201
|
Geng A, Tang H, Huang J, Qian Z, Qin N, Yao Y, Xu Z, Chen H, Lan L, Xie H, Zhang J, Jiang Y, Mao Z. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Res 2020; 48:9181-9194. [PMID: 32789493 PMCID: PMC7498349 DOI: 10.1093/nar/gkaa661] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
The NAD+-dependent deacetylase and mono-ADP-ribosyl transferase SIRT6 stabilizes the genome by promoting DNA double strand break repair, thereby acting as a tumor suppressor. However, whether SIRT6 regulates nucleotide excision repair (NER) remains unknown. Here, we showed that SIRT6 was recruited to sites of UV-induced DNA damage and stimulated the repair of UV-induced DNA damage. Mechanistic studies further indicated that SIRT6 interacted with DDB2, the major sensor initiating global genome NER (GG-NER), and that the interaction was enhanced upon UV irradiation. SIRT6 deacetylated DDB2 at two lysine residues, K35 and K77, upon UV stress and then promoted DDB2 ubiquitination and segregation from chromatin, thereby facilitating downstream signaling. In addition, we characterized several SIRT6 mutations derived from melanoma patients. These SIRT6 mutants ablated the stimulatory effect of SIRT6 on NER and destabilized the genome due to (i) partial loss of enzymatic activity (P27S or H50Y), (ii) a nonsense mutation (R150*) or (iii) high turnover rates (G134W). Overall, we demonstrate that SIRT6 promotes NER by deacetylating DDB2, thereby preventing the onset of melanomagenesis.
Collapse
Affiliation(s)
- Anke Geng
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanyin Tang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhen Qian
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nan Qin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yunxia Yao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hongjuan Xie
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Tsingtao Advanced Research Institute, Tongji University, 67 Yinchuan West Road, Qingdao 266071, China
| |
Collapse
|
202
|
Effect of Tryptophan-Derived AhR Ligands, Kynurenine, Kynurenic Acid and FICZ, on Proliferation, Cell Cycle Regulation and Cell Death of Melanoma Cells-In Vitro Studies. Int J Mol Sci 2020; 21:ijms21217946. [PMID: 33114713 PMCID: PMC7663343 DOI: 10.3390/ijms21217946] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Tryptophan metabolites: kynurenine (KYN), kynurenic acid (KYNA) and 6-formylindolo[3,2-b]carbazole (FICZ) are considered aryl hydrocarbon receptor (AhR) ligands. AhR is mainly expressed in barrier tissues, including skin, and is involved in various physiological and pathological processes in skin. We studied the effect of KYN, KYNA and FICZ on melanocyte and melanoma A375 and RPMI7951 cell toxicity, proliferation and cell death. KYN and FICZ inhibited DNA synthesis in both melanoma cell lines, but RPMI7951 cells were more resistant to pharmacological treatment. Tested compounds were toxic to melanoma cells but not to normal human adult melanocytes. Changes in the protein level of cyclin D1, CDK4 and retinoblastoma tumor suppressor protein (Rb) phosphorylation revealed different mechanisms of action of individual AhR ligands. Importantly, all tryptophan metabolites induced necrosis, but only KYNA and FICZ promoted apoptosis in melanoma A375 cells. This effect was not observed in RPMI7951 cells. KYN, KYNA and FICZ in higher concentrations inhibited the protein level of AhR but did not affect the gene expression. To conclude, despite belonging to the group of AhR ligands, KYN, KYNA and FICZ exerted different effects on proliferation, toxicity and induction of cell death in melanoma cells in vitro.
Collapse
|
203
|
Mahmoudi AR, Ghods R, Rakhshan A, Madjd Z, Bolouri MR, Mahmoudian J, Rahdan S, Shokri MR, Dorafshan S, Shekarabi M, Zarnani AH. Discovery of a potential biomarker for immunotherapy of melanoma: PLAC1 as an emerging target. Immunopharmacol Immunotoxicol 2020; 42:604-613. [PMID: 33106058 DOI: 10.1080/08923973.2020.1837865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Melanoma has increased in incidence worldwide prompting investigators to search for new biomarkers for targeted immunotherapy of this disease. Placenta specific 1 (PLAC1) is a new member of cancer-testis antigens with widespread expression in many types of cancer. Here, we aimed to study for the first time the expression pattern of PLAC1 in skin cancer samples including cutaneous melanoma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) in comparison to normal skin and nevus tissues and potential therapeutic effect of anti-PLAC1 antibody in melanoma cancer cell lines in vitro. MATERIALS AND METHODS Polyclonal and monoclonal antibodies were applied for immunohistochemical profiling of PLAC1 expression using tissue microarray. The cytotoxic action of anti-PLAC1 antibody alone or as an antibody drug conjugate (with anti-neoplastic agent SN38) was investigated in melanoma cell lines. RESULTS We observed that 100% (39 of 39) of melanoma tissues highly expressed PLAC1 with both cytoplasmic and surface expression pattern. Investigation of PLAC1 expression in BCC (n = 110) samples showed negative results. Cancer cells in SCC samples (n = 66) showed very weak staining. Normal skin tissues and nevus samples including congenital melanocytic nevus failed to express PLAC1. Anti-PLAC1-SN38 exerted a specific pattern of cytotoxicity in a dose- and time-dependent manner in melanoma cells expressing surface PLAC1. CONCLUSIONS Our findings re-inforce the concept of re-expression of embryonic/placental tissue antigens in cancer and highlight the possibility of melanoma targeted therapy by employing anti-PLAC1 antibodies. The data presented here should lead to the future research on targeted immunotherapy of patients with melanoma.
Collapse
Affiliation(s)
- Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rakhshan
- Department of Pathology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Shaghayegh Rahdan
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Dorafshan
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
204
|
Incidence of Melanoma in Catalonia, Spain, Is Rapidly Increasing in the Elderly Population. A Multicentric Cohort Study. J Clin Med 2020; 9:jcm9113396. [PMID: 33113930 PMCID: PMC7690683 DOI: 10.3390/jcm9113396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
The incidence of melanoma has been increasing worldwide during recent decades. The objective of the study was to analyse the trends in incidence for in situ and invasive melanoma in the Spanish region of Catalonia during the period of 2008-2017. We designed a cross-sectional study with an age-period-cohort analysis of melanoma patient data from the Network of Melanoma Centres in Catalonia. Our database covered a population of over seven million and included a total of 8626 patients with incident melanoma. The main outcome measures were crude and age-standardised incidence rates to the European 2013 standard population. Joinpoint regression models were used to evaluate the population trends. We observed an increase in the age-standardised incidence rate (per 100,000 population) of all melanoma subtypes from 11.56 in 2008 to 13.78 in 2017 with an average annual percent change (AAPC) of 3.5%. This incidence increase was seen exclusively in the older population. Moreover, the stratified analysis showed a statistically significant increase in the age-standardised incidence rate for invasive (AAPC 2.1%) and in situ melanoma (AAPC 6.5%). In conclusion, the incidence of melanoma has continued to increase in the elderly population over recent decades, with a rapidly increasing trend of in situ melanomas and the lentigo maligna subtype.
Collapse
|
205
|
Rodriguez-Hernandez I, Maiques O, Kohlhammer L, Cantelli G, Perdrix-Rosell A, Monger J, Fanshawe B, Bridgeman VL, Karagiannis SN, Penin RM, Marcolval J, Marti RM, Matias-Guiu X, Fruhwirth GO, Orgaz JL, Malanchi I, Sanz-Moreno V. WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat Commun 2020; 11:5315. [PMID: 33082334 PMCID: PMC7575593 DOI: 10.1038/s41467-020-18951-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a highly aggressive tumour that can metastasize very early in disease progression. Notably, melanoma can disseminate using amoeboid invasive strategies. We show here that high Myosin II activity, high levels of ki-67 and high tumour-initiating abilities are characteristic of invasive amoeboid melanoma cells. Mechanistically, we find that WNT11-FZD7-DAAM1 activates Rho-ROCK1/2-Myosin II and plays a crucial role in regulating tumour-initiating potential, local invasion and distant metastasis formation. Importantly, amoeboid melanoma cells express both proliferative and invasive gene signatures. As such, invasive fronts of human and mouse melanomas are enriched in amoeboid cells that are also ki-67 positive. This pattern is further enhanced in metastatic lesions. We propose eradication of amoeboid melanoma cells after surgical removal as a therapeutic strategy.
Collapse
Affiliation(s)
- Irene Rodriguez-Hernandez
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Gaia Cantelli
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA
| | - Anna Perdrix-Rosell
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Joanne Monger
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, SE1 7EH, UK
| | - Victoria L Bridgeman
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London and NIHR Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London, SE1 9RT, UK
| | - Rosa M Penin
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, l'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Joaquim Marcolval
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, l'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB LleidaI, CIBERONC, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB Lleida, CIBERONC, 25198, Lleida, Spain
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, SE1 7EH, UK
| | - Jose L Orgaz
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Instituto de Investigaciones Biomedicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
206
|
Xue YN, Xue YN, Wang ZC, Mo YZ, Wang PY, Tan WQ. A Novel Signature of 23 Immunity-Related Gene Pairs Is Prognostic of Cutaneous Melanoma. Front Immunol 2020; 11:576914. [PMID: 33193373 PMCID: PMC7604355 DOI: 10.3389/fimmu.2020.576914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
In this study, we aimed to identify an immune-related signature for predicting prognosis in cutaneous melanoma (CM). Sample data from The Cancer Genome Atlas (TCGA; n = 460) were used to develop a prognostic signature with 23 immune-related gene pairs (23 IRGPs) for CM. Patients were divided into high- and low-risk groups using the TCGA and validation datasets GSE65904 (n = 214), GSE59455 (n = 141), and GSE22153 (n = 79). The ability of the 23-IRGP signature to predict CM was precise, with the stratified high-risk groups showing a poor prognosis, and it had a significant predictive power when used for immune microenvironment and biological analyses. We subsequently established a novel promising prognostic model in CM to determine the association between the immune microenvironment and CM patient results. This approach may be used to discover signatures in other diseases while avoiding the technical biases associated with other platforms.
