201
|
Chen M, Gu J, Delclos GL, Killary AM, Fan Z, Hildebrandt MAT, Chamberlain RM, Grossman HB, Dinney CP, Wu X. Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients. Carcinogenesis 2010; 31:1387-91. [PMID: 20530239 DOI: 10.1093/carcin/bgq110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phosphoinositide-3 kinase (PI3K)-AKT- mammalian target of rapamycin (mTOR) pathway is an important cellular pathway controlling cell growth, tumorigenesis, cell invasion and drug response. We hypothesized that genetic variations in the PI3K-AKT-mTOR pathway may affect the survival in muscle invasive and metastatic bladder cancer (MiM-BC) patients. We conducted a follow-up study of 319 MiM-BC patients to systematically evaluate 289 single-nucleotide polymorphisms (SNPs) of 20 genes in the PI3K-AKT-mTOR pathway as predicators of survival. In multivariate Cox regression, AKT2 rs3730050, PIK3R1 rs10515074 and RAPTOR rs9906827 were significantly associated with survival. In combined analysis, we found a cumulative effect of these three SNPs on survival. With the increasing number of unfavorable genotypes, there was a significant trend of higher risk of death in multivariate Cox regression (P for trend <0.001) and shorter median survival time in Kaplan-Meier estimates (P log rank <0.001). This is the first study to evaluate the role of germ line genetic variations in the PI3K-AKT-mTOR pathway genes as predictors of MiM-BC clinical outcomes. These findings warrant further replication in independent populations and may provide information on disease management and development of target therapies.
Collapse
Affiliation(s)
- Meng Chen
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Yang WL, Wu CY, Wu J, Lin HK. Regulation of Akt signaling activation by ubiquitination. Cell Cycle 2010; 9:487-97. [PMID: 20081374 DOI: 10.4161/cc.9.3.10508] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Akt (also known as PKB) signaling orchestrates many aspects of biological functions and, importantly, its deregulation is linked to cancer development. Akt activity is well-known regulated through its phosphorylation at T308 and S473 by PDK1 and mTOrC2, respectively. Although in the last decade the research has been primarily focused on Akt phosphorylation and its role in Akt activation and functions, other posttranslational modifications on Akt have never been reported. Until very recently, a novel posttranslational modification on Akt termed ubiquitination was identified and shown to play an important role in Akt activation. The cancer-associated Akt mutant recently identified in a subset of human cancers displays enhanced Akt ubiquitination, in turn contributing to Akt hyperactivation, suggesting a potential role of Akt ubiquitination in cancers. Thus, this novel posttranslational modification on Akt reveals an exciting avenue that has advanced our current understandings of how Akt signaling activation is regulated.
Collapse
Affiliation(s)
- Wei-Lei Yang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
203
|
|
204
|
Geryk-Hall M, Yang Y, Hughes DPM. Driven to death: Inhibition of farnesylation increases Ras activity and promotes growth arrest and cell death [corrected]. Mol Cancer Ther 2010; 9:1111-9. [PMID: 20406948 DOI: 10.1158/1535-7163.mct-09-0833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To improve cancer outcomes, investigators are turning increasingly to small molecule medicines that disrupt vital signaling cascades, inhibit malignant growth, or induce apoptosis. One vital signaling molecule is Ras, and a key step in Ras activation is membrane anchoring of Ras through prenylation, the C-terminal addition of a lipid anchor. Small molecule inhibitors of farnesyltransferase (FTI), the enzyme most often responsible for prenylating Ras, showed clinical promise, but development of FTIs such as tipifarnib has been stalled by uncertainty about their mechanism of action, because Ras seemed unimpeded in tipifarnib-treated samples. Interpretation was further complicated by the numerous proteins that may be farnesylated, as well as availability of an alternate prenylation pathway, geranylgeranylation. Our initial observations of varied response by cancer cell lines to tipifarnib led us to evaluate the role of FTI in Ras signal alteration using various tumor models. We describe our novel counterintuitive finding that endogenous Ras activity increases in cancer cell lines with low endogenous Ras activity when farnesyltransferase is inhibited by either tipifarnib or short hairpin RNA. In response to tipifarnib, variable growth arrest and/or cell death correlated with levels of activated extracellular signal–regulated kinase (ERK) and p38 mitogenactivated protein kinase (MAPK). Sensitivity to tipifarnib treatment was shown by growth inhibition and by an increase in subdiploid cell numbers; cells with such sensitivity had increased activation of ERK and p38 MAPK. Because Ras must be prenylated to be active, our findings suggest that geranylgeranylated N-Ras or K-Ras B interacts differently with downstream effector proteins in sensitive cancer cells responding to tipifarnib, switching the balance from cell proliferation to growth inhibition [corrected].
Collapse
Affiliation(s)
- Mandy Geryk-Hall
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
205
|
Mihaljevic AL, Michalski CW, Friess H, Kleeff J. Molecular mechanism of pancreatic cancer--understanding proliferation, invasion, and metastasis. Langenbecks Arch Surg 2010; 395:295-308. [PMID: 20237938 DOI: 10.1007/s00423-010-0622-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The purpose of this review is to highlight the molecular mechanisms leading to the development and progression of pancreatic ductal adenocarcinoma (PDAC) with particular emphasis on tumor cell proliferation, local invasion, and metastasis. Recent advances in the field of PDAC biology have shed light on the molecular events that trigger PDAC initiation and maintenance. RESULTS It is now clear that apart from the genetic alterations within the tumor cells, interactions of the tumor with its environment are necessary for proliferation and invasion. Interestingly, a number of developmental signaling pathways are reactivated in PDAC. Progress has also been made in the understanding of the molecular events that govern the process of metastasis. CONCLUSION Although our understanding of the mechanisms underlying PDAC pathobiology are more advanced than ever, little progress has been made in the clinical treatment of PDAC, and successful bench-to-bedside transfer of knowledge to boost new treatment options is still unsatisfying.
Collapse
Affiliation(s)
- André L Mihaljevic
- Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, 81675, Munich, Germany
| | | | | | | |
Collapse
|
206
|
Weng L, Enomoto A, Ishida-Takagishi M, Asai N, Takahashi M. Girding for migratory cues: roles of the Akt substrate Girdin in cancer progression and angiogenesis. Cancer Sci 2010; 101:836-42. [PMID: 20132219 PMCID: PMC11159251 DOI: 10.1111/j.1349-7006.2009.01487.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration is a fundamental aspect of a multitude of physiological and pathological processes, including embryonic development, inflammation, angiogenesis, and cancer progression. A variety of proteins are essential for cell migration, but context-specific signaling pathways and promigratory proteins must now be identified for our understanding of cancer biology to continue to advance. In this review, we focus on the emerging roles of Girdin (also designated KIAA1212, APE, GIV, and HkRP1), a novel component of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway that is a core-signaling transduction pathway in cancer progression. Girdin is expressed in some types of cancer cells and immature endothelial cells, and is therefore at the crossroads of multiple intracellular processes, including reorganization of the actin cytoskeleton, endocytosis, and modulation of Akt activity, which ultimately lead to cancer invasion and angiogenesis. It also acts as a nonreceptor guanine nucleotide exchange factor (GEF) for Galphai proteins. A significant observation is that Girdin, although vital for cancer progression and postnatal vascular remodelling, is dispensable for cell migratory events during embryonic development. These findings suggest that Girdin and its interacting proteins are potential pharmaceutical targets for cancer therapies and pathological anigiogenesis, including tumor angiogenesis.
