201
|
Vullo D, Durante M, Di Leva FS, Cosconati S, Masini E, Scozzafava A, Novellino E, Supuran CT, Carta F. Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma. J Med Chem 2016; 59:5857-67. [PMID: 27253845 DOI: 10.1021/acs.jmedchem.6b00462] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of monothiocarbamates (MTCs) were prepared from primary/secondary amines and COS as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, using the dithiocarbamates, the xanthates, and the trithiocarbonates as lead compounds. The MTCs effectively inhibited the pharmacologically relevant human (h) hCAs isoforms I, II, IX, and XII in vitro and showed KIs spanning between the low and medium nanomolar range. By means of a computational study, the MTC moiety binding mode on the CAs was explained. Furthermore, a selection of MTCs were evaluated in a normotensive glaucoma rabbit model for their intraocular pressure (IOP) lowering effects and showed interesting activity.
Collapse
Affiliation(s)
- Daniela Vullo
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze , Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Mariaconcetta Durante
- Dipartimento NEUROFARBA, Sezione di Farmacologia, Università degli Studi di Firenze , Viale Pieraccini 6, 50139 Florence, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II" , Via D. Montesano 49, 80131 Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Università di Napoli , Via Vivaldi 43, 81100 Caserta, Italy
| | - Emanuela Masini
- Dipartimento NEUROFARBA, Sezione di Farmacologia, Università degli Studi di Firenze , Viale Pieraccini 6, 50139 Florence, Italy
| | - Andrea Scozzafava
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze , Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II" , Via D. Montesano 49, 80131 Naples, Italy
| | - Claudiu T Supuran
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze , Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.,Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze , Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
202
|
Akocak S, Alam MR, Shabana AM, Sanku RKK, Vullo D, Thompson H, Swenson ER, Supuran CT, Ilies MA. PEGylated Bis-Sulfonamide Carbonic Anhydrase Inhibitors Can Efficiently Control the Growth of Several Carbonic Anhydrase IX-Expressing Carcinomas. J Med Chem 2016; 59:5077-88. [PMID: 27144971 DOI: 10.1021/acs.jmedchem.6b00492] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of aromatic/heterocyclic bis-sulfonamides were synthesized from three established aminosulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor pharmacophores, coupled with either ethylene glycol oligomeric or polymeric diamines to yield bis-sulfonamides with short or long (polymeric) linkers. Testing of novel inhibitors and their precursors against a panel of membrane-bound CA isoforms, including tumor-overexpressed CA IX and XII and cytosolic isozymes, identified nanomolar-potent inhibitors against both classes and several compounds with medium isoform selectivity in a detailed structure-activity relationship study. The ability of CA inhibitors to kill tumor cells overexpressing CA IX and XII was tested under normoxic and hypoxic conditions, using 2D and 3D in vitro cellular models. The study identified a nanomolar potent PEGylated bis-sulfonamide CA inhibitor (25) able to significantly reduce the viability of colon HT-29, breast MDA-MB231, and ovarian SKOV-3 cancer cell lines, thus revealing the potential of polymer conjugates in CA inhibition and cancer treatment.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Sciences and Molder Center for Drug Discovery Research, Temple University School of Pharmacy , 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University , 02040 Adiyaman, Turkey
| | - M Raqibul Alam
- Department of Pharmaceutical Sciences and Molder Center for Drug Discovery Research, Temple University School of Pharmacy , 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Ahmed M Shabana
- Department of Pharmaceutical Sciences and Molder Center for Drug Discovery Research, Temple University School of Pharmacy , 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Rajesh Kishore Kumar Sanku
- Department of Pharmaceutical Sciences and Molder Center for Drug Discovery Research, Temple University School of Pharmacy , 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Daniela Vullo
- NEUROFARBA Department, Pharmaceutical Sciences Section, Universita degli Studi di Firenze, Polo Scientifico , Via Ugo Schiff no. 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Harry Thompson
- Department of Pharmaceutical Sciences and Molder Center for Drug Discovery Research, Temple University School of Pharmacy , 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Erik R Swenson
- Medical Service, VA Puget Sound Health Care System, University of Washington , Seattle, Washington 98195, United States
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Sciences Section, Universita degli Studi di Firenze, Polo Scientifico , Via Ugo Schiff no. 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Marc A Ilies
- Department of Pharmaceutical Sciences and Molder Center for Drug Discovery Research, Temple University School of Pharmacy , 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
203
|
Kumar S, Ceruso M, Tuccinardi T, Supuran CT, Sharma PK. Pyrazolylbenzo[d]imidazoles as new potent and selective inhibitors of carbonic anhydrase isoforms hCA IX and XII. Bioorg Med Chem 2016; 24:2907-2913. [PMID: 27166574 DOI: 10.1016/j.bmc.2016.04.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/19/2023]
Abstract
Novel pyrazolylbenzo[d]imidazole derivatives (2a-2f) were designed, synthesized and evaluated against four human carbonic anhydrase isoforms belonging to α family comprising of two cytosolic isoforms hCA I and II as well as two transmembrane tumor associated isoforms hCA IX and XII. Starting from these derivatives that showed high potency but low selectivity in favor of tumor associated isoforms hCA IX and XII, we investigated the impact of removing the sulfonamide group. Thus, analogs 3a-3f without sulfonamide moiety were synthesized and biological assay revealed a good activity as well as an excellent selectivity as inhibitors for tumor associated hCA IX and hCA XII and the same was analyzed by molecular docking studies.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, and Neurofarba Department, Sezione di Scienze Farmaceutiche, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, and Neurofarba Department, Sezione di Scienze Farmaceutiche, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India.
| |
Collapse
|
204
|
Krasavin M, Stavniichuk R, Zozulya S, Borysko P, Vullo D, Supuran CT. Discovery of Strecker-type α-aminonitriles as a new class of human carbonic anhydrase inhibitors using differential scanning fluorimetry. J Enzyme Inhib Med Chem 2016; 31:1707-11. [PMID: 26983069 DOI: 10.3109/14756366.2016.1156676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new type of carbonic anhydrase inhibitors was identified via differential scanning fluorimetry (DSF) screening. The compounds displayed interesting inhibition profile against human carbonic anhydrase isoforms I, II, IX and XII with an obvious selectivity displayed by one compound toward carbonic anhydrase (CA) IX, an established anti-cancer target. A hypothetical mechanism of inhibitory action by the Strecker-type α-aminonitriles has been proposed.