Collapse
Affiliation(s)
- Ya-Nan Xue
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Nan Xue
- Department of Biological Science, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Zhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pin-Yan Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
207
|
Meng H, Pang Y, Liu G, Luo Z, Tan H, Liu X. Podocarpusflavone A inhibits cell growth of skin cutaneous melanoma by suppressing STAT3 signaling. J Dermatol Sci 2020; 100:201-208. [PMID: 33127205 DOI: 10.1016/j.jdermsci.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND JAK2/STAT3 pathway is involved in the development and progression of melanoma once DNA damage is caused by environment and genetic factors. OBJECTIVE Here, we aimed to identify novel inhibitor of JAK2/STAT3 pathway and reveal the underlying mechanisms. METHODS Eighty MedChemExpress compounds were screened by using STAT3-Luc reporter in A375 cells. Podocarpusflavone A (PCFA) was identified as an inhibitor of STAT3, which was further verified in four melanoma cell lines. The anti-melanoma effects and mechanism of PCFA were examined and explored in melanoma cells and mouse xenograft models by using Western blot and cell-counting kit-8 assay. RESULTS PCFA exhibited potent inhibitory effects on melanoma both in vitro and in vivo. PCFA inhibited the activation of STAT3 through suppressing the phosphorylation of JAK2, and then restrained cell cycle and induced apoptosis of melanoma cells. CONCLUSION PCFA inhibits melanoma growth via the inhibition of JAK2/STAT3 pathway, which provides a promising therapeutic strategies of melanoma treatment.
Collapse
Affiliation(s)
- Huijuan Meng
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Yunyan Pang
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Guoyan Liu
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Zengxiang Luo
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Haiyang Tan
- Department of Pharmacy, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Xiangming Liu
- Department of Dermatology, Weifang Medical University, Shandong, China.
| |
Collapse
|
208
|
Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression. Biomolecules 2020; 10:biom10101447. [PMID: 33076392 PMCID: PMC7602651 DOI: 10.3390/biom10101447] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Genetic alterations in the INK4a/ARF (or CDKN2A) locus have been reported in many cancer types, including melanoma; head and neck squamous cell carcinomas; lung, breast, and pancreatic cancers. In melanoma, loss of function CDKN2A alterations have been identified in approximately 50% of primary melanomas, in over 75% of metastatic melanomas, and in the germline of 40% of families with a predisposition to cutaneous melanoma. The CDKN2A locus encodes two critical tumor suppressor proteins, the cyclin-dependent kinase inhibitor p16INK4a and the p53 regulator p14ARF. The majority of CDKN2A alterations in melanoma selectively target p16INK4a or affect the coding sequence of both p16INK4a and p14ARF. There is also a subset of less common somatic and germline INK4a/ARF alterations that affect p14ARF, while not altering the syntenic p16INK4a coding regions. In this review, we describe the frequency and types of somatic alterations affecting the CDKN2A locus in melanoma and germline CDKN2A alterations in familial melanoma, and their functional consequences in melanoma development. We discuss the clinical implications of CDKN2A inactivating alterations and their influence on treatment response and resistance.
Collapse
|
209
|
Krivosheeva IA, Filatova AY, Moshkovskii SA, Baranova AV, Skoblov MY. Analysis of candidate genes expected to be essential for melanoma surviving. Cancer Cell Int 2020; 20:488. [PMID: 33041669 PMCID: PMC7541296 DOI: 10.1186/s12935-020-01584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
Introduction Cancers may be treated by selective targeting of the genes vital for their survival. A number of attempts have led to discovery of several genes essential for surviving of tumor cells of different types. In this work, we tried to analyze genes that were previously predicted to be essential for melanoma surviving. Here we present the results of transient siRNA-mediated knockdown of the four of such genes, namely, UNC45A, STK11IP, RHPN2 and ZNFX1, in melanoma cell line A375, then assayed the cells for their viability, proliferation and ability to migrate in vitro. In our study, the knockdown of the genes predicted as essential for melanoma survival does not lead to statistically significant changes in cell viability. On the other hand, for each of the studied genes, mobility assays showed that the knockdown of each of the target genes accelerates the speed of cells migrating. Possible explanation for such counterintuitive results may include insufficiency of the predicting computational models or the necessity of a multiplex knockdown of the genes. Aims To examine the hypothesis of essentiality of hypomutated genes for melanoma surviving we have performed knockdown of several genes in melanoma cell line and analyzed cell viability and their ability to migrate. Methods Knockdown was performed by siRNAs transfected by Metafectene PRO. The levels of mRNAs before and after knockdown were evaluated by RT-qPCR analysis. Cell viability and proliferation were assessed by MTT assay. Cell migration was assessed by wound healing assay. Results The knockdown of the genes predicted as essential for melanoma survival does not lead to statistically significant changes in cell viability. On the other hand, for each of the studied genes, mobility assays showed that the knockdown of each of the target genes accelerates the speed of cells migrating. Conclusion Our results do not confirm initial hypothesis that the genes predicted essential for melanoma survival as a matter of fact support the survival of melanoma cells.
Collapse
Affiliation(s)
- Irina A Krivosheeva
- Laboratory of Functional Genomics, Research Centre of Medical Genetics, Erevanskaya Street, 10 building 2, Floor 44, Moscow, 115304 Russia
| | - Alexandra Yu Filatova
- Laboratory of Functional Genomics, Research Centre of Medical Genetics, Erevanskaya Street, 10 building 2, Floor 44, Moscow, 115304 Russia
| | - Sergei A Moshkovskii
- Laboratory of Medical Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Ancha V Baranova
- School of Systems Biology, George Mason University, Fairfax, VA USA.,Laboratory of Functional Genomics, Research Centre of Medical Genetics, Erevanskaya Street, 10 building 2, Floor 44, Moscow, 115304 Russia
| | - Mikhail Yu Skoblov
- Laboratory of Functional Genomics, Research Centre of Medical Genetics, Erevanskaya Street, 10 building 2, Floor 44, Moscow, 115304 Russia
| |
Collapse
|
210
|
Lazar I, Fabre B, Feng Y, Khateb A, Turko P, Martinez Gomez JM, Frederick DT, Levesque MP, Feld L, Zhang G, Zhang T, James B, Shklover J, Avitan-Hersh E, Livneh I, Scortegagna M, Brown K, Larsson O, Topisirovic I, Wolfenson H, Herlyn M, Flaherty K, Dummer R, Ronai ZA. SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Mol Cancer Res 2020; 18:1560-1573. [PMID: 32571981 PMCID: PMC7541784 DOI: 10.1158/1541-7786.mcr-20-0291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms regulating nuclear organization control fundamental cellular processes, including the cell and chromatin organization. Their disorganization, including aberrant nuclear architecture, has been often implicated in cellular transformation. Here, we identify Lamin A, among proteins essential for nuclear architecture, as SPANX (sperm protein associated with the nucleus on the X chromosome), a cancer testis antigen previously linked to invasive tumor phenotypes, interacting protein in melanoma. SPANX interaction with Lamin A was mapped to the immunoglobulin fold-like domain, a region critical for Lamin A function, which is often mutated in laminopathies. SPANX downregulation in melanoma cell lines perturbed nuclear organization, decreased cell viability, and promoted senescence-associated phenotypes. Moreover, SPANX knockdown (KD) in melanoma cells promoted proliferation arrest, a phenotype mediated in part by IRF3/IL1A signaling. SPANX KD in melanoma cells also prompted the secretion of IL1A, which attenuated the proliferation of naïve melanoma cells. Identification of SPANX as a nuclear architecture complex component provides an unexpected insight into the regulation of Lamin A and its importance in melanoma. IMPLICATIONS: SPANX, a testis protein, interacts with LMNA and controls nuclear architecture and melanoma growth.
Collapse
Affiliation(s)
- Ikrame Lazar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Bertrand Fabre
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ali Khateb
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Patrick Turko
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Lea Feld
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Gao Zhang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jeny Shklover
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Emily Avitan-Hersh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Ido Livneh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Marzia Scortegagna
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Gerald Bronfman Department of Oncology, Departments of Experimental Medicine and Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Haguy Wolfenson
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | | | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
211
|
Belleri M, Paganini G, Coltrini D, Ronca R, Zizioli D, Corsini M, Barbieri A, Grillo E, Calza S, Bresciani R, Maiorano E, Mastropasqua MG, Annese T, Giacomini A, Ribatti D, Casas J, Levade T, Fabrias G, Presta M. β-Galactosylceramidase Promotes Melanoma Growth via Modulation of Ceramide Metabolism. Cancer Res 2020; 80:5011-5023. [PMID: 32998995 DOI: 10.1158/0008-5472.can-19-3382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Disturbance of sphingolipid metabolism may represent a novel therapeutic target in metastatic melanoma, the most lethal form of skin cancer. β-Galactosylceramidase (GALC) removes β-galactose from galactosylceramide and other sphingolipids. In this study, we show that downregulation of galcb, a zebrafish ortholog of human GALC, affects melanoblast and melanocyte differentiation in zebrafish embryos, suggesting a possible role for GALC in melanoma. On this basis, the impact of GALC expression in murine B16-F10 and human A2058 melanoma cells was investigated following its silencing or upregulation. Galc knockdown hampered growth, motility, and invasive capacity of B16-F10 cells and their tumorigenic and metastatic activity when grafted in syngeneic mice or zebrafish embryos. Galc-silenced cells displayed altered sphingolipid metabolism and increased intracellular levels of ceramide, paralleled by a nonredundant upregulation of Smpd3, which encodes for the ceramide-generating enzyme neutral sphingomyelinase 2. Accordingly, GALC downregulation caused SMPD3 upregulation, increased ceramide levels, and inhibited the tumorigenic activity of human melanoma A2058 cells, whereas GALC upregulation exerted opposite effects. In concordance with information from melanoma database mining, RNAscope analysis demonstrated a progressive increase of GALC expression from common nevi to stage IV human melanoma samples that was paralleled by increases in microphthalmia transcription factor and tyrosinase immunoreactivity inversely related to SMPD3 and ceramide levels. Overall, these findings indicate that GALC may play an oncogenic role in melanoma by modulating the levels of intracellular ceramide, thus providing novel opportunities for melanoma therapy. SIGNIFICANCE: Data from zebrafish embryos, murine and human cell melanoma lines, and patient-derived tumor specimens indicate that β-galactosylceramidase plays an oncogenic role in melanoma and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Barbieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Mauro G Mastropasqua
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - Thierry Levade
- INSERM U1037, CRCT (Cancer Research Center of Toulouse) and Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Barcelona, and Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Italian Consortium for Biotechnology (CIB), Unit of Brescia, Brescia, Italy
| |
Collapse
|
212
|
Hu B, Wei Q, Li X, Ju M, Wang L, Zhou C, Chen L, Li Z, Wei M, He M, Zhao L. Development of an IFNγ response-related signature for predicting the survival of cutaneous melanoma. Cancer Med 2020; 9:8186-8201. [PMID: 32902917 PMCID: PMC7643661 DOI: 10.1002/cam4.3438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background The tumor microenvironment (TME) plays a critical role in tumorigenesis, development, and therapeutic efficacy. Major advances have been achieved in the treatment of various cancers through immunotherapy. Nevertheless, only a minority of patients have positive responses to immunotherapy, which is partly due to conditions of the immunosuppressive microenvironment. Therefore, it is essential to identify prognostic biomarkers that reflect heterogeneous landscapes of the TME. Methods and materials Based upon the ESTIMATE algorithm, we evaluated the infiltrating levels of immune and stromal components derived from patients afflicted by various types of cancer from The Cancer Genome Atlas database (TCGA). According to respective patient immune and stromal scores, we categorized cases into high‐ and low‐scoring subgroups for each cancer type to explore associations between TME and patient prognosis. Gene Set Enrichment Analyses (GSEA) were conducted and genes enriched in IFNγ response signaling pathway were selected to facilitate establishment of a risk model for predicting overall survival (OS). Furthermore, we investigated the associations between the prognostic signature and tumor immune infiltration landscape by using CIBERSORT algorithm and TIMER database. Results Among the cancers assessed, the immune scores for skin cutaneous melanoma (SKCM) were the most significantly correlated with patients' survival time (P < .0001). We identified and validated a five‐IFNγ response‐related gene signature (UBE2L6, PARP14, IFIH1, IRF2, and GBP4), which was closely correlated with the prognosis for SKCM afflicted patients. Multivariate Cox regression analysis indicated that this risk model was an independent prognostic factor for SKCM. Tumor‐infiltrating lymphocytes and specific immune checkpoint molecules had notably differential levels of expression in high‐ compared to low‐risk samples. Conclusion In this study, we established a novel five‐IFNγ response‐related gene signature that provided a better and increasingly comprehensive understanding of tumor immune landscape, and which demonstrated good performance in predicting outcomes for patients afflicted by SKCM.