Collapse
Affiliation(s)
- Liang Weng
- Department of Pathology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
207
|
Kippenberger S, Hofmann M, Zöller N, Thaçi D, Müller J, Kaufmann R, Bernd A. Ligation of beta4 integrins activates PKB/Akt and ERK1/2 by distinct pathways-relevance of the keratin filament. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:940-50. [PMID: 20307589 DOI: 10.1016/j.bbamcr.2010.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/28/2022]
Abstract
In normal epithelial cells hemidesmosomes mediate stable adhesion to the underlying basement membrane. In carcinoma cells a functional and spatial dissociation of the hemidesmosomal complex is observed stimulating the hypothesis that the beta4 integrin may trigger essential signalling cascades determining cell fate. In the present study we dissected the signalling pathways giving rise to PKB/Akt and ERK1/2 activation in response to beta4 ligation by 3E1. It was found that the activation of PKB/Akt is sensitive towards alterations of the keratin filament as demonstrated by using KEB-7 cells that carry a keratin mutation typical for epidermolysis bullosa simplex. Similar results were achieved by chemically induced keratin aggregations. Of note, the signalling to ERK1/2 was not affected. ERK1/2 activation utilizes an EGF-R transactivation mechanism as shown by dominant-negative expression experiments and also by treatment with a specific inhibitor (AG1478). Downstream from the EGF-R the activation of ERK1/2 takes the prototypical signalling cascade via Shc, Ras and Raf-1 as demonstrated by dominant-negative expression experiments. Taken together our data define a new model of beta4-dependent PKB/Akt and ERK1/2 activation demonstrating the keratin filament as a structure necessary in signal transmission.
Collapse
Affiliation(s)
- Stefan Kippenberger
- Department of Dermatology and Venerology, University of Frankfurt Medical School, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
208
|
Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol 2010; 28:1075-83. [PMID: 20085938 PMCID: PMC2834432 DOI: 10.1200/jco.2009.25.3641] [Citation(s) in RCA: 989] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/18/2009] [Indexed: 12/13/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling axis impacts on cancer cell growth, survival, motility, and metabolism. This pathway is activated by several different mechanisms in cancers, including somatic mutation and amplification of genes encoding key components. In addition, PI3K signaling may serve integral functions for noncancerous cells in the tumor microenvironment. Consequently, therapeutics targeting the PI3K pathway are being developed at a rapid pace, and preclinical and early clinical studies are beginning to suggest specific strategies to effectively use them. However, the central role of PI3K signaling in a large array of diverse biologic processes raises concerns about its use in therapeutics and increases the need to develop sophisticated strategies for its use. In this review, we will discuss how PI3K signaling affects the growth and survival of tumor cells. From this vantage, we will consider how inhibitors of the PI3K signaling cascade, either alone or in combination with other therapeutics, can most effectively be used for the treatment of cancer.
Collapse
Affiliation(s)
- Kevin D. Courtney
- From the Department of Medicine, Harvard Medical School; Department of Medical Oncology, Dana-Farber Cancer Institute; Beth Israel Deaconess Medical Center Cancer Center; Massachusetts General Hospital Cancer Center, Boston, MA
| | - Ryan B. Corcoran
- From the Department of Medicine, Harvard Medical School; Department of Medical Oncology, Dana-Farber Cancer Institute; Beth Israel Deaconess Medical Center Cancer Center; Massachusetts General Hospital Cancer Center, Boston, MA
| | - Jeffrey A. Engelman
- From the Department of Medicine, Harvard Medical School; Department of Medical Oncology, Dana-Farber Cancer Institute; Beth Israel Deaconess Medical Center Cancer Center; Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
209
|
Belibi FA, Edelstein CL. Metastatic Renal Cancer: What Role for Everolimus? CLINICAL MEDICINE REVIEWS IN ONCOLOGY 2010; 2:4. [PMID: 24771995 DOI: 10.4137/cmro.s1551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metastatic renal cell carcinoma is uncommon (only 3% of cancers worldwide) but of poor prognosis. Renal cell carcinoma has traditionally been treated with cytokines (interferon-α or interleukin-2). More recently, a more clear understanding of the molecular and cellular mechanisms of the disease, involving the VEGF receptor and mTOR, has led to the discovery of novel therapies. Therapeutic options in patients with advanced RCC include the VEGF receptor inhibitors Sunitinib and Sorafenib, the anti-VEGF monoclonal antibody Bevacizumab and the mTORC1 inhibitors Temsirolimus and Everolimus. In 2009, Everolimus was FDA-approved for the treatment of patients with advanced clear cell RCC which had progressed within 6 months of stopping treatment with Sunitinib or sorafenib, or both drugs. Everolimus resulted in a 70% reduction in the risk of disease recurrence or death. The purpose of this review is to update on the current knowledge of the role of Everolimus in metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Franck A Belibi
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
210
|
Increased expression of Akt2 and activity of PI3K and cell proliferation with the ascending of tumor grade of human gliomas. Clin Neurol Neurosurg 2010; 112:324-7. [PMID: 20116920 DOI: 10.1016/j.clineuro.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the expression of Akt2 and activation of PI3K in different grades of human gliomas and correlate the Akt2 expression with the proliferation activity of gliomas. METHODS Akt2 expression and PI3K activity were examined in 48 different grades of human glioma specimens and six normal brain tissue samples by immunohistochemistry and Western blot analysis. The proliferation activity of tumors was evaluated by Ki-67 nuclear antigen labeling index (Ki-67 LI) using immunostaining. RESULTS In contrast to the normal brain tissues, Akt2 expression and PI3K activity were greatly increased with the ascending of tumor grade and correlated positively with the proliferation activity of gliomas. CONCLUSION Akt2 may play a critical role in the development of gliomas and present a potential therapeutic target for malignant gliomas.
Collapse
|
211
|
El-Rayes BF, Philip PA, Sarkar FH, Shields AF, Ferris AM, Hess K, Kaseb AO, Javle MM, Varadhachary GR, Wolff RA, Abbruzzese JL. A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Invest New Drugs 2010; 29:694-9. [PMID: 20107864 DOI: 10.1007/s10637-010-9386-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/07/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND The EGFR/Akt/NF-κB signalling pathway is frequently deregulated in pancreatic cancer and contributes to cell growth, metastasis and chemoresistance. An isoflavone, genistein, inactivates Akt and NF-κB and enhances the anti-tumor activity of erlotinib and gemcitabine in experimental systems of pancreas cancer. This phase II study was undertaken to determine the effects of adding isoflavone to a regimen of gemcitabine and erlotinib on survival in patients with advanced pancreatic cancer. METHODS Eligibility included previously untreated patients with advanced pancreatic adenocarcinoma. Patients received gemcitabine 1,000 mg/m² on days 1, 8, and 15, and erlotinib 150 mg once daily P.O. on day 1 to day 28. Soy isoflavones (Novasoy®) were administered at a dose of 531 mg twice daily P.O. starting day -7 until the end of study participation. RESULTS Twenty patients with advanced pancreas cancer were enrolled (median age 57.9 years). Sixteen patients had stage IV disease. The median number of cycles was 2 per patient. The median survival time was 5.2 months (95% CI, 4.6-N/A months). The probability of survival at 6 months was 50% (95% CI, 32-78%). CONCLUSIONS The addition of soy isoflavones to gemcitabine and erlotinib did not appear to increase the survival of patients with advanced pancreatic cancer.
Collapse
|
212
|
Kim D, Sun M, He L, Zhou QH, Chen J, Sun XM, Bepler G, Sebti SM, Cheng JQ. A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation. J Biol Chem 2010; 285:8383-94. [PMID: 20068047 DOI: 10.1074/jbc.m109.094060] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Akt pathway is frequently hyperactivated in human cancer and functions as a cardinal nodal point for transducing extracellular and intracellular oncogenic signals and, thus, presents an exciting target for molecular therapeutics. Here we report the identification of a small molecule Akt/protein kinase B inhibitor, API-1. Although API-1 is neither an ATP competitor nor substrate mimetic, it binds to pleckstrin homology domain of Akt and blocks Akt membrane translocation. Furthermore, API-1 treatment of cancer cells results in inhibition of the kinase activities and phosphorylation levels of the three members of the Akt family. In contrast, API-1 had no effects on the activities of the upstream Akt activators, phosphatidylinositol 3-kinase, phosphatidylinositol-dependent kinase-1, and mTORC2. Notably, the kinase activity and phosphorylation (e.g. Thr(P)(308) and Ser(P)(473)) levels of constitutively active Akt, including a naturally occurring mutant AKT1-E17K, were inhibited by API-1. API-1 is selective for Akt and does not inhibit the activation of protein kinase C, serum and glucocorticoid-inducible kinase, protein kinase A, STAT3, ERK1/2, or JNK. The inhibition of Akt by API-1 resulted in induction of cell growth arrest and apoptosis selectively in human cancer cells that harbor constitutively activated Akt. Furthermore, API-1 inhibited tumor growth in nude mice of human cancer cells in which Akt is elevated but not of those cancer cells in which it is not. These data indicate that API-1 directly inhibits Akt through binding to the Akt pleckstrin homology domain and blocking Akt membrane translocation and that API-1 has anti-tumor activity in vitro and in vivo and could be a potential anti-cancer agent for patients whose tumors express hyperactivated Akt.