Collapse
Affiliation(s)
- Mikhail Krasavin
- a Institute of Chemistry and Translational Biomedicine, Saint Petersburg State University , Peterhof , Russian Federation
| | | | - Sergey Zozulya
- b Enamine Ltd , Kyiv , Ukraine .,c Taras Shevchenko National University , Kyiv , Ukraine , and
| | | | - Daniela Vullo
- d Neurofarba Department, Universita degli Studi di Firenze , Florence , Italy
| | - Claudiu T Supuran
- d Neurofarba Department, Universita degli Studi di Firenze , Florence , Italy
| |
Collapse
|
205
|
Defective hepatic bicarbonate production due to carbonic anhydrase VA deficiency leads to early-onset life-threatening metabolic crisis. Genet Med 2016; 18:991-1000. [DOI: 10.1038/gim.2015.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
|
206
|
Bruno E, Buemi MR, De Luca L, Ferro S, Monforte AM, Supuran CT, Vullo D, De Sarro G, Russo E, Gitto R. In Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents. ChemMedChem 2016; 11:1812-8. [DOI: 10.1002/cmdc.201500596] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/05/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Elvira Bruno
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Maria R. Buemi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Stefania Ferro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Anna-Maria Monforte
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| | - Claudiu T. Supuran
- Neurofarba: Department of Neuroscience, Psychology, Pharmaceuticals and Child Health; Section of Pharmaceutical and Nutraceutical Sciences; University of Florence; 50019 Sesto Fiorentino Florence Italy
| | - Daniela Vullo
- Neurofarba: Department of Neuroscience, Psychology, Pharmaceuticals and Child Health; Section of Pharmaceutical and Nutraceutical Sciences; University of Florence; 50019 Sesto Fiorentino Florence Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine; University of Catanzaro; Viale Europa Località Germaneto 88100 Catanzaro Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine; University of Catanzaro; Viale Europa Località Germaneto 88100 Catanzaro Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (CHIBIOFARAM); University of Messina; Viale Annunziata 98168 Messina Italy
| |
Collapse
|
207
|
Talibov VO, Linkuvienė V, Matulis D, Danielson UH. Kinetically Selective Inhibitors of Human Carbonic Anhydrase Isozymes I, II, VII, IX, XII, and XIII. J Med Chem 2016; 59:2083-93. [PMID: 26805033 DOI: 10.1021/acs.jmedchem.5b01723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To get a better understanding of the possibility of developing selective carbonic anhydrase (CA) inhibitors, interactions between 17 benzenesulphonamide ligands and 6 human CAs (full-length CA I, II, VII, and XIII and catalytic domains of CA IX and XII) were characterized using surface plasmon resonance and fluorescent-based thermal shift assays. Kinetics revealed that the strongest binders had subnanomolar affinities with low dissociation rates (i.e., kd values around 1 × 10(-3) s(-1)) or were essentially irreversible. Chemodynamic analysis of the interactions highlighted an intrinsic mechanism of the CA-sulphonamide interaction kinetics and showed that slow dissociation rates were mediated by large hydrophobic contacts. The studied inhibitors demonstrated a high cross-reactivity within the protein family. However, according to chemical phylogenetic analysis developed for kinetic data, several ligands were found to be selective against certain CA isozymes, indicating that it should be possible to develop selective CA inhibitors suitable for clinical use.
Collapse
Affiliation(s)
- Vladimir O Talibov
- Department of Chemistry - BMC, Uppsala University , Box 576, Uppsala SE-751 23, Sweden
| | - Vaida Linkuvienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , V.A. Graičiu̅no 8, Vilnius LT-02241, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , V.A. Graičiu̅no 8, Vilnius LT-02241, Lithuania
| | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University , Box 576, Uppsala SE-751 23, Sweden.,Science for Life Laboratory, Uppsala University , Uppsala SE-751 23, Sweden
| |
Collapse
|
208
|
Kumari S, Idrees D, Mishra CB, Prakash A, Wahiduzzaman, Ahmad F, Hassan MI, Tiwari M. Design and synthesis of a novel class of carbonic anhydrase-IX inhibitor 1-(3-(phenyl/4-fluorophenyl)-7-imino-3H-[1,2,3]triazolo[4,5d]pyrimidin 6(7H)yl)urea. J Mol Graph Model 2016; 64:101-109. [PMID: 26826799 DOI: 10.1016/j.jmgm.2016.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/11/2016] [Accepted: 01/16/2016] [Indexed: 02/07/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a promising target in cancer therapy especially in the case of hypoxia-induced tumors. The selective inhibition of CA isozymes is a challenging task in drug design and discovery process. Here, we performed fluorescence-binding studies and inhibition assay combined with molecular docking and molecular dynamics (MD) simulation analyses to determine the binding affinity of two synthesized triazolo-pyrimidine urea derived (TPUI and TPUII) compounds with CAIX and CAII. Fluorescence binding results are showing that molecule TPUI has an excellent binding-affinity for CAIX (kD=0.048μM). The TPUII also exhibits an appreciable binding affinity (kD=7.52μM) for CAIX. TPUI selectively inhibits CAIX as compared to TPUII in the 4-NPA assay. Docking studies show that TPUI is spatially well-fitted in the active site cavity of CAIX, and is involve in H-bond interactions with His94, His96, His119, Thr199 and Thr200. MD simulation studies revealed that TPUI efficiently binds to CAIX and essential active site residual interaction is consistent during the entire simulation of 40ns. These studies suggest that TPUI appeared as novel class of CAIX inhibitor, and may be used as a lead molecule for the development of potent and selective CAIX inhibitor for the hypoxia-induced cancer therapy.
Collapse
Affiliation(s)
- Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Danish Idrees
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chandra Bhushan Mishra
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Amresh Prakash
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Wahiduzzaman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
209
|
Petrou A, Geronikaki A, Terzi E, Guler OO, Tuccinardi T, Supuran CT. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with secondary sulfonamides incorporating benzothiazole scaffolds. J Enzyme Inhib Med Chem 2016; 31:1306-11. [PMID: 26745009 DOI: 10.3109/14756366.2015.1128427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of benzothiazole-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I and hCA II and the transmembrane hCA IX and hCA XII. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting hCA IX and hCA XII over the off-target ones hCA I and hCA II. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.
Collapse
Affiliation(s)
- Anthi Petrou
- a School of Pharmacy, Aristotle University of Thessaloniki , Thessalonik , Greece
| | - Athina Geronikaki
- a School of Pharmacy, Aristotle University of Thessaloniki , Thessalonik , Greece
| | - Emine Terzi
- b Neurofarba Department, Section of Pharmaceutical Sciences, Università Degli Studi Di Firenze , Sesto Fiorentino , Florence , Italy .,c Department of Medical Biology , Faculty of Medicine, Yildirim Beyazit University, Bilkent Campus , Ankara , Turkey , and
| | - Ozen Ozensoy Guler
- c Department of Medical Biology , Faculty of Medicine, Yildirim Beyazit University, Bilkent Campus , Ankara , Turkey , and
| | | | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical Sciences, Università Degli Studi Di Firenze , Sesto Fiorentino , Florence , Italy
| |
Collapse
|
210
|
Nocentini A, Ceruso M, Carta F, Supuran CT. 7-Aryl-triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2015; 31:1226-33. [DOI: 10.3109/14756366.2015.1115401] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Alessio Nocentini
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
| | - Mariangela Ceruso
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Fabrizio Carta
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T. Supuran
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
211
|
Durdagi S, Korkmaz N, Işık S, Vullo D, Astley D, Ekinci D, Salmas RE, Senturk M, Supuran CT. Kinetic and docking studies of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with some hydroxylic compounds. J Enzyme Inhib Med Chem 2015; 31:1214-20. [DOI: 10.3109/14756366.2015.1114930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey,
| | - Neslihan Korkmaz
- Department of Chemistry, Science Faculty, Ege University, Izmir, Turkey,
| | - Semra Işık
- Department of Chemistry, Science & Art Faculty, Balikesir University, Balikesir, Turkey,
| | - Daniela Vullo
- Polo Scientifico, Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy,
| | - Demet Astley
- Department of Chemistry, Science Faculty, Ege University, Izmir, Turkey,
| | - Deniz Ekinci
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey, and
| | - Ramin E. Salmas
- Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey,
| | - Murat Senturk
- Department of Chemistry, Art and Science Faculty, Ağrı Ibrahim Cecen University, Agri, Turkey
| | - Claudiu T. Supuran
- Polo Scientifico, Laboratorio Di Chimica Bioinorganica, Università Degli Studi Di Firenze, Florence, Italy,
| |
Collapse
|
212
|
Klier M, Jamali S, Ames S, Schneider HP, Becker HM, Deitmer JW. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly. FEBS J 2015; 283:191-200. [PMID: 26470855 DOI: 10.1111/febs.13562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry. Our results indicate both extracellular and intracellular catalytic activity of CA IX. Reduced rates of CO2 -dependent intracellular pH changes after knockdown of CA IX confirmed these findings in two breast cancer cell lines: MCF-7 and MDA-MB-231. Our results demonstrate a new function of CA IX that may be important in the search for therapeutic cancer drugs targeting CA IX.