Collapse
Affiliation(s)
- Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
213
|
Wei Z, Wang H, Xin G, Zeng Z, Li S, Ming Y, Zhang X, Xing Z, Li L, Li Y, Zhang B, Zhang J, Niu H, Huang W. A pH-Sensitive Prodrug Nanocarrier Based on Diosgenin for Doxorubicin Delivery to Efficiently Inhibit Tumor Metastasis. Int J Nanomedicine 2020; 15:6545-6560. [PMID: 32943867 PMCID: PMC7480473 DOI: 10.2147/ijn.s250549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The metastasis, one of the biggest barriers in cancer therapy, is the leading cause of tumor deterioration and recurrence. The anti.-metastasis has been considered as a feasible strategy for clinical cancer management. It is well known that diosgenin could inhibit tumor metastasis and doxorubicin (DOX) could induce tumor apoptosis. However, their efficient delivery remains challenging. PURPOSE To address these issues, a novel pH-sensitive polymer-prodrug based on diosgenin nanoparticles (NPs) platform was developed to enhance the efficiency of DOX delivery (DOX/NPs) for synergistic therapy of cutaneous melanoma, the most lethal form of skin cancer with high malignancy, early metastasis and high mortality. METHODS AND RESULTS The inhibitory effect of DOX/NPs on tumor proliferation and migration was superior to that of NPs or free DOX. What is more, DOX/NPs could combine mitochondria-associated metastasis and apoptosis with unique internalization pathway of carrier to fight tumors. In addition, biodistribution experiments proved that DOX/NPs could efficiently accumulate in tumor sites through enhancing permeation and retention (EPR) effect compared with free DOX. Importantly, the data from in vivo experiment revealed that DOX/NPs without heart toxicity significantly inhibited tumor metastasis by exerting synergistic therapeutic effect, and reduced tumor volume and weight by inducing apoptosis. CONCLUSION The nanocarrier DOX/NPs with satisfying pharmaceutical characteristics based on the establishment of two different functional agents is a promising strategy for synergistically enhancing effects of cancer therapy.
Collapse
Affiliation(s)
- Zeliang Wei
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Haibo Wang
- Textile Institute, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhi Zeng
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiaoyu Zhang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Youping Li
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Boli Zhang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Junhua Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- College of Mathematics, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
214
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
215
|
Zhu X, Sun J. CircHIPK3 regulates melanoma cell behaviors by binding with miR-215-5p to upregulate YY1. Mol Cell Probes 2020; 53:101644. [PMID: 32800940 DOI: 10.1016/j.mcp.2020.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
OBJECT To investigate the role of circHIPK3 in melanoma. METHODS Bioinformatics analysis and experiments including RT-qPCR, Pearson's correlation analysis, luciferase reporter, Western blot, and RIP assays were applied to explore the function and mechanism of circHIPK3 in melanoma. RESULTS CircHIPK3 expression was strikingly upregulated while miR-215-5p was downregulated in melanoma tissues and cell lines. Pearson's correlation analysis unveiled circHIPK3 expression was positively correlated with Ki-67 (a marker of proliferation), which implied that circHIPK3 may play a vital role in the progression of melanoma. In mechanism, luciferase reporter and RIP assays validated that circHIPK3 was able to bind with miR-215-5p. Moreover, we confirmed that overexpression of circHIPK3 could facilitate cell proliferation and depress cell apoptosis in melanoma while overexpression of miR-215-5p exerted opposite effects. Besides, our findings indicated that miR-215-5p overexpression significantly reversed the circHIPK3 overexpressing-mediated promotive effect on cell proliferation and inhibitory effect on cell apoptosis. Furthermore, we found that miR-215-5p could directly target YY1. Upregulation of YY1 could notably offset the inhibitory effect of circHIPK3 downregulation on cell proliferation and the promotive effect on cell apoptosis. CONCLUSION Our study corroborated that circHIPK3 regulated melanoma cell behaviors via the miR-215-5p/YY1 axis, which might provide a novel insight for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Xiaomei Zhu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jianfang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
216
|
Yan D, Wang Q, Adhikari M, Malyavko A, Lin L, Zolotukhin DB, Yao X, Kirschner M, Sherman JH, Keidar M. A Physically Triggered Cell Death via Transbarrier Cold Atmospheric Plasma Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34548-34563. [PMID: 32648738 DOI: 10.1021/acsami.0c06500] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cold atmospheric plasma (CAP) is a near room-temperature ionized gas composed of highly reactive species. CAP also generates thermal radiation, ultraviolet radiation, and electromagnetic (EM) waves. So far, nearly all biological effects of CAP have relied on the chemical factors in CAP. Here, we first show that the EM emission from CAP can lead to the death of melanoma cells via a transbarrier contactless method. Compared with reactive species, the effect of the physical factors causes much stronger growth inhibition on a reactive species-resistant melanoma cell line B16F10. Such a physically triggered growth inhibition is due to a new cell death type, characterized by the rapid leakage of bulk solutions from the cells, resulting in cytoplasm shrinkage and bubbling on the cell membrane. The physically based CAP-triggered cell death can occur even there is a macroscale gap between the bulk CAP and cells, which includes an air gap (∼8 mm) and a dielectric material of the dish or plate (∼1 mm). Either a too large or a too small gap will inhibit such cell death. The physically triggered cellular pressure may cause the bubbling on cells, which can be inhibited in a hypotonic environment via the extracellular osmotic pressure. This study builds a foundation to use CAP as a physically based noninvasive cancer treatment.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Qihui Wang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Manish Adhikari
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Alisa Malyavko
- School of Medicine and Health Sciences, The George Washington University, 2300 I Street, NW, Washington, D.C. 20052, United States
| | - Li Lin
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Denis B Zolotukhin
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Xiaoliang Yao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Megan Kirschner
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| | - Jonathan H Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, D.C. 20037, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, D.C. 20052, United States
| |
Collapse
|
217
|
Mahamat-Saleh Y, Aune D, Schlesinger S. 25-Hydroxyvitamin D status, vitamin D intake, and skin cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Sci Rep 2020; 10:13151. [PMID: 32753685 PMCID: PMC7403339 DOI: 10.1038/s41598-020-70078-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Sun exposure is a major environmental risk factor for skin cancers and is also an important source of vitamin D. However, while experimental evidence suggests that vitamin D may have a protective effect on skin cancer risk, epidemiologic studies investigating the influence of 25-hydroxyvitamin D (25(OH)D) level and/or vitamin D intake on skin cancer risk are conflicting. A systematic review and dose–response meta-analyses of prospective studies was conducted to clarify these associations. Relevant studies were identified by searching the PubMed database up to 30th August 2019. Random effects dose–response meta-analyses were used to estimate summary relative risks (SRRs) and 95% confidence intervals (CIs). Overall, thirteen prospective studies were included. Circulating level of 25(OH)D was associated with higher risks of melanoma (SRR (95% CI) per 30 nmol = 1.42 (1.17–1.72)) and keratinocyte cancer (KC) (SRR (95% CI) per 30 nmol/L = 1.30 (1.13–1.49)). The SRR (95% CI) per 30 nmol/L increase in 25(OH) D level was 1.41 (1.19–1.67), and 1.57 (0.64–3.86), for basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs), respectively. However, while we found that vitamin D intake (from diet, supplemental and total) was not associated with risks of melanoma and SCC, vitamin D intake was associated with slightly increased BCC risk, albeit with no heterogeneity across skin cancer type. This meta-analysis suggests positive associations between circulating 25(OH)D level and risk of melanoma and KC, however, this finding is most likely confounded by sun exposure. We found no associations between vitamin D intake skin cancers, except positive associations with BCC risk.
Collapse
Affiliation(s)
- Yahya Mahamat-Saleh
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris Saclay, 94 805, Villejuif, France. .,Inserm U1018, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France.