Collapse
Affiliation(s)
- Donghwa Kim
- Departments of Molecular Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
The involvement of the PIK3CA gene product p110α, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), in human cancer has been suggested for over 15 years, and support for this proposal had been provided by both genetic and functional studies, including most recently the discovery of common activating missense mutations of PIK3CA in a wide variety of common human tumor types. This chapter will focus on the discovery of these mutations and describes their relevance to a wide range of common human tumor types.Of note, the identification and functional analysis of the PIK3CA gene are reviewed in other chapters in this book. However, a brief mention will be made here of its general properties as background to our focus on the discovery of its cancer-specific mutations.
Collapse
Affiliation(s)
- Yardena Samuels
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
214
|
Kirkegaard T, Witton CJ, Edwards J, Nielsen KV, Jensen LB, Campbell FM, Cooke TG, Bartlett JMS. Molecular alterations inAKT1,AKT2andAKT3detected in breast and prostatic cancer by FISH. Histopathology 2010; 56:203-11. [DOI: 10.1111/j.1365-2559.2009.03467.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
215
|
Tan Y, You H, Wu C, Altomare DA, Testa JR. Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem 2009; 285:6377-89. [PMID: 20040596 DOI: 10.1074/jbc.m109.068452] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein APPL1 (adaptor protein containing pleckstrin homology (PH), phosphotyrosine binding (PTB), and leucine zipper motifs) was first identified as a binding protein of AKT2 by yeast two-hybrid screening. APPL1 was subsequently found to bind to several membrane-bound receptors and was implicated in their signal transduction through AKT and/or MAPK pathways. To determine the unambiguous role of Appl1 in vivo, we generated Appl1 knock-out mice. Here we report that Appl1 knock-out mice are viable and fertile. Appl1-null mice were born at expected Mendelian ratios, without obvious phenotypic abnormalities. Moreover, Akt activity in various fetal tissues was unchanged compared with that observed in wild-type littermates. Studies of isolated Appl1(-/-) murine embryonic fibroblasts (MEFs) showed that Akt activation by epidermal growth factor, insulin, or fetal bovine serum was similar to that observed in wild-type MEFs, although Akt activation by HGF was diminished in Appl1(-/-) MEFs. To rule out a possible redundant role played by the related Appl2, we used small interfering RNA to knock down Appl2 expression in Appl1(-/-) MEFs. Unexpectedly, cell survival was unaffected under normal culture conditions, and activation of Akt was unaltered following epidermal growth factor stimulation, although Akt activity did decrease further after HGF stimulation. Furthermore, we found that Appl proteins are required for HGF-induced cell survival and migration via activation of Akt. Our studies suggest that Appl1 is dispensable for development and only participate in Akt signaling under certain conditions.
Collapse
Affiliation(s)
- Yinfei Tan
- Cancer Genetics and Signaling Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
216
|
Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, Nagahiro S. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 2009; 12:221-32. [PMID: 20167810 DOI: 10.1093/neuonc/nop026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Akt, one of the major downstream effectors of phosphatidylinositol 3-kinase, is hyper-expressed and activated in a variety of cancers including glioblastoma. However, the expression profiles of the Akt isoforms Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma and their functional roles in malignant glioma are not well understood. Therefore, we examined the protein and mRNA expression patterns of Akt isoforms in tissues from human astrocytomas, glioblastomas, and non-neoplastic regions. We also explored the biological role of each Akt isoform in malignant glioma cells using RNA interference-mediated knock-down and the over-expression of plasmid DNA of each isoform. The expression of Akt1 protein and mRNA was similar in glioma and normal control tissues. Although the protein and mRNA level of Akt2 increased with the pathological grade of malignancy, the expression of Akt3 mRNA and protein decreased as the malignancy grade increased. In U87MG, T98G, and TGB cells, the down-regulation of Akt2 or Akt3 by RNA interference reduced the expression of the phosphorylated form of Bad, resulting in the induction of caspase-dependent apoptosis. Akt1 knock-down did not affect cell growth or survival. We first demonstrate that the over-expression of Akt2 or Akt3 down-regulated the expression of the other protein and that endogenous Akt3 protein showed high kinase activity in U87MG cells. Our data suggest that Akt2 and Akt3 play an important role in the viability of human malignant glioma cells. Targeting Akt2 and Akt3 may hold promise for the treatment of patients with gliomas.
Collapse
Affiliation(s)
- Hideo Mure
- Department of Neurosurgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | |
Collapse
|
217
|
Mihaljevic AL, Esposito I, Friess H, Kleeff J. Molecular biology, models, and histopathology of chronic pancreatitis and pancreatic cancer. Eur Surg 2009. [DOI: 10.1007/s10353-009-0496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
218
|
Porta C, Figlin RA. Phosphatidylinositol-3-kinase/Akt signaling pathway and kidney cancer, and the therapeutic potential of phosphatidylinositol-3-kinase/Akt inhibitors. J Urol 2009; 182:2569-77. [PMID: 19836781 DOI: 10.1016/j.juro.2009.08.085] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Indexed: 11/17/2022]
Abstract
PURPOSE The PI3K/Akt signaling pathway is activated by many cellular stimuli. It regulates fundamental cellular functions, including transcription, translation, proliferation, growth and survival. It also closely interacts with many other key pathways such as mTOR and, thus, is linked to angiogenesis. Disturbed activation of the PI3K/Akt pathway is associated with many human malignancies. We reviewed the available literature on PI3K/Akt and PI3K/Akt targeting drugs for renal cell carcinoma. MATERIALS AND METHODS MEDLINE and the proceedings of the main oncological meetings were extensively searched to identify the available literature on the role of this pathway in renal cell carcinoma pathogenesis, and on preclinical and clinical activity of compounds specifically targeting this pathway. Clinical data and perspectives on several compounds at different stages of development were also reviewed. RESULTS Cumulative evidence links PI3K/Akt alterations with renal cell carcinoma. Thus, renal cell carcinoma is an ideal setting in which to test compounds specifically targeting this pathway. Several PI3K/Akt inhibitors are currently under preclinical and early clinical development as anticancer agents but only perifosine (Keryx Biopharmaceuticals, New York, New York) appears to be at a more advanced stage, having been tested with promising results alone or combined with other molecularly targeted agents. CONCLUSIONS The PI3K/Akt pathway has a pivotal role in renal cell carcinoma pathogenesis and, thus, represents an ideal target for therapeutic intervention. Of the several compounds in early phases of development only perifosine has already proved to be clinically active. Thus, it should be considered an extremely interesting drug to be used alone or in combination.
Collapse
Affiliation(s)
- Camillo Porta
- Medical Oncology and Laboratory of Pre-Clinical Oncology and Developmental Therapeutics, Istituto Di Ricovero e Cura a Carattere Scientifico San Matteo University Hospital Foundation, Pavia, Italy.
| | | |
Collapse
|
219
|
Buchholz M, Gress TM. Molecular changes in pancreatic cancer. Expert Rev Anticancer Ther 2009; 9:1487-97. [PMID: 19828010 DOI: 10.1586/era.09.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As with many human malignancies, pancreatic cancer is a complex genetic disorder. Several thousand disease-associated alterations on the DNA, mRNA, miRNA and protein levels have been reported to date. Some of these alterations, including a number of gatekeeper mutations, which are of pre-eminent importance for the onset and progression of the disease, have been extensively studied in primary tissues, in vitro experiments and transgenic mouse models. For the vast majority of alterations, however, data about the functional significance are lacking. The situation is complicated by the fact that no certainty exists concerning the identity of the cells that originally undergo malignant transformation nor about the precise nature and fate of premalignant lesions that are observed in pancreatic tissues.
