201
|
Casal JJ, Luccioni LG, Oliverio KA, Boccalandro HE. Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci 2003; 2:625-36. [PMID: 12859146 DOI: 10.1039/b300094j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phytochromes is a family of plant photoreceptors that control growth and development in response to environmental cues. Red and far-red light are the most efficient wavebands to induce conformational changes of phytochromes and consequently modify their kinetics, nuclear/cytoplasmic partitioning, ability to phosphorylate substrates, and physical interaction with proteins that bind DNA. Many players in phytochrome signalling have been identified and a complex, highly regulated network is envisaged. Here we describe the connection between different features of the phytochrome signalling network and the versatile relationship between light signals and physiological outputs shown by phytochromes.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Faculty of Agronomy, University of Buenos Aires and National Research Council, Av. San Martín 4453, 1417 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
202
|
Zhou R, Wolk CP. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J Biol Chem 2003; 278:19939-46. [PMID: 12637541 DOI: 10.1074/jbc.m300577200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some cyanobacteria couple oxygenic photosynthesis in vegetative cells with O2-sensitive N2 fixation in differentiated cells called heterocysts. Heterocyst differentiation involves extensive biochemical and structural changes that collectively permit heterocysts to assimilate N2 aerobically and supply the products of N2 fixation to vegetative cells. HepK and DevR are required for the development of functional heterocysts in Anabaena and Nostoc, respectively. We show that HepK is an autokinase and that Anabaena DevRA is its cognate response regulator, together comprising part or all of a two-component system that mediates developmental regulation of biosynthesis of a heterocyst envelope polysaccharide. Recombinant N-hexahistidine-tagged HepK (H6HepK), the cytoplasmic portion H6'HepK of H6HepK, H6DevR, and H6DevRA were overexpressed in Escherichia coli and purified to homogeneity. H6'HepK, but not H6HepK, autophosphorylates with [gamma-32P]ATP. ADP, specifically, elicits dephosphorylation of phosphorylated H6'HepK. The phosphoryl group of H6'HepK is transferred rapidly and efficiently to both H6DevR and H6DevRA but not to His-tagged OmpR, whose cognate sensor kinase is EnvZ. Sequence comparisons, the results of site-specific mutagenesis, and tests of chemical stability support identification of HepK-His348 and DevR-Asp53 as the phosphorylated residues. The mutation HepK-H348A abolishes both in vitro autokinase activity and in vivo functionality of HepK. Heterocysts of both hepK Anabaena and devRA Anabaena lack an envelope polysaccharide layer and are nonfunctional. Consistent with the normal site of deposition of that polysaccharide, a hepK::gfp transcriptional fusion is expressed principally in proheterocysts. HepK/DevRA is the first two-component system identified that regulates the biosynthesis of a polysaccharide as part of a patterned differentiation process.
Collapse
Affiliation(s)
- Ruanbao Zhou
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
203
|
Mutsuda M, Michel KP, Zhang X, Montgomery BL, Golden SS. Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem 2003; 278:19102-10. [PMID: 12626498 DOI: 10.1074/jbc.m213255200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently described the cikA (circadian input kinase A) gene, whose product supplies environmental information to the circadian oscillator in the cyanobacterium Synechococcus elongatus PCC 7942. CikA possesses three distinct domains: a GAF, a histidine protein kinase (HPK), and a receiver domain similar to those of the response regulator family. To determine how CikA functions in providing circadian input, we constructed modified alleles to tag and truncate the protein, allowing analysis of each domain individually. CikA covalently bound bilin chromophores in vitro, even though it lacks the expected ligand residues, and the GAF domain influenced but did not entirely account for this function. Full-length CikA and truncated variants that carry the HPK domain showed autophosphorylation activity. Deletion of the GAF domain or the N-terminal region adjacent to GAF dramatically reduced autophosphorylation, whereas elimination of the receiver domain increased activity 10-fold. Assays to test phosphorelay from the HPK to the cryptic receiver domain, which lacks the conserved aspartyl residue that serves as a phosphoryl acceptor in response regulators, were negative. We propose that the cryptic receiver is a regulatory domain that interacts with an unknown protein partner to modulate the autokinase activity of CikA but does not work as bona fide receiver domain in a phosphorelay.
Collapse
Affiliation(s)
- Michinori Mutsuda
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
204
|
Sharrock RA, Clack T, Goosey L. Signaling activities among the Arabidopsis phyB/D/E-type phytochromes: a major role for the central region of the apoprotein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:317-326. [PMID: 12713538 DOI: 10.1046/j.1365-313x.2003.01722.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Arabidopsis phyB, phyD, and phyE phytochromes regulate plant developmental and growth responses to continuous red light (R) and to the ratio of R to far-red (FR) light. The activities of these three photoreceptors in the control of seedling growth have been compared using a transgenic assay based upon induction of R-hypersensitivity of hypocotyl elongation by overexpression of the apoproteins from the 35S promoter. 35S-phyB, 35S-phyD, and 35S-phyE lines expressing similar levels of the respective phytochromes were isolated. Under pulses of R, phyB is very active in inducing a dwarf hypocotyl phenotype, whereas phyD and phyE are inactive. Under high-fluence continuous R, phyD shows a gain in activity whereas phyE does not. These results demonstrate significant differences in the inherent regulatory activities of these receptor apoproteins. To localize the sequence determinants of these functional differences, chimeric proteins were constructed by shuffling amino-terminal, central, and carboxy-terminal regions of phyB and phyD. Overexpression analysis of the phyB/D chimeras shows that it is the central region of these proteins that is most critical in determining their respective activities.
Collapse
Affiliation(s)
- Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman 59717, USA.
| | | | | |
Collapse
|
205
|
Wang H, Deng XW. Dissecting the phytochrome A-dependent signaling network in higher plants. TRENDS IN PLANT SCIENCE 2003; 8:172-8. [PMID: 12711229 DOI: 10.1016/s1360-1385(03)00049-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants monitor their ambient light environment using a network of photoreceptors. In Arabidopsis, phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light. Several breakthroughs in understanding the signaling network mediating phyA-activated responses have been made in recent years. Here, we highlight several key advances: the demonstration that light regulates nuclear translocation of phyA and its associated kinase activity; the revelation of a transcriptional cascade controlling phyA-regulated gene expression; the detection of a direct interaction between phyA and a transcription factor; and the identification and characterization of many phyA-specific signaling intermediates, some of them suggesting the involvement of the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Haiyang Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
206
|
Karniol B, Vierstra RD. The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. Proc Natl Acad Sci U S A 2003; 100:2807-12. [PMID: 12604773 PMCID: PMC151422 DOI: 10.1073/pnas.0437914100] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophytochrome photoreceptors (BphPs) are a family of phytochrome-like sensor kinases that help a wide variety of bacteria respond to their light environment. In Agrobacterium tumefaciens, a unique pair of BphPs with potentially opposing roles in light sensing are present. Both AtBphPs contain an N-terminal chromophore-binding domain that covalently attaches a biliverdin chromophore. Whereas AtBphP1 assumes a Pr ground state, AtBphP2 is unusual in that it assumes a Pfr ground state that is produced nonphotochemically after biliverdin binding through a transient Pr-like intermediate. Photoconversion of AtBphP2 with far-red light then generates Pr but this Pr is also unstable and rapidly reverts nonphotochemically to Pfr. AtBphP1 contains a typical two-component histidine kinase domain at its C terminus whose activity is repressed after photoconversion to Pfr. AtBphP2 also functions as a histidine kinase but instead uses a distinct two-component kinase motif that is repressed after photoconversion to Pr. We identified sequences related to this domain in numerous predicted sensing proteins in A. tumefaciens and other bacteria, indicating that AtBphP2 might represent the founding member of a family of histidine phosphorelay proteins that is widely used in environmental signaling. By using these mutually opposing BphPs, A. tumefaciens presumably has the capacity to simultaneously sense red light-rich and far-red light-rich environments through deactivation of their associated kinase cascades.
