer cells, including a human promyelomonocytic leukemia (HL-60) cell line, by maintaining a cellular temperature of 37 °C during treatment. In the present study, we investigated the mechanisms underlying HL-60 cell death during this treatment. The microwave-irradiated HL-60 cells appear to undergo caspase-independent apoptosis, whereby DNA fragmentation was induced by mitochondrial dysfunction-related expression of apoptosis-inducing factor (AIF). Caspase-dependent apoptosis was also interrupted by the loss of apoptotic protease-activating factor 1 (Apaf-1) and caspase 9. Moreover, these cells did not exhibit a heat-stress response, as shown by the lack of heat shock protein 70 (HSP70) upregulation. Alternatively, in HL-60 cells heated at 42.5 °C, HSP70 expression was upregulated and a pathway resembling death receptor-induced apoptosis was activated while mitochondrial function was maintained. Collectively, these results suggest that the cell death pathway activated by our 37 °C microwave irradiation method differs from that induced during other heating methods and support the use of normothermic microwave irradiation in clinical cancer treatments.
Collapse
Affiliation(s)
- Mamiko Asano
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan. .,Laboratory for Nano-Bio Probes, Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Japan.
| | - Satoshi Tanaka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Minoru Sakaguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Hitoshi Matsumura
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Takako Yamaguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Yoshikazu Fujita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| | - Katsuyoshi Tabuse
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Japan
| |
Collapse
|
213
|
Qiu L, Ma Y, Luo Y, Cao Z, Lu H. Protective effects of isorhamnetin on N2a cell against endoplasmic reticulum stress-induced injury is mediated by PKCε. Biomed Pharmacother 2017; 93:830-836. [DOI: 10.1016/j.biopha.2017.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023] Open
|
214
|
Loubiere C, Clavel S, Gilleron J, Harisseh R, Fauconnier J, Ben-Sahra I, Kaminski L, Laurent K, Herkenne S, Lacas-Gervais S, Ambrosetti D, Alcor D, Rocchi S, Cormont M, Michiels JF, Mari B, Mazure NM, Scorrano L, Lacampagne A, Gharib A, Tanti JF, Bost F. The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci Rep 2017; 7:5040. [PMID: 28698627 PMCID: PMC5506014 DOI: 10.1038/s41598-017-05052-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial integrity is critical for the regulation of cellular energy and apoptosis. Metformin is an energy disruptor targeting complex I of the respiratory chain. We demonstrate that metformin induces endoplasmic reticulum (ER) stress, calcium release from the ER and subsequent uptake of calcium into the mitochondria, thus leading to mitochondrial swelling. Metformin triggers the disorganization of the cristae and inner mitochondrial membrane in several cancer cells and tumors. Mechanistically, these alterations were found to be due to calcium entry into the mitochondria, because the swelling induced by metformin was reversed by the inhibition of mitochondrial calcium uniporter (MCU). We also demonstrated that metformin inhibits the opening of mPTP and induces mitochondrial biogenesis. Altogether, the inhibition of mPTP and the increase in mitochondrial biogenesis may account for the poor pro-apoptotic effect of metformin in cancer cells.
Collapse
Affiliation(s)
- Camille Loubiere
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Stephan Clavel
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Jerome Gilleron
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Rania Harisseh
- Inserm U1060/ INRA 1235/ Université-Lyon1/ INSA, Lyon, France
| | - Jeremy Fauconnier
- Inserm U1046, UMR CNRS 9214, Université de Montpellier, Montpellier, France
| | | | - Lisa Kaminski
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Kathiane Laurent
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Stephanie Herkenne
- Department of Biology, University of Padua, Padua, Italy.,Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padua, Italy
| | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Appliquée, Université de Nice Sophia-Antipolis, Nice, France
| | - Damien Ambrosetti
- Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Laboratoire Central d'Anatomo Pathologie, 06002, Nice, France
| | - Damien Alcor
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Stephane Rocchi
- Université Nice Côte d'Azur, Inserm, Nice, France.,Inserm U1065, C3M, Team Biology and pathology of melanocyte cells: From skin pigmentation to melanomas, Nice, France
| | - Mireille Cormont
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Jean-François Michiels
- Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Laboratoire Central d'Anatomo Pathologie, 06002, Nice, France
| | - Bernard Mari
- CNRS, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
| | - Nathalie M Mazure
- Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, Nice, France
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy.,Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padua, Italy
| | - Alain Lacampagne
- Inserm U1046, UMR CNRS 9214, Université de Montpellier, Montpellier, France
| | - Abdallah Gharib
- Inserm U1060/ INRA 1235/ Université-Lyon1/ INSA, Lyon, France
| | - Jean-François Tanti
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Université Nice Côte d'Azur, Inserm, Nice, France
| | - Frederic Bost
- Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France. .,Université Nice Côte d'Azur, Inserm, Nice, France.
| |
Collapse
|
215
|
Pavan Grandhi TS, Potta T, Nitiyanandan R, Deshpande I, Rege K. Chemomechanically engineered 3D organotypic platforms of bladder cancer dormancy and reactivation. Biomaterials 2017; 142:171-185. [PMID: 28756304 DOI: 10.1016/j.biomaterials.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/14/2023]
Abstract
Tumors undergo periods of dormancy followed by reactivation leading to metastatic disease. Arrest in the G0/G1 phase of the cell cycle and resistance to chemotherapeutic drugs are key hallmarks of dormant tumor cells. Here, we describe a 3D platform of bladder cancer cell dormancy and reactivation facilitated by a novel aminoglycoside-derived hydrogel, Amikagel. These 3D dormant tumor microenvironments (3D-DTMs) were arrested in the G0/G1 phase and were highly resistant to anti-proliferative drugs. Inhibition of targets in the cellular protein production machinery led to induction of endoplasmic reticulum (ER) stress and complete ablation of 3D-DTMs. Nanoparticle-mediated calcium delivery significantly accelerated ER stress-mediated 3D-DTM death. Transfer of 3D-DTMs onto weaker and adhesive Amikagels resulted in selective reactivation of a sub-population of N-cadherin deficient cells from dormancy. Whole-transcriptome analyses further indicated key biochemical differences between dormant and proliferative cancer cells. Taken together, our results indicate that 3D bladder cancer microenvironments of dormancy and reactivation can facilitate fundamental advances and novel drug discovery in cancer.