Collapse
Affiliation(s)
- Malte Buchholz
- Klinik f. Innere Medizin, SP Gastroenterologie, Universitätsklinikum Marburg, Baldingerstrasse 35043 Marburg, Germany.
| | | |
Collapse
|
220
|
Layton T, Stalens C, Gunderson F, Goodison S, Silletti S. Syk tyrosine kinase acts as a pancreatic adenocarcinoma tumor suppressor by regulating cellular growth and invasion. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2625-36. [PMID: 19893036 DOI: 10.2353/ajpath.2009.090543] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have identified the nonreceptor tyrosine kinase syk as a marker of differentiation/tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Syk expression is lost in poorly differentiated PDAC cells in vitro and in situ, and stable reexpression of syk in endogenously syk-negative Panc1 (Panc1/syk) cells retarded their growth in vitro and in vivo and reduced anchorage-independent growth in vitro. Panc1/syk cells exhibited a more differentiated morphology and down-regulated cyclin D1, akt, and CD171, which are overexpressed by Panc1 cells. Loss of PDAC syk expression in culture is due to promoter methylation, and reversal of promoter methylation caused reexpression of syk and concomitant down-regulation of CD171. Moreover, suppression of syk expression in BxPC3 cells caused de novo CD171 expression, consistent with the reciprocal expression of syk and CD171 we observe in situ. Importantly, Panc1/syk cells demonstrated dramatically reduced invasion in vitro. Affymetrix analysis identified statistically significant regulation of >2000 gene products by syk in Panc1 cells. Of these, matrix metalloproteinase-2 (MMP2) and tissue inhibitor of metalloproteinase-2 were down-regulated, suggesting that the MMP2 axis might mediate Panc1/mock invasion. Accordingly, MMP2 inhibition suppressed the in vitro invasion of Panc1/mock cells without effect on Panc1/syk cells. This study demonstrates a prominent role for syk in regulating the differentiation state and invasive phenotype of PDAC cells.
Collapse
Affiliation(s)
- Tracy Layton
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0803, USA
| | | | | | | | | |
Collapse
|
221
|
Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG, Evers BM. PTEN loss induces epithelial--mesenchymal transition in human colon cancer cells. Anticancer Res 2009; 29:4439-4449. [PMID: 20032390 PMCID: PMC2932708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition is a critical early event in the invasion and metastasis of many types of cancer, including colorectal cancer (CRC). Chronic inflammation is an inducer of several cancer types and inflammatory cytokines have been implicated in tumor invasion. MATERIALS AND METHODS Human colon cancer cell lines HCT116 and SW480 were transfected with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) siRNA or non-targeting control (NTC). Invasiveness was measured using a modified Boyden chamber assay and migration was assessed using a scratch assay. RESULTS PTEN knockdown increased the invasion and migration of CRC cells and the addition of medium containing tumor necrosis factor-alpha (TNF-alpha) further enhanced the migration and invasion. PTEN knockdown resulted in nuclear beta-catenin accumulation and increased expression of downstream proteins c-Myc and cyclin D1. CONCLUSION Our study supports the findings of clinical studies identifying an association of PTEN loss with late stage cancer. Cellular factors secreted from the surrounding tumor milieu likely act in concert with genetic changes in the tumor cells and contribute to enhanced tumor invasion.
Collapse
Affiliation(s)
- Kanika A. Bowen
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Hung Q. Doan
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Binhua P. Zhou
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Qingding Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Yuning Zhou
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Piotr G. Rychahou
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - B. Mark Evers
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
222
|
Noh TW, Jeong HJ, Lee MK, Kim TS, Kim SH, Lee EJ. Predicting recurrence of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2009; 94:4406-13. [PMID: 19820025 DOI: 10.1210/jc.2009-0471] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Nonfunctioning pituitary adenomas are commonly diagnosed as large tumors. Most are detected incidentally during imaging studies or as a result of neurological manifestations. Depending on severity, most patients with large tumors require surgery and adjunctive therapies because of the high rate of tumor recurrence. The ability to predict the recurrence of a tumor at the time of the initial surgery would be helpful in deciding whether adjunctive therapy is necessary and decreasing morbidity. We investigated the use of several cellular markers for predicting the recurrence of nonfunctioning pituitary adenomas. OBJECTIVE A tissue array block was made using tissue from 35 cases of nonfunctioning pituitary adenomas (16 cases with early recurrence <or=4 yr after surgery, 10 cases with late recurrence >4 yr after surgery, and nine cases without recurrence). Levels of tumor tissue cellular markers associated with cell proliferation or apoptosis were analyzed, and immunohistochemical study of cellular markers was conducted using sectioned slides from the tissue array block. RESULTS High Ki-67 and TUNEL labeling indexes were associated with recurrent nonfunctioning pituitary adenomas. Tumors with a high level of expression of phospho-Akt, phospho-p44/42 MAPK, and PTTG1 were associated with early recurrence. However, high levels of expression of phospho-CREB and ZAC1 were inversely associated with recurrence. CONCLUSIONS Tumors with high levels of expression of phospho-Akt and phospho-p44/42 MAPK and low levels of expression of phospho-CREB and ZAC1 should be followed closely and may require adjunctive therapy to prevent tumor recurrence.
Collapse
Affiliation(s)
- Tae-Woong Noh
- Pituitary Tumor Clinic and Institute of Endocrinology, Yonsei Brain Research Institute, Yonsei University College of Medicine, 120-752 Seoul, Korea
| | | | | | | | | | | |
Collapse
|
223
|
Shin SS, Wall BA, Goydos JS, Chen S. AKT2 is a downstream target of metabotropic glutamate receptor 1 (Grm1). Pigment Cell Melanoma Res 2009; 23:103-11. [PMID: 19843246 DOI: 10.1111/j.1755-148x.2009.00648.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported earlier on the oncogenic properties of Grm1 by demonstrating that stable Grm1-mouse-melanocytic clones proliferate in the absence of growth supplement and anchorage in vitro. In addition, these clones also exhibit aggressive tumorigenic phenotypes in vivo with short latency in tumor formation in both immunodeficient and syngeneic mice. We also detected strong activation of AKT in allograft tumors specifically AKT2 as the predominant isoform involved. In parallel, we assessed several human melanoma biopsy samples and found again that AKT2 was the predominantly activated AKT in these human melanoma biopsies. In cultured stable Grm1-mouse-melanocytic clones, as well as an metabotropic glutamate receptor 1 (Grm1) expressing human melanoma cell line, C8161, stimulation of Grm1 by its agonist led to the activation of AKT, while preincubation with Grm1-antagonist abolished Grm1-agonist-induced AKT activation. In addition, a reduction in tumor volume of Grm1-mouse-melanocytic-allografts was detected in the presence of small interfering AKT2 RNA (siAKT2). Taken together, these results showed that, in addition to the MAPK pathway previously reported being a downstream target of stimulated Grm1, AKT2 is another downstream target in Grm1 mediated melanocyte transformation.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
224
|
Iamaroon A, Krisanaprakornkit S. Overexpression and activation of Akt2 protein in oral squamous cell carcinoma. Oral Oncol 2009; 45:e175-9. [DOI: 10.1016/j.oraloncology.2009.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
|
225
|
Huang WC, Hung MC. Induction of Akt activity by chemotherapy confers acquired resistance. J Formos Med Assoc 2009; 108:180-94. [PMID: 19293033 DOI: 10.1016/s0929-6646(09)60051-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Resistance to chemotherapy is a major cause of treatment failure in human cancer. Accumulating evidence has indicated that the acquisition of resistance to chemotherapeutic drugs involves the activation of the PI3K/Akt pathway. Modulating Akt activity in response to chemotherapy has been observed often in chemoresistant cancers. The potential molecular mechanisms by which chemotherapeutic agents activate the PI3K/Akt pathway are emerging. Activation of this pathway evades the cytotoxic effects of chemotherapeutic agents via regulation of essential cellular functions such as protein synthesis, antiapoptosis, survival and proliferation in cancer. How chemotherapeutic agents induce Akt activation and how activated Akt confers chemoresistance through regulation of signaling networks are discussed in this review. Combining PI3K/Akt inhibitors with standard chemotherapy has been successful in increasing the efficacy of chemotherapeutic agents both in vivo and in vitro. Several small molecules have been developed to specifically target PI3K/Akt and other components of this pathway, which in combination with chemotherapy may be a valid approach to overcome therapeutic resistance. We propose several feedback and feedforward regulatory mechanisms of signaling networks for maintenance of the Akt activity for cell survival. These regulatory mechanisms may limit the efficacy of PI3K/Akt-targeted therapy; therefore, disruption of these mechanisms may be an effective strategy for development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, and Department of Biotechnology, Asia University, Taichung, Taiwan.