Collapse
Affiliation(s)
- Michael Klier
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Germany
| | - Somayeh Jamali
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Germany
| | - Samantha Ames
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Germany
| | - Hans-Peter Schneider
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Germany
| | - Holger M Becker
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Germany
| |
Collapse
|
213
|
Leitans J, Kazaks A, Balode A, Ivanova J, Zalubovskis R, Supuran CT, Tars K. Efficient Expression and Crystallization System of Cancer-Associated Carbonic Anhydrase Isoform IX. J Med Chem 2015; 58:9004-9. [DOI: 10.1021/acs.jmedchem.5b01343] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janis Leitans
- Biomedical Research and Study Center, Ratsupites 1, LV-1067, Riga, Latvia
| | - Andris Kazaks
- Biomedical Research and Study Center, Ratsupites 1, LV-1067, Riga, Latvia
| | - Agnese Balode
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Jekaterina Ivanova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Claudiu T. Supuran
- NEUROFARBA
Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Laboratorio
di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via dellaLastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Kaspars Tars
- Biomedical Research and Study Center, Ratsupites 1, LV-1067, Riga, Latvia
- Faculty
of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| |
Collapse
|
214
|
Syarifin AN, Jusman SW, Sadikin M. Gene expression and enzyme activities of carbonic anhydrase and glutaminase in rat kidneys induced by chronic systemic hypoxia. MEDICAL JOURNAL OF INDONESIA 2015. [DOI: 10.13181/mji.v24i3.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Background: Hypoxia can cause acidosis. Kidney plays an essential role in maintaining acid-base balance, which involves the activities of carbonic anhydrase (CA) and glutaminase (GLS). This study is aimed to determine the expression and activities of the CA9 and GLS1 enzymes in relation to hypoxia inducible factor-1α (HIF-1α), a transcription factor protein which is a marker of hypoxia.Methods: This study was an in vivo experimental study with coupled paralel design. used 25 male Sprague-Dawley rats weighing 150-200 g. Rats were divided into 5 groups: the control group (normoxic condition) and 4 treatment groups. The latter were kept in a hypoxic chamber (10% O2: 90% N2) for 1, 3, 5 and 7 days. All rats were euthanized after treatment, kidneys excised, tissues homogenized and investigated for gene expression of CA9, GLS1 and HIF-1α. On protein level, total enzymatic activities of CA and GLS and protein of HIF-1α were also investigated. Data were analyzed statistically using ANOVA for significance, and as its alternative, used Mann-Whitney and Kruskal-Wallis test.Results: Results showed that HIF-1α mRNA increased during hypoxia, but not HIF-1α protein. It seemed that acidosis occurs in kidney tissue, indicated by increased CA9 and GLS1 mRNA expression and specific activity of total CA and GLS1. Expression of CA9 and GLS1 mRNA both showed strong positive correlation with HIF-1α mRNA, but not with HIF-1α protein.Conclusion: It is suggested that during chronic systemic hypoxia, gene expression of CA9 and GLS1 and their enzyme activities were increased as a response to acidosis and related with the expression of HIF-1α mRNA.
Collapse
|
215
|
La Regina G, Coluccia A, Famiglini V, Pelliccia S, Monti L, Vullo D, Nuti E, Alterio V, De Simone G, Monti SM, Pan P, Parkkila S, Supuran CT, Rossello A, Silvestri R. Discovery of 1,1′-Biphenyl-4-sulfonamides as a New Class of Potent and Selective Carbonic Anhydrase XIV Inhibitors. J Med Chem 2015; 58:8564-72. [DOI: 10.1021/acs.jmedchem.5b01144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giuseppe La Regina
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Antonio Coluccia
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Famiglini
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sveva Pelliccia
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ludovica Monti
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Daniela Vullo
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università di Firenze, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Elisa Nuti
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Vincenzo Alterio
- Istituto
di Biostrutture e Bioimmmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Giuseppina De Simone
- Istituto
di Biostrutture e Bioimmmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Simona Maria Monti
- Istituto
di Biostrutture e Bioimmmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Peiwen Pan
- School
of Medicine, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - Seppo Parkkila
- School
of Medicine, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università di Firenze, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Armando Rossello
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Romano Silvestri
- Istituto
Pasteur Italia—Fondazione Cenci Bolognetti, Dipartimento di
Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
216
|
Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives. Bioorg Med Chem 2015; 23:7353-8. [PMID: 26534780 DOI: 10.1016/j.bmc.2015.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
The inhibition of two human cytosolic carbonic anhydrase isozymes I and II, with some novel glycine and phenylalanine sulfonamide derivatives were investigated. Newly synthesized compounds G1-4 and P1-4 showed effective inhibition profiles with KI values in the range of 14.66-315μM for hCA I and of 18.31-143.8μM against hCA II, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico docking studies were applied. Atomistic molecular dynamic simulations were performed for docking poses which utilize to illustrate the inhibition mechanism of used inhibitors into active site of CAII. These sulfonamide containing compounds generally were competitive inhibitors with 4-nitrophenylacetate as substrate. Some investigated compounds here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide, sulfanilamide or mafenide and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.
Collapse
|
217
|
Karioti A, Ceruso M, Carta F, Bilia AR, Supuran CT. New natural product carbonic anhydrase inhibitors incorporating phenol moieties. Bioorg Med Chem 2015; 23:7219-25. [PMID: 26498393 DOI: 10.1016/j.bmc.2015.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.
Collapse
Affiliation(s)
- Anastasia Karioti
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy.
| | - Anna-Rita Bilia
- Università degli Studi di Firenze, PHYTOLAB, Departimento di Chimica Ugo Schiff, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
218
|
Inhibition of mammalian carbonic anhydrase isoforms I-XIV with a series of phenolic acid esters. Bioorg Med Chem 2015; 23:7181-8. [PMID: 26498394 DOI: 10.1016/j.bmc.2015.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022]
Abstract
A series of phenolic acid esters incorporating caffeic, ferulic, and p-coumaric acid, and benzyl, m/p-hydroxyphenethyl- as well as p-hydroxy-phenethoxy-phenethyl moieties were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Many of the mammalian isozymes of human (h) or murine (m) origin, hCA I-hCA XII, mCA XIII and hCA XIV, were inhibited in the submicromolar range by these derivatives (with KIs of 0.31-1.03 μM against hCA VA, VB, VI, VII, IX and XIV). The off-target, highly abundant isoforms hCA I and II, as well as hCA III, IV and XII were poorly inhibited by many of these esters, although the original phenolic acids were micromolar inhibitors. These phenols, like others investigated earlier, possess a CA inhibition mechanism distinct of the sulfonamides/sulfamates, clinically used drugs for the treatment of a multitude of pathologies, but with severe side effects due to hCA I/II inhibition. Unlike the sulfonamides, which bind to the catalytic zinc ion, phenols are anchored at the Zn(II)-coordinated water molecule, binding more externally within the active site cavity, and making contacts with amino acid residues at the entrance of the active site. As this is the region with the highest variability between the many CA isozymes found in mammals, this class of compounds shows isoform-selective inhibitory profiles, which may be exploited for obtaining pharmacological agents with less side effects compared to other classes of inhibitors.