Collapse
Affiliation(s)
| | - Thrimoorthy Potta
- Chemical Engineering, Arizona State University (ASU), Tempe, AZ 85287-6106, USA
| | | | - Indrani Deshpande
- Biomedical Engineering, Arizona State University (ASU), Tempe, AZ 85287-6106, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University (ASU), Tempe, AZ 85287-6106, USA.
| |
Collapse
|
216
|
Ca 2+ ionophores are not suitable for inducing mPTP opening in murine isolated adult cardiac myocytes. Sci Rep 2017; 7:4283. [PMID: 28655872 PMCID: PMC5487341 DOI: 10.1038/s41598-017-04618-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/17/2017] [Indexed: 11/08/2022] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) plays a major role in cell death during cardiac ischaemia-reperfusion. Adult isolated rodent cardiomyocytes are valuable cells to study the effect of drugs targeting mPTP. This study investigated whether the use of Ca2+ ionophores (A23187, ionomycin and ETH129) represent a reliable model to study inhibition of mPTP opening in cardiomyocytes. We monitored mPTP opening using the calcein/cobalt fluorescence technique in adult rat and wild type or cyclophilin D (CypD) knock-out mice cardiomyocytes. Cells were either treated with Ca2+ ionophores or subjected to hypoxia followed by reoxygenation. The ionophores induced mPTP-dependent swelling in isolated mitochondria. A23187, but not ionomycin, induced a decrease in calcein fluorescence. This loss could not be inhibited by CypD deletion and was explained by a direct interaction between A23187 and cobalt. ETH129 caused calcein loss, mitochondrial depolarization and cell death but CypD deletion did not alleviate these effects. In the hypoxia-reoxygenation model, CypD deletion delayed both mPTP opening and cell death occurring at the time of reoxygenation. Thus, Ca2+ ionophores are not suitable to induce CypD-dependent mPTP opening in adult murine cardiomyocytes. Hypoxia-reoxygenation conditions appear therefore as the most reliable model to investigate mPTP opening in these cells.
Collapse
|
217
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
218
|
Chiappisi E, Ringseis R, Eder K, Gessner DK. Effect of endoplasmic reticulum stress on metabolic and stress signaling and kidney-specific functions in Madin-Darby bovine kidney cells. J Dairy Sci 2017. [PMID: 28624282 DOI: 10.3168/jds.2016-12406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent studies demonstrated induction of endoplasmic reticulum (ER) stress in tissues of cows after parturition, but knowledge about the effect of ER stress on important cellular processes, such as critical signaling and metabolic pathways, in cattle is scarce. Thus, the present study aimed to investigate the effect of ER stress induction on nuclear factor-κB (NF-κB), nuclear factor E2-related factor 2 (Nrf2), and sterol regulatory element-binding protein (SREBF1) pathway in Madin-Darby bovine kidney (MDBK) cells, a widely used in vitro model in ruminant research. To consider the kidney origin of MDBK cells, the effect on renal distal tubular cell-specific functions, such as transport processes and regulation of 1,25(OH)2D3 levels, was also studied. Treatment of MDBK cells with 2 different ER stress inducers, thapsigargin (TG) and tunicamycin (TM), strongly induced ER stress as evident from induction of ER stress target genes, increased phosphorylation of PKR-like ER kinase, and enhanced splicing of X-box binding protein 1. The TM decreased the protein concentration of NF-κB p50 and the mRNA levels of the NF-κB target genes. Likewise, TG decreased the mRNA concentration of tumor necrosis factor and tended to decrease NF-κB p50 protein and mRNA levels of NF-κB target genes. The mRNA levels of most of the Nrf2 target genes investigated were reduced by TG and TM in MDBK cells. Both ER stress inducers reduced the mRNA levels of SREBF1 and its target genes in MDBK cells. Interestingly, TG decreased, but TM increased the mRNA level of the Ca2+ binding protein calbindin 1, whereas the mRNA level of the plasma membrane Ca2+-transporting ATPase 1 remained unchained. The mRNA level of the cytochrome P450 component 24A1 involved in 1α-hydroxylation of 25(OH)D3 was strongly elevated, whereas the mRNA level of the cytochrome P450 component 27A1 catalyzing the breakdown of 1,25(OH)2D3 was markedly reduced by both ER stress inducers. The concentration of 1,25(OH)2D3 in the supernatant of MDBK cells was increased by approximately 15% by both TG and TM. The present study indicates that under conditions of ER stress, critical signaling pathways, such as NF-κB, Nrf2, and SREBF1, are inhibited, whereas the formation of 1,25(OH)2D3 is stimulated in bovine MDBK cells. Future studies are necessary to clarify the physiological relevance of these findings.
Collapse
Affiliation(s)
- E Chiappisi
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
219
|
Zhang JY, Gong Y, Yang MR, Wu J, Li ST. Effect of acute peritonitis on rocuronium-induced intraperitoneal pressure reduction and the uptake function of the sarcoplasmic reticulum. Exp Ther Med 2017; 13:2707-2714. [PMID: 28587334 PMCID: PMC5450654 DOI: 10.3892/etm.2017.4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2017] [Indexed: 11/09/2022] Open
Abstract
Previous studies have reported the incomplete relaxation effect of neuromuscular blockers on skeletal muscles in acute peritonitis (AP) and other inflammatory processes; however, the underlying mechanisms responsible for this effect have not yet been satisfactorily identified. The impaired removal of cytosolic Ca2+ through sarcoendoplasmic Ca2+-ATPase (SERCA) and defects in sarcoplasmic reticulum (SR) Ca2+ uptake are the major contributing factors to diastolic dysfunction. Previous studies on the effects of neuromuscular blockers have primarily focused on neuromuscular transmission. Because of the reduced calcium uptake in the SR itself, even when neuromuscular transmission is fully blocked, the muscle is not able to relax effectively. In the present study, the impact of AP on rocuronium-induced intraperitoneal pressure reduction and rectus abdominal muscle relaxation, and SERCA uptake function was investigated. AP was induced via gastric perforation and changes in the intraperitoneal pressure before and after the administration of rocuronium were recorded. Muscle contractile properties, uptake and release functions and SERCA activity in the rectus abdominal muscles of AP model rats were measured. The half-relaxation time in the AP group was significantly prolonged compared with that in the control group (P<0.01). The peak rate of SR Ca2+ uptake for whole muscle homogenates was significantly reduced (P<0.05) in AP model rats without reduction of the rate of Ca2+ release evoked through AgNO3. In conclusion, gastric perforation-induced AP attenuates the intraperitoneal pressure-reducing effect of rocuronium, and AP induces diastolic dysfunction of the rectus abdominal muscle. The SR Ca2+-ATPase uptake rate was also reduced by AP.
