201
|
Sheridan GK, Wdowicz A, Pickering M, Watters O, Halley P, O'Sullivan NC, Mooney C, O'Connell DJ, O'Connor JJ, Murphy KJ. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front Cell Neurosci 2014; 8:233. [PMID: 25161610 PMCID: PMC4130185 DOI: 10.3389/fncel.2014.00233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/25/2014] [Indexed: 11/13/2022] Open
Abstract
Several cytokines and chemokines are now known to play normal physiological roles in the brain where they act as key regulators of communication between neurons, glia, and microglia. In particular, cytokines and chemokines can affect cardinal cellular and molecular processes of hippocampal-dependent long-term memory consolidation including synaptic plasticity, synaptic scaling and neurogenesis. The chemokine, CX3CL1 (fractalkine), has been shown to modulate synaptic transmission and long-term potentiation (LTP) in the CA1 pyramidal cell layer of the hippocampus. Here, we confirm widespread expression of CX3CL1 on mature neurons in the adult rat hippocampus. We report an up-regulation in CX3CL1 protein expression in the CA1, CA3 and dentate gyrus (DG) of the rat hippocampus 2 h after spatial learning in the water maze task. Moreover, the same temporal increase in CX3CL1 was evident following LTP-inducing theta-burst stimulation in the DG. At physiologically relevant concentrations, CX3CL1 inhibited LTP maintenance in the DG. This attenuation in dentate LTP was lost in the presence of GABAA receptor/chloride channel antagonism. CX3CL1 also had opposing actions on glutamate-mediated rise in intracellular calcium in hippocampal organotypic slice cultures in the presence and absence of GABAA receptor/chloride channel blockade. Using primary dissociated hippocampal cultures, we established that CX3CL1 reduces glutamate-mediated intracellular calcium rises in both neurons and glia in a dose dependent manner. In conclusion, CX3CL1 is up-regulated in the hippocampus during a brief temporal window following spatial learning the purpose of which may be to regulate glutamate-mediated neurotransmission tone. Our data supports a possible role for this chemokine in the protective plasticity process of synaptic scaling.
Collapse
Affiliation(s)
- Graham K Sheridan
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland ; Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Mark Pickering
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin Dublin, Ireland
| | - Orla Watters
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Paul Halley
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Claire Mooney
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| |
Collapse
|
202
|
Huang ZZ, Li D, Liu CC, Cui Y, Zhu HQ, Zhang WW, Li YY, Xin WJ. CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav Immun 2014; 40:155-65. [PMID: 24681252 DOI: 10.1016/j.bbi.2014.03.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. Paclitaxel treatment also increased cleaved caspase-3 expression, induced the loss of primary afferent terminal fibers and decreased sciatic-evoked A-fiber responses in the spinal dorsal horn, indicating DRG neuronal apoptosis induced by paclitaxel. In addition, the paclitaxel-induced DRG neuronal apoptosis occurred exclusively in the presence of macrophage in vitro study. Intrathecal or systemic injection of CX3CL1 neutralizing antibody blocked paclitaxel-induced macrophage recruitment and neuronal apoptosis in the DRG, and also attenuated paclitaxel-induced allodynia. Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy.
Collapse
Affiliation(s)
- Zhen-Zhen Huang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - Dai Li
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - Cui-Cui Liu
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - Yu Cui
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - He-Quan Zhu
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - Wen-Wen Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - Yong-Yong Li
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, 510080, China.
| |
Collapse
|
203
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
204
|
Lin JH, Chiang YH, Chen CC. Lumbar radiculopathy and its neurobiological basis. World J Anesthesiol 2014; 3:162-173. [DOI: 10.5313/wja.v3.i2.162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Lumbar radiculopathy, a group of diseases in which the dorsal root ganglia (DRG) or dorsal roots are adversely affected by herniated discs or spinal stenosis, are clinically characterized by spontaneous and evoked types of pain. The pain is underpinned by various distinct pathophysiological mechanisms in the peripheral and central nervous systems. However, the diagnosis of lumbar radiculopathy is still unsatisfactory, because the association of the pain with the neurobiological basis of radiculopathy is largely unknown. Several animal models used to explore the underlying neurobiological basis of lumbar radiculopathy could be classified as mechanical, chemical, or both based on the component of injury. Mechanical injury elevates the intraneural pressure, reduces blood flow, and eventually establishes ischemia in the dorsal root and the DRG. Ischemia may induce ischemic pain and cause nerve damage or death, and the subsequent nerve damage or death may induce neuropathic pain. Chemical injury predominately induces inflammation surrounding the dorsal roots or DRG and consequent inflammatory mediators cause inflammatory pain. Furthermore, DRG neurons sensitized by inflammatory mediators are hypersensitive to innocuous mechanical force (stretch or compression) and responsible for mechanical allodynia in radiculopathy. As well, central sensitization in the spinal cord may play an important role in pain generation in lumbar radiculopathy. Increasing knowledge of pain-generating mechanisms and their translation into clinical symptoms and signs might allow for dissecting the mechanisms that operate in each patient. With precise clinical phenotypic characterization of lumbar radiculopathy and its connection to a specific underlying mechanism, we should be able to design optimal treatments for individuals. This review discusses the present knowledge of lumbar radiculopathy and proposes a novel mechanism-based classification.
Collapse
|
205
|
Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine 2014; 70:185-93. [PMID: 25066335 DOI: 10.1016/j.cyto.2014.06.019] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 02/09/2023]
Abstract
Osteoarthritis is a chronic and painful disease of synovial joints. Chondrocytes, synovial cells and other cells in the joint can express and respond to cytokines and chemokines, and all of these molecules can also be detected in synovial fluid of patients with osteoarthritis. The presence of inflammatory cytokines in the osteoarthritic joint raises the question whether they may directly participate in pain generation by acting on innervating joint nociceptors. Here, we first provide a systematic discussion of the known proalgesic effects of cytokines and chemokines that have been detected in osteoarthritic joints, including TNF-α, IL-1, IL-6, IL-15, IL-10, and the chemokines, MCP-1 and fractalkine. Subsequently, we discuss what is known about their contribution to joint pain based on studies in animal models. Finally, we briefly discuss limited data available from clinical studies in human osteoarthritis.
Collapse
Affiliation(s)
- Rachel E Miller
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | - Anne-Marie Malfait
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
206
|
Abstract
Current analgesics predominately modulate pain transduction and transmission in neurons and have limited success in controlling disease progression. Accumulating evidence suggests that neuroinflammation, which is characterized by infiltration of immune cells, activation of glial cells and production of inflammatory mediators in the peripheral and central nervous system, has an important role in the induction and maintenance of chronic pain. This Review focuses on emerging targets - such as chemokines, proteases and the WNT pathway - that promote spinal cord neuroinflammation and chronic pain. It also highlights the anti-inflammatory and pro-resolution lipid mediators that act on immune cells, glial cells and neurons to resolve neuroinflammation, synaptic plasticity and pain. Targeting excessive neuroinflammation could offer new therapeutic opportunities for chronic pain and related neurological and psychiatric disorders.