Collapse
Affiliation(s)
- Baruch Karniol
- Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
207
|
Abstract
The last decade provided the plant science community with the complete genome sequence of Arabidopsis thaliana and rice, tools to investigate the function of potentially every plant gene, methods to dissect virtually any aspect of the plant life cycle, and a wealth of information on gene expression and protein function. Focusing on Arabidopsis as a model system has led to an integration of the plant sciences that triggered the development of new technologies and concepts benefiting plant research in general. These enormous changes led to an unprecedented increase in our understanding of the genetic basis and molecular mechanisms of developmental, physiological and biochemical processes, some of which will be discussed in this article.
Collapse
Affiliation(s)
- Robert E Pruitt
- Botany and Plant Pathology, Purdue University, West Lafayette, Indianapolis 47907-1155, USA
| | | | | |
Collapse
|
208
|
Abstract
Through time, plants have evolved an extraordinary ability to interpret environmental cues. One of the most reliable of these cues is light, and plants are particularly adept at sensing and translating environmental light signals. The phytochrome family of photoreceptors monitor cues such as daylength or vegetative shade and adjust development to reflect change in these parameters. Indeed, it is their ability to coordinate these complex developmental changes that underpins the remarkable success of plants. Evidence is mounting that hormones control many of these light-mediated changes. Therefore, if we are to understand how light manipulates development we need to explore the interplay between light and hormonal signalling. Toward this goal, this review highlights the known convergence points of the phytochrome and the hormonal networks and explores their interactions. Contents Summary 449 I. Introduction 449 II. The phytochrome protein 450 III. Bacteriophytochromes 450 IV. IBacteriophytochrome signalling 450 V. Plant phytochrome signalling 451 VI. Ethylene perception and signalling 451 VII. Cytokinin perception and signalling 452 VIII. Brassinosteroid perception and signalling 453 IX. Gibberellin signalling 455 X. Auxin signalling 456 XI. Proteolysis in light and hormonal signalling 458 XII. Conclusion 459 Acknowledgements 459 References 459.
Collapse
Affiliation(s)
- Karen J Halliday
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Christian Fankhauser
- Department of Molecular Biology, Université de Genève, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
209
|
Kevei E, Nagy F. Phytochrome controlled signalling cascades in higher plants. PHYSIOLOGIA PLANTARUM 2003; 117:305-313. [PMID: 12654030 DOI: 10.1034/j.1399-3054.2003.00049.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants can sense the changes in the environmental light conditions with highly specialized photoreceptors. Phytochromes are sensitive to red and far-red light and have a dual role in the life of plants. These photoreceptors play an important role in plant growth and development from germination to seed maturation and they are also involved in synchronizing the circadian clock with light/dark cycles. Biochemical, cell biological and genetic studies have been carried out to elucidate the molecular mechanism by which phytochromes transduce light signals. A major step in this process seems to be the light-dependent nuclear import of phytochromes. In the nuclei phytochromes interact with transcription factors and regulate the expression of numerous genes, resulting in complex physiological and developmental responses to light. This review focuses on the recently obtained results leading to the identification of some factors and processes involved in phytochrome signalling.
Collapse
Affiliation(s)
- Eva Kevei
- Institute of Plant Biology, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary Institute of Plant Biology, Agricultural Biotechnological Centre, Szent-Györgyi A. 4, H-2101 Gödöllõ, Hungary
| | | |
Collapse
|
210
|
Kennelly PJ. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 2003; 370:373-89. [PMID: 12444920 PMCID: PMC1223194 DOI: 10.1042/bj20021547] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/20/2002] [Accepted: 11/22/2002] [Indexed: 01/25/2023]
Abstract
Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'.
Collapse
Affiliation(s)
- Peter J Kennelly
- Department of Biochemistry - 0308, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
211
|
Wang W, Hall AE, O'Malley R, Bleecker AB. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 2003. [PMID: 12509505 DOI: 10.1073/pnas.02370851000237085100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Ethylene signaling in plants is mediated by a family of receptors related to bacterial two-component histidine kinases. Of the five members of the Arabidopsis ethylene receptor family, members of subfamily I (ETR1 and ERS1) contain completely conserved histidine kinase domains, whereas members of subfamily II (ETR2, EIN4, and ERS2) lack conserved residues thought to be necessary for kinase activity. To examine the role of the conserved histidine kinase domain in receptor signaling, ers1;etr1 loss-of-function double mutants were generated. The double mutants exhibited a severe constitutive ethylene response phenotype consistent with the negative regulator model for receptor function. The adult ers1-2;etr1-6 and ers1-2;etr1-7 phenotypes included miniature rosette size, delayed flowering, and both male and female sterility, whereas etiolated-seedling responses were less affected. Chimeric transgene constructs in which the ETR1 promoter was used to drive expression of cDNAs for each of the five receptor isoforms were transferred into the ers1-2;etr1-7 double-mutant plants. Subfamily I constructs restored normal growth, whereas subfamily II constructs failed to rescue the double mutant, providing evidence for a unique role for subfamily I in receptor signaling. However, transformation of either the ers1-2;etr1-6 or ers1-2;etr1-7 mutant with a kinase-inactivated ETR1 genomic clone also resulted in complete restoration of normal growth and ethylene responsiveness in the double-mutant background, leading to the conclusion that canonical histidine kinase activity by receptors is not required for ethylene receptor signaling.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Botany and Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
212
|
Wang W, Hall AE, O'Malley R, Bleecker AB. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 2003; 100:352-7. [PMID: 12509505 PMCID: PMC140975 DOI: 10.1073/pnas.0237085100] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene signaling in plants is mediated by a family of receptors related to bacterial two-component histidine kinases. Of the five members of the Arabidopsis ethylene receptor family, members of subfamily I (ETR1 and ERS1) contain completely conserved histidine kinase domains, whereas members of subfamily II (ETR2, EIN4, and ERS2) lack conserved residues thought to be necessary for kinase activity. To examine the role of the conserved histidine kinase domain in receptor signaling, ers1;etr1 loss-of-function double mutants were generated. The double mutants exhibited a severe constitutive ethylene response phenotype consistent with the negative regulator model for receptor function. The adult ers1-2;etr1-6 and ers1-2;etr1-7 phenotypes included miniature rosette size, delayed flowering, and both male and female sterility, whereas etiolated-seedling responses were less affected. Chimeric transgene constructs in which the ETR1 promoter was used to drive expression of cDNAs for each of the five receptor isoforms were transferred into the ers1-2;etr1-7 double-mutant plants. Subfamily I constructs restored normal growth, whereas subfamily II constructs failed to rescue the double mutant, providing evidence for a unique role for subfamily I in receptor signaling. However, transformation of either the ers1-2;etr1-6 or ers1-2;etr1-7 mutant with a kinase-inactivated ETR1 genomic clone also resulted in complete restoration of normal growth and ethylene responsiveness in the double-mutant background, leading to the conclusion that canonical histidine kinase activity by receptors is not required for ethylene receptor signaling.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Botany and Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