Collapse
|
220
|
Zhang M, Zheng J, Nussinov R, Ma B. Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Sci Rep 2017; 7:2635. [PMID: 28572603 PMCID: PMC5453941 DOI: 10.1038/s41598-017-02825-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
How cytochrome C is released from the mitochondria to the cytosol via Bax oligomeric pores, a process which is required for apoptosis, is still a mystery. Based on experimentally measured residue-residue distances, we recently solved the first atomic model for Bax oligomeric pores at the membranes using computational approaches. Here, we investigate the mechanism at the microsecond time- and nanometer space- scale using MD simulations. Our free energy landscape depicts a low barrier for the permeation of cytochrome C into the Bax C-terminal mouth, with the pathway proceeding to the inner cavity and exiting via the N-terminal mouth. Release is guided by organized charged/hydrophilic surfaces. The hydrophilicity and negative charge of the pore surface gradually increase along the release pathway from the pore entry to the exit opening. Rather than inert passing of the cytochrome C through a rigid pore, the flexible pore may selectively aid the cytochrome C passage. Once the Bax pore is formed in the membrane, with a low energy barrier, the release of cytochrome C may be readily achieved through energy fluctuations. Collectively, our work provides mechanistic insight in atomic detail into the release of cytochrome C through Bax oligomeric pores.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio, 44325, USA
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio, 44325, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
221
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 2017; 70:64-75. [PMID: 28619231 DOI: 10.1016/j.ceca.2017.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
The folding of secretory proteins is a well-understood mechanism, based on decades of research on endoplasmic reticulum (ER) chaperones. These chaperones interact with newly imported polypeptides close to the ER translocon. Classic examples for these proteins include the immunoglobulin binding protein (BiP/GRP78), and the lectins calnexin and calreticulin. Although not considered chaperones per se, the ER oxidoreductases of the protein disulfide isomerase (PDI) family complete the folding job by catalyzing the formation of disulfide bonds through cysteine oxidation. Research from the past decade has demonstrated that ER chaperones are multifunctional proteins. The regulation of ER-mitochondria Ca2+ crosstalk is one of their additional functions, as shown for calnexin, BiP/GRP78 or the oxidoreductases Ero1α and TMX1. This function depends on interactions of this group of proteins with the ER Ca2+ handling machinery. This novel function makes perfect sense for two reasons: i. It allows ER chaperones to control mitochondrial apoptosis instantly without a lengthy bypass involving the upregulation of pro-apoptotic transcription factors via the unfolded protein response (UPR); and ii. It allows the ER protein folding machinery to fine-tune ATP import via controlling the speed of mitochondrial oxidative phosphorylation. Therefore, the role of ER chaperones in regulating ER-mitochondria Ca2+ flux identifies the progression of secretory protein folding as a central regulator of cell survival and death, at least in cell types that secrete large amount of proteins. In other cell types, ER protein folding might serve as a sentinel mechanism that monitors cellular well-being to control cell metabolism and apoptosis. The selenoprotein SEPN1 is a classic example for such a role. Through the control of ER-mitochondria Ca2+-flux, ER chaperones and folding assistants guide cellular apoptosis and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tomas Gutiérrez
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada,.
| |
Collapse
|
222
|
Mahalingam D, Wilding G, Denmeade S, Sarantopoulas J, Cosgrove D, Cetnar J, Azad N, Bruce J, Kurman M, Allgood VE, Carducci M. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br J Cancer 2017; 114:986-94. [PMID: 27115568 PMCID: PMC4984914 DOI: 10.1038/bjc.2016.72] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/03/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Mipsagargin (G-202; (8-O-(12-aminododecanoyl)-8-O-debutanoyl thapsigargin)-Asp-γ-Glu-γ-Glu-γ-GluGluOH)) is a novel thapsigargin-based targeted prodrug that is activated by PSMA-mediated cleavage of an inert masking peptide. The active moiety is an inhibitor of the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump protein that is necessary for cellular viability. We evaluated the safety of mipsagargin in patients with advanced solid tumours and established a recommended phase II dosing (RP2D) regimen. Methods: Patients with advanced solid tumours received mipsagargin by intravenous infusion on days 1, 2 and 3 of 28-day cycles and were allowed to continue participation in the absence of disease progression or unacceptable toxicity. The dosing began at 1.2 mg m−2 and was escalated using a modified Fibonacci schema to determine maximally tolerated dose (MTD) with an expansion cohort at the RP2D. Plasma was analysed for mipsagargin pharmacokinetics and response was assessed using RECIST criteria. Results: A total of 44 patients were treated at doses ranging from 1.2 to 88 mg m−2, including 28 patients in the dose escalation phase and 16 patients in an expansion cohort. One dose-limiting toxicity (DLT; Grade 3 rash) was observed in the dose escalation portion of the study. At 88 mg m−2, observations of Grade 2 infusion-related reaction (IRR, 2 patients) and Grade 2 creatinine elevation (1 patient) led to declaration of 66.8 mg m−2 as the recommended phase II dose (RP2D). Across the study, the most common treatment-related adverse events (AEs) were fatigue, rash, nausea, pyrexia and IRR. Two patients developed treatment-related Grade 3 acute renal failure that was reversible during the treatment-free portion of the cycle. To help ameliorate the IRR and creatinine elevations, a RP2D of 40 mg m−2 on day 1 and 66.8 mg m−2 on days 2 and 3 with prophylactic premedications and hydration on each day of infusion was established. Clinical response was not observed, but prolonged disease stabilisation was observed in a subset of patients. Conclusions: Mipsagargin demonstrated an acceptable tolerability and favourable pharmacokinetic profile in patients with solid tumours.
Collapse
Affiliation(s)
- D Mahalingam
- University of Texas Health Science Center San Antonio, Cancer Therapy and Research Center, 7979 Wurzbach Road, U639, Mail Code 8232, San Antonio, TX 78229, USA
| | - G Wilding
- University of Wisconsin Comprehensive Cancer Center, Madison, WI, USA
| | - S Denmeade
- Johns Hopkins University, Baltimore, MD, USA
| | - J Sarantopoulas
- University of Texas Health Science Center San Antonio, Cancer Therapy and Research Center, 7979 Wurzbach Road, U639, Mail Code 8232, San Antonio, TX 78229, USA
| | - D Cosgrove
- Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Bunting/Blaustein Building, 1650 Orleans Street, Baltimore, MD 21231-1000, USA
| | - J Cetnar
- University of Wisconsin Comprehensive Cancer Center, Madison, WI, USA
| | - N Azad
- Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Bunting/Blaustein Building, 1650 Orleans Street, Baltimore, MD 21231-1000, USA
| | - J Bruce
- Department of Oncology, University of Wisconsin Carbone Cancer Center, 7057 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | - M Kurman
- Genspera Inc., Medical Monitor, 2511 North Loop 1604 W, Suite 204, San Antonio, TX 78258, USA
| | - V E Allgood
- Genspera Inc., Medical Monitor, 2511 North Loop 1604 W, Suite 204, San Antonio, TX 78258, USA
| | - M Carducci
- Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Bunting/Blaustein Building, 1650 Orleans Street, Baltimore, MD 21231-1000, USA
| |
Collapse
|
223
|
Chen RC, Sun GB, Ye JX, Wang J, Zhang MD, Sun XB. Salvianolic acid B attenuates doxorubicin-induced ER stress by inhibiting TRPC3 and TRPC6 mediated Ca 2+ overload in rat cardiomyocytes. Toxicol Lett 2017; 276:21-30. [PMID: 28495616 DOI: 10.1016/j.toxlet.2017.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is a clinically complex syndrome that leads to significant pain to cancer survivors. Endoplasmic reticulum (ER) stress has been suggested to be an important contributor to myocardium dysfunction during this phenomenon. Our previous study proved that Salvianolic acid B (Sal B) protected against doxorubicin induced cardiac dysfunction by inhibiting ER stress and cardiomyocyte apoptosis. However, the underlying molecular mechanism is not yet clearly. In this study, we investigated the protective effect and mechanisms of Sal B againest DOX-induced cardiac injury and ER stress in vivo and in vitro. After pretreatment with Sal B (0.25, 0.5, 1mg/kg i.v.) for 7 days, male SD rats were intraperitoneally injected with a single dose of DOX (3mg/kg) every 2 days for three injections. The cardioprotective effect of Sal B was observed 2 weeks after the first administration. Adult rat ventricular myocytes were isolated and treated with Sal B (20μg/ml) for 6h and then exposed in DOX (1μm) for 4h. The cardiomyocyte contractility and the level of intracellular Ca2+ were determined. Sal B ameliorated DOX-induced apoptosis damage in heart tissues. In vitro studies showed that DOX induced adult rat ventricular myocytes contractile dysfunction and intracellular Ca2+ handling derangement, disrupted mitochondrial membrane potential, raised the level of ER stress related proteins. However, Sal B pretreatment suppressed all of these adverse effects of DOX. The effects of Sal B were closely related to the inhibition of transient receptor potential canonical (TRPC) channels, as characterized by inhibiting the expression of TRPC 3 and TRPC6. These results indicate that Sal B protects against DOX-induced cardiac apoptosis and ER stress via TRPC3 and TRPC6 inhibition.