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK.,Department of Nutrition, Bjørknes University College, Oslo, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research At Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
218
|
Sarkar S, Gaddameedhi S. Solar ultraviolet-induced DNA damage response: Melanocytes story in transformation to environmental melanomagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:736-751. [PMID: 32281145 PMCID: PMC9675355 DOI: 10.1002/em.22370] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 05/14/2023]
Abstract
Exposure to sunlight is both beneficial, as it heats the planet to a comfortable temperature, and potentially harmful, since sunlight contains ultraviolet radiation (UVR), which is deemed detrimental for living organisms. Earth's ozone layer plays a vital role in blocking most of the extremely dangerous UVC; however, low frequency/energy UVR (i.e., UVB and UVA) seeps through in minute amount and reaches the Earth's surface. Both UVB and UVA are physiologically responsible for a plethora of skin ailments, including skin cancers. The UVR is readily absorbed by the genomic DNA of skin cells, causing DNA bond distortion and UV-induced DNA damage. As a defense mechanism, the DNA damage response (DDR) signaling in skin cells activates nucleotide excision repair (NER), which is responsible for the removal of UVR-induced DNA photolesions and helps maintain the genomic integrity of the cells. Failure of proper NER function leads to mutagenesis and development of skin cancers. One of the deadliest form of skin cancers is melanoma which originates upon the genetic transformation of melanocytes, melanin producing skin cells. NER is a well-studied DNA repair system in the whole skin, as a tissue, but not much is known about it in melanocytes. Therefore, this review encapsulates NER in melanocytes, with a specific focus on its functional regulators and their cross talks due to skin heterogeneity and divulging the potential knowledge gap in the field.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Shobhan Gaddameedhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
- Sleep and Performance Research Center, Washington State University, Spokane, WA
| |
Collapse
|
219
|
Nabipoorashrafi SA, Shomali N, Sadat-Hatamnezhad L, Mahami-Oskouei M, Mahmoudi J, Sandoghchian Shotorbani B, Akbari M, Xu H, Sandoghchian Shotorbani S. miR-143 acts as an inhibitor of migration and proliferation as well as an inducer of apoptosis in melanoma cancer cells in vitro. IUBMB Life 2020; 72:2034-2044. [PMID: 32687246 DOI: 10.1002/iub.2345] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Melanoma is a serious form of skin cancers begins in the melanocyte. Micro-RNAs are small noncoding RNA with 19 to 25 nucleotides in length involves in the regulation of a wide range of biological processes. MicroRNAs are affected by an aberrant epigenetic alteration in the tumors that may lead to their dysregulation and formation of cancer. Recently, dysregulation of numerous microRNAs has been reported in different types of cancer. The present study focused on the role of miR-143 in carcinogenesis of melanoma cancer. Here, we evaluated the expression level of miR-143 in three melanoma cell lines in comparison with the normal human epidermal melanocyte cell line. Then, miR-143 gene plasmid transfected into the WM115 cell line, for having the lowest expression of miR-143. In addition, the effect of miR-143 transfection on mRNA and protein levels of metastasis-related genes was performed along with MTT assay, wound healing assay, and flow cytometry. The results showed that mRNA and protein expression levels of metastasis-related genes including MMP-9, E-cadherin, Vimentin, and CXCR4 have been reduced following transfection of miR-143. Moreover, the results of the scratch test showed that miR-143 re-expression inhibited cell migration. Also, the role of miR-143 in the induction of apoptosis and inhibition of proliferation by flow cytometry and MTT was confirmed. As a result, the present study showed that miR-143 was involved in metastatic and apoptotic pathways, suggesting that miR-143 acts as a tumor-suppressor microRNA in melanoma cancer.
Collapse
Affiliation(s)
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Jiangsu University of Medical Sciences, Zhenjiang, China
| |
Collapse
|
220
|
Proietti I, Skroza N, Michelini S, Mambrin A, Balduzzi V, Bernardini N, Marchesiello A, Tolino E, Volpe S, Maddalena P, Di Fraia M, Mangino G, Romeo G, Potenza C. BRAF Inhibitors: Molecular Targeting and Immunomodulatory Actions. Cancers (Basel) 2020; 12:cancers12071823. [PMID: 32645969 PMCID: PMC7408709 DOI: 10.3390/cancers12071823] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The BRAF inhibitors vemurafenib, dabrafenib and encorafenib are used in the treatment of patients with BRAF-mutant melanoma. They selectively target BRAF kinase and thus interfere with the mitogen-activated protein kinase (MAPK) signalling pathway that regulates the proliferation and survival of melanoma cells. In addition to their molecularly targeted activity, BRAF inhibitors have immunomodulatory effects. The MAPK pathway is involved in T-cell receptor signalling, and interference in the pathway by BRAF inhibitors has beneficial effects on the tumour microenvironment and anti-tumour immune response in BRAF-mutant melanoma, including increased immune-stimulatory cytokine levels, decreased immunosuppressive cytokine levels, enhanced melanoma differentiation antigen expression and presentation of tumour antigens by HLA 1, and increased intra-tumoral T-cell infiltration and activity. These effects promote recognition of the tumour by the immune system and enhance anti-tumour T-cell responses. Combining BRAF inhibitors with MEK inhibitors provides more complete blockade of the MAPK pathway. The immunomodulatory effects of BRAF inhibition alone or in combination with MEK inhibition provide a rationale for combining these targeted therapies with immune checkpoint inhibitors. Available data support the synergy between these treatment approaches, indicating such combinations provide an additional beneficial effect on the tumour microenvironment and immune response in BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Ilaria Proietti
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
- Correspondence: ; Tel.: +39-3334684342 or +39-0773708811
| | - Nevena Skroza
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Simone Michelini
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Alessandra Mambrin
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Veronica Balduzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Nicoletta Bernardini
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Anna Marchesiello
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Ersilia Tolino
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Salvatore Volpe
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Patrizia Maddalena
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Marco Di Fraia
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.M.); (G.R.)
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00100 Rome, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.M.); (G.R.)
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00100 Rome, Italy
| | - Concetta Potenza
- Department of Medical-Surgical Sciences and Biotechnologies, Dermatology Unit “Daniele Innocenzi”, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (N.S.); (S.M.); (A.M.); (V.B.); (N.B.); (A.M.); (E.T.); (S.V.); (P.M.); (M.D.F.); (C.P.)
| |
Collapse
|
221
|
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108321. [PMID: 32800272 DOI: 10.1016/j.mrrev.2020.108321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
Collapse
Affiliation(s)
- Rafiq A Rather
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India.
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
222
|
Kocsis A, Karsko L, Kurgyis Z, Besenyi Z, Pavics L, Dosa-Racz E, Kis E, Baltas E, Ocsai H, Varga E, Bende B, Varga A, Mohos G, Korom I, Varga J, Kemeny L, Nemeth IB, Olah J. Is it Necessary to Perform Sentinel Lymph Node Biopsy in Thin Melanoma? A Retrospective Single Center Analysis. Pathol Oncol Res 2020; 26:1861-1868. [PMID: 31792874 PMCID: PMC7297827 DOI: 10.1007/s12253-019-00769-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
Sentinel lymph node biopsy (SLNB) is a standard procedure for regional lymph node staging and still has the most important prognostic value for the outcome of patients with thin melanoma. In addition to ulceration, SLNB had to be considered even for a single mitotic figure in thin (<1 mm) melanoma according to AJCC7th guideline, therefore, a retrospective review was conducted involving 403 pT1 melanoma patients. Among them, 152 patients suffered from pT1b ulcerated or mitotic rate ≥ 1/ mm2 melanomas according to the AJCC7th staging system. SLNB was performed in 78 cases, of which nine (11.5%) showed SLN positivity. From them, interestingly, we found a relatively high positive sentinel rate (6/78-8%) in the case of thin primary melanomas ˂0.8 mm. Moreover, the presence of regression increased the probability of sentinel positivity by 5.796 fold. After reassessing pT stage based on the new AJCC8th, 37 pT1b cases were reordered into pT1a category. There was no significant relation between other characteristics examined (age, gender, Breslow, Clark level, and mitosis index) and sentinel node positivity. Based on our data, we suggest that mitotic rate alone is not a sufficiently powerful predictor of SLN status in thin melanomas. If strict histopathological definition criteria are applied, regression might be an additional adverse feature that aids in identifying T1 patients most likely to be SLN-positive. After reassessing of pT1b cases according to AJCC8th regression proved to be independent prognostic factor on sentinel lymph node positivity. Our results propose that sentinel lymph node biopsy might also be considered at patients with regressive thin (˂0.8 mm) melanomas.
Collapse
Affiliation(s)
- A Kocsis
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - L Karsko
- Department of Nuclear Medicine, University of Szeged, Szeged, Hungary
| | - Zs Kurgyis
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Zs Besenyi
- Department of Nuclear Medicine, University of Szeged, Szeged, Hungary
| | - L Pavics
- Department of Nuclear Medicine, University of Szeged, Szeged, Hungary
| | - E Dosa-Racz
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - E Kis
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - E Baltas
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - H Ocsai
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - E Varga
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - B Bende
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - A Varga
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - G Mohos
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - I Korom
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - J Varga
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - L Kemeny
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - I B Nemeth
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
| | - J Olah
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Department of Oncology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
223
|
Comprehensive Investigation into the Role of Ubiquitin-Conjugating Enzyme E2S in Melanoma Development. J Invest Dermatol 2020; 141:374-384. [PMID: 32603752 DOI: 10.1016/j.jid.2020.05.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) is involved in protein degradation and signal transduction, but its function in the development of melanoma is unclear. We focused on the role of UBE2S in melanoma development both in vitro and in vivo. UBE2S was overexpressed in malignant melanoma cells and tissues, and UBE2S expression was significantly different between tumor node metastasis staging T4 and T1/T2/T3. We designed UBE2S short hairpin RNA (shUBE2S) and transfected it into A375, SK-MEL-28, and MUM-2B cells using lentivirus. By whole-genome filtering, 247 genes and 265 genes were upregulated and downregulated, respectively, in shUBE2S-treated melanoma; these genes were mainly involved in immune reactions, apoptosis, DNA damage repair, and cell movement. The proliferation of melanoma cells was inhibited, apoptosis was increased, and cell cycle was arrested in G1/S in shUBE2S-treated melanoma. Expression of epithelial to mesenchymal transition-related proteins was significantly suppressed, and tumor growth was also suppressed in shUBE2S BALB/C nude mice. shUBE2S treatment may cause cell cycle arrest in G1/S phase, inhibit proliferation, induce apoptosis, and suppress tumor growth through DNA damage repair, epithelial to mesenchymal transition inhibition, protein kinase B-mTOR pathway, NF-κB signaling, and immune reactions, which provides a comprehensive understanding of the role of UBE2S in melanoma development and the need for advanced clinical research into UBE2S.