213
|
Grossman AR, van Waasbergen LG, Kehoe D. Environmental Regulation of Phycobilisome Biosynthesis. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
214
|
Abstract
Cytokinins are plant hormones implicated in diverse and essential processes in plant growth and development, and key genes for the metabolism and actions of cytokinins have recently been identified. Cytokinins are perceived by three histidine kinases--CRE1/WOL/AHK4, AHK2, and AHK3--which initiate intracellular phosphotransfer. The final destination of the transferred phosphoryl groups is response regulators. The type-B Arabidopsis response regulators (ARRs) are DNA-binding transcriptional activators that are required for cytokinin responses. On the other hand, the type-A ARRs act as repressors of cytokinin-activated transcription. How phosphorelay regulate response regulators and how response regulators control downstream events are open questions and discussed in this review.
Collapse
Affiliation(s)
- Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
215
|
Abstract
Cryptochromes are photosensory receptors mediating light regulation of growth and development in plants. Since the isolation of the Arabidopsis CRY1 gene in 1993, cryptochromes have been found in every multicellular eukaryote examined. Most plant cryptochromes have a chromophore-binding domain that shares similar structure with DNA photolyase, and a carboxyl terminal extension that contains a DQXVP-acidic-STAES (DAS) domain conserved from moss, to fern, to angiosperm. In Arabidopsis, cryptochromes are nuclear proteins that mediate light control of stem elongation, leaf expansion, photoperiodic flowering, and the circadian clock. Cryptochromes may act by interacting with proteins such as phytochromes, COP1, and clock proteins, or/and chromatin and DNA. Recent studies suggest that cryptochromes undergo a blue light-dependent phosphorylation that affects the conformation, intermolecular interactions, physiological activities, and protein abundance of the photoreceptors.
Collapse
Affiliation(s)
- Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
216
|
Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY. Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:385-93. [PMID: 12535351 DOI: 10.1046/j.1365-313x.2003.01631.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A histidine kinase-based signaling system has been proposed to function in ethylene signal transduction pathway of plants and one ethylene receptor has been found to possess His kinase activity. Here we demonstrate that a His kinase-like ethylene receptor homologue NTHK1 from tobacco has serine/threonine (Ser/Thr) kinase activity, but no His kinase activity. Evidence obtained by analyzing acid/base stability, phosphoamino acid and substrate specificity of the phosphorylated kinase domain, supports this conclusion. In addition, mutation of the presumptive phosphorylation site His (H378) to Gln did not affect the kinase activity whereas deletion of the ATP-binding domain eliminated it, indicating that the conserved His (H378) is not required for the kinase activity and this activity is intrinsic to the NTHK1-KD. Moreover, confocal analysis of NTHK1 expression in insect cells and plant cells suggested the plasma membrane localization of the NTHK1 protein. Thus, NTHK1 may represent a distinct Ser/Thr kinase-type ethylene receptor and function in an alternative mechanism for ethylene signal transduction.
Collapse
Affiliation(s)
- Can Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
217
|
Grossman AR. A molecular understanding of complementary chromatic adaptation. PHOTOSYNTHESIS RESEARCH 2003; 76:207-15. [PMID: 16228579 DOI: 10.1023/a:1024907330878] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environmental conditions. Some visually dramatic changes in pigmentation of cyanobacterial cells that occur during changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting complex in these organisms, the phycobilisome. As noted well over 100 years ago, the pigment composition of some cyanobacteria is very sensitive to ambient wavelengths of light; this sensitivity reflects molecular changes in polypeptide constituents of the phycobilisome. The levels of different pigmented polypeptides or phycobiliproteins that become associated with the phycobilisome are adjusted to optimize absorption of excitation energy present in the environment. This process, called complementary chromatic adaptation, is controlled by a bilin-binding photoreceptor related to phytochrome of vascular plants; however, many other regulatory elements also play a role in chromatic adaptation. My perspectives and biases on the history and significance of this process are presented in this essay.
Collapse
Affiliation(s)
- Arthur R Grossman
- Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA, 94305, USA,
| |
Collapse
|
218
|
Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. THE PLANT CELL 2002; 14:3043-56. [PMID: 12468726 PMCID: PMC151201 DOI: 10.1105/tpc.005306] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 09/13/2002] [Indexed: 05/20/2023]
Abstract
Reversible protein phosphorylation, which is catalyzed by functionally coupled protein kinases and protein phosphatases, is a major signaling mechanism in eukaryotic cellular functions. The red and far-red light-absorbing phytochrome photoreceptors are light-regulated Ser/Thr-specific protein kinases that regulate diverse photomorphogenic processes in plants. Here, we demonstrate that the phytochromes functionally interact with the catalytic subunit of a Ser/Thr-specific protein phosphatase 2A designated FyPP. The interactions were influenced by phosphorylation status and spectral conformation of the phytochromes. Recombinant FyPP efficiently dephosphorylated oat phytochrome A in the presence of Fe(2+) or Zn(2+) in a spectral form-dependent manner. FyPP was expressed predominantly in floral organs. Transgenic Arabidopsis plants with overexpressed or suppressed FyPP levels exhibited delayed or accelerated flowering, respectively, indicating that FyPP modulates phytochrome-mediated light signals in the timing of flowering. Accordingly, expression patterns of the clock genes in the long-day flowering pathway were altered greatly. These results indicate that a self-regulatory phytochrome kinase-phosphatase coupling is a key signaling component in the photoperiodic control of flowering.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Kumho Life and Environmental Science Laboratory, 1 Oryong-dong, Buk-gu, Kwangju 500-712, Korea
| | | | | | | | | | | |
Collapse
|
219
|
Kim JI, Kozhukh GV, Song PS. Phytochrome-mediated signal transduction pathways in plants. Biochem Biophys Res Commun 2002; 298:457-63. [PMID: 12408973 DOI: 10.1016/s0006-291x(02)02494-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phytochromes are photoreceptors that regulate plant growth and development in response to the solar radiation environment. Recent studies reveal how phytochrome-mediated light signals can be transduced to the cells for their responses. The possible signal transduction pathways of phytochromes include: (a) direct regulation of gene transcription and (b) typical kinase-involved signaling pathways and its regulation by phosphorylation, dephosphorylation, and proteolytic degradation. This review highlights some of the recent findings.