Collapse
|
219
|
Aggarwal M, Chua TK, Pinard MA, Szebenyi DM, McKenna R. Carbon Dioxide "Trapped" in a β-Carbonic Anhydrase. Biochemistry 2015; 54:6631-8. [PMID: 26457866 DOI: 10.1021/acs.biochem.5b00987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ∼ 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a β-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with R(cryst) and R(free) values of 17.3 and 19.9%, respectively, and is compared with the α-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all β-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions.
Collapse
Affiliation(s)
- Mayank Aggarwal
- Division of Biology and Soft Matter, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Teck Khiang Chua
- Cornell High Energy Synchrotron Source (CHESS), Cornell University , Ithaca, New York 14853, United States
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Doletha M Szebenyi
- Cornell High Energy Synchrotron Source (CHESS), Cornell University , Ithaca, New York 14853, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
220
|
Gülçin İ, Scozzafava A, Supuran CT, Akıncıoğlu H, Koksal Z, Turkan F, Alwasel S. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. J Enzyme Inhib Med Chem 2015; 31:1095-101. [DOI: 10.3109/14756366.2015.1094470] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey,
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia,
| | - Andrea Scozzafava
- Dipartimento Di Chimica Ugo Schiff, Università Degli Studi Di Firenze, Firenze, Italy,
| | - Claudiu T. Supuran
- Dipartimento Di Chimica Ugo Schiff, Università Degli Studi Di Firenze, Firenze, Italy,
- Department of Neurofarba, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi Di Firenze, Florence, Italy,
| | - Hulya Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkey, and
| | - Zeynep Koksal
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey,
| | - Fikret Turkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia,
| |
Collapse
|
221
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
222
|
Del Prete S, Vullo D, Osman SM, AlOthman Z, Capasso C, Supuran CT. Anion inhibition studies of the dandruff-producing fungus Malassezia globosa β-carbonic anhydrase MgCA. Bioorg Med Chem Lett 2015; 25:5194-8. [PMID: 26459213 DOI: 10.1016/j.bmcl.2015.09.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
The genome of the fungal parasite Malassezia globosa, the causative agent of dandruff, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) belonging to the β-class (MgCA). In an earlier work (J. Med. Chem. 2012, 55, 3513) we have validated this enzyme as an anti-dandruff drug target, reporting that sulfonamide inhibitors show in vitro and in vivo effects, in an animal model of Malassezia infection. However, few classes of compounds apart the sulfonamides, were investigated for their activity against MgCA. Here we present an anion inhibition study of this enzyme, reporting that metal complexing anions such as cyanate, thiocyanate, cyanide, azide are weak MgCA inhibitors (KIs ranging between 6.81 and 45.2 mM) whereas bicarbonate (KI of 0.59 mM) and diethyldithiocarbamate (KI of 0.30 mM) together with sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected so far, with KIs ranging between 83 and 94 μM. This study may help a better understanding of the inhibition profile of this enzyme and may offer the possibility to design new such modulators of activity belonging to different chemical classes.
Collapse
Affiliation(s)
- Sonia Del Prete
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Firenze, Italy; Istituto di Biochimica delle Proteine-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Clemente Capasso
- Istituto di Biochimica delle Proteine-CNR, Via P. Castellino 111, 80131 Napoli, Italy.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Firenze, Italy; Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
223
|
Stengel C, Newman SP, Leese MP, Thomas MP, Potter BVL, Reed MJ, Purohit A, Foster PA. The In Vitro and In Vivo Activity of the Microtubule Disruptor STX140 Is Mediated by Hif-1 Alpha and CAIX Expression. Anticancer Res 2015; 35:5249-61. [PMID: 26408684 PMCID: PMC4597367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tumor neo-angiogenesis is regulated, in part, by the hypoxia-inducible gene HIF1. Evidence suggests HIF1 associates with polymerized microtubules and traffics to the nucleus. This study investigated the role of HIF1 in mediating the antitumor activity of two steroid-based sulfamate ester microtubule disruptors, STX140 and STX243, in vitro and in vivo. The effects of STX140, STX243 and the parental compound 2-methoxyestradiol (STX66) on HIF1α and HIF2α protein expression were assessed in vitro in MCF-7 and MDA-MB-231 cells cultured under hypoxia. More pertinently, their effects were examined on HIF1-regulated genes in vivo in mice bearing MCF-7 or MDA-MB-231 tumors. The level of mRNA expression of vascular endothelial growth factor (VEGF), glucose transporter 1 (GLUTI), phosphoglycerate kinase (PGK), ATP-binding cassette sub-family B member 1 (ABCB1) and carbonic anhydrase IX (CAIX) was quantified by Real-time Polymerase Chain Reaction (RT-PCR). Despite inhibiting nuclear HIF1α protein accumulation under hypoxia in vitro, STX140 and STX243 did not significantly regulate the expression of four out of five HIF1α-regulated genes in vitro and in vivo. Only CAIX mRNA expression was down-regulated both in vitro and in vivo. Immunoblot analysis showed that STX140 and STX243 reduced CAIX protein expression in vitro. These compounds had no effect on HIF2α translocation. The potential for inhibition of CAIX by STX140 and STX243 was examined by docking the ligands to the active site in comparison with a known sulfamate-based inhibitor. Microtubule disruption and antitumor activity of STX140 and STX243 is most likely HIF1-independent and may, at least in part, be mediated by inhibition of CAIX expression and activity.
Collapse
Affiliation(s)
- Chloe Stengel
- Oncology Drug Discovery and Women's Health Group, Faculty of Medicine, Imperial College London, St Mary's Hospital, London, U.K
| | - Simon P Newman
- Oncology Drug Discovery and Women's Health Group, Faculty of Medicine, Imperial College London, St Mary's Hospital, London, U.K
| | - Mathew P Leese
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, U.K
| | - Mark P Thomas
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, U.K
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, U.K. Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, U.K
| | - Michael J Reed
- Oncology Drug Discovery and Women's Health Group, Faculty of Medicine, Imperial College London, St Mary's Hospital, London, U.K
| | - Atul Purohit
- Oncology Drug Discovery and Women's Health Group, Faculty of Medicine, Imperial College London, St Mary's Hospital, London, U.K
| | - Paul A Foster
- Oncology Drug Discovery and Women's Health Group, Faculty of Medicine, Imperial College London, St Mary's Hospital, London, U.K. Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, U.K.
| |
Collapse
|
224
|
Pinard MA, Aggarwal M, Mahon BP, Tu C, McKenna R. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX. Acta Crystallogr F Struct Biol Commun 2015; 71:1352-8. [PMID: 26457530 PMCID: PMC4601603 DOI: 10.1107/s2053230x1501239x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.