Collapse
|
224
|
Sex differences in the association between tumor growth and T cell response in a melanoma mouse model. Cancer Immunol Immunother 2020; 69:2157-2162. [PMID: 32638080 DOI: 10.1007/s00262-020-02643-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Epidemiological evidence suggests that females have an advantage over males in cases of melanoma incidence, progression, and survival. However, the biological mechanisms underlying these sex differences remain unclear. With the knowledge that females generally have a more robust immune system than males, we investigated sex differences in melanoma progression in a B16-F10/BL6 syngeneic mouse model. We observed significantly less tumor volume and growth rate over 14 days in female mice compared to male mice. Furthermore, higher populations of CD4+ and CD8+ T cells, which indicate adaptive immune responses, were found in the circulating blood and tumors of females and corresponded with less tumor growth, and vice versa in males. Our results highlight a mouse model that represents melanoma progression in the human population and displays a higher immune response to melanoma in females compared to males. These findings suggest that the immune system may be one of the mechanisms responsible for sex differences in melanoma.
Collapse
|
225
|
Tung C, Lu Y, Kao W, Liu J, Lai Y, Jiang S, Chen H, Shih T. Discovery of a more potent anticancer agent than
C4
‐benzazole 1,8‐naphthalimide derivatives against murine melanoma. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chi‐Hua Tung
- Department of BioinformaticsChung Hua University Hsinchu Taiwan
| | - Yen‐Ta Lu
- Chest Division, Medical DepartmentMacKay Memorial Hospital New Taipei City Taiwan
| | - Wei‐Ting Kao
- Department of ChemistryTamkang University New Taipei City Taiwan
| | - Jen‐Wei Liu
- Department of ChemistryTamkang University New Taipei City Taiwan
| | - Yi‐Hsuan Lai
- Department of BiochemistryTzu Chi University Hualien City Taiwan
| | - Shinn‐Jong Jiang
- Department of BiochemistryTzu Chi University Hualien City Taiwan
| | - Hao‐Ping Chen
- Department of BiochemistryTzu Chi University Hualien City Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Hualien City Taiwan
| | - Tzenge‐Lien Shih
- Department of ChemistryTamkang University New Taipei City Taiwan
| |
Collapse
|
226
|
Brézillon S, Untereiner V, Mohamed HT, Ahallal E, Proult I, Nizet P, Boulagnon-Rombi C, Sockalingum GD. Label-Free Infrared Spectral Histology of Skin Tissue Part II: Impact of a Lumican-Derived Peptide on Melanoma Growth. Front Cell Dev Biol 2020; 8:377. [PMID: 32548117 PMCID: PMC7273845 DOI: 10.3389/fcell.2020.00377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most aggressive type of cutaneous malignancies. In addition to its role as a regulator of extracellular matrix (ECM) integrity, lumican, a small leucine-rich proteoglycan, also exhibits anti-tumor properties in melanoma. This work focuses on the use of infrared spectral imaging (IRSI) and histopathology (IRSH) to study the effect of lumican-derived peptide (L9Mc) on B16F1 melanoma primary tumor growth. Female C57BL/6 mice were injected with B16F1 cells treated with L9Mc (n = 10) or its scrambled peptide (n = 8), and without peptide (control, n = 9). The melanoma primary tumors were subjected to histological and IR imaging analysis. In addition, immunohistochemical staining was performed using anti-Ki-67 and anti-cleaved caspase-3 antibodies. The IR images were analyzed by common K-means clustering to obtain high-contrast IRSH that allowed identifying different ECM tissue regions from the epidermis to the tumor area, which correlated well with H&E staining. Furthermore, IRSH showed good correlation with immunostaining data obtained with anti-Ki-67 and anti-cleaved caspase-3 antibodies, whereby the L9Mc peptide inhibited cell proliferation and increased strongly apoptosis of B16F1 cells in this mouse model of melanoma primary tumors.
Collapse
Affiliation(s)
- Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | | | - Hossam Taha Mohamed
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France.,Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Estelle Ahallal
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Isabelle Proult
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Pierre Nizet
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Camille Boulagnon-Rombi
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France.,CHU de Reims, Laboratoire Central d'Anatomie et de Cytologie Pathologique, Reims, France
| | | |
Collapse
|
227
|
Fan J, Kang X, Zhao L, Zheng Y, Yang J, Li D. Long Noncoding RNA CCAT1 Functions as a Competing Endogenous RNA to Upregulate ITGA9 by Sponging MiR-296-3p in Melanoma. Cancer Manag Res 2020; 12:4699-4714. [PMID: 32606961 PMCID: PMC7308122 DOI: 10.2147/cmar.s252635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melanoma is aggressive and lethal melanocytic neoplasm, and its incidence has increased worldwide in recent decades. Accumulating evidence has showed that various long noncoding RNAs (lncRNAs) participated in occurrence of malignant tumors, including melanoma. The present study was designed to investigate function of lncRNA colon cancer-associated transcript-1 (CCAT1) in melanoma. METHODS The expression levels of CCAT1, miR-296-3p and Integrin alpha9 (ITGA9) in melanoma tissues or cells were measured using real-time quantitative polymerase chain reaction (RT-qPCR). The concentrations of glucose and lactate were measured for assessing glycolysis of melanoma cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), flow cytometry, and transwell assays were conducted to assess proliferation, apoptosis, and migration of melanoma cells. Western blot assay was performed to measure the protein expression of ITGA9, hexokinase 2 (HK2), and epithelial-mesenchymal transition (EMT)-related proteins in melanoma tissues or cells. The relationship among CCAT1, miR-296-3p, and ITGA9 was predicted and confirmed by bioinformatics analysis, dual-luciferase reporter, and RNA immunoprecipitation (RIP) assay, respectively. A xenograft experiment was established to assess the effect of CCAT1 knockdown in vivo. RESULTS CCAT1 was effectively increased in melanoma tissues and cells compared with matched controls, and deficiency of CCAT1 impeded cell glycolysis, proliferation, migration while induced apoptosis, which were abrogated by knockdown of miR-296-3p in melanoma cells. In addition, our findings revealed that ITGA9 overexpression abolished miR-296-3p overexpression-induced effects on melanoma cells. Importantly, CCAT1 regulated ITGA9 expression by sponging miR-296-3p. The results of xenograft experiment suggested that CCAT1 silencing inhibited melanoma cell growth in vivo. CONCLUSION LncRNA CCAT1 promoted ITGA9 expression by sponging miR-296-3p in melanoma.
Collapse
Affiliation(s)
- Jinghua Fan
- Department of Dermatology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoxiao Kang
- Department of Dermatology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Limin Zhao
- Department of Dermatology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jun Yang
- Department of Dermatology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Di Li
- Department of Dermatology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
228
|
Abstract
Topical drug delivery has inherent advantages over other administration routes. However, the existence of stratum corneum limits the diffusion to small and lipophilic drugs. Fortunately, the advancement of nanotechnology brings along opportunities to address this challenge. Taking the unique features in size and surface chemistry, nanocarriers such as liposomes, polymeric nanoparticles, gold nanoparticles, and framework nucleic acids have been used to bring drugs across the skin barrier to epidermis and dermis layers. This article reviews the development of these formulations and focuses on their applications in the treatment of skin disorders such as acne, skin inflammation, skin infection, and wound healing. Existing hurdles and further developments are also discussed.
Collapse
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Sharon Wan Ting Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457.,National Dental Centre of Singapore, 5 Second Hospital Avenue, Singapore 168938.,Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
229
|
Palušová V, Renzová T, Verlande A, Vaclová T, Medková M, Cetlová L, Sedláčková M, Hříbková H, Slaninová I, Krutá M, Rotrekl V, Uhlířová H, Křížová A, Chmelík R, Veselý P, Krafčíková M, Trantírek L, Schink KO, Uldrijan S. Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds. Cancers (Basel) 2020; 12:cancers12061516. [PMID: 32531927 PMCID: PMC7352453 DOI: 10.3390/cancers12061516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.
Collapse
Affiliation(s)
- Veronika Palušová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Tereza Renzová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Amandine Verlande
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Tereza Vaclová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Michaela Medková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Linda Cetlová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Miroslava Sedláčková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Hana Hříbková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Iva Slaninová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Miriama Krutá
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Vladimír Rotrekl
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Uhlířová
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (H.U.); (R.C.)
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Aneta Křížová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Radim Chmelík
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (H.U.); (R.C.)
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Pavel Veselý
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Michaela Krafčíková
- National Centre for Biomolecular Research, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Lukáš Trantírek
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Kay Oliver Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Stjepan Uldrijan
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
230
|
Vandamme N, Denecker G, Bruneel K, Blancke G, Akay Ö, Taminau J, De Coninck J, De Smedt E, Skrypek N, Van Loocke W, Wouters J, Nittner D, Köhler C, Darling DS, Cheng PF, Raaijmakers MIG, Levesque MP, Mallya UG, Rafferty M, Balint B, Gallagher WM, Brochez L, Huylebroeck D, Haigh JJ, Andries V, Rambow F, Van Vlierberghe P, Goossens S, van den Oord JJ, Marine JC, Berx G. The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Res 2020; 80:2983-2995. [PMID: 32503808 DOI: 10.1158/0008-5472.can-19-2373] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/02/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT)-inducing transcription factors (TF) are well known for their ability to induce mesenchymal states associated with increased migratory and invasive properties. Unexpectedly, nuclear expression of the EMT-TF ZEB2 in human primary melanoma has been shown to correlate with reduced invasion. We report here that ZEB2 is required for outgrowth for primary melanomas and metastases at secondary sites. Ablation of Zeb2 hampered outgrowth of primary melanomas in vivo, whereas ectopic expression enhanced proliferation and growth at both primary and secondary sites. Gain of Zeb2 expression in pulmonary-residing melanoma cells promoted the development of macroscopic lesions. In vivo fate mapping made clear that melanoma cells undergo a conversion in state where ZEB2 expression is replaced by ZEB1 expression associated with gain of an invasive phenotype. These findings suggest that reversible switching of the ZEB2/ZEB1 ratio enhances melanoma metastatic dissemination. SIGNIFICANCE: ZEB2 function exerts opposing behaviors in melanoma by promoting proliferation and expansion and conversely inhibiting invasiveness, which could be of future clinical relevance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/2983/F1.large.jpg.