Collapse
|
207
|
Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. ACTA ACUST UNITED AC 2014; 137:2193-209. [PMID: 24919967 DOI: 10.1093/brain/awu140] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that spinal cord astrocytes play an important role in neuropathic pain sensitization by releasing astrocytic mediators (e.g. cytokines, chemokines and growth factors). However, it remains unclear how astrocytes control the release of astrocytic mediators and sustain late-phase neuropathic pain. Astrocytic connexin-43 (now known as GJ1) has been implicated in gap junction and hemichannel communication of cytosolic contents through the glial syncytia and to the extracellular space, respectively. Connexin-43 also plays an essential role in facilitating the development of neuropathic pain, yet the mechanism for this contribution remains unknown. In this study, we investigated whether nerve injury could upregulate connexin-43 to sustain late-phase neuropathic pain by releasing chemokine from spinal astrocytes. Chronic constriction injury elicited a persistent upregulation of connexin-43 in spinal astrocytes for >3 weeks. Spinal (intrathecal) injection of carbenoxolone (a non-selective hemichannel blocker) and selective connexin-43 blockers (connexin-43 mimetic peptides (43)Gap26 and (37,43)Gap27), as well as astroglial toxin but not microglial inhibitors, given 3 weeks after nerve injury, effectively reduced mechanical allodynia, a cardinal feature of late-phase neuropathic pain. In cultured astrocytes, TNF-α elicited marked release of the chemokine CXCL1, and the release was blocked by carbenoxolone, Gap26/Gap27, and connexin-43 small interfering RNA. TNF-α also increased connexin-43 expression and hemichannel activity, but not gap junction communication in astrocyte cultures prepared from cortices and spinal cords. Spinal injection of TNF-α-activated astrocytes was sufficient to induce persistent mechanical allodynia, and this allodynia was suppressed by CXCL1 neutralization, CXCL1 receptor (CXCR2) antagonist, and pretreatment of astrocytes with connexin-43 small interfering RNA. Furthermore, nerve injury persistently increased excitatory synaptic transmission (spontaneous excitatory postsynaptic currents) in spinal lamina IIo nociceptive synapses in the late phase, and this increase was suppressed by carbenoxolone and Gap27, and recapitulated by CXCL1. Together, our findings demonstrate a novel mechanism of astrocytic connexin-43 to enhance spinal cord synaptic transmission and maintain neuropathic pain in the late-phase via releasing chemokines.
Collapse
Affiliation(s)
- Gang Chen
- 1 Departments of Anaesthesiology and Neurobiology, Duke University Medical Centre, Durham, NC, 27710, USA
| | - Chul-Kyu Park
- 1 Departments of Anaesthesiology and Neurobiology, Duke University Medical Centre, Durham, NC, 27710, USA
| | - Rou-Gang Xie
- 1 Departments of Anaesthesiology and Neurobiology, Duke University Medical Centre, Durham, NC, 27710, USA
| | - Temugin Berta
- 1 Departments of Anaesthesiology and Neurobiology, Duke University Medical Centre, Durham, NC, 27710, USA
| | - Maiken Nedergaard
- 2 Centre for Translational Neuromedicine, University of Rochester Medical Centre, Rochester, NY, 14642, USA
| | - Ru-Rong Ji
- 1 Departments of Anaesthesiology and Neurobiology, Duke University Medical Centre, Durham, NC, 27710, USA
| |
Collapse
|
208
|
Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 2014; 8:117. [PMID: 24904276 PMCID: PMC4033073 DOI: 10.3389/fncel.2014.00117] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial–neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell–cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Ana R Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
209
|
Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Nat Commun 2014; 5:3771. [PMID: 24818655 PMCID: PMC4024744 DOI: 10.1038/ncomms4771] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/01/2014] [Indexed: 01/20/2023] Open
Abstract
In response to neuronal injury or disease, microglia adopt distinct reactive phenotypes via the expression of different sets of genes. Spinal microglia expressing the purinergic P2X4 receptor (P2X4R) after peripheral nerve injury (PNI) are implicated in neuropathic pain. Here we show that interferon regulatory factor-5 (IRF5), which is induced in spinal microglia after PNI, is responsible for direct transcriptional control of P2X4R. Upon stimulation of microglia by fibronectin, IRF5 induced de novo expression of P2X4R by directly binding to the promoter region of the P2rx4 gene. Mice lacking Irf5 did not upregulate spinal P2X4R after PNI, and also exhibited substantial resistance to pain hypersensitivity. Furthermore, we found that expression of IRF5 in microglia is regulated by IRF8. Thus, an IRF8-IRF5 transcriptional axis may contribute to shifting spinal microglia toward a P2X4R-expressing reactive state after PNI. These results may provide a new target for treating neuropathic pain. In response to neuronal injury or disease, microglia adopt distinct reactive phenotypes via the expression of proteins, such as the purinergic P2X4 receptor. Here, Masuda et al. show that the transcription factor axis, interferon regulatory factor-8 and -5, drives the expression of P2X4 receptor in microglia and the adoption of a reactive phenotype after peripheral nerve injury.
Collapse
|
210
|
Modulating the delicate glial-neuronal interactions in neuropathic pain: promises and potential caveats. Neurosci Biobehav Rev 2014; 45:19-27. [PMID: 24820245 DOI: 10.1016/j.neubiorev.2014.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022]
Abstract
During neuropathic pain, glial cells (mainly astrocytes and microglia) become activated and initiate a series of signaling cascades that modulate pain processing at both spinal and supraspinal levels. It has been generally accepted that glial cell activation contributes to neuropathic pain because glia release proinflammatory cytokines, chemokines, and factors such as calcitonin gene-related peptide, substance P, and glutamate, which are known to facilitate pain signaling. However, recent research has shown that activation of glia also leads to some beneficial outcomes. Glia release anti-inflammatory factors that protect against neurotoxicity and restore normal pain. Accordingly, use of glial inhibitors might compromise the protective functions of glia in addition to suppressing their detrimental effects. With a better understanding of how different conditions affect glial cell activation, we may be able to promote the protective function of glia and pave the way for future development of novel, safe, and effective treatments of neuropathic pain.
Collapse
|
211
|
Clark AK, Malcangio M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci 2014; 8:121. [PMID: 24847207 PMCID: PMC4019858 DOI: 10.3389/fncel.2014.00121] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/17/2014] [Indexed: 11/13/2022] Open
Abstract
Chronic pain represents a major problem in clinical medicine. Whilst the acute pain that is associated with tissue injury is a protective signal that serves to maintain homeostasis, chronic pain is a debilitating condition that persists long after the inciting stimulus subsides. Chronic neuropathic pain that develops following damage or disease of the nervous system is partially treated by current therapies, leaving scope for new therapies to improve treatment outcome. Peripheral nerve damage is associated with alterations to the sensory neuroaxis that promote maladaptive augmentation of nociceptive transmission. Thus, neuropathic pain patients exhibit exaggerated responses to noxious stimuli, as well as pain caused by stimuli which are normally non-painful. Increased nociceptive input from the periphery triggers physiological plasticity and long lasting transcriptional and post-translational changes in the CNS defined as central sensitization. Nerve injury induces gliosis which contributes to central sensitization and results in enhanced communication between neurons and microglial cells within the dorsal horn. Thus, identification of mechanisms regulating neuro-immune interactions that occur during neuropathic pain may provide future therapeutic targets. Specifically, chemokines and their receptors play a pivotal role in mediating neuro-immune communication which leads to increased nociception. In particular, the chemokine Fractalkine (FKN) and the CX3CR1 receptor have come to light as a key signaling pair during neuropathic pain states.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London London, UK
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London London, UK
| |
Collapse
|
212
|
Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, Mogg AJ, Perretti M, Malcangio M. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest 2014; 124:2023-36. [PMID: 24743146 DOI: 10.1172/jci71389] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 02/21/2014] [Indexed: 01/22/2023] Open
Abstract
A major dose-limiting side effect associated with cancer-treating antineoplastic drugs is the development of neuropathic pain, which is not readily relieved by available analgesics. A better understanding of the mechanisms that underlie pain generation has potential to provide targets for prophylactic management of chemotherapy pain. Here, we delineate a pathway for pain that is induced by the chemotherapeutic drug vincristine sulfate (VCR). In a murine model of chemotherapy-induced allodynia, VCR treatment induced upregulation of endothelial cell adhesion properties, resulting in the infiltration of circulating CX3CR1⁺ monocytes into the sciatic nerve. At the endothelial-nerve interface, CX3CR1⁺ monocytes were activated by the chemokine CX3CL1 (also known as fractalkine [FKN]), which promoted production of reactive oxygen species that in turn activated the receptor TRPA1 in sensory neurons and evoked the pain response. Furthermore, mice lacking CX3CR1 exhibited a delay in the development of allodynia following VCR administration. Together, our data suggest that CX3CR1 antagonists and inhibition of FKN proteolytic shedding, possibly by targeting ADAM10/17 and/or cathepsin S, have potential as peripheral approaches for the prophylactic treatment of chemotherapy-induced pain.