Collapse
Affiliation(s)
- Jeong-Il Kim
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
220
|
Chan CS, Peng HP, Shih MC. Mutations affecting light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:1476-1486. [PMID: 12428012 PMCID: PMC166666 DOI: 10.1104/pp.007849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Revised: 05/20/2002] [Accepted: 07/12/2002] [Indexed: 05/24/2023]
Abstract
Expression of nuclear genes that encode the A and B subunits of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB) of Arabidopsis is known to be regulated by light. We used a negative selection approach to isolate mutants that were defective in light-regulated expression of the GAPA gene. Two dominant mutants belonging to the same complementation group, uga1-1 and uga1-2, were then characterized. These two mutants showed a dramatic reduction in GAPA mRNA level in both mature plants and seedlings. Surprisingly, mutations in uga1-1 and uga1-2 had no effect on the expression of GAPB and several other light-regulated genes. In addition, we found that the chloroplast glyceraldehyde-3-phosphate dehydrogenase enzyme activity of the mutants was only slightly lower than that of the wild type. Western-blot analysis showed that the GAPA protein level was nearly indistinguishable between the wild-type and the uga mutants. These results suggested that posttranscriptional control was involved in the up-regulation of the GAPA protein in the mutants. The uga1-1 mutation was mapped to the bottom arm of chromosome V of the Arabidopsis genome.
Collapse
Affiliation(s)
- Chui Sien Chan
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
221
|
Fry RC, Habashi J, Okamoto H, Deng XW. Characterization of a strong dominant phytochrome A mutation unique to phytochrome A signal propagation. PLANT PHYSIOLOGY 2002; 130:457-465. [PMID: 12226524 PMCID: PMC166577 DOI: 10.1104/pp.005264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 04/18/2002] [Accepted: 05/09/2002] [Indexed: 05/23/2023]
Abstract
Here, we report the isolation and characterization of a strong dominant-negative phytochrome A (phyA) mutation (phyA-300D) in Arabidopsis. This mutation carries a single amino acid substitution at residue 631, from valine to methionine (V631M), in the core region within the C-terminal half of PHYA. This PHYA core region contains two protein-interactive motifs, PAS1 and PAS2. Val-631 is located within the PAS1 motif. The phyA-V631M mutant protein is photochemically active and accumulates to a level similar to wild type in dark-grown seedlings. Overexpression of PHYA-V631M in a wild-type background results in a dominant-negative interference with endogenous wild-type phyA, whereas PHYA-V631M in a phyA null mutant background is inactive. To investigate the specificity of this mutation within the phytochrome family, the corresponding amino acid substitution (V664M) was created in the PHYTOCHROME B (PHYB) polypeptide. We found that the phyB-V664M mutant protein is physiologically active in phyB mutant and causes no interfering effect in a wild-type background. Together, our results reveal a unique feature in phyA signal propagation through the C-terminal core region.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511-8104, USA
| | | | | | | |
Collapse
|
222
|
Salomé PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR. The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:1674-85. [PMID: 12177480 PMCID: PMC166755 DOI: 10.1104/pp.003418] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/18/2002] [Accepted: 05/05/2002] [Indexed: 05/18/2023]
Abstract
Arabidopsis displays circadian rhythms in stomatal aperture, stomatal conductance, and CO(2) assimilation, each of which peaks around the middle of the day. The rhythmic opening and closing of stomata confers a rhythm in sensitivity and resistance, respectively, to the toxic gas sulfur dioxide. Using this physiological assay as a basis for a mutant screen, we isolated mutants with defects in circadian timing. Here, we characterize one mutant, out of phase 1 (oop1), with the circadian phenotype of altered phase. That is, the timing of the peak (acrophase) of multiple circadian rhythms (leaf movement, CO(2) assimilation, and LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING PROTEIN transcription) is early with respect to wild type, although all circadian rhythms retain normal period length. This is the first such mutant to be characterized in Arabidopsis. oop1 also displays a strong photoperception defect in red light characteristic of phytochrome B (phyB) mutants. The oop1 mutation is a nonsense mutation of PHYB that results in a truncated protein of 904 amino acids. The defect in circadian phasing is seen in seedlings entrained by a light-dark cycle but not in seedlings entrained by a temperature cycle. Thus, PHYB contributes light information critical for proper determination of circadian phase.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, New Hampshire 03755-3576, USA
| | | | | | | | | | | |
Collapse
|
223
|
Abstract
Phytochromes were long thought to have evolved in non-motile photosynthetic eukaryotes for adaptation to unfavorable light environments, but recent studies suggest that phytochromes evolved billions of years earlier from a tetrapyrrole sensor protein progenitor. These investigations have identified phytochromes and phytochrome-related proteins in photosynthetic bacteria (cyanobacteria and purple bacteria), nonphotosynthetic eubacteria and fungi - an observation that has opened new avenues for investigating the origins, molecular evolution and biochemical functions of this ecologically important family of plant photoreceptors.
Collapse
|
224
|
Yanovsky MJ, Luppi JP, Kirchbauer D, Ogorodnikova OB, Sineshchekov VA, Adam E, Kircher S, Staneloni RJ, Schäfer E, Nagy F, Casal JJ. Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localization and a subset of responses. THE PLANT CELL 2002; 14:1591-603. [PMID: 12119377 PMCID: PMC150709 DOI: 10.1105/tpc.000521] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2001] [Accepted: 03/19/2002] [Indexed: 05/17/2023]
Abstract
Phytochrome A signaling shows two photobiologically discrete outputs: so-called very-low-fluence responses (VLFR) and high-irradiance responses (HIR). By modifying previous screening protocols, we isolated two Arabidopsis mutants retaining VLFR and lacking HIR. Phytochrome A negatively or positively regulates phytochrome B signaling, depending on light conditions. These mutants retained the negative but lacked the positive regulation. Both mutants carry the novel phyA-302 allele, in which Glu-777 (a residue conserved in angiosperm phytochromes) changed to Lys in the PAS2 motif of the C-terminal domain. The phyA-302 mutants showed a 50% reduction in phytochrome A levels in darkness, but this difference was compensated for by greater stability under continuous far-red light. phyA-302:green fluorescent protein fusion proteins showed normal translocation from the cytosol to the nucleus under continuous far-red light but failed to produce nuclear spots, suggesting that nuclear speckles could be involved in HIR signaling and phytochrome A degradation. We propose that the PAS2 domain of phytochrome A is necessary to initiate signaling in HIR but not in VLFR, likely via interaction with a specific partner.