| | | |
Collapse
|
226
|
Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 2009; 8:2502-8. [PMID: 19597332 DOI: 10.4161/cc.8.16.9335] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Akt (PKB) protein kinases are critical regulators of human physiology that control an impressive array of diverse cellular functions, including the modulation of growth, survival, proliferation and metabolism. The Akt kinase family is comprised of three highly homologous isoforms: Akt1 (PKBalpha), Akt2 (PKBbeta) and Akt3 (PKBgamma). Phenotypic analyses of Akt isoform knockout mice documented Akt isoform specific functions in the regulation of cellular growth, glucose homeostasis and neuronal development. Those studies establish that the functions of the different Akt kinases are not completely overlapping and that isoform-specific signaling contributes to the diversity of Akt activities. However, despite these important advances, a thorough understanding about the specific roles of Akt family members and the molecular mechanisms that determine Akt isoform functional specificity will be essential to elucidate the complexity of Akt regulated cellular processes and how Akt isoform-specific deregulation might contribute to disease states. Here, we summarize recent advances in understanding the roles of Akt isoforms in the regulation of metabolism and cancer, and possible mechanisms contributing to Akt isoform functional specificity.
Collapse
Affiliation(s)
- Eva Gonzalez
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
227
|
Abstract
There are ample genetic and laboratory studies that suggest the PI3K-Akt pathway is vital to the growth and survival of cancer cells. Inhibitors targeting this pathway are entering the clinic at a rapid pace. In this Review, the therapeutic potential of drugs targeting PI3K-Akt signalling for the treatment of cancer is discussed. I focus on the advantages and drawbacks of different treatment strategies for targeting this pathway, the cancers that might respond best to these therapies and the challenges and limitations that confront their clinical development.
Collapse
Affiliation(s)
- Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02129, USA.
| |
Collapse
|
228
|
Madhunapantula SV, Robertson GP. The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 2009; 22:400-19. [PMID: 19493313 PMCID: PMC3610526 DOI: 10.1111/j.1755-148x.2009.00585.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanocytes undergo extensive genetic changes during transformation into aggressive melanomas. These changes deregulate genes whose aberrant activity promotes the development of this disease. The phosphoinositide-3-kinase (PI3K) and mitogen-activated protein (MAP) kinase pathways are two key signaling cascades that have been found to play prominent roles in melanoma development. These pathways relay extra-cellular signals via an ordered series of consecutive phosphorylation events from cell surface throughout the cytoplasm and nucleus regulating diverse cellular processes including proliferation, survival, invasion and angiogenesis. It is generally accepted that therapeutic agents would need to target these two pathways to be an effective therapy for the long-term treatment of advanced-stage melanoma patients. This review provides an overview of the PI3 kinase pathway focusing specifically on two members of the pathway, called PTEN and Akt3, which play important roles in melanoma development. Mechanisms leading to deregulation of these two proteins and therapeutic implications of targeting this signaling cascade to treat melanoma are detailed in this review.
Collapse
|
229
|
Madhunapantula SV, Robertson GP. The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell Melanoma Res 2009. [DOI: 10.1111/j.1755-1471.2009.00585.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
230
|
Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:127-50. [PMID: 18767981 DOI: 10.1146/annurev.pathol.4.110807.092311] [Citation(s) in RCA: 1112] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PI3-kinase and PTEN are major positive and negative regulators, respectively, of the PI3-kinase pathway, which regulates growth, survival, and proliferation. These key signaling components are two of the most frequently mutated proteins in human cancers, resulting in unregulated activation of PI3K signaling and providing irrefutable genetic evidence of the central role of this pathway in tumorigenesis. PTEN regulates PI3K signaling by dephosphorylating the lipid signaling intermediate PIP(3), but PTEN may have additional phosphatase-independent activities, as well as other functions in the nucleus. In this review, we highlight current work showing cancer-relevant complexities in the regulation of PTEN and PI3K activity, potential novel functions for PTEN, and feedback regulation within the pathway. The significance and complexity of PI3K signaling make it an important but challenging therapeutic target for cancer.
Collapse
Affiliation(s)
- Nader Chalhoub
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
| | | |
Collapse
|
231
|
Foster K, Wang Y, Zhou D, Wright C. Dependence on PI3K/Akt signaling for malignant rhabdoid tumor cell survival. Cancer Chemother Pharmacol 2009; 63:783-791. [PMID: 18641990 PMCID: PMC2692242 DOI: 10.1007/s00280-008-0796-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 07/07/2008] [Indexed: 12/21/2022]
Abstract
PURPOSE Malignant rhabdoid tumors (MRT), although rare, are one of the most aggressive pediatric malignancies. Loss of INI1, a tumor suppressor gene and member of the SWI/SNF chromatin remodeling complex, is a recurrent genetic characteristic of these tumors and an important diagnostic marker. We have previously demonstrated a novel interaction between the serine/threonine kinase Akt and INI1, as well as other SWI/SNF subunits. This, coupled with experiments in the literature suggesting that the PI3K/Akt pathway is dysregulated in MRT cells, caused us to investigate the activation and importance of this pathway in this tumor type. METHODS In this study, we used MTT assays to evaluate the sensitivity of MRT cell lines to PI3K inhibition. Western blot analysis and Raf pulldown assays were used to examine potential mechanisms of PI3K/Akt dysregulation. RESULTS Inhibition of the PI3K/Akt pathway caused a significant reduction in the survival of the four MRT cell lines tested, and three cell lines demonstrated constitutively active Akt. Two of these constitutively active Akt cell lines abundantly expressed IGF-1R and an inhibitor of IGF-1R, NVP-AEW541, reduced Akt phosphorylation in one of them. The third constitutively active Akt cell line appeared to express a mutant IGF-1R. CONCLUSIONS Our data suggests that the PI3K/Akt pathway is a crucial means of maintaining the survival and growth of MRT cells. The cells therefore employ various mechanisms to stimulate this pathway, and growth factor receptor dysregulation appears to be a common method. Drugs that inhibit the PI3K pathway or interfere with IGF autocrine loops may be of great value in treating MRT, which is largely resistant to conventional chemotherapeutic approaches.
Collapse
Affiliation(s)
- Kristen Foster
- Pathology and Laboratory, Medical University of South Carolina, Charleston, USA, e-mail:
| | - Yong Wang
- Pathology and Laboratory, Medical University of South Carolina, Charleston, USA, e-mail:
| | - Daohong Zhou
- Pathology and Laboratory, Medical University of South Carolina, Charleston, USA, e-mail:
| | - Cynthia Wright
- Pathology and Laboratory, Medical University of South Carolina, Charleston, USA, e-mail:
| |
Collapse
|
232
|
The expression of protein kinase B in gastric cancer cell apoptosis induced by 12-O-tetradecanoylphorbol-1, 3-acetate. Cell Mol Biol Lett 2009; 14:466-80. [PMID: 19238332 PMCID: PMC6276013 DOI: 10.2478/s11658-009-0013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/17/2009] [Indexed: 12/20/2022] Open
Abstract
Protein kinase B (PKB/Akt) is a serine-threonine kinase functioning downstream of phosphatidylinositol 3-kinase (PI-3 kinase) in response to mitogen or growth factor stimulation. In several cell types, it plays an important anti-apoptotic role. TPA is a potent regulator of the growth of many different cell types. Here, we detected that TPA could induce cell apoptosis in the gastric cancer cell line, BGC-823. We also found that TPA inhibited the expression of PKB/Akt in a TPA concentration- and time-dependent manner. Furthermore, TPA inhibited the phosphorylation of PKB at Ser473, but did not affect the phosphorylation of Thr308. It only attenuated the expression of PKB/Akt and the phosphorylation of Ser473 in the cell nucleus, whereas it did not change the PKB/Akt distribution in BGC-823 cells. These results suggest that PKB/Akt inhibition by TPA may be the important factor in the mechanism of effect of TPA on gastric cell lines.