Collapse
|
213
|
Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state. J Neurosci 2014; 34:3013-22. [PMID: 24553941 DOI: 10.1523/jneurosci.3681-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that CD4(+) T-cell-dependent responses are associated with the maintenance of neuropathic pain. However, little is known about the precise mechanism(s) underlying the activation of CD4(+) T-cells. We herein show that inhibition of cathepsin S (CatS) activity, either through genetic deletion or via a pharmacological inhibitor, Z-Phe-Leu-COCHO (Z-FL), significantly attenuated the maintenance of tactile allodynia, splenic hypertrophy, increased number of splenic CD4(+) T-cells and the final cleavage step of the MHC class II-associated invariant chain following peripheral nerve injury. It was also noted that splenectomy significantly attenuated the peripheral nerve injury-induced tactile allodynia, whereas the adoptive transfer of splenic CD4(+) T-cells from neuropathic wild-type mice significantly increased the pain level of splenectomized wild-type or CatS(-/-) mice. Furthermore, CatS deficiency or Z-FL treatment also significantly inhibited the infiltration of CD4(+) T-cells that expressed interferon-γ (IFN-γ) in the dorsal spinal cord. Signal transducer and activator of transcription 1, a molecule downstream of IFN-γ receptor activation, was activated exclusively in microglia 7 d after peripheral nerve injury. Moreover, CatS deficiency, Z-FL treatment, or splenectomy significantly attenuated the proliferation of microglia 14 d after peripheral nerve injury. These results show a peripheral pivotal role of CatS in the development of neuropathic pain through the antigen-specific activation of CD4(+) T-cells. After activation, CD4(+) T-cells infiltrate into the dorsal spinal cord and secrete IFN-γ to reactivate microglia, which contribute to the transition of acute pain to a chronic pain state.
Collapse
|
214
|
Fonović UP, Jevnikar Z, Kos J. Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells. Biol Chem 2014; 394:1349-52. [PMID: 23893684 DOI: 10.1515/hsz-2013-0189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/15/2013] [Indexed: 11/15/2022]
Abstract
CX3CL1 chemokine (fractalkine) is highly expressed by vascular smooth muscle cells (VSMCs) in atherosclerotic lesions. Its membrane-bound form promotes cell-cell interactions, whereas the soluble form induces chemotaxis of CX3CR1- expressing leukocytes. We show that the cysteine protease cathepsin S, expressed by VSMCs, is able to cleave membrane-anchored CX3CL1, releasing a 55-kDa fragment to the medium, thus regulating the adhesion of VSMCs and the capture of monocytes to the sites of atherogenesis. Moreover, strong co-localization of cathepsin S and CX3CL1 with a recycling endosome marker Rab11a suggests a processing of CX3CL1 in recycling endosomes during its redistribution to the plasma membrane.
Collapse
|
215
|
Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm 2014; 2014:480941. [PMID: 24799766 PMCID: PMC3985314 DOI: 10.1155/2014/480941] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Fractalkine/CX3CL1, the only member of the CX3C chemokine family, exists as a membrane-anchored molecule as well as in soluble form, each mediating different biological activities. It is constitutively expressed in many hematopoietic and nonhematopoietic tissues such as endothelial and epithelial cells, lymphocytes, neurons, microglial osteoblasts. The biological activities of CX3CL1 are mediated by CX3CR1, that is expressed on different cell types such as NK cells, CD14+ monocytes, cytotoxic effector T cells, B cells, neurons, microglia, smooth muscle cells, and tumor cells. The CX3CL1/CX3CR1 axis is involved in the pathogenesis of several inflammatory cancer including various B cell malignancies. In tumors the interaction between cancer cells and cellular microenvironment creates a context that may promote tumor growth, increase tumor survival, and facilitate metastasis. Therefore the role of the CX3CL1/CX3CR1 has attracted interest as to the development of potential therapeutic approaches. Here we review the different effects of the CX3CL1/CX3CR1 axis in several inflammatory and neurodegenerative diseases and in cancer, with emphasis on human B cell lymphomas.
Collapse
|
216
|
The role(s) of cytokines/chemokines in urinary bladder inflammation and dysfunction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:120525. [PMID: 24738044 PMCID: PMC3971501 DOI: 10.1155/2014/120525] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/26/2014] [Accepted: 02/05/2014] [Indexed: 12/17/2022]
Abstract
Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a chronic pain syndrome characterized by pain, pressure, or discomfort perceived to be bladder related and with at least one urinary symptom. It was recently concluded that 3.3-7.9 million women (>18 years old) in the United States exhibit BPS/IC symptoms. The impact of BPS/IC on quality of life is enormous and the economic burden is significant. Although the etiology and pathogenesis of BPS/IC are unknown, numerous theories including infection, inflammation, autoimmune disorder, toxic urinary agents, urothelial dysfunction, and neurogenic causes have been proposed. Altered visceral sensations from the urinary bladder (i.e., pain at low or moderate bladder filling) that accompany BPS/IC may be mediated by many factors including changes in the properties of peripheral bladder afferent pathways such that bladder afferent neurons respond in an exaggerated manner to normally innocuous stimuli (allodynia). The goals for this review are to describe chemokine/receptor (CXCL12/CXCR4; CCL2/CCR2) signaling and cytokine/receptor (transforming growth factor (TGF-β)/TGF-β type 1 receptor) signaling that may be valuable LUT targets for pharmacologic therapy to improve urinary bladder function and reduce somatic sensitivity associated with urinary bladder inflammation.
Collapse
|
217
|
Abstract
Reciprocal signalling between immunocompetent cells in the central nervous system (CNS) has emerged as a key phenomenon underpinning pathological and chronic pain mechanisms. Neuronal excitability can be powerfully enhanced both by classical neurotransmitters derived from neurons, and by immune mediators released from CNS-resident microglia and astrocytes, and from infiltrating cells such as T cells. In this Review, we discuss the current understanding of the contribution of central immune mechanisms to pathological pain, and how the heterogeneous immune functions of different cells in the CNS could be harnessed to develop new therapeutics for pain control. Given the prevalence of chronic pain and the incomplete efficacy of current drugs--which focus on suppressing aberrant neuronal activity--new strategies to manipulate neuroimmune pain transmission hold considerable promise.