Collapse
Affiliation(s)
- Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geertrui Denecker
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kenneth Bruneel
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Gillian Blancke
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Özden Akay
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Joachim Taminau
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jordy De Coninck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and University Hospital, Ghent, Belgium
| | - Jasper Wouters
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
| | - David Nittner
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Corinna Köhler
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Marieke I G Raaijmakers
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Udupi Girish Mallya
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin, Ireland.,OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - Mairin Rafferty
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - Balazs Balint
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin, Ireland.,OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin, Ireland
| | - Lieve Brochez
- Department of Head and Skin, Ghent University Hospital, Ghent, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | | | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and University Hospital, Ghent, Belgium
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and University Hospital, Ghent, Belgium
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
231
|
He Q, Li X, He L, Li Y, Betsholtz C, Welsh M. Pericyte dysfunction due to Shb gene deficiency increases B16F10 melanoma lung metastasis. Int J Cancer 2020; 147:2634-2644. [PMID: 32441314 DOI: 10.1002/ijc.33110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Intravasation, vascular dissemination and metastasis of malignant tumor cells require their passage through the vascular wall which is commonly composed of pericytes and endothelial cells. We currently decided to investigate the relative contribution of these cell types to B16F10 melanoma metastasis in mice using an experimental model of host Shb gene (Src homology 2 domain-containing protein B) inactivation. Conditional inactivation of Shb in endothelial cells using Cdh5-CreERt2 resulted in decreased tumor growth, reduced vascular leakage, increased hypoxia and no effect on pericyte coverage and lung metastasis. RNAseq of tumor endothelial cells from these mice revealed changes in cellular components such as adherens junctions and focal adhesions by gene ontology analysis that were in line with the observed effects on leakage and junction morphology. Conditional inactivation of Shb in pericytes using Pdgfrb-CreERt2 resulted in decreased pericyte coverage of small tumor vessels with lumen, increased leakage, aberrant platelet-derived growth factor receptor B (PDGFRB) signaling and a higher frequency of lung metastasis without concomitant effects on tumor growth or oxygenation. Flow cytometry failed to reveal immune cell alterations that could explain the metastatic phenotype in this genetic model of Shb deficiency. It is concluded that proper pericyte function plays a significant role in suppressing B16F10 lung metastasis.
Collapse
Affiliation(s)
- Qi He
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiujuan Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
232
|
Wang W, Liu G, Liu M, Li X. Long non-coding RNA SNHG7 promotes malignant melanoma progression through negative modulation of miR-9. Histol Histopathol 2020; 35:973-981. [PMID: 32365219 DOI: 10.14670/hh-18-225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long non-coding small nucleolar RNA host gene 7 (lncRNA SNHG7) was verified to act as an onco-gene in human cancers. Nevertheless, the role of SNHG7 in malignant melanoma remains elusive. The present study showed an increase of SNHG7 expression in malignant melanoma tissues and cell lines. Besides, SNHG7 knockdown inhibited proliferation and migration in malignant melanoma cells. Bioinformatics analysis demonstrated that SNHG7 functions as a molecular sponge for miR-9 in biological behavior of melanoma cells. And miR-9 could inhibit the expression of PI3KR3 by binding with the 3'-UTR. Furthermore, PI3KR3, pAKT, cyclin D1 and Girdin expression was down-regulated after SNHG7 knockdown by siRNA. In addition, SNHG7 knockdown decreased xenograft growth in vivo. Taken together, this research demonstrated that SNHG7 was an oncogene in malignant melanoma, providing a novel insight for the pathogenesis and new potential therapeutic target for malignant melanoma.
Collapse
Affiliation(s)
- Wendi Wang
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Guangjing Liu
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Man Liu
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Xiaobing Li
- Department of Plastic and Burn Surgery, Tianjin First Center Hospital, Tianjin, China.
| |
Collapse
|
233
|
Zhang J, Duan F, Liu Y, Nie L. High-Resolution Photoacoustic Tomography for Early-Stage Cancer Detection and Its Clinical Translation. Radiol Imaging Cancer 2020; 2:e190030. [PMID: 33778711 PMCID: PMC7983802 DOI: 10.1148/rycan.2020190030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 04/22/2023]
Abstract
Diagnosing cancer during early stages can substantially increase the cure rate, decrease the recurrence rate, and reduce health care costs. Over the past few decades, the continual development of new medical imaging modalities has been an important factor for diagnosing cancer, selecting therapies, and monitoring response to treatment. Photoacoustic tomography (PAT) is a hybrid imaging modality combining optical contrast from absorption of light with the outstanding spatiotemporal resolution of US imaging, providing biomedical morphologic and functional information of early-stage cancer. In this review, the basics and modalities of PAT, as well as a summary of its state-of-art applications in early-stage cancer (breast cancer, melanoma, and prostate cancer) detection and treatment guidance will be introduced. The potential clinical translation in cancer detection of PAT and prospects for the possibilities to lead to further clinical breakthroughs will also be discussed. Keywords: Molecular Imaging-Cancer, Photoacoustic Imaging © RSNA, 2020.
Collapse
|
234
|
Thaichinda S, Tancharoen S, Kanekura T, Higashi Y, Dararat P, Kikuchi K, Nararatwanchai T. Pinus maritima Extract Induces Apoptosis in Human Malignant Melanoma Cells via ROS/Caspase-3 Signaling. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20926889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer due to its rapid metastasis with a high recurrence rate following conventional therapy. Pine bark extract (PBE) from Pinus maritima contains numerous phenolic compounds and functions as a potent antioxidant. The present study aimed to analyze the potential anticancer properties of PBE on human malignant melanoma A375 cells. The chemical composition of PBE was determined by high-performance liquid chromatography/photodiode array detector. The effects of PBE on cell death, migration, and invasion were determined using xCELLigence Technology real-time cell analysis. Annexin/propidium iodide flow cytometry and Hoechst 33342 staining were conducted to detect cell apoptosis. PBE induced apoptosis and inhibited cell migration and invasion. Cleaved caspase-3 expression and activity were significantly increased ( P < 0.01) in cells treated with PBE compared with control cells. PBE ameliorated hydrogen peroxide (H2O2)-induced reactive oxygen species (ROS) formation. Treatment of the cells with PBE in the presence of H2O2 led to significant ( P < 0.001) reduction of matrix metallopeptidase-9, which is a mediator responsible for advanced melanoma. PBE induces A375 programmed cell death and suppresses cellular invasion by attenuating the ROS-dependent pathway associated with MMP-9 reduction.
Collapse
Affiliation(s)
- Sunisa Thaichinda
- Department of Anti-aging Medicine, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Rajthevee, Bangkok, Thailand
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Medical and Dental Science, Sakuragaoka, Kagoshima, Japan
| | - Yuko Higashi
- Department of Dermatology, Kagoshima University Medical and Dental Science, Sakuragaoka, Kagoshima, Japan
| | - Pornpen Dararat
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Rajthevee, Bangkok, Thailand
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Thamthiwat Nararatwanchai
- Department of Anti-aging Medicine, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
235
|
Wu JY, Cai JX, Li YJ, Hu XB, Liu XY, Wang JM, Tang TT, Xiang DX. 3,5,4'-Trimethoxy-trans-stilbene loaded microemulsion for cutaneous melanoma therapy by transdermal drug delivery. Drug Deliv Transl Res 2020; 11:169-181. [PMID: 32297167 DOI: 10.1007/s13346-020-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For therapy of skin cancer, transdermal administration has been a potential way to enhance chemotherapy. However, the drug delivery efficacy remained unsatisfactory because of the physiological barriers from the skin to the tumor, which hindered the effect of 3,5,4'-trimethoxy-trans-stilbene (BTM), a drug that has toxicity to cancer. Herein, we prepared an oil-in-water (O/W) microemulsion to load BTM (BTM-ME) for transdermal therapy of melanoma. BTM-ME was characterized by size, zeta potential, and polymer disperse index (PDI). B16F10 melanoma cell line was used for cell experiments and animal models. And cell uptake, viability assay, and flow cytometry were to test the cell internalization and the ability of BTM-ME to induce cancer cell apoptosis. Skin penetration testing was to detect its penetration efficiency to the skin. And tumor-bearing mice were used to prove the improvement of anti-cancer efficacy of BTM-ME with the combination of Taxol. BTM was successfully loaded in O/W microemulsion, with a drug loading capacity of 24.82 mg/mL. BTM-ME can penetrate the skin and increase the retention of BTM in the epidermis. And the combination of Taxol and BTM-ME effectively suppressed tumor growth and has lower toxicity to normal organs. BTM-ME provides adjuvant therapy to cutaneous melanoma and the combination of Taxol and BTM-ME has the clinical potential for skin cancer therapy. Graphical abstract.
Collapse
Affiliation(s)
- Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jia-Xin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Xin-Yi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Jie-Min Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Tian-Tian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
236
|
Veloso ES, Gonçalves INN, Silveira TL, Espirito Santo JT, Figueiredo LV, Varaschin MS, Cassali GD, Del Puerto HL, Ferreira E. ZEB and Snail expression indicates epithelial-mesenchymal transition in canine melanoma. Res Vet Sci 2020; 131:7-14. [PMID: 32278962 DOI: 10.1016/j.rvsc.2020.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/15/2022]
Abstract
Melanoma progression is associated with the epithelial-mesenchymal transition (EMT) when tumor cells reduce E-cadherin and increase N-cadherin expression resulting in an escape from the microenvironment via loss of cellular adhesion and gain of motility. Transcription factor proteins Snail and ZEB trigger EMT by repression of epithelial markers and activation of mesenchymal properties. This study evaluated E-cadherin, N-cadherin, Snail, ZEB1 and ZEB2 expression by IHC and investigated their relationship with morphological characteristics in cutaneous and oral canine melanoma. Results from melanoma cases demonstrated E-cadherin expression in 45% (9/20) of oral and 58% (22/38) of cutaneous tumors, while N-cadherin expression was observed in 95% (18/19) of oral and 92% (34/37) of cutaneous melanoma. Cytoplasmic and nuclear N-cadherin expression was positively correlated with ZEB1 expression, while the cell membrane N-cadherin expression was positively correlated with ZEB2. In addition, an increase in nuclear N-cadherin expression was associated with reduced Snail expression in cutaneous melanoma and an increase in Snail expression in oral melanoma, indicating that the correlation between N-cadherin and Snail expression is coincident with tumor location. Our data suggest that ZEB family protein is associated with N-cadherin translocation from cell membrane to the cytoplasm and nuclei, and may act as important transcription factors of EMT regulation in canine melanoma.