Collapse
Affiliation(s)
- Rong-Chang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Jing-Xue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Jian Wang
- Harbin University of Commerce, Xuehai Street, Songbei District, Harbin, Heilongjiang 150028, China
| | - Miao-di Zhang
- Harbin University of Commerce, Xuehai Street, Songbei District, Harbin, Heilongjiang 150028, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
224
|
Inhibition of Sp1 prevents ER homeostasis and causes cell death by lysosomal membrane permeabilization in pancreatic cancer. Sci Rep 2017; 7:1564. [PMID: 28484232 PMCID: PMC5431512 DOI: 10.1038/s41598-017-01696-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress initiates an important mechanism for cell adaptation and survival, named the unfolded protein response (UPR). Severe or chronic/prolonged UPR can breach the threshold for survival and lead to cell death. There is a fundamental gap in knowledge on the molecular mechanism of how chronic ER stress is stimulated and leads to cell death in pancreatic ductal adenocarcinoma (PDAC). Our study shows that downregulating specificity protein 1 (Sp1), a transcription factor that is overexpressed in pancreatic cancer, activates UPR and results in chronic ER stress. In addition, downregulation of Sp1 results in its decreased binding to the ER stress response element present in the promoter region of Grp78, the master regulator of ER stress, thereby preventing homeostasis. We further show that inhibition of Sp1, as well as induction of ER stress, leads to lysosomal membrane permeabilization (LMP), a sustained accumulation of cytosolic calcium, and eventually cell death in pancreatic cancer.
Collapse
|
225
|
Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium 2017; 70:76-86. [PMID: 28506443 DOI: 10.1016/j.ceca.2017.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/30/2017] [Indexed: 01/07/2023]
Abstract
The human selenoprotein family contains 25 members that share the common feature of containing the amino acid, selenocysteine (Sec). Seven selenoproteins are localized to the endoplasmic reticulum (ER) and exhibit different structural features contributing to a range of cellular functions. Some of these functions are either directly or indirectly related to calcium (Ca2+) flux or homeostasis. The presence of the unique Sec residue within these proteins allows some to exert oxidoreductase activity, while the function of the Sec in other ER selenoproteins remains unclear. Some functional insight has been achieved by identifying domains within the ER selenoproteins or through the identification of binding partners. For example, selenoproteins K and N (SELENOK AND SELENON) have been characterized through interactions detected with the inositol 1,4,5-triphosphate receptors (IP3Rs) and the SERCA2b pump, respectively. Others have been linked to chaperone functions related to ER stress or Ca2+ homeostasis. This review summarizes the details gathered to date regarding the ER-resident selenoproteins and their effect on Ca2+ regulated pathways and outcomes in cells.
Collapse
|
226
|
Yi X, Zhao W, Li J, Zhang B, Yu Q, Li M. Mn3O4nanoparticles cause endoplasmic reticulum stress-dependent toxicity to Saccharomyces cerevisiae. RSC Adv 2017. [DOI: 10.1039/c7ra07458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Model figure illustrating the toxicity mechanism of Mn3O4NPs to yeast cells.
Collapse
Affiliation(s)
- Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Weili Zhao
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| |
Collapse
|
227
|
Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns 2016; 43:471-485. [PMID: 28034666 DOI: 10.1016/j.burns.2016.09.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/10/2016] [Accepted: 09/19/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is one of the main causes of death among critically ill patients. Sepsis pathogenesis includes infection by gram-negative and gram-positive bacteria, fungi, or both; exacerbated inflammatory response; hypotension, with potential to cause vasodilatory shock; and lesser delivery of oxygen to tissues due to impairment of oxygen utilization by cells. The participation of reactive species and/or free radicals such as nitric oxide (NO), peroxynitrite (ONOO-), superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (OH) has been reported to underlie these effects. Mitochondrial dysfunction is related to loss of inner membrane potential and inhibition of the mitochondrial electron transfer chain and FoF1-adenosine triphosphate-synthase, resulting in cellular energetic failure. In addition, overproduction of NO due to inducible nitric oxide synthase (iNOS) activity has been associated with harmful effects such as general vasodilatation and hypo-responsiveness to therapeutic vasoconstrictor agents. Considering that iNOS expression is regulated by nuclear factor-κB, which may be activated by ROS, antioxidants could inhibit the overexpression of iNOS in sepsis. In line with this, several antioxidants such as vitamins C and E, polyphenols, melatonin, β-glucan, N-acetylcysteine, mitochondrion-targeted antioxidants (MitoQ, MitoE, and peptides associated with dimethyltyrosine), selenium salts, and organoselenium compounds were effective in ameliorating oxidative stress in animal models of sepsis and in a number of clinical trials with septic patients.
Collapse
|
228
|
Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. eLife 2016; 5. [PMID: 27995898 PMCID: PMC5173324 DOI: 10.7554/elife.19896] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
IRBIT is a molecule that interacts with the inositol 1,4,5-trisphosphate (IP3)-binding pocket of the IP3 receptor (IP3R), whereas the antiapoptotic protein, Bcl2l10, binds to another part of the IP3-binding domain. Here we show that Bcl2l10 and IRBIT interact and exert an additive inhibition of IP3R in the physiological state. Moreover, we found that these proteins associate in a complex in mitochondria-associated membranes (MAMs) and that their interplay is involved in apoptosis regulation. MAMs are a hotspot for Ca2+ transfer between endoplasmic reticulum (ER) and mitochondria, and massive Ca2+ release through IP3R in mitochondria induces cell death. We found that upon apoptotic stress, IRBIT is dephosphorylated, becoming an inhibitor of Bcl2l10. Moreover, IRBIT promotes ER mitochondria contact. Our results suggest that by inhibiting Bcl2l10 activity and promoting contact between ER and mitochondria, IRBIT facilitates massive Ca2+ transfer to mitochondria and promotes apoptosis. This work then describes IRBIT as a new regulator of cell death.