Collapse
|
218
|
Cao H, Zheng JW, Li JJ, Meng B, Li J, Ge RS. Effects of curcumin on pain threshold and on the expression of nuclear factor κ B and CX3C receptor 1 after sciatic nerve chronic constrictive injury in rats. Chin J Integr Med 2014; 20:850-6. [PMID: 24474673 DOI: 10.1007/s11655-013-1549-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate the effects of curcumin on pain threshold and the expressions of nuclear factor κ B (NF-κ B) and CX3C chemokine receptor 1 (CX3CR1) in spinal cord and dorsal root ganglion (DRG) of the rats with sciatic nerve chronic constrictive injury. METHODS One hundred and twenty male Sprague Dawley rats, weighing 220-250 g, were randomly divided into 4 groups. Sham surgery (sham) group: the sciatic nerves of rats were only made apart but not ligated; chronic constrictive injury (CCI) group: the sciatic nerves of rats were only ligated without any drug treatment; curcumin treated injury (Cur) model group: the rats were administrated with curcumin 100 mg/(kg·d) by intraperitoneal injection for 14 days after CCI; solvent control (SC) group: the rats were administrated with the solvent at the same dose for 14 days after CCI. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of rats were respectively measured on pre-operative day 2 and postoperative day 1, 3, 5, 7, 10 and 14. The lumbar segment L4-5 of the spinal cord and the L4, L5 DRG was removed at post-operative day 3, 7 and 14. The change of nuclear factor κ B (NF-κ B) p65 expression was detected by Western blotting while the expression of CX3CR1 was determined by immunohistochemical staining. RESULTS Compared with the sham group, the TWL and MWT of rats in the CCI group were significantly decreased on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI, and the expressions of NF-κ B p65 and CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In the Cur group, the TWL of rats were significantly increased than those in the CCI group on post-operative day 7, 10 and 14 (P<0.05) and MWT increased than those in the CCI group on post-operative day 10 and 14 (P<0.05). In addition, the administration of curcumin significantly decreased the positive expressions of NF-κ B p65 and CX3CR1 in spinal cord and DRG (P<0.05). CONCLUSION Our study suggests that curcumin could ameliorate the CCI-induced neuropathic pain, probably through inhibiting CX3CR1 expression by the activation of NF-κ B p65 in spinal cord and DRG.
Collapse
Affiliation(s)
- Hong Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang Province, 325027, China,
| | | | | | | | | | | |
Collapse
|
219
|
Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 2013; 3:130181. [PMID: 24352739 PMCID: PMC3877844 DOI: 10.1098/rsob.130181] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An essential aspect of normal brain function is the bidirectional interaction and communication between neurons and neighbouring glial cells. To this end, the brain has evolved ligand-receptor partnerships that facilitate crosstalk between different cell types. The chemokine, fractalkine (FKN), is expressed on neuronal cells, and its receptor, CX(3)CR1, is predominantly expressed on microglia. This review focuses on several important functional roles for FKN/CX(3)CR1 in both health and disease of the central nervous system. It has been posited that FKN is involved in microglial infiltration of the brain during development. Microglia, in turn, are implicated in the developmental synaptic pruning that occurs during brain maturation. The abundance of FKN on mature hippocampal neurons suggests a homeostatic non-inflammatory role in mechanisms of learning and memory. There is substantial evidence describing a role for FKN in hippocampal synaptic plasticity. FKN, on the one hand, appears to prevent excess microglial activation in the absence of injury while promoting activation of microglia and astrocytes during inflammatory episodes. Thus, FKN appears to be neuroprotective in some settings, whereas it contributes to neuronal damage in others. Many progressive neuroinflammatory disorders that are associated with increased microglial activation, such as Alzheimer's disease, show disruption of the FKN/CX(3)CR1 communication system. Thus, targeting CX(3)CR1 receptor hyperactivation with specific antagonists in such neuroinflammatory conditions may eventually lead to novel neurotherapeutics.
Collapse
Affiliation(s)
- Graham K Sheridan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | |
Collapse
|
220
|
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 Suppl 1:S10-S28. [PMID: 23792284 PMCID: PMC3858488 DOI: 10.1016/j.pain.2013.06.022] [Citation(s) in RCA: 856] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
Activation of glial cells and neuro-glial interactions are emerging as key mechanisms underlying chronic pain. Accumulating evidence has implicated 3 types of glial cells in the development and maintenance of chronic pain: microglia and astrocytes of the central nervous system (CNS), and satellite glial cells of the dorsal root and trigeminal ganglia. Painful syndromes are associated with different glial activation states: (1) glial reaction (ie, upregulation of glial markers such as IBA1 and glial fibrillary acidic protein (GFAP) and/or morphological changes, including hypertrophy, proliferation, and modifications of glial networks); (2) phosphorylation of mitogen-activated protein kinase signaling pathways; (3) upregulation of adenosine triphosphate and chemokine receptors and hemichannels and downregulation of glutamate transporters; and (4) synthesis and release of glial mediators (eg, cytokines, chemokines, growth factors, and proteases) to the extracellular space. Although widely detected in chronic pain resulting from nerve trauma, inflammation, cancer, and chemotherapy in rodents, and more recently, human immunodeficiency virus-associated neuropathy in human beings, glial reaction (activation state 1) is not thought to mediate pain sensitivity directly. Instead, activation states 2 to 4 have been demonstrated to enhance pain sensitivity via a number of synergistic neuro-glial interactions. Glial mediators have been shown to powerfully modulate excitatory and inhibitory synaptic transmission at presynaptic, postsynaptic, and extrasynaptic sites. Glial activation also occurs in acute pain conditions, and acute opioid treatment activates peripheral glia to mask opioid analgesia. Thus, chronic pain could be a result of "gliopathy," that is, dysregulation of glial functions in the central and peripheral nervous system. In this review, we provide an update on recent advances and discuss remaining questions.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
221
|
Weng HR, Gao M, Maixner DW. Glycogen synthase kinase 3 beta regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain. Exp Neurol 2013; 252:18-27. [PMID: 24275526 DOI: 10.1016/j.expneurol.2013.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/07/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022]
Abstract
Dysfunctional glial glutamate transporters and over production of pro-inflammatory cytokines (including interleukin-1β, IL-1β) are two prominent mechanisms by which glial cells enhance neuronal activities in the spinal dorsal horn in neuropathic pain conditions. Endogenous molecules regulating production of IL-1β and glial glutamate functions remain poorly understood. In this study, we revealed a dynamic alteration of GSK3β activities and its role in regulating glial glutamate transporter 1 (GLT-1) protein expression in the spinal dorsal horn and nociceptive behaviors following the nerve injury. Specifically, GSK3β was expressed in both neurons and astrocytes in the spinal dorsal horn. GSK3β activities were suppressed on day 3 but increased on day 10 following the nerve injury. In parallel, protein expression of GLT-1 in the spinal dorsal horn was enhanced on day 3 but reduced on day 10. In contrast to these time-dependent changes, the activation of astrocytes and over-production of IL-1β were found on both day 3 and day 10. Meanwhile, thermal hyperalgesia was observed from day 2 through day 10 and mechanical allodynia from day 4 through day 10. Pre-emptive pharmacological inhibition of GSK3β activities significantly ameliorated thermal hyperalgesia and mechanical allodynia at the late stage but did not have effects at the early stage. These were accompanied with the suppression of GSK3β activities, prevention of decreased GLT-1 protein expression, inhibition of astrocytic activation, and reduction of IL-1β in the spinal dorsal horn on day 10. These data indicate that the increased GSK3β activity in the spinal dorsal horn is attributable to the downregulation of GLT-1 protein expression in neuropathic rats at the late stage. Further, we also demonstrated that the nerve-injury-induced thermal hyperalgesia on day 10 was transiently suppressed by pharmacological inhibition of GSK3β. Our study suggests that GSK3β may be a potential target for the development of analgesics for chronic neuropathic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, GA 30602, USA.
| | - Mei Gao
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| |
Collapse
|
222
|
Abstract
Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
223
|
Kress M, Hüttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg D, Bednarik J, Heppenstall P, Kronenberg F, Malcangio M, Rittner H, üçeyler N, Trajanoski Z, Mouritzen P, Birklein F, Sommer C, Soreq H. microRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci 2013; 6:33. [PMID: 24151455 PMCID: PMC3798051 DOI: 10.3389/fnmol.2013.00033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 01/09/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.