Collapse
|
233
|
Kayser-Bricker KJ, Glenn MP, Lee SH, Sebti SM, Cheng JQ, Hamilton AD. Non-peptidic substrate-mimetic inhibitors of Akt as potential anti-cancer agents. Bioorg Med Chem 2009; 17:1764-71. [PMID: 19179081 PMCID: PMC4037933 DOI: 10.1016/j.bmc.2008.09.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/17/2008] [Accepted: 09/24/2008] [Indexed: 11/18/2022]
Abstract
Akt has emerged as a critical target for the development of anti-cancer therapies. It has been found to be amplified, overexpressed, or constitutively activated in numerous human malignancies with oncogenesis derived from the simultaneous promotion of cell survival and suppression of apoptosis. A valuable alternative to the more common ATP-mimetic based chemotherapies is a substrate-mimetic approach, which has the potential advantage of inherent specificity of the substrate-binding pocket. In this paper we present the development of high affinity non-peptidic, substrate-mimetic inhibitors based on the minimum GSK3beta substrate sequence. Optimization of initial peptidic leads resulted in the development of several classes of small molecule inhibitors, which have comparable potency to the initial peptidomimetics, while eliminating the remaining amino acid residues. We have identified the first non-peptidic substrate-mimetic lead inhibitors of Akt 29a-b, which have affinities of 17 and 12 microM, respectively. This strategy has potential to provide a useful set of molecular probes to assist in the validation of Akt as a potential target for anti-cancer drug design.
Collapse
Affiliation(s)
| | - Matthew P. Glenn
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA
| | - Sang Hoon Lee
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA
| | - Said M. Sebti
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jin Q. Cheng
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Andrew D. Hamilton
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA
| |
Collapse
|
234
|
Mahalingam D, Giles F. Challenges in developing targeted therapy for pancreatic adenocarcinoma. Expert Opin Ther Targets 2009; 12:1389-401. [PMID: 18851695 DOI: 10.1517/14728222.12.11.1389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic adenocarcinoma is a leading cause of cancer deaths in the US. Gemcitabine-based chemotherapy remains the cornerstone treatment for advanced pancreatic cancers. Research into the molecular pathogenesis of pancreatic cancers has allowed scientists to understand the complex heterogeneous signals associated with them. Targeting these pathways with chemical inhibitors could improve patient outcome. OBJECTIVE To describe the molecular heterogeneity typical of pancreatic cancers and to discuss targeted therapies in development, and the challenges facing these agents. METHODS We reviewed Pub Med. literature, clinical trial database (clinicaltrials.gov), American Society of Clinical Oncology (ASCO) and American Association of Cancer Research (AACR) websites. CONCLUSIONS Molecular pathogenesis of pancreatic cancer involves multiple pathways and defined mutations. This molecular heterogeneity is a major reason for failure of targeted therapy. Targeting multiple oncogenic pathways using novel targeted therapies could improve patient survival.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Institute of Drug Development, Division of Hematology and Medical Oncology, University of Texas Health Science Centre, San Antonio, Texas 78229, USA
| | | |
Collapse
|
235
|
Jiang H, Shang X, Wu H, Gautam SC, Al-Holou S, Li C, Kuo J, Zhang L, Chopp M. Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2009; 8:25-33. [PMID: 19827268 PMCID: PMC2833270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Resveratrol (trans-3,4', 5-trihydroxystilbene) is a naturally occurring polyphenolic compound that has antiinflammatory, antioxidant, neuroprotective properties and acts as a chemopreventive agent. Resveratrol causes cell cycle arrest and induces apoptotic cell death in various types of cancer cells. In the current studies, the effect of resveratrol on phosphoinositide kinase-3 (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway was examined in human U251 glioma cells. Resveratrol decreased both the expression and phosphorylation of Akt. Inhibitors of PI3K (LY294002) and Akt (SH-6) enhanced resveratrol-induced LDH release and caspase-3 activation. Resveratrol reduced phosphorylation of ribosomal protein S6 and the mTOR inhibitor rapamycin further enhanced resveratrol-induced cell death. These results suggest that the downregulation of PI3K/Akt/mTOR signaling pathways may be an important mediator in resveratrol-induced apoptosis in glioma cells.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Paoluzzi L, Kitagawa Y, Kalac M, Zain J, O'Connor OA. New drugs for the treatment of lymphoma. Hematol Oncol Clin North Am 2008; 22:1007-35, x. [PMID: 18954749 DOI: 10.1016/j.hoc.2008.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Historically, most drugs developed for treatment of leukemias, lymphomas, and myeloma had already been studied in the solid tumor setting. Nearly 10 years ago, chronic myelogenous leukemia (CML) forever changed this paradigm. Imatinib showed that it was possible to nullify the pathognomic genetic lesion in a hematologic malignancy. Since the approval of imatinib for CML, a host of new drugs active in blood cancers have emerged. This article highlights some areas of innovative drug development in lymphoma where possible; it emphasizes the biologic basis for the approach, linking this essential biology to the biochemical pharmacology. The article focuses on the many new targets including Syk, Bcl-2, CD-40, and the phosphoinositide-3 kinase/AKT/mammalian target of rapamycin pathway.
Collapse
Affiliation(s)
- Luca Paoluzzi
- Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, Room 216, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
237
|
Takahashi K, Miyashita M, Makino H, Akagi I, Orita H, Hagiwara N, Nomura T, Gabrielson EW, Tajiri T. Expression of Akt and Mdm2 in human esophageal squamous cell carcinoma. Exp Mol Pathol 2008; 87:42-7. [PMID: 19124015 DOI: 10.1016/j.yexmp.2008.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
The Akt-Mdm2 pathway plays an important role in carcinogenesis in a variety of malignant tumors. However, the Akt-Mdm2 pathway in esophageal squamous cell carcinoma (ESCC) has not been fully studied. We investigated the proteins and mRNA expression of Akt and Mdm2 to elucidate the roles of these proteins in ESCC. We also examined the effect of Akt knockdown on Mdm2 expression in ESCC cells. ESCC tissue samples were obtained from 23 individuals who underwent surgical resection with no preoperative treatment. Akt1-3 and Mdm2 gene and protein expression were analyzed. The effect of siRNA-mediated Akt knockdown on Mdm2 expression was also studied, using ESCC cell lines. Akt1 and Mdm2 immunoreactivity was detected in 77.8 and 66.7% of tumor specimen from ESCC patients, respectively. Akt1 and Mdm2 mRNA expressions were correlated and significantly elevated in tumor tissue (p<0.0001 and p<0.05, respectively). The siRNA-targeted reduction of each Akt isoform reduced Mdm2 protein expression. The overexpression of Akt1 and Mdm2 may be related to esophageal carcinogenesis. Furthermore, Akt expression regulates Mdm2 expression, which may in turn regulate the function of wild-type p53. These results may provide the basis for future preventative or clinical therapies for esophageal cancer.