Collapse
Affiliation(s)
- Marcelo J Yanovsky
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, 1417-Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 2002; 417:763-7. [PMID: 12066190 DOI: 10.1038/nature00815] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryptochromes are blue/ultraviolet-A light receptors that mediate various light responses in plants and animals. But the initial photochemical reaction of cryptochrome is still unclear. For example, although most photoreceptors are known to undergo light-dependent protein modification such as phosphorylation, no blue-light dependent phosphorylation has been reported for a cryptochrome. Arabidopsis cryptochrome 2 (cry2) mediates light regulation of seedling development and photoperiodic flowering. The physiological activity and cellular level of cry2 protein are light-dependent, and protein protein interactions are important for cry2 function. Here we report that cry2 undergoes a blue-light-dependent phosphorylation, and that cry2 phosphorylation is associated with its function and regulation. Our results suggest that, in the absence of light, cry2 remains unphosphorylated, inactive and stable; absorption of blue light induces the phosphorylation of cry2, triggering photomorphogenic responses and eventually degradation of the photoreceptor.
Collapse
Affiliation(s)
- Dror Shalitin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Møller SG, Ingles PJ, Whitelam GC. The cell biology of phytochrome signalling. THE NEW PHYTOLOGIST 2002; 154:553-590. [PMID: 33873456 DOI: 10.1046/j.1469-8137.2002.00419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome signal transduction has in the past often been viewed as being a nonspatially separated linear chain of events. However, through a combination of molecular, genetic and cell biological approaches, it is becoming increasingly evident that phytochrome signalling constitutes a highly ordered multidimensional network of events. The discovery that some phytochromes and signalling intermediates show light-dependent nucleo-cytoplasmic partitioning has not only led to the suggestion that early signalling events take place in the nucleus, but also that subcellular localization patterns most probably represent an important signalling control point. Moreover, detailed characterization of signalling intermediates has demonstrated that various branches of the signalling network are spatially separated and take place in different cellular compartments including the nucleus, cytosol, and chloroplasts. In addition, proteasome-mediated degradation of signalling intermediates most probably act in concert with subcellular partitioning events as an integrated checkpoint. An emerging view from this is that phytochrome signalling is separated into several subcellular organelles and that these are interconnected in order to execute accurate responses to changes in the light environment. By integrating the available data, both at the cellular and subcellular level, we should be able to construct a solid foundation for further dissection of phytochrome signal transduction in plants. Contents Summary 553 I. Introduction 554 II. Nucleus vs cytoplasm 556 III. The nucleus 562 IV. The cytoplasm 571 V. Interactions with other signalling pathways 577 VI. Conclusions and the future 582 Acknowledgements 583 References 583.
Collapse
Affiliation(s)
- Simon G Møller
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Patricia J Ingles
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Garry C Whitelam
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
227
|
Scherer GFE. Secondary messengers and phospholipase A2 in auxin signal transduction. PLANT MOLECULAR BIOLOGY 2002; 49:357-372. [PMID: 12036260 DOI: 10.1023/a:1015290510483] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite recent progress auxin signal transduction remains largely scetchy and enigmatic. A good body of evidence supports the notion that the ABP1 could be a functional receptor or part of a receptor, respectively, but this is not generally accepted. Evidence for other functional receptors is lacking, as is any clearcut evidence for a function of G proteins. Protons may serve as second messengers in guard cells but the existing evidence for a role of calcium remains to be clearified. Phospholipases C and D seem not to have a function in auxin signal transduction whereas the indications for a role of phospholipase A2 in auxin signal transduction accumulated recently. Mitogen-activated protein kinase (MAPK) is modulated by auxin and the protein kinase PINOID has a role in auxin transport modulation even though their functional linkage to other signalling molecules is ill-defined. It is hypothesized that signal transduction precedes activation of early genes such as IAA genes and that ubiquitination and the proteasome are a mechanism to integrate signal duration and signal strength in plants and act as major regulators of hormone sensitivity.
Collapse
Affiliation(s)
- Günther F E Scherer
- Universität Hannover, Institut für Zierpflanzenbau, Baumschule und Pflanzenzüchtung, Hannover, Germany.
| |
Collapse
|
228
|
Hwang I, Chen HC, Sheen J. Two-component signal transduction pathways in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:500-15. [PMID: 12068096 PMCID: PMC161668 DOI: 10.1104/pp.005504] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 03/21/2002] [Accepted: 03/22/2002] [Indexed: 05/18/2023]
Abstract
The two-component system, consisting of a histidine (His) protein kinase that senses a signal input and a response regulator that mediates the output, is an ancient and evolutionarily conserved signaling mechanism in prokaryotes and eukaryotes. The identification of 54 His protein kinases, His-containing phosphotransfer proteins, response regulators, and related proteins in Arabidopsis suggests an important role of two-component phosphorelay in plant signal transduction. Recent studies indicate that two-component elements are involved in plant hormone, stress, and light signaling. In this review, we present a genome analysis of the Arabidopsis two-component elements and summarize the major advances in our understanding of Arabidopsis two-component signaling.
Collapse
Affiliation(s)
- Ildoo Hwang
- Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
229
|
Abstract
The past decade has seen substantial advances in knowledge of molecular mechanisms and actions of plant hormones, but only in the past few years has research on cytokinins begun to hit its stride. Cytokinins are master regulators of a large number of processes in plant development, which is known to be unusually plastic and adaptive, as well as resilient and perpetual. These characteristics allow plants to respond sensitively and quickly to their environments. Recent studies have demonstrated that cytokinin signaling involves a multistep two-component signaling pathway, resulting in the development of a canonical model of cytokinin signaling that is likely representative in plants. This Viewpoint outlines this general model, focusing on the specific example of Arabidopsis, and introduces the STKE Connections Maps for both the canonical module and the specific Arabidopsis Cytokinin Signaling Pathway.
Collapse
Affiliation(s)
- Jen Sheen
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
230
|
Holm M, Ma LG, Qu LJ, Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 2002; 16:1247-59. [PMID: 12023303 PMCID: PMC186273 DOI: 10.1101/gad.969702] [Citation(s) in RCA: 465] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arabidopsis COP1 acts to repress photomorphogenesis in the absence of light. It was shown that in the dark, COP1 directly interacts with the bZIP transcription factor HY5, a positive regulator of photomorphogenesis, and promotes its proteasome-mediated degradation. Here we identify a novel bZIP protein HYH, as a new target of COP1. We identify a physical and genetic interaction between HYH and COP1 and show that this interaction results in dark-specific degradation of HYH. Genetic analysis indicates that HYH is predominantly involved in blue-light regulation of development and gene expression, and that the function of HYH in part overlaps with that of HY5. The accumulation of HYH protein, not the mRNA, is dependent on the presence of HY5. Our data suggest that HYH and HY5 can, respectively, act as heterodimers and homodimers, thus mediating light-regulated expression of overlapping as well as distinct target genes. We propose that COP1 mediates light control of gene expression through targeted degradation of multiple photomorphogenesis-promoting transcription factors in the nucleus.