Collapse
Affiliation(s)
- Michaela Kress
- Department of Physiology and Medical Physics, Division of Physiology, Medical University InnsbruckInnsbruck, Austria
| | | | - Marc Landry
- UMR 5297, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, University of BordeauxBordeaux, France
| | | | - Alexandre Favereaux
- UMR 5297, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique, University of BordeauxBordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | - Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological chemistry, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
224
|
Liou JT, Lee CM, Day YJ. The immune aspect in neuropathic pain: role of chemokines. ACTA ACUST UNITED AC 2013; 51:127-32. [PMID: 24148742 DOI: 10.1016/j.aat.2013.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is a pathological symptom experienced worldwide by patients suffering with nervous system dysfunction caused by various diseases. Treatment of neuropathic pain is always accompanied by a poor response and undesired adverse effects. Therefore, developing a novel "pain-kill" drug design strategy is critical in this field. Recent evidence demonstrates that neuroinflammation and immune response contributes to the development of neuropathic pain. Nerve damage can initiate inflammatory and immune responses, as evidenced by the upregulation of cytokines and chemokines. In this paper, we demonstrated that different chemokines and chemokine receptors (e.g., CX3CL1/CX3CR1, CCL2/CCR2, CCL3/CCR1, CCL4/CCR5 and CCL5/CCR5) serve as mediators for neuron-glia communication subsequently modulate nociceptive signal transmission. By extensively understanding the role of chemokines in neurons and glial cells in nociceptive signal transmission, a novel strategy for a target-specific drug design could be developed.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | | | |
Collapse
|
225
|
Liu X, Tian Y, Lu N, Gin T, Cheng CHK, Chan MTV. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes. PLoS One 2013; 8:e75804. [PMID: 24098399 PMCID: PMC3789727 DOI: 10.1371/journal.pone.0075804] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/19/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (Stat3) is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS). METHODS Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic) were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS Stat3 acted as a transcriptional regulator of reactive astrocytes by modulating chemokine expression. Stat3 regulated inflammatory response in astrocytes and contributed to pain modulation. Blockade of Stat3 represents a new target for pain control.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Yuanyuan Tian
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Na Lu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Christopher H. K. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- * E-mail: (CHKC); (MTVC)
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- * E-mail: (CHKC); (MTVC)
| |
Collapse
|
226
|
Activation profile of dorsal root ganglia Iba-1 (+) macrophages varies with the type of lesion in rats. Acta Histochem 2013; 115:840-50. [PMID: 23701965 DOI: 10.1016/j.acthis.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/30/2022]
Abstract
The interactions between neurons, immune and immune-like glial cells can initiate the abnormal processes that underlie neuropathic pain. In the peripheral nervous system the resident macrophages may play an important role. In this study we investigated in experimental adult Sprague-Dawley rats how Iba-1 (ionized calcium binding adaptor molecule 1) (+) resident macrophages in the dorsal root ganglion (DRG) are activated after a spinal nerve ligation (SNL) or streptozotocin (STZ)-induced diabetes. The activation profile was defined by comparing the responses of resident macrophages against microglia in the spinal cord as they share a common origin. After SNL, the Iba-1 (+) macrophages in L5 DRG reached their activation peak 5 days later, clustered as satellite cells around large A-neurons, expressed the MHC-II marker, but did not show p-p38 and p-ERK1/2 activation and did not secrete IL-18. After STZ-induced diabetes, the Iba-1 (+) macrophages reached their activation peak 1 week later in L4 and L5 DRG, remained scattered between neurons, expressed the MHC-II marker only in L5 DRG, did not show p-p38 and p-ERK1/2 activation and did not secrete any of the investigated cytokines/chemokines. These responses suggest that depending on the type of lesion DRG Iba-1 (+) resident macrophages have different activation mechanisms, which are dissimilar to those in microglia.
Collapse
|
227
|
Hayashi Y, Koyanagi S, Kusunose N, Okada R, Wu Z, Tozaki-Saitoh H, Ukai K, Kohsaka S, Inoue K, Ohdo S, Nakanishi H. The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci Rep 2013; 3:2744. [PMID: 24067868 PMCID: PMC3783043 DOI: 10.1038/srep02744] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 01/22/2023] Open
Abstract
Microglia are thought to play important roles in the maintenance of neuronal circuitry and the regulation of behavior. We found that the cortical microglia contain an intrinsic molecular clock and exhibit a circadian expression of cathepsin S (CatS), a microglia-specific lysosomal cysteine protease in the brain. The genetic deletion of CatS causes mice to exhibit hyperlocomotor activity and removes diurnal variations in the synaptic activity and spine density of the cortical neurons, which are significantly higher during the dark (waking) phase than the light (sleeping) phase. Furthermore, incubation with recombinant CatS significantly reduced the synaptic activity of the cortical neurons. These results suggest that CatS secreted by microglia during the dark-phase decreases the spine density of the cortical neurons by modifying the perisynaptic environment, leading to downscaling of the synaptic strength during the subsequent light-phase. Disruption of CatS therefore induces hyperlocomotor activity due to failure to downscale the synaptic strength.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Inflammation is the process by which an organism responds to tissue injury involving both immune cell recruitment and mediator release. Diverse causes of neuropathic pain are associated with excessive inflammation in both the peripheral and central nervous system which may contribute to the initiation and maintenance of persistent pain. Chemical mediators, such as cytokines, chemokines, and lipid mediators, released during an inflammatory response have the undesired effect of sensitizing and stimulating nociceptors, their central synaptic targets or both. These changes can promote long-term maladaptive plasticity resulting in persistent neuropathic pain. This review aims to provide an overview of inflammatory mechanisms at differing levels of the sensory neuroaxis with a focus on neuropathic pain. We will compare and contrast neuropathic pain states such as traumatic nerve injury which is associated with a vigorous inflammatory response and chemotherapy induced pain in which the inflammatory response is much more modest. Targeting excessive inflammation in neuropathic pain provides potential therapeutic opportunities and we will discuss some of the opportunities but also the clinical challenges in such an approach.
Collapse
Affiliation(s)
- A Ellis
- King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
229
|
Souza GR, Talbot J, Lotufo CM, Cunha FQ, Cunha TM, Ferreira SH. Fractalkine mediates inflammatory pain through activation of satellite glial cells. Proc Natl Acad Sci U S A 2013; 110:11193-8. [PMID: 23776243 PMCID: PMC3704031 DOI: 10.1073/pnas.1307445110] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The activation of the satellite glial cells (SGCs) surrounding the dorsal root ganglion (DRG) neurons appears to play a role in pathological pain. We tested the hypothesis that fractalkine, which is constitutively expressed by primary nociceptive neurons, is the link between peripheral inflammation and the activation of SGCs and is thus responsible for the genesis of the inflammatory pain. The injection of carrageenin into the rat hind paw induced a decrease in the mechanical nociceptive threshold (hypernociception), which was associated with an increase in mRNA and GFAP protein expression in the DRG. Both events were inhibited by anti-fractalkine antibody administered directly into the DRG (L5) [intraganglionar (i.gl.)]. The administration of fractalkine into the DRG (L5) produced mechanical hypernociception in a dose-, time-, and CX3C receptor-1 (CX3CR1)-dependent manner. Fractalkine's hypernociceptive effect appears to be indirect, as it was reduced by local treatment with anti-TNF-α antibody, IL-1-receptor antagonist, or indomethacin. Accordingly, the in vitro incubation of isolated and cultured SGC with fractalkine induced the production/release of TNF-α, IL-1β, and prostaglandin E2. Finally, treatment with i.gl. fluorocitrate blocked fractalkine (i.gl.)- and carrageenin (paw)-induced hypernociception. Overall, these results suggest that, during peripheral inflammation, fractalkine is released in the DRG and contributes to the genesis of inflammatory hypernociception. Fractalkine's effect appears to be dependent on the activation of the SGCs, leading to the production of TNFα, IL-1β, and prostanoids, which are likely responsible for the maintenance of inflammatory pain. Thus, these results indicate that the inhibition of fractalkine/CX3CR1 signaling in SGCs may serve as a target to control inflammatory pain.