Collapse
Affiliation(s)
- Ken Takahashi
- Graduate School of Medicine, Department of Surgery, Surgery for Organ Function and Biological Regulation, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 2008; 27:193-8. [PMID: 19047305 DOI: 10.1200/jco.2008.18.9514] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The PI3K/Akt/mTOR pathway is activated in the majority of pancreatic cancers, and inhibition of this pathway has antitumor effects in preclinical studies. We performed a multi-institutional, single-arm, phase II study of RAD001(everolimus), an oral inhibitor of mTOR, in patients who experienced treatment failure on first-line therapy with gemcitabine. PATIENTS AND METHODS Thirty-three patients with gemcitabine-refractory, metastatic pancreatic cancer were treated continuously with RAD001 at 10 mg daily. Prior treatment with fluorouracil in the perioperative setting was allowed. Patients were observed for toxicity, treatment response, and survival. RESULTS Treatment with single-agent RAD001 was well-tolerated; the most common adverse events were mild hyperglycemia and thrombocytopenia. No patients were removed from the study because of drug-related adverse events. No complete or partial treatment responses were noted, and only seven patients (21%) had stable disease at the first restaging scans performed at 2 months. Median progression-free survival and overall survival were 1.8 months and 4.5 months, respectively. One patient (3%) had a biochemical response, defined as > or = 50% reduction in serum CA19-9. CONCLUSION Although well-tolerated, RAD001 administered as a single-agent had minimal clinical activity in patients with gemcitabine-refractory, metastatic pancreatic cancer. Future studies in metastatic pancreatic cancer should assess the combination of mTOR inhibitors with other agents and/or examine inhibitors of other components of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 2008. [PMID: 19047305 DOI: 10.1200/jco.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The PI3K/Akt/mTOR pathway is activated in the majority of pancreatic cancers, and inhibition of this pathway has antitumor effects in preclinical studies. We performed a multi-institutional, single-arm, phase II study of RAD001(everolimus), an oral inhibitor of mTOR, in patients who experienced treatment failure on first-line therapy with gemcitabine. PATIENTS AND METHODS Thirty-three patients with gemcitabine-refractory, metastatic pancreatic cancer were treated continuously with RAD001 at 10 mg daily. Prior treatment with fluorouracil in the perioperative setting was allowed. Patients were observed for toxicity, treatment response, and survival. RESULTS Treatment with single-agent RAD001 was well-tolerated; the most common adverse events were mild hyperglycemia and thrombocytopenia. No patients were removed from the study because of drug-related adverse events. No complete or partial treatment responses were noted, and only seven patients (21%) had stable disease at the first restaging scans performed at 2 months. Median progression-free survival and overall survival were 1.8 months and 4.5 months, respectively. One patient (3%) had a biochemical response, defined as > or = 50% reduction in serum CA19-9. CONCLUSION Although well-tolerated, RAD001 administered as a single-agent had minimal clinical activity in patients with gemcitabine-refractory, metastatic pancreatic cancer. Future studies in metastatic pancreatic cancer should assess the combination of mTOR inhibitors with other agents and/or examine inhibitors of other components of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
The Akt serine/threonine kinase (also called protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. Significant progress has been made in clarifying its regulation by upstream kinases and identifying downstream mechanisms that mediate its effects in cells and contribute to signaling specificity. Here, we provide an overview of present advances in the field regarding the function of Akt in physiological and pathological cell function within a more generalized framework of Akt signal transduction. An emphasis is placed on the involvement of Akt in human diseases ranging from cancer to metabolic dysfunction and mental disease.
Collapse
Affiliation(s)
- T F Franke
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
241
|
Zimmer S, Kahl P, Buhl TM, Steiner S, Wardelmann E, Merkelbach-Bruse S, Buettner R, Heukamp LC. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol 2008; 135:723-30. [PMID: 19002495 DOI: 10.1007/s00432-008-0509-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 10/20/2008] [Indexed: 01/14/2023]
Abstract
PURPOSE The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) has been linked to activating mutations in the EGFR gene. So far these mutations have been extensively characterized in established cell lines. The aim of this study was to determine the effects of EGFR mutations on downstream signaling in human tumor specimens. METHODS We have looked for mutations of the EGFR gene in specimens of 67 patients with NSCLC and correlated these with EGFR phosphorylation and the activity of its three main downstream signaling cascades Akt, MAPK and Stat3 by immunohistochemistry. RESULTS We show that the phosphorylation of tyrosine residues 922 and 1173, but not 1068, are primarily affected by the activating EGFR mutations. Akt activity was significantly higher in patients with EGFR mutations but we found no difference in Stat3 or MAPK phosphorylation. Our results suggest that EGFR mutations not only increase receptor activity, but also alter responses of downstream signaling cascades in human NSCLCs and that these finding differ from results obtained in cell lines.
Collapse
Affiliation(s)
- Sebastian Zimmer
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12:1139-65. [PMID: 18694380 DOI: 10.1517/14728222.12.9.1139] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) pathway is central in the transmission of growth regulatory signals originating from cell surface receptors. OBJECTIVE This review discusses how mutations occur that result in elevated expression the PI3K/PTEN/Akt/mTOR pathway and lead to malignant transformation, and how effective targeting of this pathway may result in suppression of abnormal growth of cancer cells. METHODS We searched the literature for articles which dealt with altered expression of this pathway in various cancers including: hematopoietic, melanoma, non-small cell lung, pancreatic, endometrial and ovarian, breast, prostate and hepatocellular. RESULTS/CONCLUSIONS The PI3K/PTEN/Akt/mTOR pathway is frequently aberrantly regulated in various cancers and targeting this pathway with small molecule inhibitors and may result in novel, more effective anticancer therapies.
Collapse
Affiliation(s)
- Linda S Steelman
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Kaur P, Shukla S, Gupta S. Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis 2008; 29:2210-7. [PMID: 18725386 PMCID: PMC2577719 DOI: 10.1093/carcin/bgn201] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/25/2008] [Accepted: 08/18/2008] [Indexed: 01/19/2023] Open
Abstract
Inappropriate activation of phosphatidylinositol 3-kinase-Akt signaling contributes to the development of several human malignancies. Modulation of Akt activity is a strategy that may be valuable in chemopreventive and chemotherapeutic regimens. We have previously demonstrated that apigenin, a plant flavone, causes decreased survival in human prostate cancer cells. However, the molecular mechanism underlying this observation remains elusive. In the present study, we investigated the mechanisms of apigenin action on human prostate cancer PC-3 cells, which possess constitutively active Akt. Treatment of PC-3 cells with apigenin (5-40 microM) resulted in significant dose- and time-dependent decrease in Akt phosphorylation at Serine473. Apigenin-mediated dephosphorylation of Akt resulted in inhibition of its kinase activity, which was confirmed by reduced phosphorylation of proapoptotic proteins BAD and glycogen synthase kinase-3, essential downstream targets of Akt. Hypophosphorylation of BAD resulted in reduced interaction with 14-3-3beta protein after 20 microM apigenin exposure to PC-3 cells for 24 h. Inactivation of Akt seems to be associated with downregulation of insulin-like growth factor receptor 1 protein level and inhibition of its autophosphorylation upon apigenin treatment. Exposure to apigenin significantly induced caspase-9 activity and decreased the survival of PC-3 cells in a dose-dependent manner. Furthermore, Serine473 phosphorylation of ectopically expressed Akt in DU145 cells was significantly reduced upon 20 microM apigenin treatment. In vivo, apigenin intake through gavage resulted in inactivation of Akt and induction of apoptosis in PC-3 tumors. These results suggest that Akt inactivation and dephosphorylation of BAD is a critical event, at least in part, in apigenin-induced decreased cell survival and apoptosis.
Collapse
Affiliation(s)
| | | | - Sanjay Gupta
- Department of Urology, Case Western Reserve University
- Department of Urology, University Hospitals Case Medical Center
- Department of Urology, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
244
|
Shi XH, Liang ZY, Ren XY, Liu TH. Combined silencing of K-ras and Akt2 oncogenes achieves synergistic effects in inhibiting pancreatic cancer cell growth in vitro and in vivo. Cancer Gene Ther 2008; 16:227-36. [PMID: 18949011 DOI: 10.1038/cgt.2008.82] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
245
|
Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood 2008; 112:3403-11. [DOI: 10.1182/blood-2007-11-119362] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Although the phosphatidylinositide 3-kinase (PI3K)/Akt pathway has been reported to contribute to the malignant growth of multiple myeloma (MM), the true relevance of Akt kinases for this disease is still unclear. In particular, functional analyses in primary tumor cells and genetic target validation experiments are missing. Here, we used combined functional and molecular analyses to determine the importance of Akt activity in a large panel of primary MM samples and in MM cell lines. Akt down-regulation with isoform-specific siRNA constructs or with an Akt1/2-specific pharmacologic inhibitor strongly induced apoptosis in approximately half of the primary MM samples analyzed. Sensitivity to Akt inhibition strongly correlated with the activation status of Akt as determined by immunohistochemistry, phospho-Akt–specific flow cytometry, and Western analysis. Additional blockade of the MAPK and the IL-6R/STAT3 pathways was often not sufficient to decrease the viability of MM cells resilient to Akt inhibition. Taken together, these experiments led to the identification of 2 myeloma subgroups: Akt-dependent and Akt-independent MM.