Collapse
Affiliation(s)
- Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| |
Collapse
|
229
|
Jiao G, Hao L, Wang M, Zhong B, Yu M, Zhao S, Wang P, Feng R, Tan S, Chen L. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis. Mol Med Rep 2016; 15:366-374. [PMID: 27959404 DOI: 10.3892/mmr.2016.6014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/02/2016] [Indexed: 11/06/2022] Open
Abstract
Sepsis often causes diaphragm contractile dysfunction. Endoplasmic reticulum (ER) stress has been implicated in muscle contractile dysfunction. However, it remains unknown if ER stress occurs in the diaphragm during sepsis. In the present study, rats were divided into 4 groups and received placebo or one of three durations of endotoxin treatment (24, 48 h and 7 days). Isometric contractile force of the diaphragm was measured and lung wet-to-dry ratio (W/D) was calculated. Hematoxylin and eosin (H&E) staining of lung tissue was performed and electron microscopy assessed ER damage in the diaphragm during sepsis. The mRNA and protein expression of glucose‑regulated protein 78 kDa (GRP78), glucose-regulated protein 94 kDa (GRP94), C/EBP homologous protein (CHOP), endoplasmic reticulum protein 44 (ERP44), protein disulfide-isomerase like protein (ERP57) and protein disulfide isomerase family A member 4 (ERP72) in diaphragm muscles were measured using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The level of cleaved caspase-12 was analyzed by western blot analysis. The results demonstrated that sepsis increased lung W/D. H&E staining revealed that sepsis caused alveolar congestion, hemorrhage and rupture. Swollen and distended ER was observed using electron microscopy during sepsis and decreased diaphragm contractile function was also observed. The expression levels of ER stress markers (GRP78, GRP94, CHOP, ERP44, ERP57 and ERP72) and the level of cleaved caspase‑12 were significantly elevated in septic rats compared with control rats, particularly in the 48 h group. In conclusion, the present study indicated that weakened diaphragm contraction and damaged ER in septic rats was associated with increased expression of ER stress markers.
Collapse
Affiliation(s)
- Guangyu Jiao
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Mengmeng Wang
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bin Zhong
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Yu
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang Zhao
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Pingping Wang
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shutao Tan
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liu Chen
- Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
230
|
Matsunaga D, Sreekumar PG, Ishikawa K, Terasaki H, Barron E, Cohen P, Kannan R, Hinton DR. Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Upregulation of Mitochondrial Glutathione. PLoS One 2016; 11:e0165150. [PMID: 27783653 PMCID: PMC5081188 DOI: 10.1371/journal.pone.0165150] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/09/2016] [Indexed: 01/31/2023] Open
Abstract
Humanin (HN) is a small mitochondrial-encoded peptide with neuroprotective properties. We have recently shown protection of retinal pigmented epithelium (RPE) cells by HN in oxidative stress; however, the effect of HN on endoplasmic reticulum (ER) stress has not been evaluated in any cell type. Our aim here was to study the effect of HN on ER stress-induced apoptosis in RPE cells with a specific focus on ER-mitochondrial cross-talk. Dose dependent effects of ER stressors (tunicamycin (TM), brefeldin A, and thapsigargin) were studied after 12 hr of treatment in confluent primary human RPE cells with or without 12 hr of HN pretreatment (1-20 μg/mL). All three ER stressors induced RPE cell apoptosis in a dose dependent manner. HN pretreatment significantly decreased the number of apoptotic cells with all three ER stressors in a dose dependent manner. HN pretreatment similarly protected U-251 glioma cells from TM-induced apoptosis in a dose dependent manner. HN pretreatment significantly attenuated activation of caspase 3 and ER stress-specific caspase 4 induced by TM. TM treatment increased mitochondrial superoxide production, and HN co-treatment resulted in a decrease in mitochondrial superoxide compared to TM treatment alone. We further showed that depleted mitochondrial glutathione (GSH) levels induced by TM were restored with HN co-treatment. No significant changes were found for the expression of several antioxidant enzymes between TM and TM plus HN groups except for the expression of glutamylcysteine ligase catalytic subunit (GCLC), the rate limiting enzyme required for GSH biosynthesis, which is upregulated with TM and TM+HN treatment. These results demonstrate that ER stress promotes mitochondrial alterations in RPE that lead to apoptosis. We further show that HN has a protective effect against ER stress-induced apoptosis by restoring mitochondrial GSH. Thus, HN should be further evaluated for its therapeutic potential in disorders linked to ER stress.
Collapse
Affiliation(s)
- Douglas Matsunaga
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Parameswaran G. Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Hiroto Terasaki
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Ernesto Barron
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - David R. Hinton
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
231
|
Yun J, Lee DG. A novel fungal killing mechanism of propionic acid. FEMS Yeast Res 2016; 16:fow089. [PMID: 27707757 DOI: 10.1093/femsyr/fow089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 01/26/2023] Open
Abstract
Propionic acid (PPA) is a weak acid that has been used in food products as a preservative because of its inhibitory effect on microorganisms. In the present study, we investigated the PPA fungal killing mechanism, which showed apoptotic features. First, reactive oxygen species (ROS) accumulation and metacaspase activation were detected by 2',7'-dichlorodihydrofluorescein diacetate and CaspACE FITC-VAD-FMK staining, respectively. Increased fluorescence intensities were observed following exposure to PPA, indicating that PPA produced an oxidative environment through the generation of ROS and activation of metacaspase, which can promote apoptosis signaling. We also examined phosphatidylserine externalization (an early apoptosis marker) and DNA and nuclear fragmentation (late apoptosis markers) after exposure to PPA. Based on the results, we determined that PPA exerts its antifungal effect by inducing apoptotic cell death. Moreover, three additional mitochondrial experiments showed mitochondrial membrane depolarization, calcium accumulation and cytochrome c release after cells were exposed to PPA, indicating that the PPA-induced apoptosis pathway is mediated by mitochondria. In conclusion, PPA induces fungal cell death through mitochondria-mediated apoptosis. Results of this study contribute to a deeper understanding of the preservative effects of PPA.
Collapse
Affiliation(s)
- JiEun Yun
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
232
|
Lei L, Zhu Y, Gao W, Du X, Zhang M, Peng Z, Fu S, Li X, Zhe W, Li X, Liu G. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells. Cell Signal 2016; 28:1441-50. [DOI: 10.1016/j.cellsig.2016.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
|
233
|
Chang HT, Chou CT, Chen IS, Yu CC, Lu T, Hsu SS, Shieh P, Jan CR, Liang WZ. Mechanisms underlying effect of the mycotoxin cytochalasin B on induction of cytotoxicity, modulation of cell cycle, Ca 2+ homeostasis and ROS production in human breast cells. Toxicology 2016; 370:1-19. [PMID: 27640744 DOI: 10.1016/j.tox.2016.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023]
Abstract
Cytochalasin B, a cell-permeable mycotoxin isolated from the fungus Phoma spp., shows a wide range of biological effects, among which its potent antitumor activity has raised great interests in different models. However, the cytotoxic activity of cytochalasin B and its underlying mechanisms have not been elucidated in breast cells. This study examined the effect of cytochalasin B on MCF 10A human breast epithelial cells and ZR-75-1 human breast cancer cells. Cytochalasin B (10-20μM) concentration-dependently induced cytotoxicity, cell cycle arrest, and [Ca2+]i rises in ZR-75-1 cells but not in MCF 10A cells. In ZR-75-1 cells, cytochalasin B triggered G2/M phase arrest through the modulation of CDK1, cyclin B1, p53, p27 and p21 expressions. The Ca2+ signal response induced by cytochalasin B was reduced by removing extracellular Ca2+ and was inhibited by the store-operated Ca2+ channel blocker 2-APB and SKF96365. In Ca2+-free medium, cytochalasin B induced Ca2+ release through thapsigargin-sensitive endoplasmic reticulum stores. Moreover, cytochalasin B increased H2O2 levels but reduced GSH levels. The apoptotic effects evoked by cytochalasin B were partially inhibited by prechelating cytosolic Ca2+ with BAPTA-AM and the antioxidant NAC. Together, in ZR-75-1 cells but not in MCF 10A cells, cytochalasin B activated Ca2+-associated mitochondrial apoptotic pathways that involved G2/M phase arrest and ROS signaling. Furthermore, cytochalasin B induced [Ca2+]i rises by releasing Ca2+ from the endoplasmic reticulum and causing Ca2+ influx through 2-APB or SKF96365-sensitive store-operated Ca2+ entry. Our findings provide new insights into the possible application of cytochalasin B in human breast cancer therapy.