Collapse
Affiliation(s)
- Guilherme R. Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | | | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | - Sérgio H. Ferreira
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| |
Collapse
|
230
|
Fractalkine signaling in microglia contributes to ectopic orofacial pain following trapezius muscle inflammation. J Neurosci 2013; 33:7667-80. [PMID: 23637160 DOI: 10.1523/jneurosci.4968-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fractalkine (FKN) signaling is involved in mechanical allodynia in the facial skin following trapezius muscle inflammation. Complete Freund's adjuvant (CFA) injection into the trapezius muscle produced mechanical allodynia in the ipsilateral facial skin that was not associated with facial skin inflammation and resulted in FKN but not FKN receptor (CX3CR1) expression, and microglial activation was enhanced in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). Intra-cisterna magna anti-CX3CR1 or anti-interleukin (IL)-1β neutralizing antibody administration decreased the enhanced excitability of Vc and C1-C2 neurons in CFA-injected rats, whereas intra-cisterna magna FKN administration induced microglial activation and mechanical allodynia in the facial skin. IL-1β expression and p38 mitogen-activated protein kinase phosphorylation were enhanced in activated microglia after CFA injection. The excitability of neurons whose receptive fields was located in the facial skin was significantly enhanced in CFA-injected rats, and the number of cells expressing phosphorylated extracellular signal-regulated kinase (pERK) following noxious mechanical stimulation of the facial skin was significantly increased in Vc and C1-C2. We also observed mechanical allodynia of the trapezius muscle as well as microglial activation and increased pERK expression in C2-C6 after noxious stimulation of the trapezius muscle in facial skin-inflamed rats. These findings suggest that FKN expression was enhanced in Vc and C1-C2 or C2-C6 following trapezius muscle or facial skin inflammation, microglia are activated via FKN signaling, IL-1β is released from the activated microglia, and the excitability of neurons in Vc and C1-C2 or C2-C6 is enhanced, resulting in the ectopic mechanical allodynia.
Collapse
|
231
|
Berta T, Liu YC, Xu ZZ, Ji RR. Tissue plasminogen activator contributes to morphine tolerance and induces mechanical allodynia via astrocytic IL-1β and ERK signaling in the spinal cord of mice. Neuroscience 2013; 247:376-85. [PMID: 23707980 DOI: 10.1016/j.neuroscience.2013.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 01/07/2023]
Abstract
Accumulating evidence indicates that activation of spinal cord astrocytes contributes importantly to nerve injury and inflammation-induced persistent pain and chronic opioid-induced antinociceptive tolerance. Phosphorylation of extracellular signal-regulated kinase (pERK) and induction of interleukin-1 beta (IL-1β) in spinal astrocytes have been implicated in astrocytes-mediated pain. Tissue plasminogen activator (tPA) is a serine protease that has been extensively used to treat stroke. We examined the potential involvement of tPA in chronic opioid-induced antinociceptive tolerance and activation of spinal astrocytes using tPA knockout (tPA(-/-)) mice and astrocyte cultures. tPA(-/-) mice exhibited unaltered nociceptive pain and morphine-induced acute analgesia. However, the antinociceptive tolerance, induced by chronic morphine (10mg/kg/day, s.c.), is abrogated in tPA(-/-) mice. Chronic morphine induces tPA expression in glial fibrillary acidic protein (GFAP)-expressing spinal cord astrocytes. Chronic morphine also increases IL-1β expression in GFAP-expressing astrocytes, which is abolished in tPA-deficient mice. In cultured astrocytes, morphine treatment increases tPA, IL-1β, and pERK expression, and the increased IL-1β and pERK expression is abolished in tPA-deficient astrocytes. tPA is also sufficient to induce IL-1β and pERK expression in astrocyte cultures. Intrathecal injection of tPA results in up-regulation of GFAP and pERK in spinal astrocytes but not up-regulation of ionized calcium binding adapter molecule 1 in spinal microglia. Finally, intrathecal tPA elicits persistent mechanical allodynia, which is inhibited by the astroglial toxin alpha-amino adipate and the MEK (ERK kinase) inhibitor U0126. Collectively, these data suggest an important role of tPA in regulating astrocytic signaling, pain hypersensitivity, and morphine tolerance.
Collapse
Affiliation(s)
- T Berta
- Pain Signaling and Plasticity Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
232
|
Kim M, Jeon J, Song J, Suh KH, Kim YH, Min KH, Lee KO. Synthesis of proline analogues as potent and selective cathepsin S inhibitors. Bioorg Med Chem Lett 2013; 23:3140-4. [PMID: 23639544 DOI: 10.1016/j.bmcl.2013.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 02/08/2023]
Abstract
Cathepsin S is a potential target of autoimmune disease. A series of proline derived compounds were synthesized and evaluated as cathepsin S inhibitors. We discovered potent cathepsin S inhibitors through structure-activity relationship studies of proline analogues. In particular, compound 19-(S) showed promising in vitro/vivo pharmacological activities and properties as a selective cathepsin S inhibitor.
Collapse
Affiliation(s)
- Mira Kim
- Department of Drug Discovery, Hanmi Research Center, 377-1 Yeongcheon-ri, Dongtan-myeon, Hwaseong, Gyeonggi-do 445-813, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
233
|
Fang JQ, Du JY, Liang Y, Fang JF. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Mol Pain 2013; 9:13. [PMID: 23517865 PMCID: PMC3608238 DOI: 10.1186/1744-8069-9-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.
Collapse
Affiliation(s)
- Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310053, China.
| | | | | | | |
Collapse
|
234
|
Wolf Y, Yona S, Kim KW, Jung S. Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 2013; 7:26. [PMID: 23507975 PMCID: PMC3600435 DOI: 10.3389/fncel.2013.00026] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/28/2013] [Indexed: 12/30/2022] Open
Abstract
Microglial cells in brain and spinal cord are characterized by high expression of the chemokine receptor CX3CR1. Expression of the sole CX3CR1 ligand, the membrane-tethered and sheddable chemokine CX3CL1/fractalkine, is restricted in the brain parenchyma to selected neurons. Here we summarize our current understanding of the physiological role of CX3CR1 for microglia function and the CX3C axis in microglial/neuronal crosstalk in homeostasis and under challenge. Moreover, we will discuss the efforts of our laboratory and others to exploit CX3CR1 promoter activity for the visualization and genetic manipulation of microglia to probe their functional contributions in the central nerve system (CNS) context.
Collapse
Affiliation(s)
- Yochai Wolf
- Department of Immunology, The Weizmann Institute of Science Rehovot, Israel
| | | | | | | |
Collapse
|
235
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
236
|
Molet J, Pohl M. Gene-based approaches in pain research and exploration of new therapeutic targets and strategies. Eur J Pharmacol 2013; 716:129-41. [PMID: 23500201 DOI: 10.1016/j.ejphar.2013.01.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Large panel of gene-based techniques is used for many years specifically in the pain research field. From the first identification (cloning) of some "mythic" genes, such as those encoding opioid or capsaicin receptors allowing then the creation of first-generation knockout mice, to the today conditional (time, tissue, cell-type and even pathology-dependent) and regulatable modulation of a gene function, these approaches largely contributed to fundamental leaps forward in our understanding of the function of some proteins and of their interest as possible druggable targets. Perhaps one of the most remarkable evolution in the last years is the passage of these approaches from the bench to the patient; whether it concerns the identification of genes involved in inherited pain insensibility/susceptibility, the search for genetic markers of pain types, the individual pharmacogenomics or even the first gene therapy trials. From many possible variants of gene-grounded techniques used in pain research we focus here on gene knockouts and some recent developments, on viral vectors-based gene transfer and on transgenic models for the tracing of pain pathways. Through these selected examples we attempted to emphasize the immense potential of these approaches and their already well-recognized contribution in both the basic and clinical pain research.