Collapse
|
246
|
Cinti C, Vindigni C, Zamparelli A, La Sala D, Epistolato MC, Marrelli D, Cevenini G, Tosi P. Activated Akt as an indicator of prognosis in gastric cancer. Virchows Arch 2008; 453:449-55. [PMID: 18841391 DOI: 10.1007/s00428-008-0676-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 12/17/2022]
Abstract
The immunohistochemical expression of phosphorylated (activated) Akt (pAkt) in 50 advanced gastric carcinomas has been analyzed and the results correlated with age, sex, location in the stomach, histotype, stage, survival, mitotic and apoptotic index, some cell cycle regulators (cyclin D1, cyclin E, p34/cdc2, p27/kip1), and cell proliferation. There was a statistically significant direct correlation between pAkt expression (both cytoplasmatic and nuclear) and depth of infiltration of the tumor, number of infiltrated lymph nodes and p34/cdc2 expression, and between prevalently nuclear pAkt and cyclin D1 and cyclin E. Conversely, there was a significant inverse correlation between nuclear pAkt and apoptotic index and between cytoplasmatic and nuclear pAkt and patient survival. No correlation was found between pAkt and sex, age, tumor location, histotype, mitotic index, and cell proliferation. These findings suggest that pAkt may be considered an indicator of tumor progression and patient survival in gastric cancer.
Collapse
Affiliation(s)
- Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Siena Unit, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Matthews LC, Taggart MJ, Westwood M. Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology 2008; 149:5199-208. [PMID: 18583416 DOI: 10.1210/en.2007-1211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The IGFs mediate their effects on cell function through the type I IGF receptor and numerous intracellular signalling molecules, including the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. The type I IGF receptor also binds to the caveolae protein caveolin-1, but the impact of caveolae on IGF/PI-3K/Akt signalling remains controversial. We have examined the effect of complete (knockout) and partial (knockdown) caveolin-1 deficiency on cellular IGF effects mediated via the PI-3K/Akt pathway. Under basal conditions, caveolin-1-deficient mouse embryonic fibroblast cells [MF(-/-)] incorporated significantly more [3H]thymidine than wild-type mouse embryonic fibroblast cells [MF(+/+)]; however, small hairpin RNA-mediated knockdown of caveolin-1 (80% reduction) in 3T3L1 fibroblasts had no effect on basal proliferation. Interestingly, IGF-I induced proliferation was similar in MF(-/-) and MF(+/+) cells, whereas caveolin-1 knockdown promoted a hyperproliferative response to IGF-I [pkDCav3T3L1(80) 12.4+/-0.4-fold; pkDShuffle3T3L1 4.3+/-0.2-fold induction; P<0.01]. Immunoblot analysis showed that caveolin-1 knockdown had no affect on Akt expression or activation. However, in MF(-/-) cells, IGF-I-stimulated phosphorylation of Akt was reduced despite up-regulated Akt levels. Further investigation demonstrated that caveolin knockout up-regulated Akt-2 and Akt-3 isoform expression, but Akt-1 expression was down-regulated; interestingly, coimmunoprecipitation studies revealed Akt-1 as the predominant isoform to be phosphorylated in response to IGF-I. In summary, caveolin-1 deficiency promotes a hyperproliferative response to IGF-I that is unrelated to Akt expression/activation. However, cells that lack caveolin are able to respond appropriately to IGF-I through compensatory changes in Akt isoform expression. These data posit caveolin-1 as a component of the IGF/PI-3K/Akt signalling modulus regulating cellular proliferation with implications for diseases, including cancers, which have altered caveolin expression.
Collapse
Affiliation(s)
- Laura C Matthews
- Maternal and Fetal Health Research Group, University of Manchester, St. Mary's Hospital, Hathersage Road, Manchester M13 0JH, United Kingdom
| | | | | |
Collapse
|
248
|
Strimpakos A, Saif MW, Syrigos KN. Pancreatic cancer: from molecular pathogenesis to targeted therapy. Cancer Metastasis Rev 2008; 27:495-522. [PMID: 18427734 DOI: 10.1007/s10555-008-9134-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is a deadly malignancy with still high mortality and poor survival despite the significant advances in understanding, diagnosis, and access to conventional and novel treatments. Though cytotoxic chemotherapy based on the purine analogue gemcitabine remains the standard approach in adjuvant and palliative setting the need for novel agents aiming at the main pathophysiological abnormalities and molecular pathways involved remains soaring. So far, evidence of clinical benefit, though small, exists only from the addition of the targeted agent erlotinib on the standard gemcitabine chemotherapy. Apart from the popular monoclonal antibodies and small molecules tyrosine kinase inhibitors, other novel compounds being tested in preclinical and clinical studies target mTOR, NF-kappaB, proteasome and histone deacetylase. These new drugs along with gene therapy and immunotherapy, which are also under clinical evaluation, may alter the unfavorable natural course of this disease. In this review we present the main pathophysiological alterations met in pancreatic cancer and the results of the florid preclinical and clinical research with regards to the targeted therapy associated to these abnormalities.
Collapse
|
249
|
|
250
|
Wang YA, Johnson SK, Brown BL, McCarragher LM, Al-Sakkaf K, Royds JA, Dobson PRM. Enhanced anti-cancer effect of a phosphatidylinositol-3 kinase inhibitor and doxorubicin on human breast epithelial cell lines with different p53 and oestrogen receptor status. Int J Cancer 2008; 123:1536-44. [PMID: 18634052 DOI: 10.1002/ijc.23671] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
New efforts are being focused on signalling pathways as targets for cancer therapy. This particular study was designed to investigate whether blockade of the phosphatidylinositol 3OH-kinase (PI3K) pathway (a survival/anti-apoptosis pathway, overexpressed in various tumours) could sensitise human breast cancer cells to the effect of chemotherapeutics. Doxorubicin (Dox) and LY294002 (LY, a PI3K inhibitor) were used individually or in combination on MDA-MB-231 (p53 mutant, ER-), T47D (p53 mutant, ER+), and MCF-7 (p53 wildtype, ER+) human breast cancer cell lines, and on 184A1, a nonmalignant human breast epithelial cell line (p53 wildtype, ER-). Each drug showed time- and dose-dependent growth inhibition of cell proliferation on all 4 cell lines. The combination of Dox+LY resulted in enhanced cell growth inhibition in MDA-MB-231 and T47D cells, and additive inhibition in MCF-7 and 184A1 cells. Cell cycle analysis showed that Dox+LY enhanced the arrest of MDA-MB-231 and T47D cells in G2 with the appearance of a sub-G1 peak indicating apoptosis/necrosis, a notion supported by enhanced depolarisation of mitochondrial membrane potential in these cell types. The combination also caused a greater additive increase in Cyclin B1. Thus, the synergistic effect of the combination on cell proliferation in some, but not all, breast cancer cells may be through enhanced induction of both G2 arrest and apoptosis, in which p53 may play a role. Substantially lower doses of doxorubicin could be used with low doses of inhibitors of the PI3K pathway, without compromising the anti-cancer effect, but also lowering detrimental side-effects of doxorubicin. This study supports the notion that survival signalling pathways offer special targets for chemotherapy in cancer.
Collapse
Affiliation(s)
- Yan A Wang
- Cell Signalling Group, Academic Unit of Endocrinology, Section of Endocrinology and Reproduction, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|