Collapse
Affiliation(s)
- Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC
| | - I-Shu Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan, ROC
| | - Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC,.
| |
Collapse
|
234
|
Gyulkhandanyan AV, Allen DJ, Mykhaylov S, Lyubimov E, Ni H, Freedman J, Leytin V. Mitochondrial Inner Membrane Depolarization as a Marker of Platelet Apoptosis : Disclosure of Nonapoptotic Membrane Depolarization. Clin Appl Thromb Hemost 2016; 23:139-147. [PMID: 27637909 DOI: 10.1177/1076029616665924] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Availability of universal marker for the diagnosis of platelet apoptosis is an important but currently unresolved goal of platelet physiology investigations. Mitochondrial inner transmembrane potential (▵Ψm) depolarization is frequently used as a marker of apoptosis in nucleated cells and anucleate platelets. Since ▵Ψm depolarization in platelets is also frequently associated with concurrent induction of other apoptotic responses, it may appear that ▵Ψm depolarization is a good universal marker of platelet apoptosis. However, data presented in the current study indicate that this is incorrect. We report here fundamental differences in the effects of potassium ionophore valinomycin and calcium ionophore A23187 on human platelet apoptosis. Although both A23187-triggered and valinomycin-triggered ▵Ψm depolarization are strongly induced, the former is dependent on the opening of mitochondrial permeability transition pore (MPTP) and the latter is MPTP-independent. Furthermore, effects of calcium and potassium ionophores on other apoptotic events are also basically different. A23187 induces caspase-3 activation, proapoptotic Bax and Bak protein expression, phosphatidylserine exposure, and microparticle formation, whereas valinomycin does not induce these apoptotic manifestations. Discovery of targeted ▵Ψm depolarization not associated with apoptosis in valinomycin-treated platelets indicates that this marker should not be used as a single universal marker of platelet apoptosis in unknown experimental and clinical settings as it may lead to a false-positive apoptosis diagnosis.
Collapse
Affiliation(s)
- Armen V Gyulkhandanyan
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - David J Allen
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sergiy Mykhaylov
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Elena Lyubimov
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Heyu Ni
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,4 Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,5 Canadian Blood Services, Ottawa, Ontario, Canada
| | - John Freedman
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,4 Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Valery Leytin
- 1 Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, Ontario, Canada.,6 Department of Physics, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
235
|
Kushnareva Y, Seong Y, Andreyev AY, Kuwana T, Kiosses WB, Votruba M, Newmeyer DD. Mitochondrial dysfunction in an Opa1(Q285STOP) mouse model of dominant optic atrophy results from Opa1 haploinsufficiency. Cell Death Dis 2016; 7:e2309. [PMID: 27468686 PMCID: PMC4973340 DOI: 10.1038/cddis.2016.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
Mutations in the opa1 (optic atrophy 1) gene lead to autosomal dominant optic atrophy (ADOA), a hereditary eye disease. This gene encodes the Opa1 protein, a mitochondrial dynamin-related GTPase required for mitochondrial fusion and the maintenance of normal crista structure. The majority of opa1 mutations encode truncated forms of the protein, lacking a complete GTPase domain. It is unclear whether the phenotype results from haploinsufficiency or rather a deleterious effect of truncated Opa1 protein. We studied a heterozygous Opa1 mutant mouse carrying a defective allele with a stop codon in the beginning of the GTPase domain at residue 285, a mutation that mimics human pathological mutations. Using an antibody raised against an N-terminal portion of Opa1, we found that the level of wild-type protein was decreased in the mutant mice, as predicted. However, no truncated Opa1 protein was expressed. In embryonic fibroblasts isolated from the mutant mice, this partial loss of Opa1 caused mitochondrial respiratory deficiency and a selective loss of respiratory Complex IV subunits. Furthermore, partial Opa1 deficiency resulted in a substantial resistance to endoplasmic reticulum stress-induced death. On the other hand, the enforced expression of truncated Opa1 protein in cells containing normal levels of wild-type protein did not cause mitochondrial defects. Moreover, cells expressing the truncated Opa1 protein showed reduced Bax activation in response to apoptotic stimuli. Taken together, our results exclude deleterious dominant-negative or gain-of-function mechanisms for this type of Opa1 mutation and affirm haploinsufficiency as the mechanism underlying mitochondrial dysfunction in ADOA.
Collapse
Affiliation(s)
- Y Kushnareva
- Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Y Seong
- Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - A Y Andreyev
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - T Kuwana
- Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - W B Kiosses
- Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - M Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK.,Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, UK
| | - D D Newmeyer
- Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
236
|
Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Akada J, Tokuda K, Cui D, Nakamura K. PERK/CHOP contributes to the CGK733-induced vesicular calcium sequestration which is accompanied by non-apoptotic cell death. Oncotarget 2016; 6:25252-65. [PMID: 26259235 PMCID: PMC4694829 DOI: 10.18632/oncotarget.4487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
Calcium ions (Ca2+) are indispensable for the physiology of organisms and the molecular regulation of cells. We observed that CGK733, a synthetic chemical substance, induced non-apoptotic cell death and stimulated reversible calcium sequestration by vesicles in pancreatic cancer cells. The endoplasmic reticulum (ER) stress eukaryotic translation initiation factor 2-alpha kinase 3/C/EBP homologous protein (PERK/CHOP) signaling pathway was shown to be activated by treatment with CGK733. Ionomycin, an ER stress drug and calcium ionophore, can activate PERK/CHOP signaling and accelerate CGK733-induced calcium sequestration. Knockdown of CHOP diminished CGK733-induced vesicular calcium sequestration, but had no effects on the cell death. Proteomic analysis demonstrated that the ER-located calcium-binding proteins, calumenin and protein S100-A11, were altered in CGK733-treated cells compared to non-treated controls. Our study reveals that CGK733-induced intracellular calcium sequestration is correlated with the PERK/CHOP signaling pathway and may also be involved in the dysregulations of calcium-binding proteins.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Byron Baron
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Takao Kitagawa
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Junko Akada
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuhiro Tokuda
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Dan Cui
- Department of Pathology, Yamguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuyuki Nakamura
- Department of Biochemistry and Functional Proteomics, Yamguchi University Graduate School of Medicine, Ube, Japan.,Centre of Clinical Laboratories in Tokuyama Medical Association Hospital, Shunan, Japan
| |
Collapse
|
237
|
Carmosino M, Gerbino A, Schena G, Procino G, Miglionico R, Forleo C, Favale S, Svelto M. The expression of Lamin A mutant R321X leads to endoplasmic reticulum stress with aberrant Ca 2+ handling. J Cell Mol Med 2016; 20:2194-2207. [PMID: 27421120 PMCID: PMC5082401 DOI: 10.1111/jcmm.12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023] Open
Abstract
Mutations in the Lamin A/C gene (LMNA), which encodes A‐type nuclear Lamins, represent the most frequent genetic cause of dilated cardiomyopathy (DCM). This study is focused on a LMNA nonsense mutation (R321X) identified in several members of an Italian family that produces a truncated protein isoform, which co‐segregates with a severe form of cardiomyopathy with poor prognosis. However, no molecular mechanisms other than nonsense mediated decay of the messenger and possible haploinsufficiency were proposed to explain DCM. Aim of this study was to gain more insights into the disease‐causing mechanisms induced by the expression of R321X at cellular level. We detected the expression of R321X by Western blotting from whole lysate of a mutation carrier heart biopsy. When expressed in HEK293 cells, GFP‐ (or mCherry)‐tagged R321X mislocalized in the endoplasmic reticulum (ER) inducing the PERK‐CHOP axis of the ER stress response. Of note, confocal microscopy showed phosphorylation of PERK in sections of the mutation carrier heart biopsy. ER mislocalization of mCherry‐R321X also induced impaired ER Ca2+ handling, reduced capacitative Ca2+ entry at the plasma membrane and abnormal nuclear Ca2+ dynamics. In addition, expression of R321X by itself increased the apoptosis rate. In conclusion, R321X is the first LMNA mutant identified to date, which mislocalizes into the ER affecting cellular homeostasis mechanisms not strictly related to nuclear functions.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giorgia Schena