Collapse
Affiliation(s)
- Emerson Soares Veloso
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Tatiany Luiza Silveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Larissa Vieira Figueiredo
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Helen Lima Del Puerto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
237
|
González-Ruiz L, González-Moles MÁ, González-Ruiz I, Ruiz-Ávila I, Ayén Á, Ramos-García P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res 2020; 33:788-805. [PMID: 32147907 DOI: 10.1111/pcmr.12874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Cyclin D1 is a protein encoded by the CCND1 gene, located on 11q13 chromosome, which is a key component of the physiological regulation of the cell cycle. CCND1/cyclin D1 is upregulated in several types of human tumors including melanoma and is currently classified as an oncogene that promotes uncontrolled cell proliferation. Despite the demonstrated importance of CCND1/cyclin D1 as a central oncogene in several types of human tumors, its knowledge in melanoma is still limited. This review examines data published on upregulation of the CCND1 gene and cyclin D1 protein in the melanoma setting, focusing on the pathways and molecular mechanisms involved in the activation of the gene and on the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Lucia González-Ruiz
- Dermatology Service, Ciudad Real General University Hospital, Ciudad Real, Spain
| | | | | | - Isabel Ruiz-Ávila
- Biohealth Research Institute, Granada, Spain.,Pathology Service, San Cecilio Hospital Complex, Granada, Spain
| | - Ángela Ayén
- Dermatology Service, San Cecilio Hospital Complex, Granada, Spain
| | | |
Collapse
|
238
|
Zhao G, Wei Z, Guo Y. MicroRNA-107 is a novel tumor suppressor targeting POU3F2 in melanoma. Biol Res 2020; 53:11. [PMID: 32169117 PMCID: PMC7071777 DOI: 10.1186/s40659-020-00278-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background Melanoma is one of the major types of skin cancer. The metastatic melanoma is among the most lethal forms of malignant skin tumors. We hereby aimed to characterize a novel microRNA (miR) in the metastatic melanoma model. Methods First, we evaluated the expression of miR-107 in melanoma cells and tumor tissues. The comparison between primary and metastatic cancer tissues was also accessed. Next, we examined the impact of miR-107 on melanoma cell proliferation, cell cycle, colony formation, apoptotic activity, migration and matrix invasion. A downstream target of miR-107 was also predicted and validated functionally in melanoma cells. Results Our findings showed miR-107 was significantly downregulated in melanoma. Its expression was lowest in metastatic form. Over-expression of miR-107 reduced melanoma cell proliferation, migration and invasion. POU3F2 was identified as the downstream target of miR-107. Over-expression of POU3F2 antagonized miR-107-mediated inhibitory effect on melanoma cells. Conclusion Our study has reported miR-107 as a novel tumor suppressive factor in the metastatic melanoma model. It has provided new avenue to manage melanoma and improve the survival rate in the advanced stage.
Collapse
Affiliation(s)
- Guizhi Zhao
- Department of Dermatology, Daqing Oilfield General Hospital, No. 9 Zhongkang Road, Saertu District, Daqing, 163000, Heilongjiang, China
| | - Zhili Wei
- Department of Stomatology, Daqing Oilfield General Hospital, No. 9 Zhongkang Road, Saertu District, Daqing, 163000, Heilongjiang, China
| | - Yang Guo
- Department of Dermatology, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, No. 5 Shipping Warehouse, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
239
|
Chu C, Peng C, Chang I, Su W, Kao J, Huang W, Lai H. Endoscopic findings in a patient with primary malignant melanoma of the esophagus: A case report. ADVANCES IN DIGESTIVE MEDICINE 2020. [DOI: 10.1002/aid2.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chia‐Sheng Chu
- School of Chinese MedicineChina Medical University Taichung Taiwan
- Division of Hepatogastroenterology, Department of Internal MedicineChina Medical University Hospital Taichung Taiwan
| | - Cheng‐Yuan Peng
- Division of Hepatogastroenterology, Department of Internal MedicineChina Medical University Hospital Taichung Taiwan
- School of MedicineChina Medical University Taichung Taiwan
| | - I‐Ping Chang
- School of MedicineChina Medical University Taichung Taiwan
- Department of PathologyChina Medical University Hospital Taichung Taiwan
| | - Wen‐Pang Su
- Division of Hepatogastroenterology, Department of Internal MedicineChina Medical University Hospital Taichung Taiwan
- School of MedicineChina Medical University Taichung Taiwan
| | - Jung‐Ta Kao
- Division of Hepatogastroenterology, Department of Internal MedicineChina Medical University Hospital Taichung Taiwan
- School of MedicineChina Medical University Taichung Taiwan
| | - Wen‐Hsin Huang
- Division of Hepatogastroenterology, Department of Internal MedicineChina Medical University Hospital Taichung Taiwan
- School of MedicineChina Medical University Taichung Taiwan
| | - Hsueh‐Chou Lai
- School of Chinese MedicineChina Medical University Taichung Taiwan
- Division of Hepatogastroenterology, Department of Internal MedicineChina Medical University Hospital Taichung Taiwan
| |
Collapse
|
240
|
Theophylline enhances melanogenesis in B16F10 murine melanoma cells through the activation of the MEK 1/2, and Wnt/β-catenin signaling pathways. Food Chem Toxicol 2020; 137:111165. [DOI: 10.1016/j.fct.2020.111165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/01/2020] [Accepted: 01/24/2020] [Indexed: 11/18/2022]
|
241
|
Trends in socioeconomic inequalities in the incidence of cutaneous melanoma in Canada from 1992 to 2010. J Public Health (Oxf) 2020. [DOI: 10.1007/s10389-020-01232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
242
|
Stalin J, Traboulsi W, Vivancos-Stalin L, Nollet M, Joshkon A, Bachelier R, Guillet B, Lacroix R, Foucault-Bertaud A, Leroyer AS, Dignat-George F, Bardin N, Blot-Chabaud M. Therapeutic targeting of soluble CD146/MCAM with the M2J-1 monoclonal antibody prevents metastasis development and procoagulant activity in CD146-positive invasive tumors. Int J Cancer 2020; 147:1666-1679. [PMID: 32022257 DOI: 10.1002/ijc.32909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
Abstract
Initially discovered in human melanoma, CD146/MCAM is expressed on many tumors and is correlated with cancer progression and metastasis. However, targeting CD146 remains challenging since it is also expressed on other cell types, as vessel cells, where it displays important physiological functions. We previously demonstrated that CD146 is shed as a soluble form (sCD146) that vectorizes the effects of membrane CD146 on tumor angiogenesis, growth and survival. We thus generated a novel monoclonal antibody, the M2J-1 mAb, which specifically targets sCD146, but not membrane CD146, and counteracts these effects. In our study, we analyzed the effects of sCD146 on the dissemination and the associated procoagulant phenotype in two highly invasive human CD146-positive cancer cell lines (ovarian and melanoma). Results show that sCD146 induced epithelial to mesenchymal transition, favored the generation of cancer stem cells and increased the membrane expression of tissue factor. Treatment of cancer cells with sCD146 in two experimental models (subcutaneous xenografting and intracardiac injection of cancer cells in nude mice) led to increased tumor dissemination and procoagulant activity. The M2J-1 mAb drastically reduced metastasis but also procoagulant activity, in particular by decreasing the number of circulating tumor microparticles, and blocked the relevant signaling pathways as demonstrated by RNA expression profiling experiments. Thus, our findings demonstrate that sCD146 mediates important pro-metastatic and procoagulant effects in two CD146-positive tumors. Targeting sCD146 with the newly generated M2J-1 mAb could constitute an innovative strategy for preventing dissemination and thromboembolism in many CD146-positive tumors.
Collapse
Affiliation(s)
- Jimmy Stalin
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Wael Traboulsi
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | | | - Marie Nollet
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Ahmad Joshkon
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Richard Bachelier
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Benjamin Guillet
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Romaric Lacroix
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,AP-HM, La Conception Hospital, Marseille, France
| | | | - Aurélie S Leroyer
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| | - Françoise Dignat-George
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,AP-HM, La Conception Hospital, Marseille, France
| | - Nathalie Bardin
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France.,AP-HM, La Conception Hospital, Marseille, France
| | - Marcel Blot-Chabaud
- INSERM, INRAE, C2VN, UFR Pharmacie, Aix-Marseille University, Marseille, France
| |
Collapse
|
243
|
Krayem M, Aftimos P, Najem A, van den Hooven T, van den Berg A, Hovestad-Bijl L, de Wijn R, Hilhorst R, Ruijtenbeek R, Sabbah M, Kerger J, Awada A, Journe F, Ghanem GE. Kinome Profiling to Predict Sensitivity to MAPK Inhibition in Melanoma and to Provide New Insights into Intrinsic and Acquired Mechanism of Resistance. Cancers (Basel) 2020; 12:E512. [PMID: 32098410 PMCID: PMC7072684 DOI: 10.3390/cancers12020512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) inhibition with the combination of BRAF (Rapidly Accelerated Fibrosarcoma) and MEK (Mitogen-activated protein kinase kinase) inhibitors has become the standard of first-line therapy of metastatic melanoma harbouring BRAF V600 mutations. However, about half of the patients present with primary resistance while the remaining develop secondary resistance under prolonged treatment. Thus, there is a need for predictive biomarkers for sensitivity and/or resistance to further refine the patient population likely to benefit from MAPK inhibitors. In this study, we explored a top-down approach using a multiplex kinase assay, first, to discover a kinome signature predicting sensitivity, intrinsic and acquired resistance to MAPK inhibitors in melanoma, and second, to understand the mechanism of resistance using cell lines. Pre-dose tissues from patients (four responders and three non-responders to BRAFi monotherapy) were profiled for phosphotyrosine kinase (PTK) and serine-threonine kinase (STK) activities on a PamChip® peptide microarray in the presence and absence of ex vivo BRAFi. In addition, molecular studies were conducted on four sensitive parental lines, their offspring with acquired resistance to BRAFi and two lines with intrinsic resistance. PTK and STK activities in cell lysates were measured in the presence and absence of ex vivo BRAFi and/or MEKi. In tissue lysates, concentration-dependent ex vivo inhibition of STK and PTK activities with dabrafenib was stronger in responders than in non-responders. This difference was confirmed in cell lines comparing sensitive and resistant ones. Interestingly, common features of resistance were increased activity of receptor tyrosine kinases, Proto-oncogene tyrosine-protein kinase Src (Src) family kinases and protein kinase B (PKB, AKT) signalling. These latter results were confirmed by Western blots. While dabrafenib alone showed an inhibition of STK and PTK activities in both tissues and cell lines, the combination of dabrafenib and trametinib showed an antagonism on the STK activities and a synergism on PTK activities, resulting in stronger inhibitions of overall tyrosine kinase activities. Altogether; these data reveal that resistance of tumours and cell lines to MAPK inhibitors can be predicted using a multiplex kinase assay and is associated with an increase in specific tyrosine kinase activities and globally to AKT signalling in the patient's tissue. Thus, such a predictive kinome signature would help to identify patients with innate resistance to MAPK double inhibition in order to propose other therapies.