Collapse
Affiliation(s)
- Jenny Molet
- INSERM UMRS 975, CNRS UMR 7225, UPMC, Equipe Douleurs , Faculté de Médecine Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013 Paris, France.
| | | |
Collapse
|
237
|
Genes, molecules and patients--emerging topics to guide clinical pain research. Eur J Pharmacol 2013; 716:188-202. [PMID: 23500200 PMCID: PMC3793871 DOI: 10.1016/j.ejphar.2013.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 01/23/2023]
Abstract
This review selectively explores some areas of pain research that, until recently, have been poorly understood. We have chosen four topics that relate to clinical pain and we discuss the underlying mechanisms and related pathophysiologies contributing to these pain states. A key issue in pain medicine involves crucial events and mediators that contribute to normal and abnormal pain signaling, but remain unseen without genetic, biomarker or imaging analysis. Here we consider how the altered genetic make-up of familial pains reveals the human importance of channels discovered by preclinical research, followed by the contribution of receptors as stimulus transducers in cold sensing and cold pain. Finally we review recent data on the neuro-immune interactions in chronic pain and the potential targets for treatment in cancer-induced bone pain.
Collapse
|
238
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
239
|
Caraglia M, Luongo L, Salzano G, Zappavigna S, Marra M, Guida F, Lusa S, Giordano C, De Novellis V, Rossi F, Abbruzzese Saccardi A, De Rosa G, Maione S. Stealth Liposomes Encapsulating Zoledronic Acid: A New Opportunity To Treat Neuropathic Pain. Mol Pharm 2013; 10:1111-8. [DOI: 10.1021/mp3006215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | - Giuseppina Salzano
- Department of Pharmacy, University Federico II of Naples, Via Montesano, 49,
80131 Naples, Italy
| | | | | | - Francesca Guida
- Department of Pharmacy, University Federico II of Naples, Via Montesano, 49,
80131 Naples, Italy
| | - Sara Lusa
- Department of Pharmacy, University Federico II of Naples, Via Montesano, 49,
80131 Naples, Italy
| | | | | | | | | | - Giuseppe De Rosa
- Department of Pharmacy, University Federico II of Naples, Via Montesano, 49,
80131 Naples, Italy
| | | |
Collapse
|
240
|
Involvement of EphB1 receptors signalling in models of inflammatory and neuropathic pain. PLoS One 2013; 8:e53673. [PMID: 23341972 PMCID: PMC3547059 DOI: 10.1371/journal.pone.0053673] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies.
Collapse
|
241
|
5'-Chloro-5'-deoxy-(±)-ENBA, a potent and selective adenosine A(1) receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor or cardiovascular functions. Molecules 2012; 17:13712-26. [PMID: 23174891 PMCID: PMC6268894 DOI: 10.3390/molecules171213712] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/10/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022] Open
Abstract
This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A(1) receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A(1) adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A(1) receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A(1) receptor agonist in neuropathic pain symptoms.
Collapse
|
242
|
Johnson JL, Hutchinson MR, Williams DB, Rolan P. Medication-overuse headache and opioid-induced hyperalgesia: A review of mechanisms, a neuroimmune hypothesis and a novel approach to treatment. Cephalalgia 2012; 33:52-64. [PMID: 23144180 DOI: 10.1177/0333102412467512] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction Patients with chronic headache who consume large amounts of analgesics are often encountered in clinical practice. Excessive intake of analgesics is now considered to be a cause, rather than simply a consequence, of frequent headaches, and as such the diagnosis “medication-overuse headache” (MOH) has been formulated. Despite the prevalence and clinical impact of MOH, the pathophysiology behind this disorder remains unclear and specific mechanism-based treatment options are lacking. Discussion Although most acute headache treatments have been alleged to cause MOH, here we conclude from the literature that opioids are a particularly problematic drug class consistently associated with worsening headache. MOH may not be a single entity, as each class of drug implicated may cause MOH via a different mechanism. Recent evidence indicates that chronic opioid administration may exacerbate pain in the long term by activating toll-like receptor-4 on glial cells, resulting in a pro-inflammatory state that manifests clinically as increased pain. Thus, from the available evidence it seems opioid-overuse headache is a phenomenon similar to opioid-induced hyperalgesia, which derives from a cumulative interaction between central sensitisation, due to repeated activation of nociceptive pathways by recurrent headaches, and pain facilitation due to glial activation. Conclusion Treatment strategies directed at inhibiting glial activation may be of benefit alongside medication withdrawal in the management of MOH.
Collapse
Affiliation(s)
| | | | - Desmond B Williams
- School of Pharmacy and Medical Sciences, University of South Australia, Australia
| | - Paul Rolan
- Discipline of Pharmacology, University of Adelaide, Australia
- Pain and Anaesthesia Research Clinic, Royal Adelaide Hospital, Australia
- Pain Management Unit, Royal Adelaide Hospital, Australia
| |
Collapse
|
243
|
Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J Neurosci 2012; 32:10833-40. [PMID: 22875918 DOI: 10.1523/jneurosci.5628-11.2012] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies with animal models have suggested that reaction of glia, including microglia and astrocytes, critically contributes to the development and maintenance of chronic pain. However, the involvement of glial reaction in human chronic pain is unclear. We performed analyses to compare the glial reaction profiles in the spinal dorsal horn (SDH) from three cohorts of sex- and age-matched human postmortem tissues: (1) HIV-negative patients, (2) HIV-positive patients without chronic pain, and (3) HIV patients with chronic pain. Our results indicate that the expression levels of CD11b and Iba1, commonly used for labeling microglial cells, did not differ in the three patient groups. However, GFAP and S100β, often used for labeling astrocytes, were specifically upregulated in the SDH of the "pain-positive" HIV patients but not in the "pain-negative" HIV patients. In addition, proinflammatory cytokines, TNFα and IL-1β, were specifically increased in the SDH of pain-positive HIV patients. Furthermore, proteins in the MAPK signaling pathway, including pERK, pCREB and c-Fos, were also upregulated in the SDH of pain-positive HIV patients. Our findings suggest that reaction of astrocytes in the SDH may play a role during the maintenance phase of HIV-associated chronic pain.