Collapse
Affiliation(s)
- Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mayank Aggarwal
- Division of Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
225
|
Esirden İ, Ulus R, Aday B, Tanç M, Supuran CT, Kaya M. Synthesis of novel acridine bis-sulfonamides with effective inhibitory activity against the carbonic anhydrase isoforms I, II, IX and XII. Bioorg Med Chem 2015; 23:6573-80. [DOI: 10.1016/j.bmc.2015.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
226
|
Ceruso M, Antel S, Scozzafava A, Supuran CT. Synthesis and inhibition potency of novel ureido benzenesulfonamides incorporating GABA as tumor-associated carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2015; 31:205-11. [PMID: 25792500 DOI: 10.3109/14756366.2015.1014477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.
Collapse
Affiliation(s)
- Mariangela Ceruso
- a Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy and
| | - Sabrina Antel
- a Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy and
| | - Andrea Scozzafava
- a Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy and
| | - Claudiu T Supuran
- b Neurofarba Department , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
227
|
New ways to image and target tumour hypoxia and its molecular responses. Radiother Oncol 2015; 116:352-7. [DOI: 10.1016/j.radonc.2015.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022]
|
228
|
Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. Eur J Med Chem 2015; 102:223-32. [DOI: 10.1016/j.ejmech.2015.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023]
|
229
|
Dinçer B, Ekinci AP, Akyüz G, Kurtoğlu İZ. Characterization and inhibition studies of carbonic anhydrase from gill of Russian Sturgeon Fish (Acipenser gueldenstaedtii). J Enzyme Inhib Med Chem 2015; 31:1662-5. [DOI: 10.3109/14756366.2015.1076810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Barbaros Dinçer
- Department of Chemistry, Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Rize, Turkey and
| | - Arife Pınar Ekinci
- Department of Chemistry, Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Rize, Turkey and
| | - Gülay Akyüz
- Department of Chemistry, Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Rize, Turkey and
| | - İlker Zeki Kurtoğlu
- Department of Aquaculture, Recep Tayyip Erdoğan University, Fisheries Faculty, Rize, Turkey
| |
Collapse
|
230
|
Mahon BP, Lomelino CL, Ladwig J, Rankin GM, Driscoll JM, Salguero AL, Pinard MA, Vullo D, Supuran CT, Poulsen SA, McKenna R. Mapping Selective Inhibition of the Cancer-Related Carbonic Anhydrase IX Using Structure–Activity Relationships of Glucosyl-Based Sulfamates. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Brian P. Mahon
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Carrie L. Lomelino
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Janina Ladwig
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Gregory M. Rankin
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Jenna M. Driscoll
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Antonieta L. Salguero
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Melissa A. Pinard
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Daniela Vullo
- Polo
Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Robert McKenna
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| |
Collapse
|
231
|
Abellán-Flos M, Tanç M, Supuran CT, Vincent SP. Multimeric xanthates as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2015; 31:946-52. [DOI: 10.3109/14756366.2015.1072177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Marta Abellán-Flos
- Laboratoire de Chimie Bio-Organique, Département de Chimie, Académie Louvain, University of Namur (UNamur), Namur, Belgium and
| | - Muhammet Tanç
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Stéphane P. Vincent
- Laboratoire de Chimie Bio-Organique, Département de Chimie, Académie Louvain, University of Namur (UNamur), Namur, Belgium and
| |
Collapse
|
232
|
Ceruso M, Antel S, Vullo D, Scozzafava A, Supuran CT. Inhibition studies of new ureido-substituted sulfonamides incorporating a GABA moiety against human carbonic anhydrase isoforms I-XIV. Bioorg Med Chem 2015; 22:6768-75. [PMID: 25468040 DOI: 10.1016/j.bmc.2014.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/30/2014] [Indexed: 01/21/2023]
Abstract
Reaction of γ-Boc-GABA, prepared by protecting the γ-amino moiety of the amino butyric acid with the tert-butyloxycarbonyl (Boc) protecting group, with 4-methyl/ethyl benzenesulfonamide, followed by removal of the Boc protecting group in 3 M HCl afforded the corresponding hydrochlorides, which were further derivatized by reaction with a varying of aryl isocyanates to give a new classes of ureido substituted benzenesulfonamide containing a GABA moiety. Inhibition studies of the human carbonic anhydrase(CA, EC 4.2.1.1) isoforms, CA I–XIV with these new compounds revealed that they possess moderate-weak inhibition potency against hCA III, IV, VA, VI and XIII, rather efficient inhibitory power against hCA I, VI, and IX, and excellent inhibition of the physiologically relevant hCA II and VII, as well as of the two tumor-associated isoforms CA IX and XII. The inhibition profile of the new ureido-substituted benzenesulfonamides reported here is thus very different from the corresponding ureido-substituted analogs incorporating sulfanilamide, which were previously investigated as inhibitors of some of these enzymes.
Collapse
|
233
|
Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 2015; 19:1689-704. [PMID: 26235676 DOI: 10.1517/14728222.2015.1067685] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The carbonic anhydrases (CAs, EC 4.2.1.1), a group of ubiquitously expressed metalloenzymes, are involved in numerous physiological and pathological processes, as well as in the growth and virulence of pathogens belonging to bacteria, fungi and protozoa. AREAS COVERED CAs belonging to at least four genetic families, the α-, β-, γ- and η-CAs, were discovered and characterized in many pathogens: i) Bacteria encode enzymes from one or more such families, which were investigated as potential drug targets. Inhibition of bacterial CAs by sulfonamides/phenol derivatives lead to inhibition of growth of the pathogen for Helicobacter pylori, Mycobacterium tuberculosis, Brucella suis; ii) Fungi encode for α- and β-CAs, and inhibitors of the sulfonamide, thiol or dithiocarbamate type inhibited the growth of some of them (Malassezia globosa, Candida albicans, Crytpococcus neoformans, etc) in vivo; and iii) Protozoa encode α-, β- or η-CAs. Sulfonamide, thiols and hydroxamates effectively killed such parasites (Trypanosoma cruzi, Leishmania donovani chagasi, Plasmodium falciparum) in vivo. EXPERT OPINION None of the microorganism CAs is validated as drug targets as yet, but the inhibitors designed against many such enzymes showed interesting in vitro/in vivo results. By interfering with the activity of CAs from microorganisms, both pH homeostasis as well as crucial biosynthetic reactions are impaired, which lead to significant antiinfective effects, not yet exploited for obtaining pharmacological agents. As resistance to the clinically used antiinfectives is a serious healthcare problem worldwide, inhibition of parasite CAs may constitute an alternative approach for obtaining such agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Clemente Capasso
- a 1 CNR, Institute of Biosciences and Bioresorces (IBBR) , via P. Castellino, 111, 80131, Napoli, Italy
| | - Claudiu T Supuran
- b 2 University of Florence, Neurofarba Department, Section of Pharmaceutical Chemistry , Via U. Schiff 6, 5019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
234
|
Cvijetić IN, Tanç M, Juranić IO, Verbić TŽ, Supuran CT, Drakulić BJ. 5-Aryl-1H-pyrazole-3-carboxylic acids as selective inhibitors of human carbonic anhydrases IX and XII. Bioorg Med Chem 2015; 23:4649-4659. [DOI: 10.1016/j.bmc.2015.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 11/25/2022]
|
235
|
Díaz-Torres NA, Mahon BP, Boone CD, Pinard MA, Tu C, Ng R, Agbandje-McKenna M, Silverman D, Scott K, McKenna R. Structural and biophysical characterization of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2: insights into engineering thermostable enzymes for CO2 sequestration. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1745-56. [PMID: 26249355 PMCID: PMC4528804 DOI: 10.1107/s1399004715012183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022]
Abstract
Biocatalytic CO2 sequestration to reduce greenhouse-gas emissions from industrial processes is an active area of research. Carbonic anhydrases (CAs) are attractive enzymes for this process. However, the most active CAs display limited thermal and pH stability, making them less than ideal. As a result, there is an ongoing effort to engineer and/or find a thermostable CA to fulfill these needs. Here, the kinetic and thermal characterization is presented of an α-CA recently discovered in the mesophilic hydrothermal vent-isolate extremophile Thiomicrospira crunogena XCL-2 (TcruCA), which has a significantly higher thermostability compared with human CA II (melting temperature of 71.9°C versus 59.5°C, respectively) but with a tenfold decrease in the catalytic efficiency. The X-ray crystallographic structure of the dimeric TcruCA shows that it has a highly conserved yet compact structure compared with other α-CAs. In addition, TcruCA contains an intramolecular disulfide bond that stabilizes the enzyme. These features are thought to contribute significantly to the thermostability and pH stability of the enzyme and may be exploited to engineer α-CAs for applications in industrial CO2 sequestration.