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
238
|
Kim SH, Kim KY, Yu SN, Seo YK, Chun SS, Yu HS, Ahn SC. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis. BMC Cancer 2016; 16:452. [PMID: 27405931 PMCID: PMC4942927 DOI: 10.1186/s12885-016-2516-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Background Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. Methods The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca2+ homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca2+ level and ER stress response. Conclusions Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca2+ homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2516-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sang-Hun Kim
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan, 626-870, Republic of Korea
| | - Kwang-Youn Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea
| | - Sun-Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan, 626-870, Republic of Korea.,Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870, Republic of Korea
| | - Young-Kyo Seo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea
| | - Sung-Sik Chun
- Department of Food Science, International University of Korea, Jinju, 660-759, Republic of Korea
| | - Hak-Sun Yu
- Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870, Republic of Korea.,Department of Parasitology, Pusan National University School of Medicine, Yangsan, 626-870, Republic of Korea
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan, 626-870, Republic of Korea. .,Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870, Republic of Korea.
| |
Collapse
|
239
|
André F, Corazao-Rozas P, Idziorek T, Quesnel B, Kluza J, Marchetti P. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation. Biochem Biophys Res Commun 2016; 478:513-20. [PMID: 27416758 DOI: 10.1016/j.bbrc.2016.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 12/14/2022]
Abstract
The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towards pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS.
Collapse
Affiliation(s)
- Fanny André
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Paola Corazao-Rozas
- CHU Lille, Banque de Tissus & Biologie Cellulaire -Thérapie Cellulaire, F-59000 Lille France
| | - Thierry Idziorek
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Bruno Quesnel
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Jérome Kluza
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France
| | - Philippe Marchetti
- INSERM UMR-S 1172, Université de Lille, 1 Place Verdun F-59045 Cedex, France; CHU Lille, Banque de Tissus & Biologie Cellulaire -Thérapie Cellulaire, F-59000 Lille France.
| |
Collapse
|
240
|
Muter J, Brighton PJ, Lucas ES, Lacey L, Shmygol A, Quenby S, Blanks AM, Brosens JJ. Progesterone-Dependent Induction of Phospholipase C-Related Catalytically Inactive Protein 1 (PRIP-1) in Decidualizing Human Endometrial Stromal Cells. Endocrinology 2016; 157:2883-93. [PMID: 27167772 PMCID: PMC4972893 DOI: 10.1210/en.2015-1914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Decidualization denotes the transformation of endometrial stromal cells into specialized decidual cells. In pregnancy, decidual cells form a protective matrix around the implanting embryo, enabling coordinated trophoblast invasion and formation of a functional placenta. Continuous progesterone (P4) signaling renders decidual cells resistant to various environmental stressors, whereas withdrawal inevitably triggers tissue breakdown and menstruation or miscarriage. Here, we show that PLCL1, coding phospholipase C (PLC)-related catalytically inactive protein 1 (PRIP-1), is highly induced in response to P4 signaling in decidualizing human endometrial stromal cells (HESCs). Knockdown experiments in undifferentiated HESCs revealed that PRIP-1 maintains basal phosphoinositide 3-kinase/Protein kinase B activity, which in turn prevents illicit nuclear translocation of the transcription factor forkhead box protein O1 and induction of the apoptotic activator BIM. By contrast, loss of this scaffold protein did not compromise survival of decidual cells. PRIP-1 knockdown did also not interfere with the responsiveness of HESCs to deciduogenic cues, although the overall expression of differentiation markers, such as PRL, IGFBP1, and WNT4, was blunted. Finally, we show that PRIP-1 in decidual cells uncouples PLC activation from intracellular Ca(2+) release by attenuating inositol 1,4,5-trisphosphate signaling. In summary, PRIP-1 is a multifaceted P4-inducible scaffold protein that gates the activity of major signal transduction pathways in the endometrium. It prevents apoptosis of proliferating stromal cells and contributes to the relative autonomy of decidual cells by silencing PLC signaling downstream of Gq protein-coupled receptors.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Paul J Brighton
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Lauren Lacey
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Anatoly Shmygol
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Andrew M Blanks
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences (J.M., P.J.B., E.S.L., L.L., A.S., S.Q., A.M.B., J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom; and University Hospitals Coventry and Warwickshire National Health Service Trust (S.Q., J.J.B.), Coventry, CV2 2DX United Kingdom; and Tommy's National Miscarriage Research Centre (E.S.L., S.Q., J.J.B.), University Hospital Coventry and Warwickshire, Coventry, CV2 2DX United Kingdom
| |
Collapse
|
241
|
Novel triterpenoid AECHL-1 induces apoptosis in breast cancer cells by perturbing the mitochondria–endoplasmic reticulum interactions and targeting diverse apoptotic pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1056-70. [DOI: 10.1016/j.bbagen.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
|
242
|
Merlot AM, Shafie NH, Yu Y, Richardson V, Jansson PJ, Sahni S, Lane DJ, Kovacevic Z, Kalinowski DS, Richardson DR. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochem Pharmacol 2016; 109:27-47. [DOI: 10.1016/j.bcp.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 11/25/2022]
|
243
|
Gautier CA, Erpapazoglou Z, Mouton-Liger F, Muriel MP, Cormier F, Bigou S, Duffaure S, Girard M, Foret B, Iannielli A, Broccoli V, Dalle C, Bohl D, Michel PP, Corvol JC, Brice A, Corti O. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Hum Mol Genet 2016; 25:2972-2984. [PMID: 27206984 DOI: 10.1093/hmg/ddw148] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in PARK2, encoding the E3 ubiquitin protein ligase Parkin, are a common cause of autosomal recessive Parkinson's disease (PD). Loss of PARK2 function compromises mitochondrial quality by affecting mitochondrial biogenesis, bioenergetics, dynamics, transport and turnover. We investigated the impact of PARK2 dysfunction on the endoplasmic reticulum (ER)-mitochondria interface, which mediates calcium (Ca2+) exchange between the two compartments and is essential for Parkin-dependent mitophagy. Confocal and electron microscopy analyses showed the ER and mitochondria to be in closer proximity in primary fibroblasts from PARK2 knockout (KO) mice and PD patients with PARK2 mutations than in controls. Ca2+ flux to the cytosol was also modified, due to enhanced ER-to-mitochondria Ca2+ transfers, a change that was also observed in neurons derived from induced pluripotent stem cells of a patient with PARK2 mutations. Subcellular fractionation showed the abundance of the Parkin substrate mitofusin 2 (Mfn2), which is known to modulate the ER-mitochondria interface, to be specifically higher in the mitochondrion-associated ER membrane compartment in PARK2 KO tissue. Mfn2 downregulation or the exogenous expression of normal Parkin restored cytosolic Ca2+ transients in fibroblasts from patients with PARK2 mutations. In contrast, a catalytically inactive PD-related Parkin variant had no effect. Overall, our data suggest that Parkin is directly involved in regulating ER-mitochondria contacts and provide new insight into the role of the loss of Parkin function in PD development.