Collapse
|
244
|
Lyo V, Cattaruzza F, Kim TN, Walker AW, Paulick M, Cox D, Cloyd J, Buxbaum J, Ostroff J, Bogyo M, Grady EF, Bunnett NW, Kirkwood KS. Active cathepsins B, L, and S in murine and human pancreatitis. Am J Physiol Gastrointest Liver Physiol 2012; 303:G894-903. [PMID: 22899821 PMCID: PMC3469694 DOI: 10.1152/ajpgi.00073.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cathepsins regulate premature trypsinogen activation within acinar cells, a key initial step in pancreatitis. The identity, origin, and causative roles of activated cathepsins in pancreatic inflammation and pain are not defined. By using a near infrared-labeled activity-based probe (GB123) that covalently modifies active cathepsins, we localized and identified activated cathepsins in mice with cerulein-induced pancreatitis and in pancreatic juice from patients with chronic pancreatitis. We used inhibitors of activated cathepsins to define their causative role in pancreatic inflammation and pain. After GB123 administration to mice with pancreatitis, reflectance and confocal imaging showed significant accumulation of the probe in inflamed pancreas compared with controls, particularly in acinar cells and macrophages, and in spinal cord microglia and neurons. Biochemical analysis of pancreatic extracts identified them as cathepsins B, L, and S (Cat-B, Cat-L, and Cat-S, respectively). These active cathepsins were also identified in pancreatic juice from patients with chronic pancreatitis undergoing an endoscopic procedure for the treatment of pain, indicating cathepsin secretion. The cathepsin inhibitor K11777 suppressed cerulein-induced activation of Cat-B, Cat-L, and Cat-S in the pancreas and ameliorated pancreatic inflammation, nocifensive behavior, and activation of spinal nociceptive neurons. Thus pancreatitis is associated with an increase in the active forms of the proteases Cat-B, Cat-L, and Cat-S in pancreatic acinar cells and macrophages, and in spinal neurons and microglial cells. Inhibition of cathepsin activation ameliorated pancreatic inflammation and pain. Activity-based probes permit identification of proteases that are predictive biomarkers of disease progression and response to therapy and may be useful noninvasive tools for the detection of pancreatic inflammation.
Collapse
Affiliation(s)
- Victoria Lyo
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - Fiore Cattaruzza
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - Tyson N. Kim
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - Austin W. Walker
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - Margot Paulick
- 2Department of Pathology, Stanford University, Stanford, California;
| | - Daniel Cox
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - Jordan Cloyd
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - James Buxbaum
- 3Department of Gastroenterology, University of California, San Francisco, San Francisco, California; Departments of Pharmacology and Medicine, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - James Ostroff
- 3Department of Gastroenterology, University of California, San Francisco, San Francisco, California; Departments of Pharmacology and Medicine, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Matthew Bogyo
- 2Department of Pathology, Stanford University, Stanford, California;
| | - Eileen F. Grady
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| | - Nigel W. Bunnett
- 3Department of Gastroenterology, University of California, San Francisco, San Francisco, California; Departments of Pharmacology and Medicine, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Kimberly S. Kirkwood
- 1Department of Surgery, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
245
|
Daigo E, Sakuma Y, Miyoshi K, Noguchi K, Kotani J. Increased expression of interleukin-18 in the trigeminal spinal subnucleus caudalis after inferior alveolar nerve injury in the rat. Neurosci Lett 2012; 529:39-44. [DOI: 10.1016/j.neulet.2012.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023]
|
246
|
Calvo M, Dawes JM, Bennett DLH. The role of the immune system in the generation of neuropathic pain. Lancet Neurol 2012; 11:629-42. [PMID: 22710756 DOI: 10.1016/s1474-4422(12)70134-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Persistent pain is a sequela of several neurological conditions with a primary immune basis, such as Guillain-Barré syndrome and multiple sclerosis. Additionally, diverse forms of injury to the peripheral or the central nervous systems--whether traumatic, metabolic, or toxic--result in substantial recruitment and activation of immune cells. This response involves the innate immune system, but evidence also exists of T-lymphocyte recruitment, and in some patient cohorts antibodies to neuronal antigens have been reported. Mediators released by immune cells, such as cytokines, sensitise nociceptive signalling in the peripheral and central nervous systems. Preclinical data suggest an immune pathogenesis of neuropathic pain, but clinical evidence of a central role of the immune system is less clear. An important challenge for the future is to establish to what extent this immune response initiates or maintains neuropathic pain in patients and thus whether it is amenable to therapy.
Collapse
Affiliation(s)
- Margarita Calvo
- Department of Neurorestoration, Wolfson CARD, King's College London, London, UK
| | | | | |
Collapse
|
247
|
Jeon HJ, Han SR, Park MK, Yang KY, Bae YC, Ahn DK. A novel trigeminal neuropathic pain model: compression of the trigeminal nerve root produces prolonged nociception in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:149-58. [PMID: 22449477 DOI: 10.1016/j.pnpbp.2012.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 12/13/2022]
Abstract
We demonstrate the establishment of a novel animal model for trigeminal neuropathic pain following compression of the trigeminal nerve root, which produces prolonged nociceptive behavior and demyelination of the trigeminal nerve root. Under anesthesia, male Sprague-Dawley rats (200-230 g) were mounted onto a stereotaxic frame and injections of a 4% agar solution (10 μl) were given to achieve compression of the trigeminal nerve root. A sham operation was performed using identical procedures but without agar injections. Nociceptive behavior was examined 3 days before and then at 3, 7, 10, 14, 17, 21, 24, 30, 40, 55, and 70 days after the surgery. Compression of the trigeminal nerve root caused mechanical allodynia, hyperalgesia, and cold hypersensitivity. Mechanical allodynia was established within 3 days and recovered to preoperative levels on postoperative day (POD) 40. Mechanical hyperalgesia and cold hypersensitivity persisted until 55 days following compression. The compression produced focal demyelination in the trigeminal nerve root. In the medullary dorsal horn, phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) was found to be exclusively expressed in the microglia on POD 14. Furthermore, intraperitoneal administration of carbamazepine (50mg/kg) significantly blocked mechanical allodynia and reduced p38 MAPK activation induced by the compression of the trigeminal nerve root. Our findings suggest that prolonged nociceptive behavior following compression of the trigeminal nerve root may mimic trigeminal neuralgia in this animal model and that the activation of p38 MAPK in the microglia contributes to pain hypersensitivity in rats that have undergone compression of the trigeminal nerve root.
Collapse
Affiliation(s)
- Hye J Jeon
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
248
|
Sun ZH, Xu XP, Song ZB, Zhang Z, Wang N, Guo QL. Repeated Intrathecal Administration of Ropivacaine Causes Neurotoxicity in Rats. Anaesth Intensive Care 2012; 40:825-31. [PMID: 22934865 DOI: 10.1177/0310057x1204000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have shown that ropivacaine is the least neurotoxic local anaesthetic. Most of the data derive from short-term ropivacaine injection into the subarachnoid space. Intrathecal administration for a prolonged period, and the histological changes and behavioural effects of repeated intrathecal administration, have not previously been investigated. We studied the possible neurotoxicity of intrathecal injection of ropivacaine in a rat model. Rats received 0.12 ml/kg body weight of ropivacaine at concentrations of 0.5 or 1%, or normal saline only, via an implanted intrathecal catheter at 90-minute intervals for 12 hours. On days 1, 3, 5, 7, 14 and 28, the spinal cord was examined by light and electron microscopy at the L3 level. We assessed sensory thresholds to noxious stimulation, behavioural change and protein kinase B immunoreactivity for possible neuronal injury within the spinal cord. Ropivacaine 1% induced thermal hyperalgesia and mechanical allodynia, neuronal injury characterised by tissue oedema, proliferation of glial cells, neuronal morphology changes and degeneration and protein kinase B expression. There were no significant differences in motor function as a result of different concentrations of ropivacaine. Repeated intrathecal injection of ropivacaine 1% can induce neurotoxicity in rats. Our data suggests that expression of protein kinase B might be involved in this neurotoxicity.
Collapse
Affiliation(s)
- Z. H. Sun
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - X. P. Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Z. B. Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Z. Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - N. Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Q. L. Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
249
|
Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res 2012; 1465:1-9. [DOI: 10.1016/j.brainres.2012.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/21/2012] [Accepted: 05/11/2012] [Indexed: 12/30/2022]
|
250
|
Tsuda M, Beggs S, Salter MW, Inoue K. Microglia and intractable chronic pain. Glia 2012; 61:55-61. [DOI: 10.1002/glia.22379] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
|