Collapse
Affiliation(s)
- Natalia A. Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Christopher D. Boone
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Robert Ng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - David Silverman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kathleen Scott
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
236
|
Congiu C, Onnis V, Deplano A, Balboni G, Dedeoglu N, Supuran CT. Synthesis of sulfonamides incorporating piperazinyl-ureido moieties and their carbonic anhydrase I, II, IX and XII inhibitory activity. Bioorg Med Chem Lett 2015; 25:3850-3. [PMID: 26233435 DOI: 10.1016/j.bmcl.2015.07.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 01/15/2023]
Abstract
By using SLC-0111 (4-fluorophenylureido-benzenesulfonamide), a sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor in Phase I clinical trials as an antitumor agent as lead molecule, a series of benzenesulfonamide derivatives incorporating ureido moieties was synthesized. The new compounds contain a 4-N-substituted piperazine fragment in which the ureido linker has been included, and were tested as inhibitors of the cytosolic human (h) hCA I and II isoforms, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. Depending on the substitution pattern at the piperazine ring, low nanomolar inhibitors were detected against all four isoforms, making the new class of sulfonamides of interest for various pharmacologic applications.
Collapse
Affiliation(s)
- Cenzo Congiu
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy.
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy
| | - Alessandro Deplano
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, Cagliari I-09124, Italy
| | - Nurcan Dedeoglu
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; Università degli Studi di Firenze, NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Chemistry, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
237
|
Thermostable Carbonic Anhydrases in Biotechnological Applications. Int J Mol Sci 2015; 16:15456-80. [PMID: 26184158 PMCID: PMC4519908 DOI: 10.3390/ijms160715456] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.
Collapse
|
238
|
Probing the 'bipolar' nature of the carbonic anhydrase active site: aromatic sulfonamides containing 1,3-oxazol-5-yl moiety as picomolar inhibitors of cytosolic CA I and CA II isoforms. Eur J Med Chem 2015; 101:334-47. [PMID: 26160114 DOI: 10.1016/j.ejmech.2015.06.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/21/2022]
Abstract
A series of potent inhibitors of human carbonic anhydrase (CA) isoforms I and II has been prepared via a direct, chemoselective sulfochlorination of a range of 1,3-oxazolyl benzenes and thiophenes, followed by primary sulfonamide synthesis. The latter functionality is a known zinc-binding group (ZBG) responsible for anchoring the inhibitors to the CA's zinc metal ion. The compound's periphery as well as the overall scaffold geometry was designed to enable optimal interactions with the two distinct sides of the enzyme's active site, one of which is lined with hydrophobic residues and while the other is predominantly hydrophilic. As a result, several compounds inhibiting the therapeutically important cytosolic CA I and CA II in picomolar range have been identified. These compounds are one of the most potent CA inhibitors identified to-date. Not only the remarkable (>10 000-fold), cytosolic CA I and CA II selectivity vs. the membrane-bound CA IX and CA XII isoforms, but also the pronounced CA II/I selectivity observed in some cases, allow considering this series as a set of isoform-selective chemical biology tools and promising starting points for drug candidate development.
Collapse
|
239
|
Güzel-Akdemir Ö, Akdemir A, Karalı N, Supuran CT. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org Biomol Chem 2015; 13:6493-9. [PMID: 25967275 DOI: 10.1039/c5ob00688k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A series of 2/3/4-[(2-oxo-1,2-dihydro-3H-indol-3-ylidene)amino]benzenesulfonamides, obtained from substituted isatins and 2-, 3- or 4-aminobenzenesulfonamide, showed low nanomolar inhibitory activity against the tumor associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII - recently validated antitumor drug targets, being much less effective as inhibitors of the off-target cytosolic isoforms CA I and II.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116 Beyazıt, Istanbul, Turkey
| | | | | | | |
Collapse
|
240
|
De Luca V, Vullo D, Del Prete S, Carginale V, Scozzafava A, Osman SM, AlOthman Z, Supuran CT, Capasso C. Cloning, characterization and anion inhibition studies of a new γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorg Med Chem 2015; 23:4405-4409. [PMID: 26145820 DOI: 10.1016/j.bmc.2015.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
A new γ-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned, purified and characterized from the Antarctic bacterium Pseudoalteromonas haloplanktis, PhaCAγ. The enzyme has a medium-low catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a kcat of 1.4×10(5)s(-1) and a kcat/Km of 1.9×10(6)M(-1)s(-1). An anion inhibition study of PhaCAγ with inorganic anions and small molecule inhibitors is also reported. Many anions present in sea water, such as chloride, fluoride, sulfate, iodide, but also others such as azide, perchlorate and tetrafluoroborate did not inhibit this enzyme. Pseudohalides such as cyanate, thiocyanate, cyanide, selenocyanide, and also bicarbonate, nitrate, nitrite and many complex inorganic anions showed inhibition in the millimolar range (KI in the range of 1.7-9.3mM). The best PhaCAγ inhibitors detected in this study were diethyldithiocarbamate (KI of 0.96 mM) as well as sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KI in the range of 82-91 μM). Since γ-CAs are poorly understood at this moment, being present in carboxysomes and thus involved in photosynthesis, this study may be relevant for a better understanding of these processes in Antarctic bacteria/cyanobacteria.