Collapse
Affiliation(s)
- Clément A Gautier
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Zoi Erpapazoglou
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - François Mouton-Liger
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Marie Paule Muriel
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Florence Cormier
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
- National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Stéphanie Bigou
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sophie Duffaure
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Mathilde Girard
- CECS, I-Stem, AFM, Institute of Stem Cell Therapy and Exploration of Monogenic Diseases, 91030 Evry cedex, France
| | - Benjamin Foret
- CECS, I-Stem, AFM, Institute of Stem Cell Therapy and Exploration of Monogenic Diseases, 91030 Evry cedex, France
| | - Angelo Iannielli
- National Research Council (CNR), Institute of Neuroscience, Milan, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- National Research Council (CNR), Institute of Neuroscience, Milan, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Carine Dalle
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Delphine Bohl
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Patrick P Michel
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Jean-Christophe Corvol
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
- Assistance-publique Hôpitaux de Paris, Inserm, CIC-1422, Department of Neurology, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Alexis Brice
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Olga Corti
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Inserm, U1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, CNRS, UMR 7225, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Bases moléculaires, physiopathologie et traitement des maladies neurodégénératives, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| |
Collapse
|
244
|
Wang YW, Zhang JH, Yu Y, Yu J, Huang L. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis. Biomol Ther (Seoul) 2016; 24:371-9. [PMID: 27169819 PMCID: PMC4930280 DOI: 10.4062/biomolther.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury.
Collapse
Affiliation(s)
- Yan-Wei Wang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Ji-Hang Zhang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Jie Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
245
|
Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nat Protoc 2016; 11:1067-80. [DOI: 10.1038/nprot.2016.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
246
|
Joshi AU, Kornfeld OS, Mochly-Rosen D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium 2016; 60:218-34. [PMID: 27212603 DOI: 10.1016/j.ceca.2016.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Opher S Kornfeld
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA.
| |
Collapse
|
247
|
Vece TJ, Watkin LB, Nicholas S, Canter D, Braun MC, Guillerman RP, Eldin KW, Bertolet G, McKinley S, de Guzman M, Forbes L, Chinn I, Orange JS. Copa Syndrome: a Novel Autosomal Dominant Immune Dysregulatory Disease. J Clin Immunol 2016; 36:377-387. [PMID: 27048656 PMCID: PMC4842120 DOI: 10.1007/s10875-016-0271-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Inherently defective immunity typically results in either ineffective host defense, immune regulation, or both. As a category of primary immunodeficiency diseases, those that impair immune regulation can lead to autoimmunity and/or autoinflammation. In this review we focus on one of the most recently discovered primary immunodeficiencies that leads to immune dysregulation: "Copa syndrome". Copa syndrome is named for the gene mutated in the disease, which encodes the alpha subunit of the coatomer complex-I that, in aggregate, is devoted to transiting molecular cargo from the Golgi complex to the endoplasmic reticulum (ER). Copa syndrome is autosomal dominant with variable expressivity and results from mutations affecting a narrow amino acid stretch in the COPA gene-encoding COPα protein. Patients with these mutations typically develop arthritis and interstitial lung disease with pulmonary hemorrhage representing a striking feature. Immunologically Copa syndrome is associated with autoantibody development, increased Th17 cells and pro-inflammatory cytokine expression including IL-1β and IL-6. Insights have also been gained into the underlying mechanism of Copa syndrome, which include excessive ER stress owing to the impaired return of proteins from the Golgi, and presumably resulting aberrant cellular autophagy. As such it represents a novel cellular disorder of intracellular trafficking associated with a specific clinical presentation and phenotype.
Collapse
Affiliation(s)
- Timothy J. Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Sarah Nicholas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | - Karen W. Eldin
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Grant Bertolet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Scott McKinley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Marietta de Guzman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Ivan Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| |
Collapse
|
248
|
LaPensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW, Hammer GD. ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs. Endocrinology 2016; 157:1775-88. [PMID: 26986192 DOI: 10.1210/en.2015-2052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis.
Collapse
Affiliation(s)
- Christopher R LaPensee
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Jacqueline E Mann
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - William E Rainey
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Valentina Crudo
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Stephen W Hunt
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| | - Gary D Hammer
- Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104
| |
Collapse
|
249
|
Martins AS, Alves I, Helguero L, Domingues MR, Neves BM. The Unfolded Protein Response in Homeostasis and Modulation of Mammalian Immune Cells. Int Rev Immunol 2016; 35:457-476. [PMID: 27119724 DOI: 10.3109/08830185.2015.1110151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endoplasmic reticulum (ER) plays important roles in eukaryotic protein folding and lipid biosynthesis. Several exogenous and endogenous cellular sources of stress can perturb ER homeostasis leading to the accumulation of unfolded proteins in the lumen. Unfolded protein accumulation triggers a signal-transduction cascade known as the unfolded protein response (UPR), an adaptive mechanism which aims to protect cells from protein aggregates and to restore ER functions. Further to this protective mechanism, in immune cells, UPR molecular effectors have been shown to participate in a wide range of biological processes such as cell differentiation, survival and immunoglobulin and cytokine production. Recent findings also highlight the involvement of the UPR machinery in the maturational program and antigen presentation capacities of dendritic cells. UPR is therefore a key element in immune system homeostasis with direct implications on both adaptive and innate immune responses. The present review summarizes the knowledge on the emerging roles of UPR signaling cascades in mammalian immune cells as well as the consequences of their dysregulation in relation to the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Ana Sofia Martins
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Inês Alves
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Luisa Helguero
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal.,b Institute for Research in Biomedicine - iBiMED, Health Sciences Program, Universidade de Aveiro , Portugal
| | - Maria Rosário Domingues
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Bruno Miguel Neves
- a Mass Spectrometry Centre, Department of Chemistry and QOPNA , University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal.,c Faculty of Pharmacy and Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
250
|
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60:74-87. [PMID: 27157108 DOI: 10.1016/j.ceca.2016.04.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.
Collapse
Affiliation(s)
- Rita M L La Rovere
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Gemma Roest
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, BE-3000 Leuven, Belgium.
| |
Collapse
|