Collapse
Affiliation(s)
- Magnus Holm
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | |
Collapse
|
231
|
Huq E, Quail PH. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 2002; 21:2441-50. [PMID: 12006496 PMCID: PMC126004 DOI: 10.1093/emboj/21.10.2441] [Citation(s) in RCA: 423] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plants sense and respond to red and far-red light using the phytochrome (phy) family of photoreceptors. However, the mechanism of light signal transduction is not well defined. Here, we report the identification of a new mutant Arabidopsis locus, srl2 (short under red-light 2), which confers selective hypersensitivity to continuous red, but not far-red, light. This hypersensitivity is eliminated in srl2phyB, but not srl2phyA, double mutants, indicating that this locus functions selectively and negatively in phyB signaling. The SRL2 gene encodes a bHLH factor, designated PIF4 (phytochrome-interacting factor 4), which binds selectively to the biologically active Pfr form of phyB, but has little affinity for phyA. Despite its hypersensitive morphological phenotype, the srl2 mutant displays no perturbation of light-induced expression of marker genes for chloroplast development. These data suggest that PIF4 may function specifically in a branch of the phyB signaling network that regulates a subset of genes involved in cell expansion. Consistent with this proposal, PIF4 localizes to the nucleus and can bind to a G-box DNA sequence motif found in various light-regulated promoters.
Collapse
Affiliation(s)
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 and US Department of Agriculture/Agricultural Research Service, Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA
Corresponding author e-mail:
| |
Collapse
|
232
|
Holm M, Ma LG, Qu LJ, Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 2002. [PMID: 12023303 DOI: 10.1101/gad.969702.ing] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabidopsis COP1 acts to repress photomorphogenesis in the absence of light. It was shown that in the dark, COP1 directly interacts with the bZIP transcription factor HY5, a positive regulator of photomorphogenesis, and promotes its proteasome-mediated degradation. Here we identify a novel bZIP protein HYH, as a new target of COP1. We identify a physical and genetic interaction between HYH and COP1 and show that this interaction results in dark-specific degradation of HYH. Genetic analysis indicates that HYH is predominantly involved in blue-light regulation of development and gene expression, and that the function of HYH in part overlaps with that of HY5. The accumulation of HYH protein, not the mRNA, is dependent on the presence of HY5. Our data suggest that HYH and HY5 can, respectively, act as heterodimers and homodimers, thus mediating light-regulated expression of overlapping as well as distinct target genes. We propose that COP1 mediates light control of gene expression through targeted degradation of multiple photomorphogenesis-promoting transcription factors in the nucleus.
Collapse
Affiliation(s)
- Magnus Holm
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | |
Collapse
|
233
|
Fankhauser C. Light perception in plants: cytokinins and red light join forces to keep phytochrome B active. TRENDS IN PLANT SCIENCE 2002; 7:143-5. [PMID: 11950603 DOI: 10.1016/s1360-1385(02)02228-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant growth and development is modulated by internal cues such as rhe hormonal balance and external factors. Plants are particularly sensitive to their light environment, which they scrutinize with at least three classes of photoreceptors. In recent years, it has become increasingly clear that light and hormonal signaling interact at several levels. A cytokinin receptor was recently identified together with several elements acting in this signaling pathway. ARR4, a response regulator working downstream of a cytokinin receptor, has been shown to regulate phytochrome B-mediated light signaling.
Collapse
|
234
|
Abstract
Plants monitor informational light signals using three sensory photoreceptor families: the phototropins, cryptochromes and phytochromes. Recent advances suggest that the phytochromes act transcriptionally by targeting light signals directly to photoresponsive promoters through binding to a transcriptional regulator. By contrast, the cryptochromes appear to act post-translationally, by disrupting extant proteosome-mediated degradation of a key transcriptional activator through direct binding to a putative E3 ubiquitin ligase, thereby elevating levels of the activator and consequently of target gene expression.
Collapse
Affiliation(s)
- Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
235
|
Abstract
If the last common ancestor of plants and animals was unicellular, comparison of the developmental mechanisms of plants and animals would show that development was independently invented in each lineage. And if this is the case, comparison of plant and animal developmental processes would give us a truly comparative study of development, which comparisons merely among animals, or merely among plants, do not-because in each of these lineages, the fundamental mechanisms are similar by descent. Evidence from studies of developmental mechanisms in both kingdoms, and data from genome-sequencing projects, indicate that development evolved independently in the lineages leading to plants and to animals.
Collapse
Affiliation(s)
- Elliot M Meyerowitz
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
236
|
Malec P, Yahalom A, Chamovitz DA. Identification of a light-regulated protein kinase activity from seedlings of Arabidopsis thaliana. Photochem Photobiol 2002; 75:178-83. [PMID: 11883605 DOI: 10.1562/0031-8655(2002)075<0178:ioalrp>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase transduction pathways are thought to be involved in light signaling in plants, but other than the photoreceptors, no protein kinase activity has been shown to be light-regulated in vivo. Using an in-gel protein kinase assay technique with histone H III SS as an exogenous substrate, we identified a light-regulated protein kinase activity with an apparent molecular weight ca 50 kDa. The kinase activity increased transiently after irradiation of dark-grown seedlings with continuous far red light (FR) and blue light (B) and decreased after irradiation with red light (R). The maximal activation was achieved after 30 min to 1 h with FR or B. After irradiation times longer than 2 h, the kinase activity decreased to below the sensitivity level of the assay. In Arabidopsis mutants lacking either the photoreceptors phytochrome A, phytochrome B or the blue-light receptor cryptochrome 1, kinase activity was undetectable, whereas in the photomorphogenic mutants cop1 and det1 the kinase activity was also observed in the absence of light signals, though still stimulated by B and FR. Interestingly, the R inhibition of the kinase activity was lost in the mutant hy5. Pretreatment with cycloheximide blocked the kinase activity.
Collapse
|
237
|
Abstract
Light is life for plants. To continuously assess and adapt to fluctuations in the quality and quantity of this essential commodity, plants deploy sensory photoreceptors, including the phytochromes. Having captured an incoming photon, the activated phytochrome molecule must relay this information to nuclear genes that are poised to respond by directing appropriate adjustments in growth and development. Defining the intricate intracellular signalling networks through which this sensory information is transduced is an area of intense research activity.