Collapse
Affiliation(s)
- Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy; Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy.
| |
Collapse
|
241
|
Ibrahim DA, Lasheen DS, Zaky MY, Ibrahim AW, Vullo D, Ceruso M, Supuran CT, Abou El Ella DA. Design and synthesis of benzothiazole-6-sulfonamides acting as highly potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg Med Chem 2015; 23:4989-4999. [PMID: 26048024 DOI: 10.1016/j.bmc.2015.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 11/26/2022]
Abstract
A series of novel 2-aminobenzothiazole derivatives bearing sulfonamide at position 6 was designed, synthesized and investigated as inhibitors of four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), the cytosolic CA I and II, and the tumor-associated isozymes CA IX and XII. Docking and binding energy studies were carried out to reveal details regarding the favorable interactions between the scaffolds of these new inhibitors and the active sites of the investigated CA isoforms. Most of the novel compounds were acting as highly potent inhibitors of the tumor-associated hCA IX and hCA XII with KIs in the nanomolar range. The ubiquitous and dominant rapid cytosolic isozyme hCA II was also inhibited with KIs ranging from 3.5 to 45.4 nM. The favorable interactions between some of the new compounds and the active site of different CA isoforms were delineated by using molecular docking which may be useful for designing compounds with high affinity and selectivity for some CAs with biomedical applications.
Collapse
Affiliation(s)
- Diaa A Ibrahim
- Organic Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia; National Organization for Drug Control and Research, Cairo, Egypt.
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Maysoun Y Zaky
- National Organization for Drug Control and Research, Cairo, Egypt
| | - Amany W Ibrahim
- National Organization for Drug Control and Research, Cairo, Egypt
| | - Daniela Vullo
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEUROFABA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
242
|
Salmas RE, Senturk M, Yurtsever M, Durdagi S. Discovering novel carbonic anhydrase type IX (CA IX) inhibitors from seven million compounds using virtual screening and in vitro analysis. J Enzyme Inhib Med Chem 2015; 31:425-33. [PMID: 25950196 DOI: 10.3109/14756366.2015.1036049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Carbonic anhydrase type IX (CA IX) enzyme is mostly over expressed in different cancer cell lines and tumor tissues. Potent CA IX inhibitors can be effective for adjusting the pH imbalance in tumor cells. In the present work, we represented the successful application of high throughput virtual screening (HTVS) of large dataset from ZINC database included of ∼7 million compounds to discover novel inhibitors of CA IX. HTVS and molecular docking were performed using consequence Glide/standard precision (SP), extra precision (XP) and induced fit docking (IFD) molecular docking protocols. For each compound, docking code calculates a set of low-energy poses and then exhaustively scans the binding pocket of the target with small compounds. Novel CA IX inhibitor candidates were suggested based on molecular modeling studies and a few of them were tested using in vitro analysis. These compounds were determined as good inhibitors against human CA IX target with Ki in the range of 0.85-1.58 μM. In order to predict the pharmaceutical properties of the selected compounds, ADME (absorption, distribution, metabolism and excretion) analysis was also carried out.
Collapse
Affiliation(s)
| | - Murat Senturk
- b Department of Chemistry , Ağrı Ibrahim Çeçen University , Ağrı , Turkey , and
| | - Mine Yurtsever
- a Department of Chemistry , İstanbul Technical University , İstanbul , Turkey
| | - Serdar Durdagi
- c Department of Biophysics , School of Medicine, Bahçeşehir University , Istanbul , Turkey
| |
Collapse
|
243
|
Grandane A, Tanc M, Di Cesare Mannelli L, Carta F, Ghelardini C, Žalubovskis R, Supuran CT. 6-Substituted Sulfocoumarins Are Selective Carbonic Anhdydrase IX and XII Inhibitors with Significant Cytotoxicity against Colorectal Cancer Cells. J Med Chem 2015; 58:3975-83. [DOI: 10.1021/acs.jmedchem.5b00523] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aiga Grandane
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Muhammet Tanc
- NEUROFARBA Department,
Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department,
Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Fabrizio Carta
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department,
Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Claudiu T. Supuran
- NEUROFARBA Department,
Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
244
|
De Simone G, Monti SM, Alterio V, Buonanno M, De Luca V, Rossi M, Carginale V, Supuran CT, Capasso C, Di Fiore A. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett 2015; 25:2002-6. [PMID: 25817590 DOI: 10.1016/j.bmcl.2015.02.068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Two thermostable α-carbonic anhydrases (α-CAs) isolated from thermophilic Sulfurihydrogenibium spp., namely SspCA (from S. yellowstonensis) and SazCA (from S. azorense), were shown in a previous work to possess interesting complementary properties. SspCA was shown to have an exceptional thermal stability, whereas SazCA demonstrated to be the most active α-CA known to date for the CO2 hydration reaction. Here we report the crystallographic structure of SazCA and the identification of the structural features responsible for its high catalytic activity, by comparing it with SspCA structure. These data are of relevance for the design of engineered proteins showing higher stability and catalytic activity than other α-CAs known to date.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy.
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy; Seconda Università di Napoli (SUN), 81100 Caserta, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Mosè Rossi
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
245
|
Benlloch R, Shevela D, Hainzl T, Grundström C, Shutova T, Messinger J, Samuelsson G, Sauer-Eriksson AE. Crystal structure and functional characterization of photosystem II-associated carbonic anhydrase CAH3 in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:950-62. [PMID: 25617045 PMCID: PMC4348767 DOI: 10.1104/pp.114.253591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/16/2015] [Indexed: 05/22/2023]
Abstract
In oxygenic photosynthesis, light energy is stored in the form of chemical energy by converting CO2 and water into carbohydrates. The light-driven oxidation of water that provides the electrons and protons for the subsequent CO2 fixation takes place in photosystem II (PSII). Recent studies show that in higher plants, HCO3 (-) increases PSII activity by acting as a mobile acceptor of the protons produced by PSII. In the green alga Chlamydomonas reinhardtii, a luminal carbonic anhydrase, CrCAH3, was suggested to improve proton removal from PSII, possibly by rapid reformation of HCO3 (-) from CO2. In this study, we investigated the interplay between PSII and CrCAH3 by membrane inlet mass spectrometry and x-ray crystallography. Membrane inlet mass spectrometry measurements showed that CrCAH3 was most active at the slightly acidic pH values prevalent in the thylakoid lumen under illumination. Two crystal structures of CrCAH3 in complex with either acetazolamide or phosphate ions were determined at 2.6- and 2.7-Å resolution, respectively. CrCAH3 is a dimer at pH 4.1 that is stabilized by swapping of the N-terminal arms, a feature not previously observed in α-type carbonic anhydrases. The structure contains a disulfide bond, and redox titration of CrCAH3 function with dithiothreitol suggested a possible redox regulation of the enzyme. The stimulating effect of CrCAH3 and CO2/HCO3 (-) on PSII activity was demonstrated by comparing the flash-induced oxygen evolution pattern of wild-type and CrCAH3-less PSII preparations. We showed that CrCAH3 has unique structural features that allow this enzyme to maximize PSII activity at low pH and CO2 concentration.