Collapse
Affiliation(s)
- Mohamad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Philippe Aftimos
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (J.K.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Tim van den Hooven
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Adriënne van den Berg
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Liesbeth Hovestad-Bijl
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Rik de Wijn
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Riet Hilhorst
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Rob Ruijtenbeek
- PamGene International BV, 5211HH ’s-Hertogenbosch, The Netherlands; (T.v.d.H.); (A.v.d.B.); (L.H.-B.); (R.d.W.); (R.H.); (R.R.)
| | - Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Joseph Kerger
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (J.K.)
| | - Ahmad Awada
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (P.A.); (J.K.)
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (A.N.); (M.S.); (A.A.); (F.J.); (G.E.G.)
| |
Collapse
|
244
|
D’Andrea MA, Reddy GK. Systemic Antitumor Effects and Abscopal Responses in Melanoma Patients Receiving Radiation Therapy. Oncology 2020; 98:202-215. [DOI: 10.1159/000505487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022]
|
245
|
Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel) 2020; 12:cancers12020482. [PMID: 32092958 PMCID: PMC7072236 DOI: 10.3390/cancers12020482] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. Melanoma is usually curable with surgery if detected early, however, treatment options for patients with metastatic melanoma are limited and the five-year survival rate for metastatic melanoma had been 15-20% before the advent of immunotherapy. Treatment with immune checkpoint inhibitors has increased long-term survival outcomes in patients with advanced melanoma to as high as 50% although individual response can vary greatly. A mutation within the MAPK pathway leads to uncontrollable growth and ultimately develops into cancer. The most common driver mutation that leads to this characteristic overactivation in the MAPK pathway is the B-RAF mutation. Current combinations of BRAF and MEK inhibitors that have demonstrated improved patient outcomes include dabrafenib with trametinib, vemurafenib with cobimetinib or encorafenib with binimetinib. Treatment with BRAF and MEK inhibitors has met challenges as patient responses began to drop due to the development of resistance to these inhibitors which paved the way for development of immunotherapies and other small molecule inhibitor approaches to address this. Resistance to these inhibitors continues to push the need to expand our understanding of novel mechanisms of resistance associated with treatment therapies. This review focuses on the current landscape of how resistance occurs with the chronic use of BRAF and MEK inhibitors in BRAF-mutant melanoma and progress made in the fields of immunotherapies and other small molecules when used alone or in combination with BRAF and MEK inhibitors to delay or circumvent the onset of resistance for patients with stage III/IV BRAF mutant melanoma.
Collapse
|
246
|
Li T, Jia DD, Teng LS. Adjuvant pembrolizumab versus high-dose interferon α-2b for Chinese patients with resected stage III melanoma: a retrospective cohort study. Invest New Drugs 2020; 38:1334-1341. [DOI: 10.1007/s10637-020-00913-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022]
|
247
|
Abstract
PURPOSE OF REVIEW Recent developments in immunotherapy have transformed the landscape of melanoma therapy. Here, we review markers for response to immunotherapy. RECENT FINDINGS Current immunotherapies disable immune checkpoints on T cells and other immune cells and allow immune rejection of tumor. This process depends crucially on a preexisting response to the development of the melanoma. Here we describe the complexity of the anti-tumor immune response and the links to the development of markers that are currently used or under investigation in the clinic. We describe immune response biomarkers along with new developments that could translate into advances.
Collapse
Affiliation(s)
| | - Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, 1600 Divisadero Street, Rm A741, San Francisco, CA, 94143, USA
| | - Adil I Daud
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, 1600 Divisadero Street, Rm A741, San Francisco, CA, 94143, USA.
| |
Collapse
|
248
|
Ivanova K, Hemmersbach R. Guanylyl Cyclase-cGMP Signaling Pathway in Melanocytes: Differential Effects of Altered Gravity in Non-Metastatic and Metastatic Cells. Int J Mol Sci 2020; 21:ijms21031139. [PMID: 32046325 PMCID: PMC7037284 DOI: 10.3390/ijms21031139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Human epidermal melanocytes as melanin producing skin cells represent a crucial barrier against UV-radiation and oxidative stress. It was shown that the intracellular signaling molecule cyclic guanosine-3′,5′-monophosphate (cGMP), generated by the guanylyl cyclases (GCs), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) and the natriuretic peptide-activated particulate GC (GC-A/GC-B), plays a role in the melanocyte response to environmental stress. Importantly, cGMP is involved in NO-induced perturbation of melanocyte–extracellular matrix interactions and in addition, increased NO production during inflammation may lead to loss of melanocytes and support melanoma metastasis. Further, the NO-sensitive sGC is expressed predominantly in human melanocytes and non-metastatic melanoma cells, whereas absence of functional sGC but up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are detected in metastatic cells. Thus, suppression of sGC expression as well as up-regulated expression of GC-A/GC-B/iNOS appears to correlate with tumor aggressiveness. As the cGMP pathway plays important roles in melanocyte (patho)physiology, we present an overview on the differential effects of altered gravity (hypergravity/simulated microgravity) on the cGMP signaling pathway in melanocytes and melanoma cells with different metastatic potential. We believe that future experiments in real microgravity may benefit from considering cGMP signaling as a possible factor for melanocyte transformation and in medication.
Collapse
|
249
|
Rok J, Karkoszka M, Rzepka Z, Respondek M, Banach K, Beberok A, Wrześniok D. Cytotoxic and proapoptotic effect of doxycycline - An in vitro study on the human skin melanoma cells. Toxicol In Vitro 2020; 65:104790. [PMID: 32044399 DOI: 10.1016/j.tiv.2020.104790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among others, in the treatment of acne and skin infections. Moreover, doxycycline has many valuable nonantibiotic properties, including anti-inflammatory, immunosuppressive and anticancer effects. Recent studies showed that the drug had the ability to inhibit the adhesion and migration of cancer cells, as well as affected their growth and proliferation and induced apoptosis. The purpose of this study was to examine the antimelanoma effect of doxycycline. The obtained results demonstrated that doxycycline decreased the viability and inhibited the proliferation of human melanoma cells, proportionally to the drug concentration and the treatment time. It was stated that doxycycline disturbed the homeostasis of the cells by lowering intracellular level of reduced thiols. In addition, the treatment changed the cell cycle profile and triggered the DNA fragmentation. Mitochondria of melanoma cells exposed to the drug had lowered membrane potential, which indicated cells apoptosis. Finally, doxycycline induced the externalization phosphatidylserine - a well-known hallmark of apoptosis, confirmed by results of annexin V test. The presented study contributes to the increase of knowledge about nonantibacterial action of doxycycline, including the influence on human cancer cells and indicates new potential possibility of effective treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
250
|
Liu J, Xu C, Zhu J, Sivik J, Drabick JJ, Mackley HB. Identifying the Optimal Fractionation Schedules for Improved Response Rates and Survival in Patients with Metastatic Melanoma Treated with Ipilimumab and Radiotherapy. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/2542584601666180326111906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
There is a growing body of evidence that combining ipilimumab with higher
doses of radiotherapy may improve the response rates and survival in patients with metastatic melanoma
compared to lower doses of radiotherapy. However, the dose cutoff at which improved outcomes
are more likely to occur has not been properly identified.
Methods:
We conducted a retrospective analysis of 100 patients treated with ipilimumab and radiotherapy
for metastatic melanoma at a single institution from May 2011 to January 2017. Demographic,
clinical, and treatment factors, including the biological equivalent dose (BED) with an α/β
of 7, were recorded. Endpoints of interest included infield and global complete response (CR) after
the completion of radiation and ipilimumab based on the RECIST criteria (v1.1) and 12-month
overall survival (OS).
Results:
The BED cutoffs at which improved outcomes are more likely to occur are 46.5 Gy for infield
CR, 50.9 Gy for global CR, and 46.5 Gy for 12 month OS. The least aggressive fractionation
schedules used in this patient population that have a BED above the threshold for all 3 outcomes include
40 Gy in 20 fractions, 30 Gy in 6 fractions, and 24 Gy in 3 fractions.
Conclusion:
This hypothesis-generating study suggests that patients who cannot receive ablative intent
radiotherapy may be more likely to benefit from concurrent radiotherapy with ipilimumab if
their fractionation schedule has a BED above 46.5 - 50.9 Gy. Prospective trials evaluating this question
should be considered.
Collapse
Affiliation(s)
- Jason Liu
- The Penn State College of Medicine, Hershey, PA, United States
| | - Cong Xu
- The Division of Biostatistics at the Penn State Cancer Institute, Hershey, PA, United States
| | - Junjia Zhu
- The Division of Biostatistics at the Penn State Cancer Institute, Hershey, PA, United States
| | - Jeffrey Sivik
- The Division of Pharmacology at the Penn State Cancer Institute, Hershey, PA, United States
| | - Joseph J. Drabick
- The Division of Hematology/Oncology at the Penn State Cancer Institute, Hershey, PA, United States
| | - Heath B. Mackley
- The Division of Radiation Oncology at the Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|