Collapse
Affiliation(s)
- Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
238
|
Lohrmann J, Harter K. Plant two-component signaling systems and the role of response regulators. PLANT PHYSIOLOGY 2002; 128:363-9. [PMID: 11842140 PMCID: PMC1540209 DOI: 10.1104/pp.010907] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Jens Lohrmann
- Universität Freiburg, Institut für Biologie II/Botanik, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | |
Collapse
|
239
|
Nagy F, Schäfer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:329-355. [PMID: 12221979 DOI: 10.1146/annurev.arplant.53.100301.135302] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this review the kinetic properties of both phytochrome A and B measured by in vivo spectroscopy in Arabidopsis are described. Inactivation of phyA is mediated by destruction and that of phyB by fast dark reversion. Recent observations, describing a complex interaction network of various phytochromes and cryptochromes, are also discussed. The review describes recent analysis of light-dependent nuclear translocation of phytochromes and genetic and molecular dissection of phyA- and phyB-mediated signal transduction. After nuclear transport, both phyA- and phyB-mediated signal transduction probably include the formation of light-dependent transcriptional complexes. Although this hypothesis is quite attractive and probably true for some responses, it cannot account for the complex network of phyA-mediated signaling and the interaction with the circadian clock. In addition, the biological function of phytochromes localized in the cytosol remains to be elucidated.
Collapse
Affiliation(s)
- Ferenc Nagy
- Institute of Plant Biology, Biological Research Center, H-6701 Szeged, Hungary.
| | | |
Collapse
|
240
|
Hutchison CE, Kieber JJ. Cytokinin signaling in Arabidopsis. THE PLANT CELL 2002; 14 Suppl:S47-59. [PMID: 12045269 PMCID: PMC151247 DOI: 10.1105/tpc.010444] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 01/11/2002] [Indexed: 05/17/2023]
Affiliation(s)
| | - Joseph J. Kieber
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
241
|
Bhoo SH, Davis SJ, Walker J, Karniol B, Vierstra RD. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 2001; 414:776-9. [PMID: 11742406 DOI: 10.1038/414776a] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phytochromes comprise a principal family of red/far-red light sensors in plants. Although phytochromes were thought originally to be confined to photosynthetic organisms, we have recently detected phytochrome-like proteins in two heterotrophic eubacteria, Deinococcus radiodurans and Pseudomonas aeruginosa. Here we show that these form part of a widespread family of bacteriophytochromes (BphPs) with homology to two-component sensor histidine kinases. Whereas plant phytochromes use phytochromobilin as the chromophore, BphPs assemble with biliverdin, an immediate breakdown product of haem, to generate photochromic kinases that are modulated by red and far-red light. In some cases, a unique haem oxygenase responsible for the synthesis of biliverdin is part of the BphP operon. Co-expression of this oxygenase with a BphP apoprotein and a haem source is sufficient to assemble holo-BphP in vivo. Both their presence in many diverse bacteria and their simplified assembly with biliverdin suggest that BphPs are the progenitors of phytochrome-type photoreceptors.
Collapse
Affiliation(s)
- S H Bhoo
- Cellular and Molecular Biology Program, Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
242
|
Yanovsky MJ, Mazzella MA, Whitelam GC, Casal JJ. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J Biol Rhythms 2001; 16:523-30. [PMID: 11760010 DOI: 10.1177/074873001129002213] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors sought to investigate the role of phytochromes A and B (phyA and phyB) and cryptochromes 1 and 2 (cryl and cry2) in the synchronization of the leaf position rhythm in Arabidopsis thaliana. The seedlings were transferred from white light-dark cycles to free-running conditions with or without exposure to a light treatment during the final hours of the last dark period. The phase advance caused by a far-red light treatment was absent in the phyA mutant, deficient in the fhy1 and fhy3 mutants involved in phyA signaling, and normal in the cryl and cryl cry2 mutants. The phase shift caused by blue light was normal in the cry2 mutant; reduced in the phyA, cryl, phyA cry1, and cry1 cry2 mutants; and abolished in the phyA cryl cry2 triple mutant. The phase shift caused by red light was partially retained by the phyA phyB double mutant. The authors conclude that cryl and cry2 participate as photoreceptors in the blue light input to the clock but are not required for the phyA-mediated effects on the phase of the circadian rhythm of leaf position. The signaling proteins FHY1 and FHY3 are shared by phyA-mediated photomorphogenesis and phyA input to the clock.
Collapse
Affiliation(s)
- M J Yanovsky
- IFEVA, Faculty of Agronomy, University of Buenos Aires, Argentina
| | | | | | | |
Collapse
|
243
|
Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J. Natural variation in light sensitivity of Arabidopsis. Nat Genet 2001; 29:441-6. [PMID: 11726931 DOI: 10.1038/ng777] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because plants depend on light for growth, their development and physiology must suit the particular light environment. Plants native to different environments show heritable, apparently adaptive, changes in their response to light. As a first step in unraveling the genetic and molecular basis of these naturally occurring differences, we have characterized intraspecific variation in a light-dependent developmental process-seedling emergence. We examined 141 Arabidopsis thaliana accessions for their response to four light conditions, two hormone conditions and darkness. There was significant variation in all conditions, confirming that Arabidopsis is a rich source of natural genetic diversity. Hierarchical clustering revealed that some accessions had response patterns similar to known photoreceptor mutants, suggesting changes in specific signaling pathways. We found that the unusual far-red response of the Lm-2 accession is due to a single amino-acid change in the phytochrome A (PHYA) protein. This change stabilizes the light-labile PHYA protein in light and causes a 100-fold shift in the threshold for far-red light sensitivity. Purified recombinant Lm-2 PHYA also shows subtle photochemical differences and has a reduced capacity for autophosphorylation. These biochemical changes contrast with previously characterized natural alleles in loci controlling plant development, which result in altered gene expression or loss of gene function.
Collapse
Affiliation(s)
- J N Maloof
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Abstract
Phytochromes are plant photoreceptors that regulate plant growth and development with respect to the light environment. Following the initial light-perception event, the phytochromes initiate a signal-transduction process that eventually results in alterations in cellular behavior, including gene expression. Here we describe the molecular cloning and functional characterization of Arabidopsis FHY1. FHY1 encodes a product (FHY1) that specifically transduces signals downstream of the far-red (FR) light-responsive phytochrome A (PHYA) photoreceptor. We show that FHY1 is a novel light-regulated protein that accumulates in dark (D)-grown but not in FR-grown hypocotyl cells. In addition, FHY1 transcript levels are regulated by light, and by the product of FHY3, another gene implicated in FR signaling. These observations indicate that FHY1 function is both FR-signal transducing and FR-signal regulated, suggesting a negative feedback regulation of FHY1 function. Seedlings homozygous for loss-of-function fhy1 alleles are partially blind to FR, whereas seedlings overexpressing FHY1 exhibit increased responses to FR, but not to white (WL) or red (R) light. The increased FR-responses conferred by overexpression of FHY1 are abolished in a PHYA-deficient mutant background, showing that FHY1 requires a signal from PHYA for function, and cannot modulate growth independently of PHYA.