Collapse
Affiliation(s)
- Reyes Benlloch
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - Dmitriy Shevela
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - Tobias Hainzl
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - Christin Grundström
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - Tatyana Shutova
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - Johannes Messinger
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - Göran Samuelsson
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Forest Genetics and Plant Physiology (R.B) and Department of Plant Physiology (T.S., G.S.), Umeå Plant Science Centre, and Department of Chemistry, Chemistry Biology Centre (D.S., T.H., C.G., J.M., A.E.S.-E.), Umeå University, SE-90187 Umea, Sweden
| |
Collapse
|
246
|
Wichert M, Krall N. Targeting carbonic anhydrase IX with small organic ligands. Curr Opin Chem Biol 2015; 26:48-54. [PMID: 25721398 DOI: 10.1016/j.cbpa.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrase IX (CAIX) is expressed in many solid tumors in response to hypoxia and plays an important role in tumor acid-base homeostasis under these conditions. It is also constitutively expressed in the majority of renal cell carcinoma. Its functional inhibition with small molecules has recently been shown to retard tumor growth in murine models of cancer, reduce metastasis and tumor stem cell expansion. Additionally, CAIX is a promising antigen for targeted drug delivery approaches. Initially validated with anti-CAIX antibodies, the tumor-homing capacity of high-affinity small-molecule ligands of CAIX has recently been demonstrated. Indeed, conjugates formed of CAIX ligands and potent cytotoxic drugs could eradicate CAIX-expressing solid tumors in mice. These results suggest that CAIX is a promising target for the development of novel therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Moreno Wichert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zurich, Switzerland
| | - Nikolaus Krall
- ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, 8093 Zurich, Switzerland.
| |
Collapse
|
247
|
Sasso E, Vitale M, Monteleone F, Boffo FL, Santoriello M, Sarnataro D, Garbi C, Sabatella M, Crifò B, Paolella LA, Minopoli G, Winum JY, Zambrano N. Binding of carbonic anhydrase IX to 45S rDNA genes is prevented by exportin-1 in hypoxic cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:674920. [PMID: 25793203 PMCID: PMC4352447 DOI: 10.1155/2015/674920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 11/17/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a surrogate marker of hypoxia, involved in survival and pH regulation in hypoxic cells. We have recently characterized its interactome, describing a set of proteins interacting with CA IX, mainly in hypoxic cells, including several members of the nucleocytoplasmic shuttling apparatuses. Accordingly, we described complex subcellular localization for this enzyme in human cells, as well as the redistribution of a carbonic anhydrase IX pool to nucleoli during hypoxia. Starting from this evidence, we analyzed the possible contribution of carbonic anhydrase IX to transcription of the 45 S rDNA genes, a process occurring in nucleoli. We highlighted the binding of carbonic anhydrase IX to nucleolar chromatin, which is regulated by oxygen levels. In fact, CA IX was found on 45 S rDNA gene promoters in normoxic cells and less represented on these sites, in hypoxic cells and in cells subjected to acetazolamide-induced acidosis. Both conditions were associated with increased representation of carbonic anhydrase IX/exportin-1 complexes in nucleoli. 45 S rRNA transcript levels were accordingly downrepresented. Inhibition of nuclear export by leptomycin B suggests a model in which exportin-1 acts as a decoy, in hypoxic cells, preventing carbonic anhydrase IX association with 45 S rDNA gene promoters.
Collapse
MESH Headings
- Acidosis/genetics
- Acidosis/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carbonic Anhydrase IX
- Carbonic Anhydrases/genetics
- Carbonic Anhydrases/metabolism
- Cell Hypoxia/genetics
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- HEK293 Cells
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Promoter Regions, Genetic/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Transcription, Genetic/genetics
- Exportin 1 Protein
Collapse
Affiliation(s)
- Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Associazione Culturale DiSciMuS RFC, 80026 Casoria, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Francesca Monteleone
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Associazione Culturale DiSciMuS RFC, 80026 Casoria, Italy
| | - Francesca Ludovica Boffo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Margherita Santoriello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Corrado Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Mariangela Sabatella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Bianca Crifò
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Luca Alfredo Paolella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Giuseppina Minopoli
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier I & II, ENSCM, 34296 Montpellier, France
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Associazione Culturale DiSciMuS RFC, 80026 Casoria, Italy
| |
Collapse
|
248
|
De Luca V, Del Prete S, Carginale V, Vullo D, Supuran CT, Capasso C. A failed tentative to design a super carbonic anhydrase having the biochemical properties of the most thermostable CA (SspCA) and the fastest (SazCA) enzymes. J Enzyme Inhib Med Chem 2015; 30:989-94. [DOI: 10.3109/14756366.2014.1002403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Viviana De Luca
- Istituto di Bioscienze e Biorisorse , CNR, Napoli, Italy and
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse , CNR, Napoli, Italy and
- DipartimentoNeurofarba, Università degliStudi di Firenze, Sezione di ScienzeFarmaceutiche, and Laboratorio di ChimicaBioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | | | - Daniela Vullo
- DipartimentoNeurofarba, Università degliStudi di Firenze, Sezione di ScienzeFarmaceutiche, and Laboratorio di ChimicaBioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- DipartimentoNeurofarba, Università degliStudi di Firenze, Sezione di ScienzeFarmaceutiche, and Laboratorio di ChimicaBioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
249
|
Mahon BP, Hendon AM, Driscoll JM, Rankin GM, Poulsen SA, Supuran CT, McKenna R. Saccharin: a lead compound for structure-based drug design of carbonic anhydrase IX inhibitors. Bioorg Med Chem 2015; 23:849-54. [PMID: 25614109 PMCID: PMC4352949 DOI: 10.1016/j.bmc.2014.12.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a key modulator of aggressive tumor behavior and a prognostic marker and target for several cancers. Saccharin (SAC) based compounds may provide an avenue to overcome CA isoform specificity, as they display both nanomolar affinity and preferential binding, for CA IX compared to CA II (>50-fold for SAC and >1000-fold when SAC is conjugated to a carbohydrate moiety). The X-ray crystal structures of SAC and a SAC-carbohydrate conjugate bound to a CA IX-mimic are presented and compared to CA II. The structures provide substantial new insight into the mechanism of SAC selective CA isoform inhibition.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Alex M Hendon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Gregory M Rankin
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Claudiu T Supuran
- Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
250
|
Del Prete S, De Luca V, Supuran CT, Capasso C. Protonography, a technique applicable for the analysis of η-carbonic anhydrase activity. J Enzyme Inhib Med Chem 2015; 30:920-4. [PMID: 25676328 DOI: 10.3109/14756366.2014.990963] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protonography, a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) technique derived from zymography was recently reported by our group to be an effective, cheap and reproducible technique for evidencing catalytically active α-carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as the bovine red blood cell isoform bCA or the bacterial enzyme from Vibrio cholerae, VchCA. CA activity was also observed on the protonogram of a cellular extract of Escherichia coli, evidencing the presence of one or more β-class such enzymes. Here we show that protonography can also be applied to the recently discovered η-CA family using the Plasmodium falciparum enzyme PfCA as an example. The protonogram of PfCA clearly showed catalytically active η-CA with a specific band at 22.0 kDa, which was quite distinct from the band of the red blood cell bovine enzyme bCA, which was observed at 28.8 kDa. The different migration pattern of α- and η-CAs might be a useful tool to detect Plasmodium falciparum in infected human red blood cells by an easy, routine inexpensive technique.
Collapse
Affiliation(s)
- Sonia Del Prete
- a CNR - Istituto di Bioscienze e Biorisorse , Napoli , Italy and.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università Degli Studi di Firenze , Florence , Italy
| | - Viviana De Luca
- a CNR - Istituto di Bioscienze e Biorisorse , Napoli , Italy and
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università Degli Studi di Firenze , Florence , Italy
| | - Clemente Capasso
- a CNR - Istituto di Bioscienze e Biorisorse , Napoli , Italy and
| |
Collapse
|