Collapse
Affiliation(s)
- T Desnos
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
245
|
Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Bäurle I, Kudla J, Nagy F, Schafer E, Harter K. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 2001; 294:1108-11. [PMID: 11691995 DOI: 10.1126/science.1065022] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis thaliana response regulator 4, expressed in response to phytochrome B action, specifically interacts with the extreme amino-terminus of the photoreceptor. The response regulator 4 stabilizes the active Pfr form of phytochrome B in yeast and in planta, thus elevates the level of the active photoreceptor in vivo. Accordingly, transgenic Arabidopsis plants overexpressing the response regulator 4 display hypersensitivity to red light but not to light of other wavelengths. We propose that the response regulator 4 acts as an output element of a two-component system that modulates red light signaling on the level of the phytochrome B photoreceptor.
Collapse
Affiliation(s)
- U Sweere
- Institut für Biologie II / Botanik, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Abstract
Cytokinins are essential plant hormones that are involved in shoot meristem and leaf formation, cell division, chloroplast biogenesis and senescence. Although hybrid histidine protein kinases have been implicated in cytokinin perception in Arabidopsis, the action of histidine protein kinase receptors and the downstream signalling pathway has not been elucidated to date. Here we identify a eukaryotic two-component signalling circuit that initiates cytokinin signalling through distinct hybrid histidine protein kinase activities at the plasma membrane. Histidine phosphotransmitters act as signalling shuttles between the cytoplasm and nucleus in a cytokinin-dependent manner. The short signalling circuit reaches the nuclear target genes by enabling nuclear response regulators ARR1, ARR2 and ARR10 as transcription activators. The cytokinin-inducible ARR4, ARR5, ARR6 and ARR7 genes encode transcription repressors that mediate a negative feedback loop in cytokinin signalling. Ectopic expression in transgenic Arabidopsis of ARR2, the rate-limiting factor in the response to cytokinin, is sufficient to mimic cytokinin in promoting shoot meristem proliferation and leaf differentiation, and in delaying leaf senescence.
Collapse
Affiliation(s)
- I Hwang
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
247
|
Lamparter T, Esteban B, Hughes J. Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4720-30. [PMID: 11532008 DOI: 10.1046/j.1432-1327.2001.02395.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 forms holoprotein adducts with close spectral similarity to plant phytochromes when autoassembled in vitro with bilin chromophores. Cph1 is a 85-kDa protein that acts as a light-regulated histidine kinase seemingly involved in 'two-component' signalling. This paper describes the improvement of Cph1 purification, estimation of the extinction coefficient of holo-Cph1, spectral analyses of the assembly procedure and studies on quaternary structure. During assembly with the natural chromophore phycocyanobilin (PCB), a red-shifted intermediate is observed. A similar result was obtained when phycoerythrobilin was used as chromophore. As shown by SDS/PAGE and Zn2+ fluorescence, the covalent attachment of PCB is blocked by 1 mM iodoacetamide, a cysteine-derivatizing agent. When PCB was incubated with blocked apo-Cph1, again a shoulder at longer wavelengths appeared. It is therefore proposed that the long-wavelength-absorbing form represents the protonated, noncovalently bound bilin. Biliverdin, which is neither protonated nor covalently attached, undergoes spectral changes in its blue-absorbing band upon incubation with apo-Cph1. On the basis of these data we therefore propose a three-step model for phytochrome autoassembly. Size-exclusion chromatography revealed different mobilities for the apoprotein, red-absorbing Cph1-PCB and far-red-absorbing Cph1-PCB. The major peaks of both holoprotein adducts had apparent molecular masses approximately 200 kDa, a result in agreement with the notion that autophosphorylation in sensory histidine kinases requires dimerization. When Cph1-PCB was further purified by preparative native electrophoresis, the mobility on size-exclusion chromatography was approximately 100 kDa, and it was found to have lost its kinase activity, results implying that the material had lost its capacity to dimerize.
Collapse
Affiliation(s)
- T Lamparter
- Freie Universitaet Berlin, Pflanzenphysiologie, Germany.
| | | | | |
Collapse
|
248
|
Okamoto H, Qu L, Deng XW. Does EID1 aid the fine-tuning of phytochrome A signal transduction in Arabidopsis? THE PLANT CELL 2001; 13:1983-1986. [PMID: 11549758 PMCID: PMC1464712 DOI: 10.1105/tpc.130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- H Okamoto
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
249
|
Hübschmann T, Jorissen HJ, Börner T, Gärtner W, Tandeau de Marsac N. Phosphorylation of proteins in the light-dependent signalling pathway of a filamentous cyanobacterium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3383-9. [PMID: 11422367 DOI: 10.1046/j.1432-1327.2001.02229.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of the filamentous cyanobacterium Calothrix sp. PCC7601 contains two genes, cphA and cphB, encoding proteins with similarity to plant phytochromes and bacterial histidine kinases. In vitro, CphA and CphB readily attach a tetrapyrrole chromophore to develop spectrally active holoproteins that are photointerconvertible between a red light-absorbing and a far-red light-absorbing form. Together with the putative response regulators, RcpA and RcpB, the putative histidine kinases, CphA and CphB, are suggested to constitute two two-component systems of light-dependent signal transduction. In this report, we demonstrate the kinase activity of both CphA and CphB. In vitro experiments carried out on the purified proteins show that CphA and CphB are autophosphorylated in the presence of ATP and that phospho-CphA is capable of efficient phosphotransfer to RcpA as is phospho-CphB towards RcpB. The autophosphorylation and the phosphorelay are dependent on light. Both activities are reduced under red light vs. far-red light irradiation. No phosphoryl transfer occurred between phospho-CphA and RcpB or between phospho-CphB and RcpA. The response regulators RcpA and RcpB can receive a phosphoryl moiety also from the small phospho-donor acetyl phosphate. The stability of the phosphorylated regulators is not affected by CphA and CphB or light.
Collapse
Affiliation(s)
- T Hübschmann
- Humboldt-Universität Berlin, Institut für Biologie/Genetik, Berlin, Germany.
| | | | | | | | | |
Collapse
|
250
|
Sineshchekov V, Hennig L, Lamparter T, Hughes J, Gärtner W, Schäfer E. Recombinant Phytochrome A in Yeast Differs by its Spectroscopic and Photochemical Properties from the Major phyA′ and is Close to the Minor phyA″: Evidence for Posttranslational Modification of the Pigment in Plants¶. Photochem Photobiol 2001; 73:692-696. [DOI: https:/doi.org/10.1562/0031-8655(2001)0730692rpaiyd2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
|